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Abstract. In this paper we show that the probability of conjunctions
and disjunctions of conditionals in the recently introduced framework
of Boolean algebras of conditionals are in full agreement with the cor-
responding operations of conditionals as defined in the approach devel-
oped by two of the authors to conditionals as three-valued objects, with
betting-based semantics, and specified as suitable random quantities. We
do this by first proving that the canonical extension of a full conditional
probability on a finite algebra of events to the corresponding algebra of
conditionals is compatible with taking subalgebras of events.
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1 Introduction

Conditionals play a key role in different areas of logic and probabilistic rea-
soning, and they have been studied from many points of view, see, e.g.,
[1,2,3,5,6,8,15,16,18,19,20] In a recent paper [7], an algebraic setting for measure-
free conditionals has been put forward. More precisely, given a finite Boolean
algebra A of events, the authors build another (much bigger but still finite)
Boolean algebra CpAq where basic conditionals, i.e. objects of the form pA|Bq
for A P A and B P A1 “ AztKu, can be freely combined with the usual Boolean
operations, yielding compound conditional objects, while they are required to
satisfy a set of natural properties. Moreover, the set of atoms of CpAq are fully
identified and it is shown they are in a one-to-one correspondence with sequences
of pairwise different atoms of A of maximal length. Finally, it is also shown that
any positive probability P on the set of events from A can be canonically ex-
tended to a probability µP on the algebra of conditionals CpAq in such a way
that the probability µP pa|bq of a basic conditional coincides with the conditional
probability P pa|bq “ P pa^ bq{P pbq. This is done by suitably defining the prob-
ability of each atom of CpAq as a certain product of conditional probabilities.
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However, we remark that in [7] explicit definitions of conjunction and disjunc-
tion of conditionals are not explicitly given. Rather, any compound conditional
comes determined by the disjunction of those atoms in CpAq that lie below it.
Similarly, the probability of any compound conditional is computed as the sum
of the probabilities of the atoms below the conditional. But no operational and
systematic procedure to do these computations avoiding a combinatorial explo-
sion is provided in [7].

In this paper, after this introduction and some preliminaries in Section 2, we
will first show that the canonical extension of a positive probability on A to the
algebra of conditionals CpAq can be generalised to the case when we start from a
conditional probability (in the axiomatic sense) on AˆA1. This is done in Section
3. Then in Section 4 we show that, if B is a subalgebra of events of A and P a
conditional probability on AˆA1, then the restriction of the canonical extension
µP on CpAq to CpBq is, in fact, the canonical extension of the restriction of
P on B ˆ B1. This will allow us to prove in Section 5 that the probability of
the conjunction coincides with McGee and Kaufmann’s expressions obtained
within the approach developed by two of the authors to conditionals as three-
valued objects, with betting-based semantics, and specified as suitable random
quantities. We also obtain the probability of the disjunction and the probability
sum rule, in agreement with the approach given in [10]. We conclude in Section 6
with some remarks and prospects for future work.

2 Preliminaries

In this section we recall basic notions and results from [7] where, for any Boolean
algebra of events A “ pA,^,_,s,K,Jq, a Boolean algebra of conditionals, de-
noted CpAq, is built. We will also denote a conjunction A ^ B simply by AB.
Intuitively, a Boolean algebra of conditionals over A allows basic conditionals,
i.e. objects of the form pA|Bq for A P A and B P A1 “ AztKu, to be freely
combined with the usual Boolean operations up to certain extent.

In mathematical terms, the formal construction of the algebra of condi-
tionals CpAq is done as follows. One first considers the free Boolean algebra
FreepA|A1q “ pFreepA|A1q,[,\,s,K,Jq generated by the set A|A1 “ tpA|Bq :
A P A, B P A1u. Then, one considers the smallest congruence relation ”C on
FreepA|A1q satisfying the following natural properties:

(C1) pB|Bq ”C J, for all B P A1;
(C2) pA1|Bq [ pA2|Bq ”C pA1A2|Bq, for all A1, A2 P A, B P A1;
(C3) pA|Bq ”C p sA|Bq, for all A P A, B P A1;
(C4) pAB|Bq ”C pA|Bq, for all A P A, B P A1;
(C5) pA|Bq [ pB|Cq ”C pA|Cq, for all A P A, B,C P A1 such that A ď B ď C.

Finally, the algebra CpAq is defined as follows.

Definition 1. For every Boolean algebra A, the Boolean algebra of conditionals
of A is the quotient structure CpAq “ FreepA|Aq{”C

.
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Since CpAq is a quotient of FreepA|Aq, elements of CpAq are equivalence
classes, but without danger of confusion, one can henceforth identify classes rts”C

with one of its representative elements, in particular, by t itself. Conditionals of
the form pA|Jq will also be simply denoted as A.

A basic observation is that if A is finite, CpAq is finite as well, and hence
atomic. Indeed, if A is a Boolean algebra with n atoms atpAq “ tα1, . . . , αnu,
i.e. |atpAq| “ n, it is shown in [7] that the atoms of CpAq are in one-to-one
correspondence with sequences α “ xαi1 , . . . , αin´1

y of n ´ 1 pairwise different
atoms of A, each of these sequences giving rise to an atom ωα of CpAq defined
as the following conjunction of n´ 1 basic conditionals:

ωα “ pαi1 |Jq [ pαi2 |sαi1q [ ¨ ¨ ¨ [ pαin´1
|sαi1 ¨ ¨ ¨ sαin´2

q, (1)

It is then clear that |atpCpAqq| “ n!.

Next we will recall some properties holding in CpAq that will be useful for
next sections. For each subvector pi1, . . . , ikq of p1, . . . , nq we set

ωi1¨¨¨ik “ αi1 [ pαi2 |sαi1q [ ¨ ¨ ¨ [ pαik |sαi1 ¨ ¨ ¨ sαik´1
q, (2)

that is, ωi1¨¨¨ik denotes an initial conjunction of k components of the atom
ωi1¨¨¨in´1

. Indeed, as pαin |sαi1 ¨ ¨ ¨ sαin´1
q “ pαin |αinq “ J, for each permutation

pi1, . . . , inq of p1, . . . , nq, we obtain the following atom of CpAq:

ωi1¨¨¨in “ ωi1¨¨¨in´1 “ αi1 [ pαi2 |sαi1q [ ¨ ¨ ¨ [ pαin´1 |sαi1 ¨ ¨ ¨ sαin´2q.

