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Abstract

All promiment examples of first-order predicate fuzzy logics are undecidable. This
leads to the problem of the arithmetical complexity of their sets of tautologies and
satisfiable sentences. This paper is a contribution to the general study of this problem.
We propose the classes of first-order core and ∆-core fuzzy logics as a good framework to
address these arithmetical complexity issues. We obtain general results providing lower
bounds for the complexities associated to arbitrary semantics and we compute upper
bounds and exact positions in the arithmetical hierarchy for distinguished semantics:
general semantics given by all chains, finite-chain semantics, standard semantics and
rational semantics.
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1 Introduction

Since the inception of the theory of fuzzy sets by Zadeh in [45], many logical systems have
been proposed to deal with the reasoning with predicates that can be modelled by fuzzy sets.
Mathematical Fuzzy Logic is the subdiscipline of Mathematical Logic devoted to the study of
these logical systems. The first two examples were taken from the many-valued logic tradition:
 Lukasiewicz [33] and Gödel-Dummett [19, 10] propositional logics, both complete with respect
to a matrix semantics whose truth-values are the real numbers in [0, 1] and where conjunction
is truth-functionally interpreted by a continuous t-norm.1 Later a third system with this
feature was introduced: product logic [29], where the corresponding continuous t-norm was
the standard product of real numbers. Based on these three main examples, during the last
fifteen years the area has experienced a process of increasing generalization giving birth to
a multiplicity of fuzzy logics. The first step was taken by Hájek [20] when he proposed the

1A t-norm ∗ is a binary operation on the real unit interval that is associative, commutative, non-decreasing
and satisfying x ∗ 1 = x for every x ∈ [0, 1]. These functions arose in the theory of probabilistic metric spaces
and, after Zadeh’s works, were soon proposed as a means to truth-functionally model intersection of fuzzy sets,
and hence conjunction in fuzzy logics.
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so-called Basic fuzzy Logic BL, which turned out to be complete with respect to the semantics
of all continuous t-norms. Later on continuity was removed in the logic MTL [12] which is
complete with respect to the semantics of all left-continuous t-norms, negation was removed
when considering fuzzy logics based on hoops [13], commutativity of t-norms was disregarded
in [23], and recently t-norms have been replaced by uninorms in [34]. On the other hand, many
interesting axiomatic extensions of MTL have been introduced and proved to be complete
with respect to particular kinds of left-continuous t-norms (see e.g. [12, 22, 5, 39, 41]) and,
in addition, logics with a higher expressive power have been defined by considering expanded
[0, 1]-valued algebras (with projection ∆, involution ∼, truth-constants, etc.). Moreover, for
almost all these propositional logics corresponding first-order versions have been introduced
in the literature (see e.g. the survey paper [8]).

Nonetheless, Mathematical Fuzzy Logic has been growing not only in width but also
in depth inasmuch, besides introducing new logical systems, scholars have concentrated on
studying their properties from several points of view. In the case of first-order predicate fuzzy
logics, since most of the prominent examples (namely all first-order versions of consistent
axiomatic extensions of MTL) were proved to be undecidable (see [20, 40]), the issue of their
arithmetical complexity became an important item in the agenda. An early contribution to
such topic was that of Ragaz in [43] where he showed that the tautology problem for the [0, 1]-
valued standard semantics of  Lukasiewicz logic was Π2-complete. Hájek started addressing
the problem in a systematic way already in Chapter 6 of his book [20] (which subsumed
a couple of previous papers by himself) with several results concerning the position in the
arithmetical hierarchy of the sets of tautologies, positive tautologies, satisfiable sentences,
and positively satisfiable sentences w.r.t. the standard semantics of the three basic fuzzy
logics. Those results were subsequently extended to a rather complete study of arithmetical
complexity problems for the standard semantics of the logic BL and its continuous t-norm
based axiomatic extensions in a series of papers by Hájek and the first author of the present
work [21, 36, 37]. The survey paper [25], besides collecting the mentioned results, provides a
new study where the standard semantics is replaced by the so-called general semantics, i.e.
the one given by models over arbitrary linearly ordered BL-algebras. Finally, the recent works
[26, 30, 7, 27] add some new knowledge on the matter by considering respectively fragments
of continuous t-norm based logics, semantics based on linearly ordered complete BL-algebras,
extensions of  Lukasiewicz logic and Gödel logics.

Besides the standard and the general semantics, other kinds of semantics for first-order
fuzzy logics, such as the ones given by algebras defined over the rational unit interval or over
finite chains, have recently started receiving attention in the literature (see [6, 17]). This
points to some new problems that had been neglected so far: What are the arithmetical
complexities of the sets of (positive) tautologies and satisfiable sentences w.r.t. the rational
and the finite-chain semantics? What are the relations of these sets with those corresponding
with the general and the standard semantics?

The present paper intends to expand the landscape of the studies on arithmetical com-
plexity issues for fuzzy logics in two directions: (1) by considering the aforementioned rational
and finite-chain semantics and their associated problems, and (2) by widening the framework
of first-order fuzzy logics under focus to the classes of core and ∆-core fuzzy logics.2 These

2Roughly speaking, core and ∆-core fuzzy logics are good expansions of, respectively, MTL and MTL∆

and include in particular their axiomatic extensions and all the logics in enriched languages that have been
mentioned before. Those classes have been proved to provide a good level of generality in the works [28, 6].
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two layers will amount to a much more general study encompassing (almost all) the previ-
ous ones. After a preliminary section that will briefly introduce the needed notions on both
propositional and first-order fuzzy logics, Section 3 will present our new approach and new
results on arithmetical complexity issues. Namely Section 3.1 will present complexity results
for arbitrary semantics (i.e. semantics given by arbitrary classes of linearly ordered algebras)
from which we will obtain that all the predicate logics under our scope are undecidable and
some consequences for arithmetical complexity of the general semantics; Section 3.2 will be
devoted to finite-chain semantics by showing how to obtain uniform upper bounds for its
associated complexity problems and obtaining some exact complexity results for prominent
logics; finally Section 3.3 will consider the semantics given by standard and rational chains,
with a special attention to canonical rational chains and the mutual relation between those
semantics and that of finite chains.

2 Preliminaries

2.1 Propositional logics

The weakest propositional t-norm based fuzzy logic is the so-called Monoidal T-norm based
Logic (MTL). It was defined by Esteva and Godo in [12] by means of a Hilbert-style calculus
in the language L = {&,→,∧, 0} of type 〈2, 2, 2, 0〉. FmL will denote the set of all formulae
built over a denumerable set of propositional variables using the connectives of L. The only
inference rule of the calculus is modus ponens and the axiom schemata are the following
(taking → as the least binding connective):

(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) ϕ&ψ → ϕ
(A3) ϕ&ψ → ψ&ϕ
(A4) ϕ ∧ ψ → ϕ
(A5) ϕ ∧ ψ → ψ ∧ ϕ
(A6) ϕ&(ϕ→ ψ)→ ϕ ∧ ψ
(A7a) (ϕ→ (ψ → χ))→ (ϕ&ψ → χ)
(A7b) (ϕ&ψ → χ)→ (ϕ→ (ψ → χ))
(A8) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
(A9) 0→ ϕ

The usual defined connectives are introduced as follows:

ϕ ∨ ψ as ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ) ¬ϕ as ϕ→ 0
ϕ↔ ψ as (ϕ→ ψ)&(ψ → ϕ) 1 as ¬0

Also as usual, ϕn will be used as a shorthand for ϕ& n. . . &ϕ, where ϕ0 = 1. MTL enjoys
the following form of local deduction-detachment theorem and substitution rule.

Proposition 2.1. For each set of formulae Σ ∪ {ϕ,ψ, χ} it holds:

Σ, ϕ `MTL ψ iff there is n ∈ N such that Σ `MTL ϕ
n → ψ (LDT )

ϕ↔ ψ `MTL χ(ϕ)↔ χ(ψ). (Cong)

The algebraic counterpart of MTL logic is the class of MTL-algebras:
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Definition 2.2 ([12]). An MTL-algebra is an algebra A = 〈A,&A,→A,∧A,∨A, 0A, 1A〉 of
type 〈2, 2, 2, 2, 0, 0〉 such that:

1. 〈A,∧A,∨A, 0A, 1A〉 is a bounded lattice.

