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Abstract

In this paper we overview basic known
results about the varieties generated by
De Morgan triples and about the prob-
lem to find equations defining the vari-
ety generated by a concrete De Morgan
triple. We also provide some alternative
proofs and some new results, specially
for the case of Łukasiewicz De Morgan
triples.

1 Introduction

De Morgan triples are algebraic structures over
the real unit interval, defined by the minimum,
the maximum, a t-norm, an involutive negation
and the t-conorm obtained by duality. Namely
([0,1],≤,∗,n,⊕) is a De Morgan triple if ∗ is a t-
norm, n is an involutive (strong) negation and ⊕ is
the t-conorm defined by duality from ∗ and n (i.e.
x⊕ y = n(n(x) ∗ n(y))). Actually, any De Morgan
triple is characterized by a t-norm ∗ and an involu-
tive negation n, therefore for the sake of a simpler
notation, we will denote De Morgan triples as pairs
(∗,n). Throughout this paper, we will denote the
standard negation by ns (i.e. ns(x) = 1−x) and the
De Morgan triples defined by the minimum (∗G),
product (∗Π) and Łukasiewicz (∗L) t-norms and the
standard negation ns will be called standard (mini-
mum, product or Łukasiewicz) De Morgan triples.

The literature about these structures is quite large
and also the use of them in different applications
(see for example [20, 21, 1, 2, 17, 18]). De Morgan
triples and their isomorphisms were firstly studied
by Garcia and Valverde in [11] and posteriorly by
Gehrke et al. in [12]. From the logical point of

view they have been first studied by Gerkhe et al.
in [13]. In that paper the authors consider logics as-
sociated to De Morgan triples only having an invo-
lutive negation and two conjunctions and disjunc-
tions (corresponding to min,max and the connec-
tives associated to a t-norm and its dual t-conorm)
and the constants 0 and 1 (thus implication is not
involved). In the setting of the so-called Mathe-
matical Fuzzy Logic (considering also the resid-
uated implication as connective) the most direct
precedent is the paper by Monteiro [15] and Sanka-
panavar [16] about Heyting algebras with an invo-
lutive negation, later generalized to residuated lat-
tices with an involutive negation in [4]. But the
most relevant papers in mathematical fuzzy logic
strictus sensus are [8, 10, 6, 7]. The first paper [8]
studies the logic obtained by adding an involutive
negation to a strict BL logic, and in particular to
Product and Gödel logics. The papers [10, 6, 7]
make further studies in the same topic in a more
general setting.

This paper is a summary of basic results (with
some new results specially for Łukasiewicz triples)
about the varieties generated by De Morgan triples
and the problem to find equations defining the va-
riety generated by a concrete De Morgan triple.
The generated varieties are understood in this pa-
per as subvarieties of the variety of enriched De
Morgan algebras of the kind (A,∧,∨,�,¬,0,1),
where (A,∧,∨,¬,0,1) is a De Morgan algebra1

and (A,≤,�,1) is a commutative ordered monoid2

such that x� 0 = 0 for all x ∈ A. Therefore, when
talking in this paper about axiomatizations of va-
rieties generated by De Morgan triples, they will

1That is, (A,∧,∨,0,1) is a bounded distributive lat-
tice and ¬ : A→ A is an involutive negation on A.

2Here ≤ denotes the order defined by the lattice op-
erations ∧ and ∨.



already assume the following set of axioms:

(EDM1) axioms of bounded distributive lat-
tices for ∧,∨,0,1

(EDM2) ¬(¬x) = x

(EDM3) ¬(x∧ y) = ¬x∨¬y

(EDM4) axioms of commutative ordered
monoids for �,1, plus x�0 = 0.

