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Abstract. In this paper we show that the probability of conjunctions
and disjunctions of conditionals in the recently introduced framework
of Boolean algebras of conditionals are in full agreement with the cor-
responding operations of conditionals as defined in the approach devel-
oped by two of the authors to conditionals as three-valued objects, with
betting-based semantics, and specified as suitable random quantities. We
do this by first proving that the canonical extension of a full conditional
probability on a finite algebra of events to the corresponding algebra of
conditionals is compatible with taking subalgebras of events.
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1 Introduction

Conditionals play a key role in different areas of logic and probabilistic rea-
soning, and they have been studied from many points of view, see, e.g.,
[M21BI5EIRITHITEISITIN20] In a recent paper [7], an algebraic setting for measure-
free conditionals has been put forward. More precisely, given a finite Boolean
algebra A of events, the authors build another (much bigger but still finite)
Boolean algebra C(A) where basic conditionals, i.e. objects of the form (A|B)
for Ae A and B e A’ = A\{L}, can be freely combined with the usual Boolean
operations, yielding compound conditional objects, while they are required to
satisfy a set of natural properties. Moreover, the set of atoms of C(A) are fully
identified and it is shown they are in a one-to-one correspondence with sequences
of pairwise different atoms of A of maximal length. Finally, it is also shown that
any positive probability P on the set of events from A can be canonically ex-
tended to a probability up on the algebra of conditionals C(A) in such a way
that the probability 1 p(a|b) of a basic conditional coincides with the conditional
probability P(a|b) = P(a A b)/P(b). This is done by suitably defining the prob-
ability of each atom of C(A) as a certain product of conditional probabilities.
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However, we remark that in [7] explicit definitions of conjunction and disjunc-
tion of conditionals are not explicitly given. Rather, any compound conditional
comes determined by the disjunction of those atoms in C(A) that lie below it.
Similarly, the probability of any compound conditional is computed as the sum
of the probabilities of the atoms below the conditional. But no operational and
systematic procedure to do these computations avoiding a combinatorial explo-
sion is provided in [7].

In this paper, after this introduction and some preliminaries in Section 2, we
will first show that the canonical extension of a positive probability on A to the
algebra of conditionals C(A) can be generalised to the case when we start from a
conditional probability (in the axiomatic sense) on A x A’. This is done in Section
3. Then in Section 4 we show that, if B is a subalgebra of events of A and P a
conditional probability on A x A’, then the restriction of the canonical extension
pp on C(A) to C(B) is, in fact, the canonical extension of the restriction of
P on B x B’. This will allow us to prove in Section 5 that the probability of
the conjunction coincides with McGee and Kaufmann’s expressions obtained
within the approach developed by two of the authors to conditionals as three-
valued objects, with betting-based semantics, and specified as suitable random
quantities. We also obtain the probability of the disjunction and the probability
sum rule, in agreement with the approach given in [I0]. We conclude in Section 6
with some remarks and prospects for future work.

2 Preliminaries

In this section we recall basic notions and results from [7] where, for any Boolean
algebra of events A = (A, A, v, , L, T), a Boolean algebra of conditionals, de-
noted C(A), is built. We will also denote a conjunction A A B simply by AB.
Intuitively, a Boolean algebra of conditionals over A allows basic conditionals,
i.e. objects of the form (A|B) for A € A and B € A’ = A\{Ll}, to be freely
combined with the usual Boolean operations up to certain extent.

In mathematical terms, the formal construction of the algebra of condi-
tionals C(A) is done as follows. One first considers the free Boolean algebra
Free(AJA') = (Free(AJA"),m,u,, L, T) generated by the set A|A" = {(A|B) :
A € A, B € A’}. Then, one considers the smallest congruence relation =¢ on
Free(A|A’) satisfying the following natural properties:

(C1) (B|B) =¢ T, for all Be A/;

(CQ) (A1|B) m (A2|B) =¢ (141142|B)7 for all Al,AQ € A, Be A/;

(C3) (A|B) =¢ (A|B), for all A€ A, Be A’

(C4) (AB|B) =¢ (A|B), for all Ae A, Be A/

(C5) (A|B) m (B|C) =¢ (A|C), for all Ae A, B,C € A’ such that A < B < C.

Finally, the algebra C(A) is defined as follows.

Definition 1. For every Boolean algebra A, the Boolean algebra of conditionals
of A is the quotient structure C(A) = Free(A|A)/=,.
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Since C(A) is a quotient of Free(A|A), elements of C(A) are equivalence
classes, but without danger of confusion, one can henceforth identify classes [t]=,
with one of its representative elements, in particular, by ¢ itself. Conditionals of
the form (A|T) will also be simply denoted as A.