2. 〈A,&A, 1A〉 is a commutative monoid with unit 1A.

3. The operations &A and →A form an adjoint pair: a&Ab ≤ c iff b ≤ a→A c.

4. It satisfies the prelinearity equation: (a→A b) ∨A (b→A a) = 1A

If the lattice order is total we will say that A is a linearly ordered MTL-algebra (or just an
MTL-chain).

An additional negation operation is defined as ¬Aa = a→A 0A. Similarly, an additional
equivalence operation is defined as a ↔A b = (a →A b)&A(b →A a). For the sake of a
simpler notation, superscripts in the operations of the algebras will be omitted when they are
clear from the context. The class of all MTL-algebras is a variety which will be denoted as
MTL. Important examples of MTL-algebras are those defined by left-continuous t-norms, the
so-called standard algebras. Actually, for every left-continuous t-norm ∗ there is an operation
⇒ (the residuum) such that ∗ and ⇒ form an adjoint pair, and hence the algebra [0, 1]∗ =
〈[0, 1], ∗,⇒,min,max, 0, 1〉 is an MTL-chain; conversely, any MTL-chain on [0, 1] is of this
form.

Definition 2.3. Let K be a class of MTL-algebras. We define the consequence relation |=K
in the following way: Σ |=K ϕ iff for each A ∈ K and A-evaluation e: e(ϕ) = 1A whenever
e[Σ] ⊆ {1A}.

We write |=K ϕ instead of ∅ |=K ϕ and we write Σ |=A ϕ instead of Σ |={A} ϕ. The

A-evaluation e such that e[Σ] ⊆ {1A} is called an A-model of Σ. That MTL is the proper
algebraic semantics for MTL is witnessed by the following completeness result.

Theorem 2.4 ([12]). Let Σ ∪ {ϕ} ⊆ FmL. Then Σ `MTL ϕ if and only if Σ |=MTL ϕ.

This completeness result can be refined by taking into account the following representation
of MTL-algebras.

Proposition 2.5 ([12]). Every MTL-algebra is a subdirect product of MTL-chains.

This leads to the completeness of MTL with respect to the class of MTL-chains.

Corollary 2.6. Let Σ ∪ {ϕ} ⊆ FmL. Then Σ `MTL ϕ if and only if Σ |={MTL-chains} ϕ.

The following result is a further refinement which justifies why MTL is the weakest t-norm
based fuzzy logic, the standard completeness theorem:

Theorem 2.7 ([32]). Let Σ ∪ {ϕ} ⊆ FmL. Then Σ `MTL ϕ if and only if
Σ |={[0,1]∗|∗ left-continuous t-norm} ϕ.
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Axiom schema Name
¬¬ϕ→ ϕ Involution (Inv)

¬ϕ ∨ ((ϕ→ ϕ&ψ)→ ψ) Cancellation (Can)
¬(ϕ&ψ) ∨ ((ψ → ϕ&ψ)→ ϕ) Weak Cancellation (WCan)

ϕ→ ϕ&ϕ Contraction (C)
ϕn−1 → ϕn n-Contraction (Cn)
ϕ ∧ ¬ϕ→ 0 Pseudocomplementation (PC)

ϕ ∧ ψ → ϕ&(ϕ→ ψ) Divisibility (Div)
(ϕ&ψ → 0) ∨ (ϕ ∧ ψ → ϕ&ψ) Weak Nilpotent Minimum (WNM)

ϕ ∨ ¬ϕ Excluded Middle (EM)

Table 1: Some usual axiom schemata in fuzzy logics.

Most of the well-known fuzzy logics can be presented as axiomatic extensions of MTL.
Tables 1 and 2 collect some axiom schemata and the axiomatic extensions of MTL that they
define.

MTL is actually an algebraizable logic in the sense of Blok and Pigozzi (see [3]) and MTL
is its equivalent algebraic semantics. This implies that all axiomatic extensions of MTL are
also algebraizable and their equivalent algebraic semantics are the subvarieties of MTL defined
by the translations of the axioms into equations. In particular, there is an order-reversing
isomorphism between axiomatic extensions of MTL and subvarieties of MTL:

1. If Σ ⊆ FmL and L is the extension of MTL obtained by adding the formulae of Σ as
axiom schemata, then the equivalent algebraic semantics of L is the subvariety of MTL
axiomatized by the equations {ϕ ≈ 1 | ϕ ∈ Σ}. We denote this variety by L and we call
its members L-algebras. There are two exceptions to that rule: the algebras associated
to  L are called MV-algebras following the terminology of Chang in [4] and the algebras
associated to the Classical Propositional Calculus (CPC for short) are called, of course,
Boolean algebras. Moreover, since each L-algebra is representable as a subdirect product
of L-chains, the completeness of MTL with respect to chains is inherited by L.

2. Let L ⊆ MTL be the subvariety axiomatized by a set of equations Λ. Then the logic
associated to L is the axiomatic extension L of MTL given by the axiom schemata
{ϕ↔ ψ | ϕ ≈ ψ ∈ Λ}.

In particular, if ∗ is a left-continuous t-norm, we denote by L∗ the axiomatic extension of
MTL corresponding to the variety generated by [0, 1]∗.

Important examples of fuzzy logics studied in the literature transcend the framework
of axiomatic extensions of MTL we have presented so far because they are expansions in
richer languages. Well-known examples are the expansions with Baaz’s Delta projection
connective ∆ [1], expansions with an involutive negation ∼ [14, 9, 18], expansions with other
conjunction or implication connectives [15, 31, 38], or expansions with intermediate truth-
constants [16, 11, 42, 44].

Let us consider MTL∆ as the basic logic with Baaz’s Delta connective. It is obtained by
enriching the language with the unary connective ∆ and adding to the Hilbert-style system of
MTL the deduction rule of necessitation (from ϕ infer ∆ϕ) and the following axiom schemata:
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Logic Additional axiom schemata References
SMTL (PC) [22]
ΠMTL (Can) [22]

WCMTL (WCan) [39]
IMTL (Inv) [12]
WNM (WNM) [12]
NM (Inv) and (WNM) [12]

CnMTL (Cn) [5]
CnIMTL (Inv) and (Cn) [5]

BL (Div) [20]
SBL (Div) and (PC) [14]

 L (Div) and (Inv) [20, 33]
Π (Div) and (Can) [29]
G (C) [20, 10, 19]

CPC (EM)

Table 2: Some axiomatic extensions of MTL obtained by adding the corresponding additional
axiom schemata.

(∆1) ∆ϕ ∨ ¬∆ϕ

(∆2) ∆(ϕ ∨ ψ)→ (∆ϕ ∨∆ψ)

(∆3) ∆ϕ→ ϕ

(∆4) ∆ϕ→ ∆∆ϕ

(∆5) ∆(ϕ→ ψ)→ (∆ϕ→ ∆ψ)

It is easily provable that MTL∆ enjoys (Cong) but not (LDT ) (cf. Proposition 2.1). How-
ever it enjoys another form of deduction theorem (in fact it is a global deduction-detachment
theorem).

Proposition 2.8. For each set of formulae Σ ∪ {ϕ,ψ} holds:

Σ, ϕ `MTL∆
ψ iff Σ `MTL∆

∆ϕ→ ψ (DT ∆)

Analogously to the case of MTL, it can be seen that MTL∆ is also an algebraizable logic
whose equivalent algebraic semantics is given by the so-called MTL∆-algebras (introduced in
[12]). They are the expansions of MTL-algebras with an extra operation that interprets ∆.

Two very general classes of logics have been considered in the literature (see [28, 8, 6]) to
encompass t-norm based fuzzy logics expanding MTL or MTL∆:

Definition 2.9. We say that a finitary logic L in a countable language is a core fuzzy logic
if

• L expands MTL,

• L satisfies (Cong),
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• L satisfies (LDT ).