We hence recall that, from [7, Proposition 4.3], for each k, the conjunctions
ωi1¨¨¨ik ’s constitute a partition of the algebra CpAq. In particular this implies that
Ů

pi1,...,ikqPΠtj1,...,jku
ωi1¨¨¨ik “ J, where Πtj1,...,jku is the set of all permutations

pi1, . . . , ikq of the set tj1, . . . , jku.

Now, consider a positive probability on the algebra of plain events P : A Ñ

r0, 1s. It is shown in [7] that P can be extended to a probability µP : CpAq Ñ
r0, 1s on the Boolean algebra of conditionals CpAq, called canonical extension,
such that µP p“pA|Bq”q, the probability of a basic conditional pA|Bq, coincides
with the conditional probability of A given B, i.e. µP p“pA|Bq”q “ P pA|Bq “
P pA^ Bq{P pBq. In particular, µP p“pA|Jq”q “ P pA|Jq “ P pAq for any A P A.
Actually, the probability µP is first defined on the atoms of CpAq as follows: for
any atom ωi1¨¨¨in´1 “ αi1 [ pαi2 |sαi1q [ ¨ ¨ ¨ [ pαin´1 |sαi1 ¨ ¨ ¨ sαin´2q, its probability
is defined as the following product of conditional probabilities:

µP pωi1¨¨¨in´1
q “ P pαi1q ¨ P pαi2 |sαi1q ¨ ¨ ¨P pαin´1

|sαi1 ¨ ¨ ¨ sαin´2
q.

Then µP is extended to the whole algebra CpAq of conditionals by additivity.
Moreover, it is shown in [7] that for any k, the following factorization holds:

µP pωi1¨¨¨ikq “
ř

pik`1,...,inqPΠt1,...,nuzti1,...,iku
µP pωi1¨¨¨in´1

q “

“ P pαi1q ¨ P pαi2 |sαi1q ¨ ¨ ¨P pαik |sαi1 ¨ ¨ ¨ sαik´1
q.

(3)
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We finally notice that, as observed above, since for each k the conjunctions
ωi1¨¨¨ik ’s constitute a partition of CpAq, the sum of the probabilities over all of
them is 1, that is:

1 “
ÿ

i

P pαiq “
ÿ

i

µP pωiq “
ÿ

i‰j

µP pωijq “ ¨ ¨ ¨ “
ÿ

pi1,...,inqPΠt1,...,nu

µP pωi1¨¨¨in´1q.

3 Canonical extension of a conditional probability

In the definition of the canonical extension µP on CpAq, a crucial assumption
is that P is positive, i.e. that P pαq ą 0 for every α P atpAq, otherwise µP pωq
can be undefined for some ω P atpCpAqq (it would be of the form 0{0). A way to
overcome this problem is, instead of starting with a (unconditional) probability
on A, to start with a conditional probability on A ˆ A1 in the axiomatic sense,
that is to say, a binary map P : Aˆ A1 Ñ r0, 1s, where A1 “ AztKu, such that

(CP1) For all B P A1, P p¨|Bq : AÑ r0, 1s is a finitely additive probability on A;
(CP2) For all A P A and B P A1, P pA|Bq “ P pA^B|Bq;
(CP3) For all A P A, B,C P A1, if A ď B ď C, then P pA|Bq “ P pA|Bq ¨ P pB|Cq.

Remark 1. Recall that requesting P : Aˆ A1 Ñ r0, 1s to satisfy the above three
postulates assures that P is a coherent conditional probability assessment in
the sense of de Finetti to all the conditional objects pA|Bq, with A,B P A and
B ‰ K. In fact, a conditional probability assessment on an arbitrary family of
(basic) conditional events P pA1|B1q “ x1, . . . , P pAn|Bnq “ xn, is coherent iff it
can be extended to a conditional probability (in the above sense) on AˆA1 ([4].

Then, given a conditional probability P : Aˆ A1 Ñ r0, 1s, we can proceed as in
the previous section and first define a mapping µP on atpCpAqq as follows: for
any atom ω “ pα1|Jq [ pα2|sα1q [ . . .[ pαn´1|sα1 ¨ ¨ ¨ sαn´2q,

µP pωq “ P pα1|Jq ¨ P pα2|sα1q ¨ . . . ¨ P pαn´1|sα1 ¨ ¨ ¨ sαn´2q, (4)

One can check that µP so defined is a probability distribution on atpCpAqq.

Proposition 1.
ř

ωPatpCpAqq µP pωq “ 1.

Proof. Although one could adapt here the proof of [7, Lemma 6.8], we provide
below a direct proof. Let atpAq “ tα1, . . . , αnu. First of all, for any subset of
atoms tβ1, . . . , βku Ď atpAq, with k ă n, by the law of total probabilities,

ř

βPatpAqztβ1,...,βku
P pβ|sβ1 ¨ ¨ ¨ sβkq “ 1.

For k “ 1 it is clear that
ř

αPatpAq P pα|Jq “ 1, and for k “ 2, we have P pα|Jq “
ř

β‰α P pα|Jq ¨ P pβ|sαq. More generally, for any k ă 1 we have:

P pβ1q¨. . .¨P pβk|sβ1 ¨ ¨ ¨ sβk´1q “
ÿ

βRtβ1,...,βku

P pβ1q¨. . .¨P pβk|sβ1 ¨ ¨ ¨ sβk´1q¨P pβ|sβ1 ¨ ¨ ¨ sβkq.
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Then, we can write: 1 “
ř

β1
P pβ1|Jq “

ř

β1

ř

β2‰β1
P pβ1|Jq ¨

P pβ2|sβ1q “ ¨ ¨ ¨ “
ř

xβ1,...,βnyPSeqpAq
P pβ1|Jq ¨P pβ2|sβ1q ¨ ¨ ¨P pβn´1|sβ1 ¨ ¨ ¨ sβn´2q “

ř

αPSeqpAq µP pωαq “
ř

ωPatpCpAqq µP pωq. 2

Then, we can extend µP to a probability on the whole algebra CpAq in the
usual way by additivity, as in the previous case: for any T P CpAq, µP pT q “
ř

ωďT µP pωq. We will keep referring to µP as the canonical extension of P .
To conclude this section, we check that Equation (3) keeps holding in this

more general setting. Indeed, concerning the canonical extension on the conjunc-
tions ωi1¨¨¨ik ’s, we first observe that, as ω1¨¨¨n´2n´1 \ ω1¨¨¨n´2n “ ω1¨¨¨n´2 , from
(4) it holds that:

µP pω1¨¨¨n´2q “ µP pω1¨¨¨n´2n´1q ` µP pω1¨¨¨n´2nq “

“ P pα1qP pα2|sα1q ¨ ¨ ¨P pαn´2|sα1 ¨ ¨ ¨ sαn´3qrP pαn´1|pαn´1_αnqq`
`P pαn|pαn´1_αnqqs “ P pα1qP pα2|sα1q ¨ ¨ ¨P pαn´2|sα1 ¨ ¨ ¨ sαn´3q.