A Dbasic observation is that if A is finite, C(A) is finite as well, and hence
atomic. Indeed, if A is a Boolean algebra with n atoms at(A) = {aq,...,an},
ie. |at(A)| = n, it is shown in [7] that the atoms of C(A) are in one-to-one
correspondence with sequences @ = {ay,,...,q;, _,» of n — 1 pairwise different
atoms of A, each of these sequences giving rise to an atom wg of C(A) defined
as the following conjunction of n — 1 basic conditionals:

wa = (| T) M (aiy|ai,) mem (e, o, - au, ), (1)

It is then clear that |at(C(A))| = nl.
Next we will recall some properties holding in C(A) that will be useful for
next sections. For each subvector (iy,...,4) of (1,...,n) we set

Wiy ey = Qg T (O‘i2|5‘i1) M- m (aik|ai1 o 'aik—1)7 (2)

that is, wj,..;, denotes an initial conjunction of k£ components of the atom
Wiy i, _, - Indeed, as (ay, @, <@y, _,) = (i, |a;,) = T, for each permutation
(i1,...,%,) of (1,...,n), we obtain the following atom of C(A):

Wiy .eg

in

= Wiy = Qg T (ai2|5‘i1) M- (ain—l |5‘i1 U ain—2)'

We hence recall that, from [7, Proposition 4.3], for each k, the conjunctions
Wi, .-, 'S constitute a partition of the algebra C(A). In particular this implies that
Wiy.ip, = T, where Il ;v is the set of all permutations

ceey

(ill“'7ik)en(j1=~-~»jk}
(i1y...,i) of the set {j1,...,Jk}-

Now, consider a positive probability on the algebra of plain events P : A —
[0,1]. It is shown in [7] that P can be extended to a probability up : C(A) —
[0,1] on the Boolean algebra of conditionals C(A), called canonical extension,
such that pp(“(A|B)”), the probability of a basic conditional (A|B), coincides
with the conditional probability of A given B, i.e. up(“(A|B)”) = P(A|B) =
P(A A B)/P(B). In particular, up(“(A|T)”) = P(A|T) = P(A) for any A € A.
Actually, the probability up is first defined on the atoms of C(A) as follows: for
any atom w;,..;,_, = oy, 1 (g, |a,) M- m(ay,_ |ag, - @, _,), its probability
is defined as the following product of conditional probabilities:

pp Wiy, 1) = Plaiy) - Plagy|@iy) - Pla, o |au, - @, ).

Then pp is extended to the whole algebra C(A) of conditionals by additivity.
Moreover, it is shown in [7] that for any &, the following factorization holds:

/"LP(wil""in,—l) = (3)
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We finally notice that, as observed above, since for each k the conjunctions
Wi, .., 'S constitute a partition of C(A), the sum of the probabilities over all of
them is 1, that is:

1= ZP(OZZ) = Zﬂp(wi) = Z ﬂP(wij) == Z /‘LP(wil"‘in—l)'

Z#J (7;1;<-~77;n)en{1,...,n}

3 Canonical extension of a conditional probability

In the definition of the canonical extension pp on C(A), a crucial assumption
is that P is positive, i.e. that P(a) > 0 for every a € at(A), otherwise pup(w)
can be undefined for some w € at(C(A)) (it would be of the form 0/0). A way to
overcome this problem is, instead of starting with a (unconditional) probability
on A, to start with a conditional probability on A x A’ in the axiomatic sense,
that is to say, a binary map P : A x A" — [0, 1], where A" = A\{L}, such that

(CP1) For all Be A/, P(:|B) : A — [0,1] is a finitely additive probability on A;
(CP2) For all A€ A and Be A, P(A|B) = P(AAB|B);
(CP3) Forall Aec A, B,C e A, if A< B <, then P(A|B) = P(A|B) - P(B|C).

Remark 1. Recall that requesting P : A x A’ — [0, 1] to satisfy the above three
postulates assures that P is a coherent conditional probability assessment in
the sense of de Finetti to all the conditional objects (A|B), with A, B € A and
B # 1. In fact, a conditional probability assessment on an arbitrary family of
(basic) conditional events P(A;|By) = 1, ..., P(A,|Bn) = p, is coherent iff it
can be extended to a conditional probability (in the above sense) on A x A’ ([4].

Then, given a conditional probability P : A x A" — [0, 1], we can proceed as in
the previous section and first define a mapping up on at(C(A)) as follows: for
any atom w = (aq|T) M (az]ar) m... M (ap_1]|@y - - @np—2),

up(w) = P(Oé1|T) . P(Oé2|511) e P(Oén,1|511 s &nfg), (4)
One can check that pp so defined is a probability distribution on at(C(A)).
Proposition 1. Y . c(a) tp(w) = 1.