Definition 2.10. We say that a finitary logic L in a countable language is a ∆-core fuzzy
logic if

• L expands MTL∆,

• L satisfies (Cong),

• L satisfies (DT ∆).

2.2 First-order predicate logics

We introduce first-order predicate fuzzy logics in the standard way (see e.g. [20, 8]). Let L be
a (∆)-core fuzzy logic and Γ a predicate language. We denote by SentΓ the set of sentences
(closed formulae) over Γ. For each L-chain A, an A-structure is M = 〈M, 〈PM〉P∈Γ, 〈fM〉f∈Γ〉
where M 6= ∅, for each predicate symbol P of arity n, PM is an n-ary A-fuzzy relation on M
(a mapping Mn → A), and for each n-ary function symbol f , fM is a mapping Mn → M
(0-ary functions are interpreted as a constant value in M). Having this, one defines for each
formula ϕ (of the given language), the truth value ‖ϕ‖AM,v of ϕ in M determined by the L-
chain A and evaluation v of free variables of ϕ in M in the usual Tarskian way. In particular,
the truth value of a universally quantified formula is the infimum of truth values of all its
instances, similarly for ∃ and supremum. A structure M is safe if the truth value is defined
for each ϕ and v.

By 〈M,A〉 |= ϕ we denote that ‖ϕ‖AM,v = 1A for each M-evaluation v. When A is known
from the context we write M |= ϕ. We say that 〈M,A〉 is a model of a theory (i.e. a set
of sentences) T to mean that A is an L-chain, M is a safe A-structure and 〈M,A〉 |= α for
each α ∈ T . To simplify matters, we use the expression “〈M,A〉 is a model” meaning that
〈M,A〉 is a model of the empty theory. If we say “for each model 〈M,A〉” we mean “for
each L-chain A and each safe A-structure M”. Finally, by ‖ϕ(a1, . . . , an)‖〈M,A〉 we mean
‖ϕ(x1, . . . , xn)‖AM,v for v(xi) = ai.

Definition 2.11. Let L be a (∆-)core fuzzy logic and Γ a predicate language. The logic L∀
has the deduction rules of L and generalization (from ϕ infer (∀x)ϕ) and its axioms are:

(P) the axioms resulting from the axioms of L by the substitution of
propositional variables with formulae of Γ,

(∀1) (∀x)ϕ(x)→ ϕ(t), where t is substitutable for x in ϕ,
(∃1) ϕ(t)→ (∃x)ϕ(x), where t is substitutable for x in ϕ,
(∀2) (∀x)(χ→ ϕ)→ (χ→ (∀x)ϕ), where x is not free in χ,
(∃2) (∀x)(ϕ→ χ)→ ((∃x)ϕ→ χ), where x is not free in χ,
(∀3) (∀x)(χ ∨ ϕ)→ (χ ∨ (∀x)ϕ), where x is not free in χ,
(≈1) (∀x)(∀y)((x ≈ y) ∨ ¬(x ≈ y)),
(≈2) (∀x)x ≈ x,
(≈3) (∀x)(∀y)(∀~z)(x ≈ y → (ϕ(x, ~z)↔ ϕ(y, ~z))), where y is substitutable for x in ϕ.

The completeness theorem for first-order BL was proven in [20] and the completeness the-
orems of other predicate fuzzy logics defined in the literature were proven in the corresponding
papers. They can be formulated in the following general way:
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Theorem 2.12. Let L be a (∆-)core fuzzy logic, T a theory, and ϕ a formula. Then the
following are equivalent:

• T `L∀ ϕ.

• 〈M,A〉 |= ϕ for each model 〈M,A〉 of the theory T .

Sometimes this result can be refined by considering models over a proper subclass of L-
chains. Such completeness properties with respect to several distinguished semantics have
been systematically studied in [6] in several different forms. For the purposes of this paper
we only need the following kinds of completeness:

Definition 2.13. Let L be a (∆-)core fuzzy logic and K a class of L-chains. We say that L∀
has the Finite Strong K-Completeness property (FSKC for short) if for every finite theory T
and formula ϕ the following are equivalent:

• T `L∀ ϕ.

• 〈M,A〉 |= ϕ for each model 〈M,A〉 of the theory T such that A ∈ K.

We say that L∀ has the K-Completeness property (KC for short) if the equivalence holds
for the empty theory.

We will refer to the particular cases when K is the class R of L-chains over the real unit
interval [0, 1] (standard chains), the class Q of L-chains over the rational unit interval [0, 1]Q,
or the class F of all non-trivial finite L-chains.

On the other hand, Montagna and Ono proved the following undecidability result:

Theorem 2.14 ([40]). For every consistent axiomatic extension L of MTL, the first-order
logic L∀ is undecidable.

The non-recursiveness of the sets of tautologies of these logics poses the problem of de-
termining their position in the arithmetical hierarchy, and the same for the sets of satisfiable
sentences. Let us briefly recall the main notions that we will need from recursion theory.
We denote the set of natural numbers by N and consider the complexity of sets of objects
that can be encoded as subsets of N (or, in general, of Nn for some finite n). Decidable
or computable sets (or relations, or functions) are called recursive. X ⊆ N is Σ1 (recur-
sively enumerable) iff X = {n | ∃mR(n,m)} for some recursive relation R ⊆ N2. X ⊆ N
is Π1 iff X = {n | ∀mR(n,m)} for some recursive relation R ⊆ N2. X ⊆ N is Σ2 iff
X = {n | ∃k∀mR(n, k,m)} for some recursive relation R ⊆ N3. In general: X ⊆ N is Πn

iff it is defined by adding a sequence of n alternating quantifiers starting with universal in
front of a recursive relation, and X ⊆ N is Σn iff it is defined by adding a sequence of n
alternating quantifiers starting with existential in front of a recursive relation. Let Λ be Σn

or Πn; X ⊆ N is Λ-hard iff for every Λ-set Y ⊆ N there is a recursive function f such that
Y = {n | f(n) ∈ X}. X ⊆ N is Λ-complete iff it is Λ and Λ-hard. The set of tautologies of
classical logic, TAUT(B2), is Σ1-complete. The set of its satisfiable sentences, SAT(B2), is
Π1-complete. X ⊆ N is arithmetical iff it is Σn or Πn for some n. Let PA be the axiomatic
system of Peano Arithmetic and let N be its standard model. The set of sentences true in
that model, Th(N), is non-arithmetical.
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3 Arithmetical complexity results

3.1 General results and general semantics

We will work with arbitrary classes of linearly ordered MTL-algebras or its expansions corre-
sponding to (∆-)core fuzzy logics in richer languages. These classes will be usually denoted
by K, and we will always assume (to avoid dealing with non-interesting trivial cases) that
they are not empty and do not contain the trivial algebra. When K is a class of (expansions
of) MTL-chains and no further condition is assumed, we just say for simplicity that it is a
class of chains.

Definition 3.1. Given a class K of chains we define the following sets of sentences:

1. TAUT1(K) = {ϕ ∈ SentΓ | for every A ∈ K and every A-structure M, ‖ϕ‖AM = 1A}.

2. TAUTpos(K) = {ϕ ∈ SentΓ | for every A ∈ K and every A-structure M, ‖ϕ‖AM > 0A}.

3. SAT1(K) = {ϕ ∈ SentΓ | there exist A ∈ K and an A-structure M such that ‖ϕ‖AM =
1A}.

4. SATpos(K) = {ϕ ∈ SentΓ | there exist A ∈ K and an A-structure M such that ‖ϕ‖AM >

0A}.

Definition 3.2. Let L∀ be a first-order (∆-)core fuzzy logic. Then:

• If K is the class of all L-chains (the general semantics), we write genTAUT1(L∀) instead
of TAUT1(K).

• If K is the class of all L-chains whose lattice reduct is the real unit interval [0, 1], we
write stTAUT1(L∀) instead of TAUT1(K).

• If K is the class of all L-chains whose lattice reduct is the rational unit interval [0, 1]Q,
we write ratTAUT1(L∀) instead of TAUT1(K). If K consists of a single L-chain over
[0, 1]Q which, for some reason, is considered the canonical rational L-chain, then we
write canratTAUT1(L∀) instead of TAUT1(K).