2 On De Morgan triples defined over
the three basic t-norms

In this section, we recall basic results on De
Morgan triples defined by Łukasiewicz, Product
and Minimum t-norms together with an involutive
negation. Basic results on these three cases are:

• The minimum t-norm case is the most easy
one since any pair of De Morgan triples de-
fined by the minimum t-norm and an arbitary
involutive negation are trivially isomorphic
(see [11]). Thus the set of valid equations
satisfied by them are the same, independently
of the particular De Morgan triple. Of course
these De Morgan triples are finitely axiomati-
zable by just adding to (EDM1) – (EDM4) the
following single additional axiom:

(MIN) x� y = x∧ y

• The Łukasiewicz case is well known for the
standard De Morgan triple (∗Ł,ns). The va-
riety generated by this triple is the variety
of MV-algebras, finitely axiomatizable by the
following equations in a language using a
negation operation ¬, the disjunction opera-
tion⊕ that is dual to�wrt¬, and the constant
0 (see for example [3]):

(MV1) x⊕ (y⊕ z) = (x⊕ y)⊕ z
(MV2) x⊕ y = y⊕ x
(MV3) x⊕0 = x
(MV4) ¬(¬x) = x
(MV5) x⊕¬0 = ¬0
(MV6) (¬(¬x⊕ y))⊕ y = (¬(¬y⊕ x))⊕ x

But if we take the Łukasiewicz t-norm and
an involutive negation different from the stan-
dard, then equation (MV6) is not valid any-
more. Take, for example the involutive nega-
tion defined by:

n(x) =

{
1−3x, if x≤ 1

4
1
3 −

1
3 x, otherwise

Taking x = 1
4 ,y =

1
6 , the left hand of (MV6) is

1
6 while the right hand of (MV6) is 1

4 .

We devote Section 3 below to the study of the
varieties generated by Łukasiewicz De Mor-
gan triples.

• The case of product t-norm has been largely
studied. Observe first that in [8], in order
to show that Product logic with an involutive
negation is not standard complete, it is proved
that the equation (¬x � x) ≤ (¬(¬x � x))3

is valid on the standard product De Morgan
triple (∗Π,ns) but not in a product De Morgan
triple (∗Π,n) with n 6= ns. Section 4 is de-
voted to discuss the varieties generated by the
De Morgan triples defined by product t-norm
and an involutive negation.

3 On the lattice of subvarieties
generated by Łukasiewicz De
Morgan triples

Observe first that the identity is the unique auto-
morphism of the algebraic structure defined over
[0,1] by Łukasiewicz t-norm ∗Ł. This easily fol-
lows from the fact that any such an automorphism
has to be the identity over the rationals and, since
∗Ł is continuous, this implies that it must be the
identity over the whole real interval [0,1]. As a
consequence we obtain the following result.

Proposition 3.1. There are as many non-
isomorphic Łukasiewicz De Morgan triples as dif-
ferent involutions can be defined on the real unit
interval.

And for the generated varieties we can prove the
following result.

Theorem 3.2. The lattice of subvarieties gener-
ated by Łukasiewicz De Morgan triples has infinite
height and infinite width.

Proof. Take a sequence of involutive negations
{nk | k ∈ N,k ≥ 2} such that the fix point of nk is
k−1

k and nk(
k−2

k ) = (k·k)−1
k·k and consider the corre-

sponding De Morgan triples Tk = (∗Ł,nk) for each
k ∈ N. Notice that ( k−1

k )r = 0 (where xk = x∗L
k. . .

∗Łx) if and only if r ≥ k, x ∧ nk(x) ≤ k−1
k , and

(nk((x∨ nk(x))2))r ≤ k−1
k if and only if r ≥ k− 1.

From these results it is obvious that :

• For m ∈ N, the equation

(x∧¬x)m = 0 (Am)



is satisfied in any Łukasiewicz De Morgan
triple Tk such that m≥ k and it is not satisfied
in each Tk such that m < k.
• For r ∈ N, the equation

(¬((x∨¬x)2))r ≤ y∨¬y (Br)

is satisfied in any Łukasiewiz De Morgan
triple Tk such that r ≥ k−1 and it is not satis-
fied in each Tk such that 1 < r < k−1.

This proves the infinite width of the lattice of sub-
vareities. In order to prove the infinite height,
consider the sets (parametrized by m ∈ N) of
Łukasiewicz De Morgan triples Tm = {Tk | 2 ≤
k− 1 ≤ m}. Obviously Tm ⊂ Tm+1 and thus the
subset relation is also true for their generated vare-
ities. Moreover it is also obvious that equation
(Am) is satisfied by all De Morgan triples of Tm
but not for all De Morgan triples of Tm+1 and so
the subset relation between the generated varieties
is strict.