Proof. Although one could adapt here the proof of [7, Lemma 6.8], we provide
below a direct proof. Let at(A) = {ay,...,a,}. First of all, for any subset of
atoms {f1,..., Bk} S at(A), with & < n, by the law of total probabilities,

Ypeat(AN (. PBIBL Br) = 1.
For k = 11it is clear that 3} c.;a) P(a|T) =1, and for k = 2, we have P(a|T) =
2540 P(alT) - P(B]a). More generally, for any k < 1 we have:

P(Br). -PBelBr--Br1) = D, P(B1)-.P(BelBr-- - Br1)-P(BIBr - Br)-
BE{B1,---,Bk}



Canonical extensions of conditional probabilities and compound conditionals 5

Then,i we can write: 1 = 2,81 P(AT) = Z,Bl Zﬁzﬂﬁ P(§1|T)
P(Ba|B1) =+ =X, pyeseqa) PBUT) - P(B2[B1) -+ P(Bn—1|B1 -+ Bp—2) =
ZaeSeq(A) pp(we) = Zweat(C(A)) pp(w). ]

Then, we can extend pp to a probability on the whole algebra C(A) in the
usual way by additivity, as in the previous case: for any T € C(A), pp(T) =
Yw<r Hp(w). We will keep referring to pup as the canonical extension of P.

To conclude this section, we check that Equation keeps holding in this
more general setting. Indeed, concerning the canonical extension on the conjunc-
tions wj,...;, s, we first observe that, as wi..p—2n—1 U Wi.p—2pn = Wi.p—2, from

it holds that:

pp(Wim—2) = pp(Win—2n-1) + pp(Wi.n—2n) =
= P(al)P(QQ‘dl) s P(Oén_2|6él cee 5411—3)[P(an—1|(05n—1 Van))+
+P(an|(an,1 van))] = P(Oll)P(O[2|541) e P(an,2|c_u1 s 5[”,3).

Likewise pp(wi...i,_») = Ploi,)P(uy|@s,) -+ Py, ,|@, -+ @, _,). Then, by
backward iteration, for each k < n — 1, it holds that

MP<wi1'“ik) = P<ai1>P(ai2|ai1) T P(aik |ai1 o 'O_‘ik—l)' (5)

The question of whether pp actually extends P, in the sense that, for any ba-
sic conditional (A|B) € C(A), it holds up(“(A|B)"”) = P(A|B) is deferred to
Theorem [2] in next the section.

4 The canonical extension for subalgebras

In this section we examine the restriction of the canonical extension pup for
conditional subalgebras of C(A). Then, we let A be a finite algebra whose set of

atoms is {a1,a9,...,a,}. Let i <m,and for i =1,...,n— 1, let
o if j <
ﬂj: aivaiﬂifj:i
Q1 ifj>i+1

and let B be the subalgebra of A generated by fi,...,[B,—1, so that at(B) =
{B1,...,Bn-1}. Now let us consider P : A x A’ — [0, 1] a conditional probability
and pp : C(A) — [0, 1] its canonical extension to C'(A). Further, let P’ : BxB' —
[0,1] be the restriction of P to B x B’, and let pps : C(B) — [0, 1] its canonical
extension to C(B). The question is whether pps is the restriction of up to C(B).
Next theorem shows this is actually the case. B B

Weset w’ ;= (8;,|T)n (B, |ﬂj_1) M-8, s |ﬁ11 e ﬂinfg) and we recall
that Hnp (wg’l-»-jn,g) = P(ﬁjl |T)P(ﬂ]2 |ﬁj1) T P(ﬁjn_Q |Bj1 to ﬁjn—s)‘ In the next
result we show that up(wgl__,jwz) = upr (wél__,jwz).

Theorem 1. For each atom W', € at(B), the following holds:

JiJn—2

1P (g y) = (B[ T) 1 (Bja185) -+ 11 (Bj By -+ B s)) =
= P(le |T)P<ﬁjz |ﬁj1> e P(/Bjn—z |5j1 T /B.jnfl’)) = ppr (w;ynjn,z)'
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Proof. The proof is omitted due to lack of space (it can be provisionally found
in the Appendix).

Remark 2. We observe that, for each conditional subalgebra C(B) of C(A), by
a suitable iterated application of Theorem [1} it can be proved that pp(w’) =
pupr(w'), for every w' € at(B).

As an illustration of Theorem [I} let us consider the following simple example.
Let A be an algebra with four atoms {a1, as, ag, as}. Now let us consider the
partition defined by the elements #; = a1, 82 = as and 3 = ag v ay, and let B
be the subalgebra of A generated these three elements so that so that {31, 82, 83}
become the atoms of B. As above, let P be a conditional probability on A x A/,
and let P’ its restriction to B x B’. According to Theorem [1| let us practically
show that pps is the restriction of up on C(B). We have to show that, for any
pairwise different ¢, j € {1, 2,3}, the following condition holds:

pe((Bil T) 1 (B18:)) = P(B:) - P(BjlBi) = up ((Bi T) 1 (B;18:))-

The cases (3;|T) m (B3|B;) with i € {1,2} can be easily verified by exploiting
. Let us consider the case (33| T) r1(81]83), the other case (B3| T) m (B2|Bs) is
analogous. We have to compute the probability pp((83]T) 1 (81|83)). First of all,
note that (B3| T) m (B1]83) = (a3 v au|T) m1 (a1]ar v az), so we have to compute
the probability pp((as v aq|T) M (aq]ar v az)), and for that, we have to find the
compound conditionals w of C(A) such that w < (g v aq|T) M (a1]ag v ag). It is
not difficult to check that (a3 v as|T) M (a1]ag v as) = w1 Uwsa L wag L wysg.
Then, by recalling , we have:

e (B3] T) M (B1]B3)) = P(ws1) + P(wsa1) + Plwar) + Plwasi) =

= P(Olg) . P(Ozl‘@g) + P(Ot3) . P(Ol4|073) . P(Oé1|5[35£4)+

+P(ay) - P(ai|dy) + P(as) - P(ag|as) - P(ag|asas) =

= P(ad) . P(al\c_ugo_z4) . P(C_¥30_44|0_43) + P(ad) . P(Oz4‘0_43) . P(a1|5z35z4)+

+P(Oé4) . P(oz1|c_y3c_y4) . P<@3&4|544) + P(Oé4) . P(Oé3|5z4) . P(al\o_zgo_q) =

= P(oz1|0736¢4) . [P(Ozg) . (P(&3644|6é3) + P(Oé4|643))+

+P(as) - (P(azos|ay) + Plas|ag))] =

= P(OZ1|041 Vv 042) . [P(Oég) . P(Oél VvV g V a4|073) + P(Oé4) . P(al VvV g V CM3|5£4)] =
= P(o|a1 v ag) - (P(as) + P(aq)) = Plaa|ar v ag) - Plag v ag) =

= P(B3) - P(B11B3) = pp (B3] T) M (B1lB3))-

In the next result we give a proof of [7, Theorem 6.13] where P is (not a
positive probability on A, but) a conditional probability on A x A’.

Theorem 2. Let P be a conditional probability on A x A’ and up its canonical
extension to C(A). Then, for every basic conditional (A|H) € C(A), it holds that
up(AlH) = P(A|).

Proof. Let (A|H) € C(A) and B the subalgebra of A generated by the partition
{B1,B2,83} = {AH,AH,H}. Let P’ : B x B" — [0,1] be the restriction of P
to B x B, and let up : C(B) — [0,1] its canonical extension to C(B). Of
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course P'(A|H) = P(A[H). We notice that A|H = w}, Liw]3 Liwsy, where Wiy =
Prr(B2|fr) = AH M (AH|(AH v H)), wiz = B1m(Bs|61) = AHn(H|(AH v H)),
and wh; = B3 1 (51]83) = H m (A|H). Then, by Theorem it holds that

pp(AlH) = pp(wiy) + pp(wiz) + pp(ws) = pp(wiz) + pe (Wis) + pp(ws) =
— P(AH)P(AH|(AH v H)) + P(AH)P(H|(AH v H)) + P(H)P(A|H) =

= P(AH)+ P(H)P(A|H) = P(H)P(A|H) + P(H)P(A|H) = P(A|H). |
We now generalize the above result to a general element of a conditional subal-

gebra of C(A).

Theorem 3. Given a conditional probability P on AxA’, let P’ be its restriction
to B x B', where B is a subalgebra of A. For each C € C(B) it holds that

1p(C) = ppr (C).
Proof. Indeed, by observing that C = | | ., w’, by Theorem [1| it follows that
1p(C) = Dy ee 10 (&) = Doy ipr () = i (©). -

Theorem [3| shows that p/p is the restriction of up to C(B). This result allows a
local approach in order to study properties, as done in the next section.

Remark 3. Given three events A, B, C, with A < B < C, by (CP3) it holds that
P(A|C) = P(A|B)P(B]|C). Moreover, by recalling (C5), we observe that

(A|B) = [(A|B) m (B|C)] u [(A|B) n (B|CO)] = (A[C) u [(A]B) m (B|C)]
and hence by Theorem

P(A|B) = P(A|C) + up[(A|B) m (B|C)]. (6)
Then, as P(A|B) — P(A|C) = P(A|B) — P(A|B)P(B|C), it follows that
ppl(A|B) m (B|C)] = P(A|B)P(B|C). (7)

As we can see, shows that the “independence” between A|B and B|C, when
A < B < C, still holds between A|B and B|C. In particular, given any events
E and H, by applying (7)) with A = EH,B = Hand C = T, as H|T = H, we
obtain

pp((E|H) m H) = P(E|H)P(H). (8)

Formula will be generalized in Theorem [4] where H is replaced by any K
such that HK = 1.