• If K is the class of all finite L-chains, we write finTAUT1(L∀) instead of TAUT1(K).

We define analogous notations for the sets TAUTpos(K), SAT1(K) and SATpos(K) in all
the cases.

Given a first-order (∆-)core fuzzy logic L∀, we write Σ |=st(L∀) ϕ (Σ |=rat(L∀) ϕ or
Σ |=fin(L∀) ϕ, respectively) meaning that Σ |=K ϕ when K is the class consisting of all stan-
dard (rational or finite, respectively) L-chains. Moreover stCons(L∀,Σ), ratCons(L∀,Σ) and
finCons(L∀,Σ) denote the sets {ϕ ∈ SentΓ | Σ |=st(L∀) ϕ}, {ϕ ∈ SentΓ | Σ |=rat(L∀) ϕ} and
{ϕ ∈ SentΓ | Σ |=fin(L∀) ϕ}, respectively.

From the results in [6] it is easy to obtain:

Lemma 3.3. Let L∀ be a first-order (∆-)core fuzzy logic. If A and B are L-chains such that
there is a σ-embedding (i.e. an embedding preserving all existing infima and suprema) from
A into B, then:
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• TAUT1(B) ⊆ TAUT1(A),

• TAUTpos(B) ⊆ TAUTpos(A),

• SAT1(A) ⊆ SAT1(B), and

• SATpos(A) ⊆ SATpos(B).

Lemma 3.4. Let K be a class of chains and let ∼ be a negation operation present in all
members of K.3 Then for every ϕ ∈ SentΓ:

1. ϕ ∈ TAUTpos(K) iff ∼ ϕ /∈ SAT1(K)

2. ϕ ∈ SATpos(K) iff ∼ ϕ /∈ TAUT1(K)

When the negation is involutive (i.e. ∼∼ a = a for every a) or strict (i.e. ∼ a = 0 for every
a 6= 0), we have some additional relations:

Lemma 3.5. Let K be a class of chains with an involutive negation ∼ (in particular, K can
be a class of expansions of IMTL-chains). Then for every ϕ ∈ SentΓ:

1. ϕ ∈ SAT1(K) iff ∼ ϕ /∈ TAUTpos(K)

2. ϕ ∈ TAUT1(K) iff ∼ ϕ /∈ SATpos(K)

Lemma 3.6. Let K be a class of chains with a strict negation ∼ (in particular, K can be a
class of expansions of SMTL-chains). Then for every ϕ ∈ SentΓ:

1. ϕ ∈ TAUTpos(K) iff ∼∼ ϕ ∈ TAUT1(K)

2. ϕ ∈ SATpos(K) iff ∼∼ ϕ ∈ SAT1(K)

For chains with ∆ we have the following:

Lemma 3.7. Let K be a class of chains with the ∆ operation. Then for every ϕ ∈ SentΓ:

1. ϕ ∈ SAT1(K) iff ¬∆ϕ /∈ TAUT1(K)

2. ϕ ∈ TAUT1(K) iff ¬∆ϕ /∈ SAT1(K)

We can obtain some lower bounds for the complexity of some of these problems. First we
consider the SAT problems.

Proposition 3.8. For every class K of chains, SAT1(K) is Π1-hard.

Proof. If ϕ ∈ SentΓ is a sentence and {Pi | 1 ≤ i ≤ n} are the predicate symbols from Γ
appearing in ϕ, we define the sentence Crisp(ϕ) =

∧
1≤i≤n ∀

−→x (Pi(−→x ) ∨ ¬Pi(−→x )). Now just
observe that for every ϕ ∈ SentΓ, ϕ ∈ SAT(B2) iff Crisp(ϕ)&ϕ ∈ SAT1(K), and since the
satisfiability problem in classical logic is Π1-hard so it must be SAT1(K).

3Of course, in any class K there is always a negation operation present in all its members: ¬a = a → 0;
however we prefer this general formulation to cope with other possible negations in logics expanded with extra
connectives.
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Proposition 3.9. For every class K of chains with an involutive negation ∼, SATpos(K) is
Π1-hard.

Proof. First observe that the set {∼ ϕ ∈ SentΓ | ∼ ϕ ∈ TAUT1(K)} is Σ1-hard (it follows from
the fact, proved in Theorem 3.15, that TAUT1(K) is Σ1-hard and for every ϕ, ϕ ∈ TAUT1(K)
iff ∼ (∼ ϕ) ∈ TAUT1(K)). Therefore, the complement of this set is Π1-hard. On the other
hand, by Lemma 3.4 for every ϕ ∈ SentΓ we have: ∼ ϕ /∈ TAUT1(K) iff ϕ ∈ SATpos(K), and
hence SATpos(K) is Π1-hard.

Proposition 3.10. For every class K of chains with a strict negation ∼, SATpos(K) is Π1-
hard.

Proof. For every ϕ ∈ SentΓ we denote as ϕ∼∼ the sentence resulting from ϕ by adding
double negation ∼∼ to all atoms. Then we claim that for every ϕ ∈ SentΓ, ϕ ∈ SAT(B2)
iff ϕ∼∼ ∈ SATpos(K). Indeed, one direction is obvious and for the other one assume that
ϕ∼∼ ∈ SATpos(K), i.e. there is A ∈ K and an A-model M such that ‖ϕ∼∼‖AM > 0A; it implies
that ‖ϕ∼∼‖AM = 1A (because ϕ∼∼ is crisp). We define a model M′ over B2 with the domain of
M in the following way: for every n-ary predicate P and elements a1, . . . , an in the domain,
define PM′(a1, . . . , an) = 1A if PM(a1, . . . , an) 6= 0A and PM′(a1, . . . , an) = 0A otherwise.
Then, by induction on the subformulae of ϕ, we obtain ‖ϕ‖B2

M′ = ‖ϕ∼∼‖AM.

Open problem: Show that for every class K of chains, the set SATpos(K) is Π1-hard.

Now we consider the TAUT problems.4 In the sequel, for every sentence ϕ, 2ϕ denotes
the sentence ¬(¬ϕ)2.

Lemma 3.11. Let L be any (∆-)core fuzzy logic. For every sentence ϕ, 2ϕ ∨ 2(¬ϕ) ∈
genTAUT1(L∀).

Proof. Let A be an L-chain and M an A-model. If ‖ϕ‖AM ≤ ‖¬ϕ‖AM, then ‖(¬¬ϕ)2‖AM = 0A.
If ‖ϕ‖AM > ‖¬ϕ‖AM, then ‖(¬ϕ)2‖AM = 0A. In either case we have ‖¬(¬ϕ)2 ∨ ¬(¬¬ϕ)2‖AM =
1A.

Definition 3.12. Let ϕ be a sentence. Consider its prenex normal form in classical logic,
Q1x1 . . . Qnxn ψ(x1, . . . , xn), where ψ is a lattice combination of literals. We define a formula
ϕ? by induction as follows: if ϕ is a literal, then ϕ? = 2ϕ; ? commutes with quantifiers, ∧
and ∨.

Lemma 3.13. Let ϕ be a lattice combination of literals, L be a (∆-)core fuzzy logic and K a
class of L-chains. The following are equivalent:

(1) ϕ is a classical propositional tautology.

(2) ϕ? is an L-tautology.

(3) ϕ? is a tautology for every chain in K.
4Some of the techiques we will use in the following results to deal with these problems are quite similar to

those used in [35, Chapters 7 and 8] and in [2] for some computational complexity and decidability issues.
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(4) ϕ? is a positive tautology for every chain in K.