Some interesting open problems are:
1) whether the infinite height and width in Theo-
rem 3.2 is countable or not;
2) to study under which conditions two different
Łukasiewicz De Morgan triples generate the same
variety;
3) the (finite or not) axiomatization of the differ-
ent varieties generated by Łukasiewicz De Morgan
triples, or equivalently, to find a (finite or not) fam-
ily of equations characterizing each Łukasiewicz
De Morgan triple.

4 On the lattice of subvarieties
generated by product De Morgan
triples

We consider here product De Morgan triples, i.e.
triples (∗,n) such that ∗ is isomorphich to the stan-
dard product t-norm ∗Π. A first result shows the
important role played by the set MΠ of the product
De Morgan triples (∗Π,n) defined by the standard
product t-norm ∗Π and any involutive negation n
with 1

2 as its fix point.

Proposition 4.1. Any product De Morgan triple
(∗,n) is isomorphic to a product De Morgan triple
from MΠ.

Proof. Let ∗ be a t-norm isomorphic to the product
t-norm ∗Π, and let f : [0,1]∗→ [0,1]∗Π be such iso-
morphism. Then (∗,n) is isomorphic to the prod-
uct De Morgan triple (∗Π, n̄) where the involutive

negation n̄ is defined as n̄(x) = f (n( f−1(x))). De-
note by s the fix point of n̄. On the other hand, it
is well known that any automorphism of the alge-
braic structure defined by the product t-norm is of
the form x→ xa for a fixed positive real a, where
xa denotes usual exponential. The automorphism g
defined by taking a such that sa = 1

2 does the job,
indeed g ◦ f gives the desired isomorphism since
g transforms the involutive negation n̄ into a new
involutive negation with fix point 1

2 .

Thus, in order to study the subvarieties generated
by product De Morgan triples one only needs to
consider as generators the chains belonging to MΠ.
The main result in this section is stated in the fol-
lowing theorem.

Theorem 4.2. The lattice of subvarieties gener-
ated by product De Morgan triples has infinite
height and infinite (uncountable) width.

The result is really surprising if we take into ac-
count that the lattice of subvarieties of product-
algebras contains Boolean algebras as the only
proper subvariety and thus the addition of an in-
volutive negation gives rise to a continuum of sub-
varieties.

The proof of the next theorem is based on results
in the paper [13]. Actually, in that paper only the
infinite (uncountable) width result is proved, while
the infinite height result is proved in [6]. Next we
follow [13] for the proof of the uncountable width
result, and from there we provide a new proof of
the infinite height result.

Theorem 4.3. Let (∗,n) and (∗,η) be two prod-
uct De Morgan triples. The variety generated by
(∗,n) is comparable with the variety generated by
(∗,η) if and only if the triples (∗,n) and (∗,η) are
isomorphic.

By the previous result, we can restrict ourselves to
chains of MΠ. Obviously two chains of MΠ are
isomorphic if and only if they are the same chain
and what this theorem says is that two different
chains from MΠ generate incomparable subvari-
eties. To prove this statement we need several lem-
mas.

Lemma 4.4. If (∗Π,n) belongs to the variety gen-
erated by (∗Π,η), then n( 1

2k )=η( 1
2k ) for all k∈N.

Proof. Consider for any k, l,m ∈N, the equations3

3Remember that a≤ b is equivalent to a∧b = a.



(n((x∨n(x))k))l ≤ (y∨n(y))m (1)

and

(n((x∧n(x))k))l ≥ (y∧n(y))m. (2)

Equation (1) is valid over (∗Π,n) if the inequality
holds for any a,b ∈ [0,1], which is equivalent to

max
a∈[0,1]

(n(a∨n(a))k)l ≤ min
b∈[0,1]

(b∨n(b))m.

It is obvious that these maxima and minima are at-
tained at 1

2 , the fix point of the negations. Thus (1)
holds in (∗Π,n) if and only if

n( 1
2k )≤ ( 1

2 )
m
l .

An analogous reasoning proves that (2) holds in
(∗Π,n) if and only if

n( 1
2k )≥ ( 1

2 )
m
l .

If (∗Π,n) belongs to the variety genated by (∗Π,η),
the inequalities that hold for (∗Π,n) must hold for
(∗Π,η) as well, and being the set {( 1

2 )
m
l | l,m∈N}

dense in the real unit interval, we conclude that for
each k ∈ N, n( 1

2k ) = η( 1
2k ).