5 Probability of the conjunction and the disjunction
under canonical extension

In this section we start by showing a basic property for the probability of the
conjunction and then, under canonical extension, we obtain the probability for
the conjunction and the disjunction of two conditional events, which are related
with analogous results given in the setting of coherence in [TOTTIT2IT3IT4]. In
the next result we generalize formula .
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Theorem 4. Given an algebra A and any events A, H, K € A, with H # 1 and
HK = 1, given a conditional probability P on A x A’ and its canonical extension

wp to C(A), it holds
uplK 0 (AJH)] = P(K)P(AH). (9)
Proof. As HK = 1, it holds that HK = H, H v K = K, and HK = K then
T=(AHvAHv H)A (K v K)=AHK v HK v AHK v HK.
We consider the partition {51, ..., 84}, where

B1=AHK = AH, o =HK =K, 3 =AHK = AH, 3, = HK,

/ I

and the associated subalgebra B; moreover we consider the atoms w; ; ;.’s of

C(B). As why3 L whyy = why, it holds that
K (AlH) = W§13 U W/214 U W§41 = OJ/21 o W§41 .

Let P’ be the restriction of P to B x B’ and ups its canonical extension to C(B).
As HK = H it holds that P(AH|K) = P(A|[HK)P(H|K) = P(A|H)P(H|K).
Then, from Theorem [2| and from we obtain

pp[K m (AlH)] = pp [K 1 (AlH)] = ppr(wyy) + pp (whgy) =
= P(B2)P(B1|B2) + P(B2) P(B4|B2) P(B1|B2p4) = P(K)P(AH|K)+
+P(K)P(H|K)P(A|H) = P(K)[P(AH|K) + P(H|K)P(A|H)] =

= P(K)[P(A|H)P(H|K) + P(A|H)P(H|K)] = P(K)P(A|H). o©

In the next result we obtain the probability for the conjunction (A|H) m (B|K).

Theorem 5. Given an algebra A and a conditional probability P on A x A', let
wp be the canonical extension to C(A). For any conditional events A|H, B|K €
C(A) it holds that

pp[(AlH) m (B|K)] = _ _
= P(AHBK|(H v K)) + P(A|H)P(HBK|(H v K)) + P(B|K)P(KAH|(H v K)).
(10)

Proof. We consider the partition {81,...,089} , where

B1 = AHBK, Bs = AHBK, B3 = AHK, B, = AHBK,

s — AHBK, o = AHK, By — ABK, 3s = ABK, 8y = Ak, 1)

and the associated subalgebra B. Moreover, we consider the compound con-
ditionals wgl,_.ik’s of C(B), 1 < k < 8 . Let P’ be the restriction of P to
B x B’ and pp its canonical extension to C(B). We recall that from Theorem
up(C) = up(C), for every C € C(B). By exploiting the distributivity property,

we decompose the conjunction (A|H) m (B|K) as

(A|H) n (B|K) = [(A|H) m (B|K) n HK] U [(A|H) n (B|K) n HK]u
L[(A|H) - (B|K) n HE] U [(A|H) n (B|K) n H K].
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For the compound (A|H) m (B|K) m HK it holds that
(AIH)m (BIK)mHK = (A|H)m H)n ((BI[K) M K) = AHBK = 8 = wi,

with pp((A|H) n (B|K) n HK) = np(AHBK) = P(AHBK).
For the compound (A|H) m (B|K) m HK it holds that

(A|H) n (B|K) n HK = (A|H) n (B|K) n K) n H = (A|H) n HBK,

and, by Theorem {4 pp((A|H) m (B|K) mn HK) = pup((A|H) n HBK) =
P(A|H)P(HBK). )
Likewise, for the compound (A|H) m (B|K) m HK it holds that

(A|H) n (B|K) n HK = (B|K) n AHK,

and, by Theorem [ yip((A|H) m (B|K) n HK) = P(B|K)P(AHK).
Thus, by observing that H v K = HK v HK v HK, we obtain

up[(AlH) m (B|K)m (H u K)] = P(ABHK) + P(EBK)P(A|H)+
+P(AHI?)P(B|K) = P(H v K)[P(ABHK|(H v K))+
+P(ETBK\(H v K))P(A|H) + P(AHf(|(H v K))P(B|K)] = zP(H v K),
(12)
where

2 = P(ABHK|(HvK))+P(HBK|(HvK))P(A|H)+P(AHK|(Hv K))P(B|K).
o (13)
For the compound (A|H) m (B|K) m H K it can be verified that

(AlH) n (B|K) rm HK = Wop U Worp U Whzo U Worg L Worgy L Worge LI Worgs L)
LWgsy L Whgy U Wosr LI Woger LI Wogeq LI Woser- 14
14
By Theorem [4] it holds that o
pup(wyy) = up(HK m AHBK|(H v K)) = P(HK)P(AHBK|(H v K)). More-
over, as

B1|(B7Bo) M Ba|(B7B9) M B3|(BzBa) = (B1 v Ba v B3)|(B7Be) = AH|(H v HBK),
from it holds that

pp(Wor1 U Wore U Worg) = pp(wory) + pp(Wore) + pp(whrs) = -+ =
— P(HK)P(HBK|(H v K))P(AH|(H v HBK)).