Proof. (2)⇒ (3) and (3)⇒ (4) are obvious. We prove (1)⇒ (2). By distributivity, ϕ can be
equivalently written as

∧n
i=1

∨ni
j=1 αi,j , where αi,j are literals. Thus, ϕ is a classical tautology

iff for every i ∈ {1, . . . , n},
∨ni
j=1 αi,j is a classical tautology. This is the case if for every

i ∈ {1, . . . , n} there are j1, j2 ∈ {1, . . . , ni} such that αi,j1 = ¬αi,j2 . Hence, 2αi,j1 ∨ 2αi,j2 is
an L-tautology by previous lemma and, since this formula implies

∨ni
j=1 2αi,j , we have that

ϕ? is an L-tautology. We finally prove (4) ⇒ (1) by contraposition. If ϕ is not a classical
propositional tautology, then there is an evaluation e on B2 such that e(ϕ) = 0. Since ϕ? and
ϕ are equivalent in classical logic, we also have e(ϕ?) = 0. Now, given any A ∈ K, it is clear
that e can also be seen as an evaluation on A and e(ϕ?) = 0A.

Lemma 3.14. Let ϕ = ∃x1 . . . ∃xn ψ(x1, . . . , xn), where ψ is a lattice combination of literals,
be a purely existential formula, L be a (∆-)core fuzzy logic and K a class of L-chains. The
following are equivalent:

(1) ϕ ∈ TAUT(B2).

(2) ϕ? ∈ genTAUT1(L∀).

(3) ϕ? ∈ TAUT1(K).

(4) ϕ? ∈ TAUTpos(K).

Proof. Again, (2) ⇒ (3) and (3) ⇒ (4) are obvious. (4) ⇒ (1) is proved as in the previ-
ous lemma. We prove (1) ⇒ (2). Suppose that ϕ is a classical tautology. By Herbrand’s
Theorem, there is a classical propositional tautology of the form

∨m
i=1 ψ(ti1, . . . , t

i
n), where

the tij ’s are closed terms. By the previous lemma, recalling that ? commutes with ∨, we
have that

∨m
i=1 ψ

?(ti1, . . . , t
i
n) ∈ genTAUT1(L∀). By an easy proof in L∀, we can derive

ϕ? = ∃x1 . . . ∃xn ψ?(x1, . . . , xn), and hence we have proved (2).

Theorem 3.15. For every class K of chains, the sets TAUT1(K) and TAUTpos(K) are Σ1-
hard.

Proof. The set of provable existential formulae of first-order classical logic is Σ1-hard. Indeed,
the Herbrand form ϕH of any sentence ϕ is purely existential, and ϕ is provable iff ϕH is
provable. The claim now follows from the previous lemma.

This theorem, in particular, solves a couple of open problems recently proposed by Hájek
in [27]; namely given a set K of standard BL-chains such that its corresponding logic LK∀ is
recursively axiomatizable, show that genTAUT1(LK∀) and genTAUTpos(LK∀) are Σ1-hard.

On the other hand, completeness with respect to a Hilbert-style calculus gives upper
bounds for the complexity:

Proposition 3.16. Let L be a recursively axiomatizable (∆-)core fuzzy logic and K be a class
of L-chains. If L∀ has the FSKC, then TAUT1(K) and TAUTpos(K) are Σ1, while SAT1(K)
and SATpos(K) are Π1.
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Proof. TAUT1(K) is Σ1 because it is the set of theorems of a recursively axiomatizable logic.
Using Lemma 3.4 (ϕ ∈ SATpos(K) iff ∼ ϕ /∈ TAUT1(K)) we obtain that SATpos(K) is Π1.
As regards to SAT1(K), notice that for every ϕ ∈ SentΓ, ϕ ∈ SAT1(K) iff ϕ 6|=K 0 iff
ϕ 6`L∀ 0. Using again Lemma 3.4 (now ϕ ∈ TAUTpos(K) iff ∼ ϕ /∈ SAT1(K)) we obtain that
TAUTpos(K) is Σ1.

In particular, since a first-order logic is always complete with respect to the semantics of
all chains, we obtain:

Corollary 3.17. For every recursively axiomatizable first-order (∆-)core fuzzy logic L∀,
genTAUT1(L∀) and genTAUTpos(L∀) are Σ1-complete, genSAT1(L∀) is Π1-complete and
genSATpos(L∀) is Π1. Moreover, if L has an involutive or strict negation, then genSATpos(L∀)
is Π1-complete.

Moreover, it yields the following generalization of the undecidability result in [40]:

Corollary 3.18. For every (∆)-core fuzzy logic, the first-order logic L∀ is undecidable.

See all the results for the general semantics in Table 3.

All logics Logics with involutive or strict negation
genTAUT1(L∀) Σ1-complete Σ1-complete
genSAT1(L∀) Π1-complete Π1-complete

genTAUTpos(L∀) Σ1-complete Σ1-complete
genSATpos(L∀) Π1 Π1-complete

Table 3: Complexity results for the general semantics.

In this way we have generalized to the framework of first-order (∆)-core fuzzy logics the
only complexity results that were known so far with respect to the general semantics: those
for logics L∗ based on a continuous t-norm ∗ (completely solved by Hájek in [21, 25]; see the
results in Table 4).

Complexity
genTAUT1(L∗∀) Σ1-complete
genSAT1(L∗∀) Π1-complete

genTAUTpos(L∗∀) Σ1-complete
genSATpos(L∗∀) Π1-complete

Table 4: Complexity results for the general semantics when ∗ is continuous t-norm.

3.2 Complexity of finite-chain semantics

Let A be any finite chain and let 0 = a1 < . . . < an = 1 be the elements of A in increasing
order. LA, the first-order many-valued logic based on A, is defined semantically as follows:
LA has a language ΓA containing, besides parentheses ( and ), variables, predicate symbols,
function symbols, a k-ary connective F for each k-ary operation FA on A (different symbols
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for different operations), plus the quantifiers ∃ and ∀. For each connective F introduced in
this way, we refer to FA as the realization of F in A. Since A is finite, each A-structure
M = 〈M, 〈PM〉P∈ΓA , 〈fM〉f∈ΓA〉 is safe, because universal quantifiers are interpreted by taking
the minimum value of instances, and existential quantifiers by taking the maximum value of
instances.

For every set T ∪ {φ} of sentences of LA, the consequence relation |=LA in LA is defined
as follows: T |=LA φ iff for every A-structure M, one has that if 〈M,A〉 |= ψ for all ψ ∈ T ,
then 〈M,A〉 |= φ. If ∅ |=LA φ, then we say that φ is an A-1-tautology and we write |=LA φ.

Theorem 3.19. For every finite chain A, the set of A-1-tautologies is Σ1.

Proof. We will associate to A a recursively axiomatized classical first-order theory TA and
to every sentence φ of LA a formula φT in the language of TA such that the map φ 7→ φT is
computable and φ is an A-1-tautology iff φT is a theorem of TA. This will clearly suffice to
prove the theorem. First of all, the theory TA has all function symbols in LA. Moreover TA
has a constant symbol cT for each element c of A, plus an additional constant u (for undefined)
and an additional k-ary functional symbol fφ for each formula φ with k free variables (the
intended meaning is that fφ(d1, . . . , dk) = ‖φ(d1, . . . , dk)‖AM; in particular, if φ is a sentence,
then fφ is a constant). TA has two binary predicate symbols = and <: the intended meaning
of x = y is that x is equal to y, and the intended meaning of x < y is that x, y ∈ A and
x is less than y in the order of A. Finally TA has two unary predicate symbols M and A.
The intended meanings of M(v) and of A(v) are: v is in the domain M of individuals of the
first-order structure we are referring to, and v is an element of the algebra A, respectively.

It is a little bit boring to write all the axioms of TA, therefore we only describe them
informally and we leave the obvious formal translation to the reader. Roughly speaking, we
have:

(0) Identity axioms for =.
(1) A group of axioms which say that the domain M of individuals is disjoint from A and

u is neither in M nor in A.
(2) An axiom saying that every element is either in A or in M or u.
(3) Axioms describing the structure of A, that is: (3a) cTi < cTj for each 1 ≤ i < j ≤ n,

and ¬(cTi < cTj ) for each j ≤ i; (3b) axioms of the form ¬(cTi = cTj ) for each i 6= j; (3c)
axioms of the form F (eT1 , . . . , e

T
k ) = eT for each k-ary connective F and for all e1, . . . , ek ∈ A

such that FA(e1, . . . , ek) = e; (3d) the axiom ∀v(A(v) ↔ (v = cT1 ∨ . . . ∨ v = cTn ) saying
that A = {c1, . . . , cn}; (3e) axioms saying that for every connective F corresponding to an
operation FA, F (x1, . . . , xk) is undefined (i.e. it is equal to u) if some of the xi is not in A;
(3f) an axiom saying that if x < y then x, y ∈ A.