Now for any involutive negation n with fix point 1
2 ,

define the set

M(n) = {(n( 1
2k ))

l | k, l ∈ N}.

Lemma 4.5. For any involutive negation n with fix
point 1

2 , M(n) is dense in the real unit interval.

Proof. The sequence {n( 1
2k ) | k ∈N} is an increas-

ing sequence with limit 1, and thus for any ε > 0
there is k0 such that 1−n( 1

2k0
)< ε . But 1−b < ε

implies bm−bm+1 = bm(1−b)< (1−b)< ε . Thus
it follows that for each real in [0,1] there is an el-
ement in the sequence {(n( 1

2k ))
l | k, l ∈ N} whose

difference from it is at most ε .

Lemma 4.6. If (∗Π,n) belongs to the variety
genated by (∗Π,η), then n and η coincide on
M(n).

Proof. If (∗Π,n) belongs to the variety generated
by (∗Π,η), we know from Lemma 4.4, that for all
k, l ∈N, (n( 1

2k ))
l = (η( 1

2k ))
l and thus the setsM(n)

and M(η) coincide. Now consider the inequalities:

(n((n((x∧n(x))k))l))r ≤ (y∨n(y))m (3)

and

(n((n((x∨n(x))k))l))r ≥ (y∧n(y))m (4)

By an argument similar to that in Lemma 4.4 we
obtain that (3) holds in (∗Π,n) if, and only if,

n((n( 1
2k ))

l)≤ ( 1
2 )

m
r ,

and that (4) holds in (∗Π,n) if, and only if,

n((n( 1
2k ))

l)≥ ( 1
2 )

m
r .

But the same conditions are valid for η and thus,
reasoning again as in Lemma 4.4, we obtain n(a) =
η(a), for all a ∈M(n) = M(η).

We have thus shown that if (∗Π,n) belongs to the
variety generated by (∗Π,η), then n and η agree
on a dense set and since involutive negations are
continuous functions, they coincide in the full real
unit interval. This ends the proof of Theorem 4.3.

The two families of equations used in the proofs
above have been considered separately. However
the first family is a special case of the second.
Namely, taking k = 1 equation (3) becomes (1),
and (4) becomes (2) as an easy computation shows.
Thus, in fact, we only have one family of equations
used to separate the subvarieties. From Theorem
4.3 it follows that there are as many incompara-
ble subvarieties as involutive negations having 1

2 as
fixed point. Therefore there are uncountable many
of the latter. Summarizing, we have the following
result.

Corollary 4.7. The set of subvarieties generated
by single product De Morgan triples contains an
uncountable number of pair-wise incomparable
subvarieties. Furthermore these subvarieties are
separable by the following family of equations:

(n((n((x∧n(x))k))l))r ≤ (y∨n(y))m.

Next we will prove the infinite height part of The-
orem 4.2. Fix k0,m0 ∈ N and an strictly increasing
sequence of naturals {li}i∈N. Then define the se-
quence {Ti}i∈N of subsets of MΠ as

Ti = {(∗Π,n) ∈MΠ | n(
1

2k0
)≤ (

1
2
)

m0
li }.

Since {m0
li
}i∈N is a decreasing sequence with limit

0, for all i ∈ N, Ti ⊂ Ti+1 and the same inclusions
hold true for the varieties generated by these fam-
ilies. Finally an easy observation shows that these
inclusions are proper, since the equation (1) for



k0,m0 and li is valid for Ti but not for Ti+1. Thus
we have an infinite sequence of strict inclusions of
subvarieties, and thus the height of the lattice of
subvarieties is, at least, countably infinite.

Remark In [6] and in [14], further insights into
the subvarieties of product De Morgan triples and
strict De Morgan triples4 can be found. In order to
separate the subvarieties, in [6] Cintula et al. use a
different family of equations. For each natural n,
they define the equation5

n((n(xn))n) = x (Dn)

and prove, using these equations, that the lattice of
subvarieties of product De Morgan triples and strict
De Morgan triples contain a sublattice isomorphic
to the lattice of natural numbers (N,�) with the
order � defined by: 1� n for all n ∈ N and n� m
if there is a natural k such that nk = m. So defined,
it is clear that (N,�) has infinite width and infinite
height.