Likewise µP pωi1¨¨¨in´2
q “ P pαi1qP pαi2 |sαi1q ¨ ¨ ¨P pαin´2

|sαi1 ¨ ¨ ¨ sαin´3
q. Then, by

backward iteration, for each k ď n´ 1, it holds that

µP pωi1¨¨¨ikq “ P pαi1qP pαi2 |sαi1q ¨ ¨ ¨P pαik |sαi1 ¨ ¨ ¨ sαik´1
q. (5)

The question of whether µP actually extends P , in the sense that, for any ba-
sic conditional pA|Bq P CpAq, it holds µP p“pA|Bq

2q “ P pA|Bq is deferred to
Theorem 2 in next the section.

4 The canonical extension for subalgebras

In this section we examine the restriction of the canonical extension µP for
conditional subalgebras of CpAq. Then, we let A be a finite algebra whose set of
atoms is tα1, α2, . . . , αnu. Let i ă n, and for i “ 1, . . . , n´ 1, let

βj “

$

&

%

αj if j ă i
αi _ αi`1 if j “ i
αj`1 if j ą i` 1

and let B be the subalgebra of A generated by β1, . . . , βn´1, so that atpBq “
tβ1, . . . , βn´1u. Now let us consider P : AˆA1 Ñ r0, 1s a conditional probability
and µP : CpAq Ñ r0, 1s its canonical extension to CpAq. Further, let P 1 : BˆB1 Ñ
r0, 1s be the restriction of P to Bˆ B1, and let µP 1 : CpBq Ñ r0, 1s its canonical
extension to CpBq. The question is whether µP 1 is the restriction of µP to CpBq.
Next theorem shows this is actually the case.

We set ω1j1¨¨¨jn´2
“ pβj1 |Jq[pβj2 |

sβj1q[¨ ¨ ¨[pβjn´2 |
sβj1 ¨ ¨ ¨

sβjn´3q and we recall

that µP 1pω
1
j1¨¨¨jn´2

q “ P pβj1 |JqP pβj2 |
sβj1q ¨ ¨ ¨ ¨P pβjn´2

|sβj1 ¨ ¨ ¨
sβjn´3

q. In the next

result we show that µP pω
1
j1¨¨¨jn´2

q “ µP 1pω
1
j1¨¨¨jn´2

q.

Theorem 1. For each atom ω1j1¨¨¨jn´2
P atpBq, the following holds:

µP pω
1
j1¨¨¨jn´2

q “ µP ppβj1 |Jq [ pβj2 |
sβj1q [ ¨ ¨ ¨ [ pβjn´2

|sβj1 ¨ ¨ ¨
sβjn´3

qq “

“ P pβj1 |JqP pβj2 |
sβj1q ¨ ¨ ¨P pβjn´2

|sβj1 ¨ ¨ ¨
sβjn´3

q “ µP 1pω
1
j1¨¨¨jn´2

q.
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Proof. The proof is omitted due to lack of space (it can be provisionally found
in the Appendix).

Remark 2. We observe that, for each conditional subalgebra CpBq of CpAq, by
a suitable iterated application of Theorem 1, it can be proved that µP pω

1q “

µP 1pω
1q, for every ω1 P atpBq.

As an illustration of Theorem 1, let us consider the following simple example.
Let A be an algebra with four atoms tα1, α2, α3, α4u. Now let us consider the
partition defined by the elements β1 “ α1, β2 “ α2 and β3 “ α3 _α4, and let B
be the subalgebra of A generated these three elements so that so that tβ1, β2, β3u
become the atoms of B. As above, let P be a conditional probability on AˆA1,
and let P 1 its restriction to B ˆ B1. According to Theorem 1, let us practically
show that µP 1 is the restriction of µP on CpBq. We have to show that, for any
pairwise different i, j P t1, 2, 3u, the following condition holds:

µP ppβi|Jq [ pβj |sβiqq “ P pβiq ¨ P pβj |sβiq “ µP 1ppβi|Jq [ pβj |sβiqq.

The cases pβi|Jq [ pβ3|sβiq with i P t1, 2u can be easily verified by exploiting
(5). Let us consider the case pβ3|Jq [ pβ1|sβ3q, the other case pβ3|Jq [ pβ2|sβ3q is
analogous. We have to compute the probability µP ppβ3|Jq[pβ1|sβ3qq. First of all,
note that pβ3|Jq[ pβ1|sβ3q “ pα3_α4|Jq[ pα1|α1_α2q, so we have to compute
the probability µP ppα3_α4|Jq[pα1|α1_α2qq, and for that, we have to find the
compound conditionals ω of CpAq such that ω ď pα3_α4|Jq[pα1|α1_α2q. It is
not difficult to check that pα3_α4|Jq[ pα1|α1_α2q “ ω31\ω341\ω41\ω431.
Then, by recalling (5), we have:

µP ppβ3|Jq [ pβ1|sβ3qq “ P pω31q ` P pω341q ` P pω41q ` P pω431q “

“ P pα3q ¨ P pα1|sα3q ` P pα3q ¨ P pα4|sα3q ¨ P pα1|sα3sα4q`

`P pα4q ¨ P pα1|sα4q ` P pα4q ¨ P pα3|sα4q ¨ P pα1|sα3sα4q “

“ P pα3q ¨ P pα1|sα3sα4q ¨ P psα3sα4|sα3q ` P pα3q ¨ P pα4|sα3q ¨ P pα1|sα3sα4q`

`P pα4q ¨ P pα1|sα3sα4q ¨ P psα3sα4|sα4q ` P pα4q ¨ P pα3|sα4q ¨ P pα1|sα3sα4q “

“ P pα1|sα3sα4q ¨ rP pα3q ¨ pP psα3sα4|sα3q ` P pα4|sα3qq`

`P pα4q ¨ pP psα3sα4|sα4q ` P pα3|sα4qqs “

“ P pα1|α1 _ α2q ¨ rP pα3q ¨ P pα1 _ α2 _ α4|sα3q ` P pα4q ¨ P pα1 _ α2 _ α3|sα4qs “

“ P pα1|α1 _ α2q ¨ pP pα3q ` P pα4qq “ P pα1|α1 _ α2q ¨ P pα3 _ α4q “

“ P pβ3q ¨ P pβ1|sβ3q “ µP 1ppβ3|Jq [ pβ1|sβ3qq.