(4) Axioms describing the structure M, that is: (4a) for every constant symbol d of LA,
an axiom saying that d ∈M ; (4b) for every k-ary function symbol g of LA, an axiom saying
that for all x1, . . . , xk, g(x1, . . . , xk) ∈M if x1, . . . , xk ∈M and g(x1, . . . , xk) = u otherwise.

(5) Axioms describing the behavior of ‖φ(v1, . . . , vk)‖AM, that is: (5a) if v1, . . . , vk are
all in M , then fφ(v1, . . . , vk) is in M , otherwise fφ(v1, . . . , vk) = u; (5b) for every k-
ary connective F of LA, fF (φ1,...,φk)(v1, . . . , vl) = F (fφ1(v1, . . . , vl), . . . , fφk

(v1, . . . , vl) (thus
fF (φ1,...,φk)(v1, . . . , vl) = u if for some i, fφi

(v1, . . . , vl) = u, otherwise fF (φ1,...,φk)(v1, . . . , vl) ∈
A); (5c) an axiom saying that for j = 1, . . . , n, f∀vφ(v1, . . . , vk) = cj iff (i) v1, . . . , vk ∈ M ,
(ii) for all v ∈ M , fφ(v, v1, . . . , vk) ≥ cj and (iii) for some v ∈ M , fφ(v, v1, . . . , vk) = cj ; (5d)
an axiom saying that for j = 1, . . . , n, f∃vφ(v1, . . . , vk) = cj iff (i) v1, . . . , vk ∈ M , (ii) for all
v ∈M , fφ(v, v1, . . . , vk) ≤ cj and (iii) for some v ∈M , fφ(v, v1, . . . , vk) = cj .
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Lemma 3.20. (a) Let M be an A-structure for LA. Then there is a model M∗ of TA (in the
sense of classical logic) such that for every sentence φ of LA and for every ci ∈ A one has:
M∗ |= fφ = cTi iff ‖φ‖AM = ci.
(b) Let N be a model of TA (again, in the sense of classical logic). Then there is a A-structure
N+ for LA such that for every sentence φ of LA and for every ci ∈ A one has: N |= fφ = cTi
iff ‖φ‖AN+ = ci.

Proof. (a) Given M, we can assume without loss of generality that M∩A = ∅. Let u∗ /∈M∪A,
and consider the model M∗ whose universe is M∗ = M ∪ A ∪ {u∗} and whose constants,
operations and predicates are as follows:

(i) If cTi is a constant for an element of A, then (cTi )M
∗

= ci; if c is a constant of LA, then
cM
∗

= cM; if c is a constant of the form fφ, φ a sentence of LA, then cM
∗

= ‖φ‖AM. Finally,
u is interpreted as u∗.

(ii) If f is a k-ary function symbol in LA, then fM∗ is defined by fM∗(d1, . . . , dk) =
fM(d1, . . . , dk) if d1,...,dk ∈M , and fM∗(d1, . . . , dk) = u∗ otherwise; if F is a k-ary connective
of LA, then FM∗(d1, . . . , dk) = FA(d1, . . . , dk) if d1, . . . , dk ∈ A, and FM∗(d1, . . . , dk) =
u∗ otherwise; if φ(v1, . . . , vk) is a formula of LA with free variables v1, . . . , vk, then fM∗

φ is
defined by fM∗

φ (d1, . . . , dk) = ‖φ(d1, . . . , dk)‖AM if d1, . . . , dk ∈ M , and fM∗
φ (d1, . . . , dk) = u∗

otherwise.
(iii) M∗ |= d = e iff d is equal to e; M∗ |= d < e iff d, e ∈ A and d < e in the order of A;

M∗ |= M(d) iff d ∈M and M∗ |= A(d) iff d ∈ A.
It is clear that for every formula φ(v1, . . . , vk), for every ci ∈ A and for every d1, . . . , dk ∈

M : M∗ |= fφ(d1, . . . , dk) = cTi iff ‖φ(d1, . . . , dk)‖AM = ci, and (a) follows.
(b) Let N be a model of TA; we define an algebra A+ and an A+-structure N+ based on

A+ as follows:
(i) The domain A+ of A+ is the set {d ∈ N | N |= A(d)} and the operations of A+ are

the restrictions to A+ of the operations FN of N such that F is a connective of LA. Trivially,
A+ is isomorphic to A (here we use in a crucial way the fact that A is finite).

(ii) N+ = {d ∈ N | N |= M(d)}; for every constant c of LA, cN
+

= cN; for every k-ary
function symbol g of LA, gN

+
is the function from (N+)k into N+ defined for all d1, . . . , dk ∈

N+, by gN
+

(d1, . . . , dk) = gN(d1, . . . , dk) (i.e. gN
+

is the restriction of gN to (N+)k).
(iii) For every k-ary predicate P and for every d1, . . . , dk ∈ N+, ‖P (d1, . . . , dk)‖AN+ =

fN
P (d1, . . . , dk).

Then ‖.‖AN+ uniquely extends to all formulae in such a way that for every formula
φ(v1, . . . , vk), for every ci ∈ A and for every d1, . . . , dk ∈ M : N |= fφ(d1, . . . , dk) = cTi
iff ‖φ(d1, . . . , dk)‖AN+ = ci, and (b) follows.

Continuing with the proof of Theorem 3.19, it suffices to associate to every sentence φ of
LA the formula fφ = 1T (remind that 1 is the top element of A). Then by Lemma 3.20 we
have that the following are equivalent:

(i) There is an A-structure M such that ‖φ‖AM 6= 1, and
(ii) There is a model N of TA such that fφ = 1T is not valid in N.
Thus we conclude that φ is an A-1-tautology iff TA ` fφ = 1T , and the set of A-1-

tautologies is Σ1. This ends the proof.

We have seen that TAUT1(A) is Σ1. Similar arguments show that for every sentence φ of
LA we have:
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• φ ∈ TAUTpos(A) iff TA ` 0T < fφ,

• φ ∈ SAT1(A) iff TA plus fφ = 1T is consistent,

• φ ∈ SATpos(A) iff TA plus fφ > 0T is consistent.

Theorem 3.21. Let A be a finite chain. TAUT1(A) and TAUTpos(A) are in Σ1. Moreover,
SAT1(A) and SATpos(A) are in Π1.

Observe that the proof of this theorem would be completely analogous if instead of a
linearly ordered algebra A would be an arbitrary finite algebra (in a finite language), as this
was the essential requirement to build the classical first-order theory TA.

By the general hardness results from Section 3.1 we obtain:

Corollary 3.22. For every finite chain A, SAT1(A) is Π1-complete. Moreover:

1. TAUT1(A) and TAUTpos(A) are Σ1-complete.

2. SAT1(A) is Π1-complete.

3. If A has an involutive or strict negation, then SATpos(A) is Π1-complete.

From these results, we can obtain some upper bounds for the arithmetical complexities
with respect to the finite-chain semantics, when the class of finite chains is recursively enu-
merable:

Theorem 3.23. Suppose that L is a (∆)-core fuzzy logic such that there is a computable
enumeration of all (up to isomorphism) finite L-chains. Then:

(a) finTAUT1(L∀) and finTAUTpos(L∀) are in Π2.
(b) finSAT1(L∀) and finSATpos(L∀) are in Σ2.

Proof. Let A1,A2, . . . ,An, . . . be a computable enumeration of all finite L-chains. Then
φ ∈ finTAUT1(L∀) iff ∀n(φ ∈ TAUT1(An)) and φ ∈ finTAUTpos(L∀) iff ∀n(φ ∈
TAUTpos(An)). Now since the sequence 〈An | n ∈ ω〉 is computable, by Theorem 3.21,
the sets {〈φ, n〉 | φ ∈ TAUT1(An)} and {〈φ, n〉 | φ ∈ TAUTpos(An)} are in Σ1, and claim (a)
follows.