Likewise, as
B11(B7BsBo) M B2|(BzBsB9) M Bs|(BrBsBa) = (B v Ba v B3)|(BzBsBs) = AlH,
it holds that

pp(Worsy U Worss U Worss) = P (Wozs1) + P (Worse) + p(whrss) = -+ =
— P(HK)P(HBK|(H v K))P(HBK|(H v HBK))P(A|H).
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Then, by observing that P(AH|(H v HBK)) = P(A|H)P(H|(H v HBK)), it
follows that

np (W971 U W972 U W973) + NP(W9781 U W9782 o W9783)
= P(HK)P(HBK\(H v K))[P(AH|(H v HBK))

+P(HBK|(H v HBK))P(A|H)| = P(HK)P(HBK|(H v K))P(A|H).

Likewise pp(woz) L wogy U Wogr) + wp(Wozer U Wosgs
P(HK)P(AHK|(H v K))P(B|K). Thus, by recalling (13| and | , it follows
that

upl(AlH) A (BIK) m (HE)] = P(HE)[P(AHBK|(H v K))+

+P(HBK|(H v K))P(A|H) + P(KAH|(H v K))P(B|K)] = 2P(AK). (1)

Finally, by also recalling , it follows that

ppl(AlH) m (B|K)] = pp[(AlH) n (B|K) n (H v K)]+
+up[(A|H) m (B|K) m (HK)] = 2P(H v K) + 2P(HK) = 2 =
P(AHBK|(H v K)) + P(A|[H)P(HBK|(H v K)) + P(B|K)P(KAH|(H v K)).

O

As shown in (12) and in (I5), (A|H) (B\K) is “independent” from H v K
and from HK. Notice that formula coincides with the prevision of the
conjunction C = (A|H) A (B|K), introduced in the setting of coherence as the
following conditional random quantity (see, e.g.,[T0/12])

C =[AHBK + P(A|H)(HBK|(H v K)) + P(B|K)(AHK|(H v K))]|(H v K),

(16)
where (conditional) events and their indicators are denoted by the same symbol.
Moreover, when P(H v K) > 0, formula becomes

P(AHBK) + P(A|H)P(HBK) + P(B|K)P(KAH)

ppl(AIH)  (BIK)] = BT K ,

that is the formula obtained by McGee ([17]) and Kaufmann ([I5]). We also note
that, when HK = 1| and hence HBK = BK,AHK = AH, from it follows
that ([9121])

upl(A[H) n (B|K)] = P(A|H)P(BK|(H v K)) + P(B|K)P(AH|(H v K)) =
— P(A|H)P(B|K)P(K|(H v K)) + P(A|H)P(B|K)P(H|(H v K)) =
— P(A|H)P(B|K).

In the next result we obtain the probability of the disjunction (A|H) u (B|K).

Theorem 6. Given an algebra A and a conditional probability P on A x A’, let
wp be the canonical extension to C(A). For any conditional events A|H, B|K €
C(A) it holds that

np[(AlH) u (B|K)] = o o
= P((AH v BK)|(H v K)) + P(A|H)P(H BK|(H v K)) + P(B|K)P(AHK|(H v K)).
(17)
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Proof. We observe that

up((AlH) u (B|K)) = pp[(AlH) m (B|K) u (A|H) n (B|K) u (A|H) n (B|K)]
= pp[(AlH) m (B|K)] + pp[(AlH) n (B|K)] + pp[(AlH) n (B|K)]. )
From Theorem besides , one has pup[(A|H) n (B|K)] =

= P(AHBK|(Hv K))+P(A|H)P(HBK|(H v K))+P(B|K)P(KAH|(H v K))
and pp[(A|H) n (B|K)] = P(AHBK|(H v K)) + P(A|H)P(HBK|(H v K)) +
P(B|K)P(KAH|(H v K)). As it can be verified, it holds that AH v BK =
AHBK v AHBK v AHBK v AHK v HBK; then, by recalling , it follows
that equation is satisfied. O

We observe that ([17) coincides with the prevision of the disjunction of two
conditional events obtained in the framework of conditional random quantities
in [I0]. We also observe that De Morgan Laws are satisfied in C(A), there-
fore, 1p((ATH) & (BIK)) = pup((A|H) 1 (BIK)) and pp((ATH) 0 (BIK)) —
pp((AJH) u (B|K)) in agreement with formulas and ([17). We remark that

pp((AlH) v (B|K)) = P(A[H) + P(B|K) — up((A[H) n (B|K)),

which coincides with the prevision sum rule obtained in [910]. Finally, an aspect
to be deepened concerns the notion of iterated conditional, say (B|K)|(A|H),

and its probability. If we define pp((B|K)|[(A|H)) =dey W, then,
under the hypothesis P(A|H) > 0, it holds that

P(AHBK|(HvK))+P(A|H)P(HBK|(Hv K))+P(B|K)P(KAH|(HvK
1p((B|K)|(A|H)) = ( I( ))+P(A|H) (P(A||§{) ))+P(B|K)P( I( )),

(19)
which is the prevision of the iterated conditional (B|K)|(A|H), obtained in
the setting of coherence in ([9, Section 6]). Under the further assumption
P(H v K) > 0, formula coincides with the result given in ([I5, Thm 3]).

