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We recall that a logic L is said to be paraconsistent with respect to a negation connective ¬ when
it contains a ¬-contradictory but not trivial theory. Assuming that L is (at least) Tarskian,

this is equivalent to say that the ¬-explosion rule
' ¬'
 

is not valid in L.

The 3-valued logic J3 introduced by D’Ottaviano and da Costa in [2] is one of the well known
paraconsistent logics and it can be defined (up to language) as the logic given by the matrix
hMV3, { 1

2
, 1}i where MV3 is the 3 element MV-chain. Notice that J3 is strongly related with

the 3-valued  Lukasiewicz logic  L3 as hMV3, {1}i is a matrix semantics for  L3. Moreover, these
two logics are equivalent deductive systems in the Blok-Pigozzy sense [1]. Notice that, while
 L3 is explosive and truth-preserving (1 being full truth), J3 is paraconsistent and non-falsity-
preserving, because it preserves every element di↵erent from 0 (0 being false). We call J3 the
non-falsity companion of  L3.
The nilpotent minimum logic, NML for short, was firstly introduced by Esteva and Godo in [3]
in order to formalize the logic of the nilpotent minimum t-norm, that was defined by Fodor in [4]
as an example of an involutive left continuous t-norm which is not continuous. NML is obtained
from the monoidal t-norm logic MTL defined in [3], by adding the involutive condition axiom
(INV) ¬¬' ! ' and the (weak) nilpotent minimum condition axiom (WNM) ( ⇤ ' !
?) _ ( ^ ' !  ⇤ '). It is well known that NML is algebraizable and the class NM of all
nilpotent minimum algebras is its equivalent algebraic quasivariety semantics [3]. Moreover,
NML is sound and strong complete with respect the standard NM-algebra [0,1]NM [7]. That
is, NML is the logic defined by the matrix h[0,1]NM, {1}i. The aim of this talk is to axiomatize
and characterize the non-falsity companions of NML and its axiomatic extensions.
Let A be a subalgebra of [0,1]NM, then the finitary logic L defined by hA, {1}i is an axiomatic
extension (not necessarily proper) of NML. We call nf-L the non-falsity companion of L. That
is, nf-L is the finitary logic defined by the matrix hA, (0, 1] \ Ai. Consider now the following
restricted inference rule, which is intended for axiomatising nf-L::

• Restricted Square Modus Ponens for L (r-MP2 for L):

From ' and ' ! ¬(¬ )2 derive  , whenever `L ' ! ¬(¬ )2.

It is not hard to see that from (r-MP2 for L) we can derive the following restricted version of
Modus Ponens:

• Restricted Modus Ponens for L (r-MP for L):

From ' and ' !  derive  , whenever `L ' !  

Note that both inference rules involve conditions on the derivability of formulas in the logic L.
Since any axiomatic extension of NML is complete w.r.t at most two subalgebras of [0,1]NM

[5] we obtain the following result.
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Theorem 1. Let L be an axiomatic extension of NML. The following axiomatization

• Axioms: those of L

• Rules: Adjunction
'  

' ^  and (r-MP2) for L

is a sound and complete axiomatisation of nf-L.

For the case of finite-valued axiomatic extensions NMn, unlike the Lukasievicz case [1, Th.5.2],
we prove that nf-NMn is not equivalent to NMn. With an abuse of language, Nk denotes the
matrix hNMk, {1}i and Jk will denote the matrix hNMk, { 1

k�1
, 2

k�1
, . . . , 1}i where NMk is

the k-element NM-chain. It is shown in [6] that any finitary extension of NMn is complete
w.r.t. following set of matrices {N2k, N2m+1, N2 ⇥N2r+1} for some 0 6 m 6 r 6 k 6 n, For the
case of nf-NMn we cannot accomplish this reduction, but the following one that is restricted to
finitary extensions defined by finite products of Jk’s.

Theorem 2. Let L be a finitary extension of nf-NML defined by Jk1 ⇥ · · · ⇥ Jks . Then L is
complete w.r.t a finite set of the following matrices:

(i) Jn for some positive integer n > 1.

(ii) Jn ⇥ Jk for some positive integers n 6= k.

(iii) J2n ⇥ J2k ⇥ J2l+1 for some positive integers l < n < k.

(iv) J2n ⇥ J2m+1 ⇥ J2l+1 for some positive integers m < n and m < l.

Moreover every di↵erent matrix of these four types defines a di↵erent logic

Finally, next result charcaterizes all finite maximal paraconsistent extensions nf-NML

Theorem 3. The only finite matrices defining maximal paraconsitent extesnions of nf-NML
are J3, J4 and J3 ⇥ J4.
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