As regards to claim (b) we have that φ ∈ finSATpos(L∀) iff ∃n(φ ∈ SATpos(An)), and
φ ∈ finSAT1(L∀) iff ∃n(φ ∈ SAT1(An)), and the claim follows from the computability of the
sequence 〈An | n ∈ ω〉 and from Theorem 3.21 (note that if R(n, x) is Π1, then ∃nR(n, x) is
in turn Σ2).

Theorem 3.24. If L is a finitely axiomatizable (∆)-core fuzzy logic, then there is a computable
enumeration of all (up to isomorphism) finite L-chains.

Proof. We can obtain a computable enumeration of all finite L-chains as follows: clearly
there is a computable enumeration of all the finite algebras of the signature of L (first put
the trivial algebra in the list, then enumerate all the (finitely many) structures with two
elements, 0 and 1, then all the (finitely many) structures with three elements, 0, 1 and 2,
etc.). Let C1, C2, . . . , Cn, . . . be the computable list of structures obtained in this way, and
assume without loss of generality that C1 is the trivial algebra. Now let A1 = C1 (note that
the trivial algebra is a totally ordered algebraic model of any logic with that signature); then
for every n, check if Cn is a chain and if it satisfies the finite axiomatization of L. This can
be done with a finite computation. If so, let An = Cn; otherwise, let An = C1.
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From the last two theorems, together with the general results in the previous sub-
section, we can obtain uniform bounds for the complexity of finite-chain semantics
in recursively axiomatizable (∆)-core fuzzy logics; see the results in Table 5. It
applies, in particular, to all the prominent logics we have mentioned, i.e. for L ∈
{ L,G,Π,BL,SBL,MTL, SMTL, IMTL,ΠMTL,WCMTL,CnMTL,CnIMTL,WNM,NM}
finTAUT1(L∀) is Π2, etc. Note that this list may have repetitions. This is unavoidable
if L has only finitely many totally ordered algebraic models, and this is the case for
L = Π or for L = ΠMTL. In this case, finTAUT1(L∀) is not only Π2, but even Σ1: for
instance finTAUT1(Π∀) and finTAUT1(ΠMTL∀) coincide with the set of classical first-order
tautologies, which is Σ1-complete. Next will show that in some cases the upper bounds are
reached as well.

All logics Logics with involutive or strict negation
finTAUT1(L∀) Σ1-hard, Π2 Σ1-hard, Π2

finSAT1(L∀) Π1-hard, Σ2 Π1-hard, Σ2

finTAUTpos(L∀) Σ1-hard, Π2 Σ1-hard, Π2

finSATpos(L∀) Σ2 Π1-hard, Σ2

Table 5: Arithmetical complexity bounds for the finite-chain semantics when L is recursively
axiomatizable.

Theorem 3.25. Let L be a (∆)-core fuzzy logic such that the following conditions hold:
(1) For every finite cardinal m, there is a finite L-chain with at least m elements.
(2) There is an L-formula φ(p) such that for every L-chain A and for every A-evaluation
v, v(φ(p)) ∈ {0A, 1A}, and there are evaluations v0 and v1 such that v0(φ(p)) = 0A and
v1(φ(p)) = 1A.
Then the set finTAUT1(L∀) is Π2-complete.

Proof. Let PA− be a finitely axiomatizable subtheory of arithmetics in which all recursive
relations are representable. The numerals are inductively defined as usual: 0 is the constant
for 0 and n denotes S(n− 1) for each n > 0, where S is the unary functional symbol for
the successor. We also assume that PA− has a binary predicate ≤ for the order, and that
it proves all basic properties of order in the natural numbers. In particular, we assume that
PA− ` (∀x)(x ≤ n → (x = 0 ∨ x = 1 ∨ . . . ∨ x = n)). Let Φ denote the conjunction of all
axioms of PA− and let for every formula γ, γ+ be the result of replacing in γ every atomic
formula δ by φ(δ). Notice that for every model 〈M,A〉 the value ‖γ+‖M,A is crisp.

Let M be a first-order structure over an L-chain A such that ‖Φ+‖M,A = 1A. We define
a classical model MPA− for the language of PA− as follows: the domain of MPA− is the
domain M of M modulo the equivalence ∼ defined by d ∼ d′ iff ‖φ(d = d′)‖M,A = 1; for

every n-ary function symbol f of PA− and for every d1, . . . , dn ∈M , fMPA−
([d1], . . . , [dn]) =

[fM(d1, . . . , dn)], where for each d ∈ M , [d] denotes its equivalence class modulo ∼. Finally,
for every n-ary predicate symbol P of PA− and for every d1, . . . , dn ∈ M , we stipulate that
〈[d1], . . . , [dn]〉 ∈ PMPA−

iff ‖φ(P (d1, . . . , dn))‖M,A = 1A. By induction on δ we can easily
prove:

Claim 1: For every formula δ(x1, . . . , xn) and for every d1, . . . , dn ∈ M :
‖δ(d1, . . . , dn)+‖M,A = 1A iff MPA− |= δ([d1], . . . , [dn]).
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Conversely, given a model N of PA− and an L-chain A we define a first-order structure
NA on A (restricted to the language of PA−) as follows: the domain of NA coincides with
the domain N of N and the function symbols and the constants are interpreted as in N;
moreover, let z, o be elements of A such that for every evaluation v, we have v(φ(p)) =
0A if v(p) = z and v(φ(p)) = 1A if v(p) = o. Then for every n-ary predicate symbol P
and for every d1, . . . , dn ∈ N , we define ‖δ(d1, . . . , dn)‖NA,A = o if N |= δ(d1, . . . , dn) and
‖δ(d1, . . . , dn)‖NA,A = z otherwise. Then, again by induction on δ, we can easily prove:

Claim 2: For every formula δ(x1, . . . , xn) of PA− and for every d1, . . . , dn ∈ N one has:
‖δ(d1, . . . , dn)+‖NA,A = 1A iff N |= δ(d1, . . . , dn).

Now let X = {n | ∀m∃kR(n,m, k)}, with R recursive, be a Π2-complete set. Let R′(x, y, z)
be a formula of PA− representing R in PA−, that is, for all n,m, k, if R(n,m, k) is true, then
R′(n,m, k) is provable in PA− and if R(n,m, k) is false, then ¬R′(n,m, k) is provable in
PA−. Let R+ be the formula obtained from R′ by replacing every atomic subformula ψ by
φ(ψ). Then R+ behaves as a crisp formula. Finally, let P be a new unary predicate, and let
Ψ(x) be the formula

Φ+ → ∀y(∃u((u ≤ y)+ ∧ (P (S(u))→ P (u))) ∨ ∃zR+(x, y, z)),

where S is the symbol of PA− for the successor function.
We claim that for every n, n ∈ X iff Ψ(n) is true in every first-order model over a finite

L-chain. Indeed, suppose n ∈ X. Let A be an L-chain with m elements, and let M be a first-
order model over A. If ‖Φ+‖M,A = 0A, then ‖Ψ(n)‖M,A = 1A. Otherwise, ‖Φ+‖M,A = 1A,
that is, the translation of every axiom of PA− is true in 〈M,A〉.

Claim 3: If ‖Φ+‖M,A = 1A, then for every theorem ψ of PA−, ‖ψ+‖M,A = 1A.
Suppose not. Then, by Claim 1, MPA− would be a model of PA− which does not satisfy

ψ, a contradiction.
Now let y be an element of the universe of M. If ‖(y ≤ m)+‖M,A = 1A, then by Claim

3, ‖(y = 0 ∨ y = 1 ∨ . . . ∨ y = m)+‖M,A = 1A, because PA− ` ∀x(x ≤ m ↔ (x = 0 ∨ x =
1 ∨ . . . ∨ x = m)).