In the next result we give a proof of [7, Theorem 6.13] where P is (not a
positive probability on A, but) a conditional probability on Aˆ A1.

Theorem 2. Let P be a conditional probability on AˆA1 and µP its canonical
extension to CpAq. Then, for every basic conditional pA|Hq P CpAq, it holds that
µP pA|Hq “ P pA|Hq.

Proof. Let pA|Hq P CpAq and B the subalgebra of A generated by the partition
tβ1, β2, β3u “ tAH, sAH, sHu. Let P 1 : B ˆ B1 Ñ r0, 1s be the restriction of P
to B ˆ B1, and let µP 1 : CpBq Ñ r0, 1s its canonical extension to CpBq. Of
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course P 1pA|Hq “ P pA|Hq. We notice that A|H “ ω112\ω
1
13\ω

1
31, where ω112 “

β1[pβ2|sβ1q “ AH[p sAH|p sAH_ sHqq, ω113 “ β1[pβ3|sβ1q “ AH[p sH|p sAH_ sHqq,
and ω131 “ β3 [ pβ1|sβ3q “ sH [ pA|Hq. Then, by Theorem 1, it holds that

µP pA|Hq “ µP pω
1
12q ` µP pω

1
13q ` µP pω

1
31q “ µP 1pω

1
12q ` µP 1pω

1
13q ` µP 1pω

1
31q “

“ P pAHqP p sAH|p sAH _ sHqq ` P pAHqP p sH|p sAH _ sHqq ` P p sHqP pA|Hq “
“ P pAHq ` P p sHqP pA|Hq “ P pHqP pA|Hq ` P p sHqP pA|Hq “ P pA|Hq. 2

We now generalize the above result to a general element of a conditional subal-
gebra of CpAq.
Theorem 3. Given a conditional probability P on AˆA1, let P 1 be its restriction
to Bˆ B1, where B is a subalgebra of A. For each C P CpBq it holds that

µP pCq “ µP 1pCq.

Proof. Indeed, by observing that C “
Ů

ω1ďC ω
1, by Theorem 1 it follows that

µP pCq “
ř

ω1ďC µP pω
1q “

ř

ω1ďC µP 1pω
1q “ µP 1pCq. [\

Theorem 3 shows that µ1P is the restriction of µP to CpBq. This result allows a
local approach in order to study properties, as done in the next section.

Remark 3. Given three events A,B,C, with A ď B ď C, by (CP3) it holds that
P pA|Cq “ P pA|BqP pB|Cq. Moreover, by recalling pC5q, we observe that

pA|Bq “ rpA|Bq [ pB|Cqs \ rpA|Bq [ p sB|Cqs “ pA|Cq \ rpA|Bq [ p sB|Cqs

and hence by Theorem 2

P pA|Bq “ P pA|Cq ` µP rpA|Bq [ p sB|Cqs. (6)

Then, as P pA|Bq ´ P pA|Cq “ P pA|Bq ´ P pA|BqP pB|Cq, it follows that

µP rpA|Bq [ p sB|Cqs “ P pA|BqP p sB|Cq. (7)

As we can see, (7) shows that the “independence” between A|B and B|C, when
A ď B ď C, still holds between A|B and sB|C. In particular, given any events
E and H, by applying (7) with A “ EH,B “ H,and C “ J, as sH|J “ sH, we
obtain

µP ppE|Hq [ sHq “ P pE|HqP p sHq . (8)

Formula (8) will be generalized in Theorem 4, where sH is replaced by any K
such that HK “ K.

5 Probability of the conjunction and the disjunction
under canonical extension

In this section we start by showing a basic property for the probability of the
conjunction and then, under canonical extension, we obtain the probability for
the conjunction and the disjunction of two conditional events, which are related
with analogous results given in the setting of coherence in [10,11,12,13,14]. In
the next result we generalize formula (8).
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Theorem 4. Given an algebra A and any events A,H,K P A, with H ‰ K and
HK “ K, given a conditional probability P on AˆA1 and its canonical extension
µP to CpAq, it holds

µP rK [ pA|Hqs “ P pKqP pA|Hq . (9)

Proof. As HK “ K, it holds that H sK “ H, H _ sK “ sK, and sHK “ K; then

J “ pAH _ sAH _ sHq ^ pK _ sKq “ AH sK _ sHK _ sAH sK _ sH sK.

We consider the partition tβ1, . . . , β4u, where

β1 “ AH sK “ AH , β2 “ sHK “ K , β3 “ sAH sK “ sAH , β4 “ sH sK,

and the associated subalgebra B; moreover we consider the atoms ω1i1i2i3 ’s of
CpBq. As ω1213 \ ω

1
214 “ ω121, it holds that

K [ pA|Hq “ ω1213 \ ω
1
214 \ ω

1
241 “ ω121 \ ω

1
241 .

Let P 1 be the restriction of P to BˆB1 and µP 1 its canonical extension to CpBq.
As H sK “ H it holds that P pAH| sKq “ P pA|H sKqP pH| sKq “ P pA|HqP pH| sKq.
Then, from Theorem 2 and from (5) we obtain

µP rK [ pA|Hqs “ µP 1rK [ pA|Hqs “ µP 1pω
1
21q ` µP 1pω

1
241q “

“ P pβ2qP pβ1|sβ2q ` P pβ2qP pβ4|sβ2qP pβ1|sβ2 sβ4q “ P pKqP pAH| sKq`
`P pKqP p sH| sKqP pA|Hq “ P pKqrP pAH| sKq ` P p sH| sKqP pA|Hqs “
“ P pKqrP pA|HqP pH| sKq ` P pA|HqP p sH| sKqs “ P pKqP pA|Hq . [\

In the next result we obtain the probability for the conjunction pA|Hq[ pB|Kq.

Theorem 5. Given an algebra A and a conditional probability P on AˆA1, let
µP be the canonical extension to CpAq. For any conditional events A|H,B|K P

CpAq it holds that

µP rpA|Hq [ pB|Kqs “
“ P pAHBK|pH _Kqq ` P pA|HqP p sHBK|pH _Kqq ` P pB|KqP p sKAH|pH _Kqq.