One interesting question is to know whether or not
there are finitely-many characterizing equations for
each product De Morgan triple of MΠ, or equiva-
lently, whether there is a finite equational basis for
the subvariety generated by each product De Mor-
gan triple of MΠ. The question makes sense be-
cause in both papers [13, 7] the authors give differ-
ent sets of separating equations, i.e. defining dif-
ferent subvarieties, but in each case they need an
infinite number of equations to axiomatize the sub-
variety generated by each one of the product De
Morgan triple.

5 Final remarks

In the setting of Mathematical Fuzzy logic, the ex-
pansions of t-norm based logics with an involutive
negation was firstly studied by Esteva et al. in [8]
and posteriorly by Flaminio and Marchioni in [10],
Cintula et al. in [6] and finally by Haniková and
Savický in [14]. The basic difference with the work
on De Morgan triples is the use of one further op-
eration, the residuated implication ⇒, and of its
associated negation defined as x⇒ 0. The first pa-
per mostly deals with completeness results for log-
ics of continuous t-norms expanded with an invo-
lutive negation, the second one generalizes it to the
more general setting of logics of left-continuous

4That is, those triples defined by continuous t-norms
∗ satisfying x∗ x > 0 for each x > 0.

5We have translated the equation to our notation.

t-norms, and the third one deals with some sim-
plifications on the axioms and with some subva-
rieties defined by additional axioms (among them
the ones we have commented in the remark of the
preceding section). In the last paper, Haniková and
Savický give a set of equations for product logic
with an involutive negation that separate the vari-
eties generated by real product logic chains (that
cannot be used in our setting because they use the
implication and its associated negation that we do
not have in the De Morgan triples). On the other
hand they characterize the the strict continuous t-
norms defining De Morgan triples for which the
result of Theorem 4.3 still remains valid.

Still in the setting of residuated t-nom based logics,
the problem of whether the logic corresponding to
the expansion of the standard product chain with an
involutive is finitely axiomatizable has been (par-
tially) adressed in the literature. As far as we know,
only the case of the logic of the standard product
chain and the standard negation has been proved
to be finitely axiomatizable (when using the prod-
uct implication and thus in a more general settiing
than the De Morgan triples). The proof of this re-
sult is not trivial and is based on the study of the
logic ŁΠ combining both product and Łukasiewicz
logics [9]. The original definition of ŁΠ is done
in a language with four basic connectives (both
Łukasiewicz and product conjunctions and impli-
cations), and is complete with respect to the stan-
dard ŁΠ-chain, the chain defined over [0,1] by
Łukasiewicz and product t-norms and their asso-
ciated residuated implications. However, a very
nice result due to Cintula (see [5, 6, 19] for fur-
ther details and references) proves that ŁΠ is also
complete with respect tto the expansion of the stan-
dard product chain with the standard negation. In-
deed, he observes that, over this structure, the stan-
dard Łukasiewicz conjunction and implication op-
erations are definable as follows:

(C) x∗Ł y = x∗Π ns(x⇒Π ns(y))

(I) x⇒Ł y = ns(x∗Π ns(x⇒Π y))

and, following this idea, it is proved in [5, 19] that
ŁΠ can be defined as an axiomatic extension of the
product logic with an involutive negation by either
defining &Ł as in (C), i.e., as ϕ & ∼ (ϕ → ∼ ψ)
and adding the axiom:

• ϕ &Ł ψ →Ł ψ &Ł ϕ

or defining→Ł as in (I), i.e. as∼ (ϕ& ∼ (ϕ→ψ))



and adding the axiom:

• (ϕ →Ł ψ)→Ł ((ψ →Ł χ)→Ł (ϕ →Łψ))

This implies that if one takes an involutive nega-
tion different from ns the resulting operation in (C)
is not commutative any longer and, analogously,
the resulting function in (I) is not transitive any
longer (thus they do not coincide with Łukasiewicz
t-norm and its residuum). As a consequence, the
logic that is complete with respect to the standard
product chain with the standard involutive negation
is in fact ŁΠ, hence it is finitely axiomatizable. 6
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