6 Conclusions

In this paper we have advanced in the study of conditionals in the setting of the
Boolean algebras of conditionals as proposed in [7]. More precisely, given a finite
Boolean algebra of events A, we have first considered the canonical extension yp
of a conditional probability P on A x A’ to the Boolean algebra of conditionals
C(A). Our first main result establishes that the process of canonical extensions
commutes, in a sense made precise in Section [4 with taking subalgebras of A.
This fact then allows us to show that up extends P over basic conditionals, and
in turn to get an operational computation of the probability of a conjunction
and a disjunction of conditionals, in agreement with previous approaches in
the literature, in particular with the one developed by Gilio and Sanfilippo by
formalising conditionals as random quantities [10].

As for future work, encouraged by the above obtained results, we plan to
deepen into the relationship between the approach based on Boolean algebras of
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conditionals, together with canonical extensions of conditional probabilities on
events, and the approach based on interpreting compound and iterated condi-
tionals as random quantities.
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7 Appendix

Proof of Theorem [T

Proof. Without loss of generality, we examine the case (ji,...,Jn—2) =
(1,...,n —2). Note that

Wig.po = (B1|T) -1 (Bn—2|61 ZANMRRAN Bn—S) =
= (OZ1|T) M- (Oéi,1|0[i,1 VoV an) M (Oéi \ Oéi+1|041' VeV Oln)l_|
M(aipa|aize v va) e m(antlom—1 v ay) =
(i4+1) i4+1)
= Wl?-»iflii+2»--nfl H Wl(-l-~i71i+1i+2~--nfl7

(i+1) (i+1)
where Wy 7 ;0o and Wil oo, ate defined as

1+1
WD, oy = (@ T) M- (@it v - v an) A (g v v ag)m

Mogpa|aipe v v ag) M m (ap—t|an—1 v ag),
and

Wl(lJrzl—)l itlit2n—1 — (041|T) Me--m (Oéi,1|0é1‘,1 ViV an) m (ai+1|ai ViV an)l_!
M(Qiga|aive v vag) M (an—tlan—1 v an),

respectively. By first examining in the term W(z+21_)1“ +2..n—1> We observe
that

Wl(,i_J_ril_)l“-H_,_n_1 = (| T) M- (imt|ai—r v o v oag) M (aglag v voag)m

Maipr Voo v ag)[(aipr v v oag) o (pe|aira v v ag) e m (et |an—1 Voag) =
=Wlm—1 U (a1 T) M- (imt|air v oo voag) m(aglag v voag)m
Mo Voo Vag|airr Voo voag) M (agpe|aiie vieoo v ag) mee m (et an—1 Vo ag).

By recalling (C5), it holds that
(ai+2 AV \/O[n)|(0[i+1 AR van) M (Cvi+2|041'+2 AV \/Oln) = (()éi+2|()éi+1 AV \/Oln);
then, we obtain
(i+1) (i42)
W1-2~-i71ii+2-~-n71 =Wiop-1U Wl?-~i71ii+2~-~n717

where

Wl(.i,tz_)uiw,,,n_l = (| T) M- (imt|ai—r v - vag) M (agla; v voag)m

M(aiga|airr Voo vag) m(aigslaies vVeors vag) mem (Qpet|an—1 v oag).
C . (i+2) }
oncerning Wy ;7 ;i.5..,,_1, We observe that

W1(~i~t'2—)1ii+2mn—1 = (| T) M- (mt|ai—r v - v ag) M (agla; v voag)m
(o] @ipr VooV Q) M (g1 V Qigg VoV Qi1 V Qg3 VoV Og) T

(i+3)
e M (an—l‘an—l Vv an) = = Wl 42i41443-n—1 Y Wl--~i71ii+2~--nf2'
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Then, by iteration, we obtain

(i+1) _ S (i+3) o

W, cie1ii42n—1 — Wlen—1 U W1 §i4244+14543-n—1 U W1-~-i71ii+2--~(nf21)_ =
n—

=Wl.p—1 U W13 42i41i43-n—1 U - LHWI.i42...n—2i+1n—1 U Wl...i_lii_;,_g...n_p

where
(n—1)
W1'-~i—1i1'+2~~n—1 = W1ii42 n—1i+1l U W1ji42 n—1n =
= (| T)m- (oo v v oag) M (aglag v voag)m
M(aiga]eirr Voo v ag) M M (Qpe1 |0l V Qa1 V Q) = W1t -1
Notice that in the previous iteration we exploited the relation

k) (k+1) .
Wl...l;liijLQ...n,l = Wliit 2 kitlhktlon-1 U W ci—1 342 n—2) k=i+1,...n—2.