(10)

Proof. We consider the partition tβ1, . . . , β9u , where

β1 “ AHBK, β2 “ AH sBK, β3 “ AH sK, β4 “ sAHBK,
β5 “ sAH sBK, β6 “ sAH sK, β7 “ sHBK, β8 “ sH sBK, β9 “ sH sK,

(11)

and the associated subalgebra B. Moreover, we consider the compound con-
ditionals ω1i1¨¨¨ik ’s of CpBq, 1 ď k ď 8 . Let P 1 be the restriction of P to
BˆB1 and µP 1 its canonical extension to CpBq. We recall that from Theorem 3,
µP pCq “ µP 1pCq, for every C P CpBq. By exploiting the distributivity property,
we decompose the conjunction pA|Hq [ pB|Kq as

pA|Hq [ pB|Kq “ rpA|Hq [ pB|Kq [HKs \ rpA|Hq [ pB|Kq [ sHKs\
\rpA|Hq [ pB|Kq [H sKs \ rpA|Hq [ pB|Kq [ sH sKs.
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For the compound pA|Hq [ pB|Kq [HK it holds that

pA|Hq [ pB|Kq [HK “ ppA|Hq [Hq [ ppB|Kq [Kq “ AHBK “ β1 “ ω11,

with µP ppA|Hq [ pB|Kq [HKq “ µP pAHBKq “ P pAHBKq.
For the compound pA|Hq [ pB|Kq [ sHK it holds that

pA|Hq [ pB|Kq [ sHK “ pA|Hq [ ppB|Kq [Kq [ sH “ pA|Hq [ sHBK,

and, by Theorem 4, µP ppA|Hq [ pB|Kq [ sHKq “ µP ppA|Hq [ sHBKq “
P pA|HqP p sHBKq.
Likewise, for the compound pA|Hq [ pB|Kq [H sK it holds that

pA|Hq [ pB|Kq [H sK “ pB|Kq [AH sK,

and, by Theorem 4, µP ppA|Hq [ pB|Kq [H sKq “ P pB|KqP pAH sKq.
Thus, by observing that H _K “ HK _ sHK _H sK, we obtain

µP rpA|Hq [ pB|Kq [ pH \Kqs “ P pABHKq ` P p sHBKqP pA|Hq`
`P pAH sKqP pB|Kq “ P pH _KqrP pABHK|pH _Kqq`
`P p sHBK|pH _KqqP pA|Hq ` P pAH sK|pH _KqqP pB|Kqs “ zP pH _Kq,

(12)
where

z “ P pABHK|pH_Kqq`P p sHBK|pH_KqqP pA|Hq`P pAH sK|pH_KqqP pB|Kq.
(13)

For the compound pA|Hq [ pB|Kq [ sH sK it can be verified that

pA|Hq [ pB|Kq [ sH sK “ ω191 \ ω
1
971 \ ω

1
972 \ ω

1
973 \ ω

1
9781 \ ω

1
9782 \ ω

1
9783\

\ω1931 \ ω
1
934 \ ω

1
937 \ ω

1
9361 \ ω

1
9364 \ ω

1
9367.

(14)
By Theorem 4, it holds that
µP pω

1
91q “ µP p sH sK [ AHBK|pH _Kqq “ P p sH sKqP pAHBK|pH _Kqq. More-

over, as

β1|psβ7 sβ9q [ β2|psβ7 sβ9q [ β3|psβ7 sβ9q “ pβ1 _ β2 _ β3q|psβ7 sβ9q “ AH|pH _ sH sBKq,

from (5) it holds that

µP pω
1
971 \ ω

1
972 \ ω

1
973q “ µP pω

1
971q ` µP pω

1
972q ` µP pω

1
973q “ ¨ ¨ ¨ “

“ P p sH sKqP p sHBK|pH _KqqP pAH|pH _ sH sBKqq.

Likewise, as

β1|psβ7 sβ8 sβ9q [ β2|psβ7 sβ8 sβ9q [ β3|psβ7 sβ8 sβ9q “ pβ1 _ β2 _ β3q|psβ7 sβ8 sβ9q “ A|H,

it holds that

µP pω
1
9781 \ ω

1
9782 \ ω

1
9783q “ µP pω

1
9781q ` µP pω

1
9782q ` µP pω

1
9783q “ ¨ ¨ ¨ “

“ P p sH sKqP p sHBK|pH _KqqP p sH sBK|pH _ sH sBKqqP pA|Hq.
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Then, by observing that P pAH|pH _ sH sBKqq “ P pA|HqP pH|pH _ sH sBKqq, it
follows that

µP pω
1
971 \ ω

1
972 \ ω

1
973q ` µP pω

1
9781 \ ω

1
9782 \ ω

1
9783q “

“ P p sH sKqP p sHBK|pH _KqqrP pAH|pH _ sH sBKqq`
`P p sH sBK|pH _ sH sBKqqP pA|Hqs “ P p sH sKqP p sHBK|pH _KqqP pA|Hq.

Likewise µP pω
1
931 \ ω1934 \ ω1937q ` µP pω

1
9361 \ ω19364 \ ω19367q “ ¨ ¨ ¨ “

P p sH sKqP pAH sK|pH _KqqP pB|Kq. Thus, by recalling (13) and (15), it follows
that

µP rpA|Hq [ pB|Kq [ p sH sKqs “ P p sH sKqrP pAHBK|pH _Kqq`
`P p sHBK|pH _KqqP pA|Hq ` P p sKAH|pH _KqqP pB|Kqs “ zP p sH sKq.

(15)

Finally, by also recalling (12) , it follows that

µP rpA|Hq [ pB|Kqs “ µP rpA|Hq [ pB|Kq [ pH _Kqs`
`µP rpA|Hq [ pB|Kq [ p sH sKqs “ zP pH _Kq ` zP p sH sKq “ z “
P pAHBK|pH _Kqq ` P pA|HqP p sHBK|pH _Kqq ` P pB|KqP p sKAH|pH _Kqq.

[\

As shown in (12) and in (15), pA|Hq [ pB|Kq is “independent” from H _ K
and from sH sK. Notice that formula (10) coincides with the prevision of the
conjunction C “ pA|Hq ^ pB|Kq, introduced in the setting of coherence as the
following conditional random quantity (see, e.g.,[10,12])

C “ rAHBK ` P pA|Hqp sHBK|pH _Kqq ` P pB|KqpAH sK|pH _Kqqs|pH _Kq,
(16)

where (conditional) events and their indicators are denoted by the same symbol.
Moreover, when P pH _Kq ą 0, formula (10) becomes

µP rpA|Hq [ pB|Kqs “
P pAHBKq ` P pA|HqP p sHBKq ` P pB|KqP p sKAHq

P pH _Kq
,

that is the formula obtained by McGee ([17]) and Kaufmann ([15]). We also note
that, when HK “ K and hence sHBK “ BK,AH sK “ AH, from (10) it follows
that ([9,21])

µP rpA|Hq [ pB|Kqs “ P pA|HqP pBK|pH _Kqq ` P pB|KqP pAH|pH _Kqq “
“ P pA|HqP pB|KqP pK|pH _Kqq ` P pA|HqP pB|KqP pH|pH _Kqq “
“ P pA|HqP pB|Kq.

In the next result we obtain the probability of the disjunction pA|Hq \ pB|Kq.

Theorem 6. Given an algebra A and a conditional probability P on AˆA1, let
µP be the canonical extension to CpAq. For any conditional events A|H,B|K P

CpAq it holds that

µP rpA|Hq \ pB|Kqs “
“ P ppAH _BKq|pH _Kqq ` P pA|HqP p sH sBK|pH _Kqq ` P pB|KqP p sAH sK|pH _Kqq.

(17)
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Proof. We observe that

µP ppA|Hq \ pB|Kqq “ µP rpA|Hq [ pB|Kq \ p sA|Hq [ pB|Kq \ pA|Hq [ p sB|Kqs “
“ µP rpA|Hq [ pB|Kqs ` µP rp sA|Hq [ pB|Kqs ` µP rpA|Hq [ p sB|Kqs.

(18)
From Theorem 5, besides (10), one has µP rp sA|Hq [ pB|Kqs “
“ P p sAHBK|pH_Kqq`P p sA|HqP p sHBK|pH_Kqq`P pB|KqP p sK sAH|pH_Kqq
and µP rpA|Hq [ p sB|Kqs “ P pAH sBK|pH _Kqq `P pA|HqP p sH sBK|pH _Kqq `
P p sB|KqP p sKAH|pH _ Kqq. As it can be verified, it holds that AH _ BK “

AHBK _AH sBK _ sAHBK _AH sK _ sHBK; then, by recalling (18), it follows
that equation (17) is satisfied. [\

We observe that (17) coincides with the prevision of the disjunction of two
conditional events obtained in the framework of conditional random quantities
in [10]. We also observe that De Morgan Laws are satisfied in CpAq, there-
fore, µP ppA|Hq \ pB|Kqq “ µP pp sA|Hq [ p sB|Kqq and µP ppA|Hq [ pB|Kqq “
µP pp sA|Hq \ p sB|Kqq in agreement with formulas (10) and (17). We remark that

µP ppA|Hq \ pB|Kqq “ P pA|Hq ` P pB|Kq ´ µP ppA|Hq [ pB|Kqq,

which coincides with the prevision sum rule obtained in [9,10]. Finally, an aspect
to be deepened concerns the notion of iterated conditional, say pB|Kq|pA|Hq,

and its probability. If we define µP ppB|Kq|pA|Hqq “def
µP pA|Hq[pB|Kqq

µP pA|Hq
, then,

under the hypothesis P pA|Hq ą 0, it holds that

µP ppB|Kq|pA|Hqq “
P pAHBK|pH_Kqq`P pA|HqP pĎHBK|pH_Kqq`P pB|KqP pĎKAH|pH_Kqq

P pA|Hq ,

(19)
which is the prevision of the iterated conditional pB|Kq|pA|Hq, obtained in
the setting of coherence in ([9, Section 6]). Under the further assumption
P pH _Kq ą 0, formula (19) coincides with the result given in ([15, Thm 3]).

6 Conclusions

In this paper we have advanced in the study of conditionals in the setting of the
Boolean algebras of conditionals as proposed in [7]. More precisely, given a finite
Boolean algebra of events A, we have first considered the canonical extension µP
of a conditional probability P on Aˆ A1 to the Boolean algebra of conditionals
CpAq. Our first main result establishes that the process of canonical extensions
commutes, in a sense made precise in Section 4, with taking subalgebras of A.
This fact then allows us to show that µP extends P over basic conditionals, and
in turn to get an operational computation of the probability of a conjunction
and a disjunction of conditionals, in agreement with previous approaches in
the literature, in particular with the one developed by Gilio and Sanfilippo by
formalising conditionals as random quantities [10].

As for future work, encouraged by the above obtained results, we plan to
deepen into the relationship between the approach based on Boolean algebras of
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conditionals, together with canonical extensions of conditional probabilities on
events, and the approach based on interpreting compound and iterated condi-
tionals as random quantities.
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7 Appendix

Proof of Theorem 1:

Proof. Without loss of generality, we examine the case pj1, . . . , jn´2q “

p1, . . . , n´ 2q. Note that

ω112¨¨¨n´2 “ pβ1|Jq [ ¨ ¨ ¨ [ pβn´2|sβ1 ^ ¨ ¨ ¨ ^ sβn´3q “

“ pα1|Jq [ ¨ ¨ ¨ [ pαi´1|αi´1 _ ¨ ¨ ¨ _ αnq [ pαi _ αi`1|αi _ ¨ ¨ ¨ _ αnq[
[pαi`2|αi`2 _ ¨ ¨ ¨ _ αnq [ ¨ ¨ ¨ [ pαn´1|αn´1 _ αnq “

“W
pi`1q
1¨¨¨i´1 i i`2¨¨¨n´1 \W

pi`1q
1¨¨¨i´1 i`1 i`2¨¨¨n´1,

(20)

where W
pi`1q
1¨¨¨i´1 i i`2¨¨¨n´1 and W

pi`1q
1¨¨¨i´1 i`1 i`2¨¨¨n´1 are defined as

W
pi`1q
1¨¨¨i´1 i i`2¨¨¨n´1 “ pα1|Jq [ ¨ ¨ ¨ [ pαi´1|αi´1 _ ¨ ¨ ¨ _ αnq [ pαi|αi _ ¨ ¨ ¨ _ αnq[

[pαi`2|αi`2 _ ¨ ¨ ¨ _ αnq [ ¨ ¨ ¨ [ pαn´1|αn´1 _ αnq,

and

W
pi`1q
1¨¨¨i´1 i`1 i`2¨¨¨n´1 “ pα1|Jq [ ¨ ¨ ¨ [ pαi´1|αi´1 _ ¨ ¨ ¨ _ αnq [ pαi`1|αi _ ¨ ¨ ¨ _ αnq[