We recall, from , that
pp(wiy i) = Plai, ) Plag,|oi, v oo voag, ) - Plag|ai, v voag,);

then
(n—1)
MP(W1...Z‘,1“‘+2...7L71) = ,UP(wlmii-&-Q ~-~n—1) =
= P(ay) - Plajla; v - - v ap)P(ayp2|aizr vV aiga v oo v oag) o Plag—1]|ait1 V Qpo1 vV ap) =
= P(wl...iH_Q ...n_g)P(an_1|ai+1 V Op—1 V an).

Moreover, as

n—2 n—1
W1(<-~i7)1ii+2~--n71 = W1i.ji+2--n—2i+1n—1 Y Wl(---if)lii+2-~-nf2’
it holds that
w2 _ y , w1 —

,UP( 1---171“+2--~n71) MP(W1~~~zz+2~~-n—2z+1 n—l) + MP( ~--z71“+2---n72)

= NP(wlmii+2 ~~n—2)[P(0¢i+1|Oéi+1 V Qp—1 VvV Oén) : P(Oén—1|an—1 v Oén)+

+P(O[n,1|0li+1 vV Op—1 V Oln)]

(21)

From (CP3), it holds that

Plap—i|aip1 vV an_1 Vo) = Plom—1|an—1 v an)Plan_1 v ap|aip1 vV a1 V an);

then becomes

W2 i) = 1P (@iiige wn—2) Pan_1|an—1 v ay) =
= NP(W1-~-ii+2 -~n73)P(an72|ai+1 V Qp_2 V 0p_1V an)P(anfl‘anfl v Oén)'
Now,

(n—3) o (n—2)
W, ci—1ii42n—1 — Wliit+2-.n—3i+1ln—2n—1 Y W, i1 442 —20
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and

n—3
(Wl( — )117,+2 ‘n— 1) ( 2)
n—
_MP(W1~~H+2---H—31+1n—2n—l)+/~LP(W1 i—1ii42--n 2) =
= pp(Wieiit2 n—3)Pan_1|om_1 v ap)-

[P(@it1]|tisr vV o Vv a1 vV a)P(ap—a|otn—2 v a1 v o) + Pa—a|@is1 V apa vV a1 v )]
which by exploiting the relation

Plap_zg|aiq1 vV ap_a V a1 v ap)

= Plap—alan—o vV apn_1 Vv ap)P(an_2 vV Qp_1 vV aplaisr vV ap_o VvV ap1 v ay)
becomes

3
(Wl(nz )117,+2 ‘n— 1) = MP(wlwii-‘rQ n S)P(an—2|an—2 vV Qp_1 VvV an)P(an 1|an 1V an)
By iterating the previous reasoning, for every k =i+ 1,...,n — 2, it holds that

up (Wi )

Tictiitoem1) = #P(Wiiit2 k) Plorgi|oagsr v - -

Vo)
In particular, by recalling

P(an—1|an—1 v ay).

(Wfltl)mw 1) = MP(wl W) P(aia|aipa v vag) o Plag—ilan—1 v an) =
= P(a1|T) (ozl a1 v voan)Plaglag v voag)-
‘Plogra|aiea v e v oay) - P(ozn_1|o¢n_1 vV Qp),
that is
P2y 0) = ppf(ealT) Ao (@il v v ) 1 (asfas v - v o)
(az+2|az+2 Voeevag) meesm (apetfanr voag)] =
= P(aq|T)-- (ozZ a1 v oo voag) Pag|a; SV Q)
P(aHQ\aHQ Vo voag) -

P(an—1|an—1 v an)a

which shows that the factorization property of p1p holds for Wl(itl)l it 2em—1

Likewise, by coming back to (20)), the factorization property of pp holds for
(i+1) .
Wil st is2n—1, that is

(Wl(ltl)l i+1i4+2n— 1) = MP[(CVIH—) m m (ai,1|al 1Vt V O‘n) (O‘z+1|0‘2 SV )
(al+2|al+2 VERERVE | M (ap—1|am—1 v ap)] = (a1|T) P(ai—1|ai—1 v - v ap)-
Plajpr|os v oo v ap)Plae|aiza v oo v oag) o Plap—1]|an—1 v ay)

Finally, still concerning , we obtain
P (Wi — 2) = HP(W(ZH)

1.4 lu+2-~-n71) + MP(W1(2+21)11+1i+2-~-n71) =
P(ay|T) - (ozz a1 v vag) s [Plaglag v voag) + Plagg|ag v voag)]
P(Oé1+2‘061+2 Vo voag) e P(an_1|an_1 Vo)
(OZ1|T) (0[1 1|O[Z 1V

Vv an) . P(O[,L \ Oéi+1|0[i
- Plap_ilan-1 v ay) =

CA 51‘—1) : "P(Bn—2|Bl ZASRRAN Bn—B)

P(Oéwz\awz Vo Voag)

=P(51\T)'“P(ﬁi|51 A

= pp (Win.p—2)-

O
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