[pαi`2|αi`2 _ ¨ ¨ ¨ _ αnq [ ¨ ¨ ¨ [ pαn´1|αn´1 _ αnq,

respectively. By first examining in (20) the term W
pi`1q
1¨¨¨i´1 i i`2¨¨¨n´1, we observe

that

W
pi`1q
1¨¨¨i´1 i i`2¨¨¨n´1 “ pα1|Jq [ ¨ ¨ ¨ [ pαi´1|αi´1 _ ¨ ¨ ¨ _ αnq [ pαi|αi _ ¨ ¨ ¨ _ αnq[

[pαi`1 _ ¨ ¨ ¨ _ αnq|pαi`1 _ ¨ ¨ ¨ _ αnq [ pαi`2|αi`2 _ ¨ ¨ ¨ _ αnq [ ¨ ¨ ¨ [ pαn´1|αn´1 _ αnq “
“ ω1¨¨¨n´1 \ pα1|Jq [ ¨ ¨ ¨ [ pαi´1|αi´1 _ ¨ ¨ ¨ _ αnq [ pαi|αi _ ¨ ¨ ¨ _ αnq[
[pαi`2 _ ¨ ¨ ¨ _ αn|αi`1 _ ¨ ¨ ¨ _ αnq [ pαi`2|αi`2 _ ¨ ¨ ¨ _ αnq [ ¨ ¨ ¨ [ pαn´1|αn´1 _ αnq.

By recalling (C5), it holds that

pαi`2_¨ ¨ ¨_αnq|pαi`1_¨ ¨ ¨_αnq[pαi`2|αi`2_¨ ¨ ¨_αnq “ pαi`2|αi`1_¨ ¨ ¨_αnq;

then, we obtain

W
pi`1q
1¨¨¨i´1 i i`2¨¨¨n´1 “ ω1¨¨¨n´1 \W

pi`2q
1¨¨¨i´1 i i`2¨¨¨n´1,

where

W
pi`2q
1¨¨¨i´1 i i`2¨¨¨n´1 “ pα1|Jq [ ¨ ¨ ¨ [ pαi´1|αi´1 _ ¨ ¨ ¨ _ αnq [ pαi|αi _ ¨ ¨ ¨ _ αnq[

[pαi`2|αi`1 _ ¨ ¨ ¨ _ αnq [ pαi`3|αi`3 _ ¨ ¨ ¨ _ αnq [ ¨ ¨ ¨ [ pαn´1|αn´1 _ αnq.

Concerning W
pi`2q
1¨¨¨i´1 i i`2¨¨¨n´1, we observe that

W
pi`2q
1¨¨¨i´1 i i`2¨¨¨n´1 “ pα1|Jq [ ¨ ¨ ¨ [ pαi´1|αi´1 _ ¨ ¨ ¨ _ αnq [ pαi|αi _ ¨ ¨ ¨ _ αnq[

[pαi`2|αi`1 _ ¨ ¨ ¨ _ αnq [ pαi`1 _ αi`3 _ ¨ ¨ ¨ _ αn|αi`1 _ αi`3 _ ¨ ¨ ¨ _ αnq [ ¨ ¨ ¨

¨ ¨ ¨ [ pαn´1|αn´1 _ αnq “ ¨ ¨ ¨ “ ω1¨¨¨i i`2 i`1 i`3¨¨¨n´1 \W
pi`3q
1¨¨¨i´1 i i`2¨¨¨n´2.
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Then, by iteration, we obtain

W
pi`1q
1¨¨¨i´1 i i`2¨¨¨n´1 “ ω1¨¨¨n´1 \ ω1¨¨¨i i`2 i`1 i`3¨¨¨n´1 \W

pi`3q
1¨¨¨i´1 i i`2¨¨¨n´2 “ ¨ ¨ ¨ “

“ ω1¨¨¨n´1 \ ω1¨¨¨i i`2 i`1 i`3¨¨¨n´1 \ ¨ ¨ ¨ \ ω1¨¨¨i i`2 ¨¨¨n´2i`1n´1 \W
pn´1q
1¨¨¨i´1 i i`2¨¨¨n´1,

where

W
pn´1q
1¨¨¨i´1 i i`2¨¨¨n´1 “ ω1¨¨¨i i`2 ¨¨¨n´1i`1 \ ω1¨¨¨i i`2 ¨¨¨n´1n “

“ pα1|Jq [ ¨ ¨ ¨ [ pαi´1|αi´1 _ ¨ ¨ ¨ _ αnq [ pαi|αi _ ¨ ¨ ¨ _ αnq[
[pαi`2|αi`1 _ ¨ ¨ ¨ _ αnq [ ¨ ¨ ¨ [ pαn´1|αi`1 _ αn´1 _ αnq “ ω1¨¨¨i i`2 ¨¨¨n´1.

Notice that in the previous iteration we exploited the relation

W
pkq
1¨¨¨i´1 i i`2¨¨¨n´1 “ ω1¨¨¨i i`2¨¨¨k i`1 k`1¨¨¨n´1 \W

pk`1q
1¨¨¨i´1 i i`2¨¨¨n´2, k “ i` 1, . . . n´ 2.

We recall, from (5), that

µP pωi1...ikq “ P pαi1qP pαi2 |αi2 _ ¨ ¨ ¨ _ αinq ¨ ¨ ¨P pαik |αik _ ¨ ¨ ¨ _ αinq;

then

µP pW
pn´1q
1¨¨¨i´1 i i`2¨¨¨n´1q “ µP pω1¨¨¨i i`2 ¨¨¨n´1q “

“ P pα1q ¨ ¨ ¨P pαi|αi _ ¨ ¨ ¨ _ αnqP pαi`2|αi`1 _ αi`2 _ ¨ ¨ ¨ _ αnq ¨ ¨ ¨P pαn´1|αi`1 _ αn´1 _ αnq “
“ P pω1¨¨¨i i`2 ¨¨¨n´2qP pαn´1|αi`1 _ αn´1 _ αnq.

Moreover, as

W
pn´2q
1¨¨¨i´1 i i`2¨¨¨n´1 “ ω1¨¨¨i i`2¨¨¨n´2 i`1n´1 \W

pn´1q
1¨¨¨i´1 i i`2¨¨¨n´2,

it holds that

µP pW
pn´2q
1¨¨¨i´1 i i`2¨¨¨n´1q “ µP pω1¨¨¨i i`2¨¨¨n´2 i`1n´1q ` µP pW

pn´1q
1¨¨¨i´1 i i`2¨¨¨n´2q “

“ µP pω1¨¨¨i i`2 ¨¨¨n´2qrP pαi`1|αi`1 _ αn´1 _ αnq ¨ P pαn´1|αn´1 _ αnq`
`P pαn´1|αi`1 _ αn´1 _ αnqs.

(21)
From (CP3), it holds that

P pαn´1|αi`1 _ αn´1 _ αnq “ P pαn´1|αn´1 _ αnqP pαn´1 _ αn|αi`1 _ αn´1 _ αnq;

then (21) becomes

µP pW
pn´2q
1¨¨¨i´1 i i`2¨¨¨n´1q “ µP pω1¨¨¨i i`2 ¨¨¨n´2qP pαn´1|αn´1 _ αnq “

“ µP pω1¨¨¨i i`2 ¨¨¨n´3qP pαn´2|αi`1 _ αn´2 _ αn´1 _ αnqP pαn´1|αn´1 _ αnq.

Now,

W
pn´3q
1¨¨¨i´1 i i`2¨¨¨n´1 “ ω1¨¨¨i i`2¨¨¨n´3 i`1n´2n´1 \W

pn´2q
1¨¨¨i´1 i i`2¨¨¨n´2,
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and

µP pW
pn´3q
1¨¨¨i´1 i i`2¨¨¨n´1q “

“ µP pω1¨¨¨i i`2¨¨¨n´3 i`1n´2n´1q ` µP pW
pn´2q
1¨¨¨i´1 i i`2¨¨¨n´2q “

“ µP pω1¨¨¨i i`2 ¨¨¨n´3qP pαn´1|αn´1 _ αnq¨
¨rP pαi`1|αi`1 _ αn´2 _ αn´1 _ αnqP pαn´2|αn´2 _ αn´1 _ αnq ` P pαn´2|αi`1 _ αn´2 _ αn´1 _ αnqs

which by exploiting the relation

P pαn´2|αi`1 _ αn´2 _ αn´1 _ αnq “
“ P pαn´2|αn´2 _ αn´1 _ αnqP pαn´2 _ αn´1 _ αn|αi`1 _ αn´2 _ αn´1 _ αnq,

becomes

µP pW
pn´3q
1¨¨¨i´1 i i`2¨¨¨n´1q “ µP pω1¨¨¨i i`2 ¨¨¨n´3qP pαn´2|αn´2 _ αn´1 _ αnqP pαn´1|αn´1 _ αnq.

By iterating the previous reasoning, for every k “ i` 1, . . . , n´ 2, it holds that

µP pW
pkq
1¨¨¨i´1 i i`2¨¨¨n´1q “ µP pω1¨¨¨i i`2 ¨¨¨kqP pαk`1|αk`1 _ ¨ ¨ ¨ _ αnq ¨ ¨ ¨P pαn´1|αn´1 _ αnq.

In particular, by recalling (5)

µP pW
pi`1q
1¨¨¨i´1 i i`2¨¨¨n´1q “ µP pω1¨¨¨iqP pαi`2|αi`2 _ ¨ ¨ ¨ _ αnq ¨ ¨ ¨P pαn´1|αn´1 _ αnq “

“ P pα1|Jq ¨ ¨ ¨P pαi´1|αi´1 _ ¨ ¨ ¨ _ αnqP pαi|αi _ ¨ ¨ ¨ _ αnq¨
¨P pαi`2|αi`2 _ ¨ ¨ ¨ _ αnq ¨ ¨ ¨P pαn´1|αn´1 _ αnq,

that is

µP pW
pi`1q
1¨¨¨i´1 i i`2¨¨¨n´1q “ µP rpα1|Jq [ ¨ ¨ ¨ [ pαi´1|αi´1 _ ¨ ¨ ¨ _ αnq [ pαi|αi _ ¨ ¨ ¨ _ αnq[

[pαi`2|αi`2 _ ¨ ¨ ¨ _ αnq [ ¨ ¨ ¨ [ pαn´1|αn´1 _ αnqs “
“ P pα1|Jq ¨ ¨ ¨P pαi´1|αi´1 _ ¨ ¨ ¨ _ αnqP pαi|αi _ ¨ ¨ ¨ _ αnq¨
¨P pαi`2|αi`2 _ ¨ ¨ ¨ _ αnq ¨ ¨ ¨P pαn´1|αn´1 _ αnq,

which shows that the factorization property of µP holds for W
pi`1q
1¨¨¨i´1 i i`2¨¨¨n´1.

Likewise, by coming back to (20), the factorization property of µP holds for

W
pi`1q
1¨¨¨i´1 i`1 i`2¨¨¨n´1, that is

µP pW
pi`1q
1¨¨¨i´1 i`1 i`2¨¨¨n´1q “ µP rpα1|Jq [ ¨ ¨ ¨ [ pαi´1|αi´1 _ ¨ ¨ ¨ _ αnq [ pαi`1|αi _ ¨ ¨ ¨ _ αnq[

[pαi`2|αi`2 _ ¨ ¨ ¨ _ αnq [ ¨ ¨ ¨ [ pαn´1|αn´1 _ αnqs “ P pα1|Jq ¨ ¨ ¨P pαi´1|αi´1 _ ¨ ¨ ¨ _ αnq¨
¨P pαi`1|αi _ ¨ ¨ ¨ _ αnqP pαi`2|αi`2 _ ¨ ¨ ¨ _ αnq ¨ ¨ ¨P pαn´1|αn´1 _ αnq.

Finally, still concerning (20), we obtain

µP pω
1
12¨¨¨n´2q “ µP pW

pi`1q
1¨¨¨i´1 i i`2¨¨¨n´1q ` µP pW

pi`1q
1¨¨¨i´1 i`1 i`2¨¨¨n´1q “

P pα1|Jq ¨ ¨ ¨P pαi´1|αi´1 _ ¨ ¨ ¨ _ αnq ¨ rP pαi|αi _ ¨ ¨ ¨ _ αnq ` P pαi`1|αi _ ¨ ¨ ¨ _ αnqs¨
¨P pαi`2|αi`2 _ ¨ ¨ ¨ _ αnq ¨ ¨ ¨P pαn´1|αn´1 _ αnq “
P pα1|Jq ¨ ¨ ¨P pαi´1|αi´1 _ ¨ ¨ ¨ _ αnq ¨ P pαi _ αi`1|αi _ ¨ ¨ ¨ _ αnq¨
¨P pαi`2|αi`2 _ ¨ ¨ ¨ _ αnq ¨ ¨ ¨P pαn´1|αn´1 _ αnq “
“ P pβ1|Jq ¨ ¨ ¨P pβi|sβ1 ^ ¨ ¨ ¨ ^ sβi´1q ¨ ¨ ¨P pβn´2|sβ1 ^ ¨ ¨ ¨ ^ sβn´3q “ µP 1pω

1
12¨¨¨n´2q.
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