Moreover since n ∈ X, for y = 0, 1, . . . ,m, there is a ky such that R(n, y, ky) is true. Then
for such ky, R′(n, y, ky) is provable in PA− and ‖R+(n, y, ky)‖M,A = 1A, again by Claim
3. If ‖(y > m)+‖M,A = 1A, then for some i such that ‖(i ≤ y)+‖M,A = 1A, we must have
‖P (S(i))→ P (i)‖M,A = 1A, otherwise ‖P (0)‖M,A < ‖P (1)‖M,A < . . . < ‖P (m+ 1)‖M,A and
A would have more than m elements. Thus in this case ∃u((u ≤ y)+ ∧ (P (S(u)) → P (u))).
In any case, if ‖Φ+‖M,A = 1A and n ∈ X then ‖∀y(∃u((u ≤ y)+ ∧ (P (S(u)) → P (u))) ∨
∃zR+(x, y, z))‖M,A = 1A. Thus Ψ(n) has truth value 1A.

Now suppose that n /∈ X. Then for some m there is no k such that R(n,m, k). Let
A be an L-chain with more than m elements. Let 0A = a0 < a1 < . . . < ah = 1A with
h ≥ m, be the elements of A. Consider the first-order structure NA over A obtained from
the standard model N of natural numbers according to Claim 2. Moreover, let us set, for
i = 0, . . . , h, PNA(i) = ai and for i > h, PNA(i) = 1A. Then by Claim 2, ‖Φ+‖NA,A = 1A,
‖∃u((u ≤ m)+ ∧ (P (S(u))→ P (u)))‖NA,A = ah−1 < 1A and ‖∃zR+(n,m, z))‖NA,A = 0A. It
follows that ‖Ψ(n)‖NA,A = ah−1 < 1A.

Corollary 3.26. Let L be a (∆)-core fuzzy logic such that for every finite cardinal m, there
is a finite L-chain with at least m elements. Then finTAUT1(L∀) is Π2-complete if one of the
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following sufficient conditions is satisfied:

1. L has a strict negation ∼.

2. L expands WNM.

3. L is a ∆-core fuzzy logic.

Proof. By the hypothesis, all logics above satisfy condition (1) of Theorem 3.25. As regards
to condition (2), for logics with a strict negation ∼, take φ(p) = ∼∼ p, and note that for
every evaluation v in an L-chain, if v(p) = 0, then v(φ(p)) = 0, otherwise v(φ(p)) = 1. For
logics expanding WNM, take φ(p) = ¬((¬((¬¬p)2))2) and note that for any evaluation v in
an L-chain, if v(¬¬p) ≤ v(¬p), then v(φ(p)) = 0, otherwise v(φ(p)) = 1. As regards to ∆-core
fuzzy logics, it is clear that φ(p) = ∆(p) satisfies condition (2) of Theorem 3.25.

Corollary 3.27. For L ∈ {SMTL,NM,WNM,SBL,G}, we have that finTAUT1(L∀) is Π2-
complete.

Theorem 3.28. Let L be a ∆-core fuzzy logic such that for every finite cardinal m, there
is a finite L-chain with at least m elements. Then finSAT1(L∀) and finSATpos(L∀) are Σ2-
complete.

Proof. Let X = {x ∈ N | ∃y∀zR(x, y, z)} with R recursive, be a Σ2-complete set. Let Φ be
as in the proof of Theorem 3.25, and let for every formula γ, γ+ be the result of replacing in
γ every atomic formula P by ∆(P ). Then γ+ is a crisp formula. Now consider the formula
Ψ(x) = Φ+ ∧ ∃y[∀u((u < y)+ → ¬∆(P (S(u))→ P (u))) ∧ ∀zR+(x, y, z)].

Claim A: for every n, n ∈ X iff Ψ(n) is 1 satisfiable in a finite L-chain iff Ψ(n) is positively
satisfiable in a finite L-chain.

Proof of Claim A. Since Ψ(n) is crisp, it is 1-satisfiable in a finite L chain iff it is positively
satisfiable there. Now suppose n ∈ X. Then there is m ∈ N such that for all z ∈ N ,
R(n,m, z) is true. Let N be the standard model of natural numbers, let A be a finite L-chain
with h + 1 > m elements 1 = a0 > a1 > . . . > ah = 0, and let NA be as in Claim 2 of
the proof of Theorem 3.25. Define ‖P (i)‖A,NA = ai for i = 0, . . . ,m and ‖P (i)‖A,NA = 1
for i > m. Note that for i = 0, . . . ,m, ‖P (i) → P (S(i))‖A,NA < 1 and hence ‖¬∆(P (i) →
P (S(i)))‖A,NA = 1. Moreover for every natural number k, ‖R+(n,m, k)‖A,NA = 1. It follows
that ‖Ψ+(n)‖A,NA = 1, and Ψ+(n) is 1-satisfiable in a finite L-chain.

Conversely, suppose n /∈ X. Let M be a model over a finite L-chain A and let k be its
cardinality. We wish to prove that ‖Ψ+(n)‖A,M < 1, or equivalently that ‖Ψ+(n)‖A,M = 0,
as Ψ is crisp. The claim is clear if ‖Φ+‖A,M < 1. If ‖Φ+‖A,M = 1, then we obtain a model
MPA− as in Claim 2 of the proof of Theorem 3.25. Since n /∈ X, for all m ≤ k there is
hm ∈ N such that R(n,m, hm) is false. Thus, for all m ≤ k there is hm ∈ N such that
‖R+(n,m, hm)‖A,M = 0. It follows that ‖∀zR+(n,m, z)‖A,M = 0. Finally, if m > k, then
there must be i < m such that ‖P (i)‖A,M ≤ ‖P (S(i))‖A,M. Hence, ‖∀u((u < m)+ →
¬∆(P (S(u))→ P (u)))‖A,M = 0. In any case, ‖Ψ(n)‖A,M = 0.

On the other hand, in [20, Th 5.4.30] it is proved that finTAUT1( L∀) is Π2-complete (the
proof of this fact and further consequences will be surveyed in the next subsection). This
allows to prove the following result:

Proposition 3.29. finTAUT1(BL∀) is Π2-complete.
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Proof. As in the proof of Proposition 3.10, for every sentence ϕ we consider the formula ϕ¬¬

resulting from ϕ by adding double negation ¬¬ to all atoms. Then for every ϕ ∈ SentΓ we
have: ϕ¬¬ ∈ finTAUT1(BL∀) iff ϕ ∈ finTAUT1( L∀). Indeed, the left-to-right implication
is obvious because the negation is involutive in  Lukasiewicz logic; as for the converse one
assume ϕ ∈ finTAUT1( L∀) and consider any model M over a finite BL-chain A. Taking
into account the structure of BL-chains described in [20], it is enough to distinguish two
cases: (1) Assume that A is an ordinal sum C1 ⊕ C2 where C1 is a finite MV-chain. Then,
we define a model M′ over C1 from M in the following way: take the same domain, the
same interpretation of constants and functionals, and for every n-ary predicate symbol P and
elements a1, . . . , an in the domain set PM′(a1, . . . , an) = PM(a1, . . . , an) if PM(a1, . . . , an) ∈
C1 and PM′(a1, . . . , an) = 1A otherwise. Now it is easy to prove by induction that for every
formula α and every evaluation v: ‖α¬¬‖AM,v = ‖α‖C1M′,v. Hence ‖ϕ¬¬‖AM = ‖ϕ‖C1M′ = 1A. (2)
Assume that A is an SBL-chain (i.e. its negation is strict). Then we define a model M′ over B2

from M in the following way: take the same domain, the same interpretation of constants and
functionals, and for every n-ary predicate symbol P and elements a1, . . . , an in the domain
set PM′(a1, . . . , an) = 0 if PM(a1, . . . , an) = 0A and PM′(a1, . . . , an) = 1 otherwise. Now we
have: ‖ϕ¬¬‖AM = ‖ϕ¬¬‖B2

M′ = ‖ϕ‖B2
M′ = 1. Therefore, we have proved that finTAUT1(BL∀) is

Π2-hard. The Π2 containment follows from theorems 3.23 and 3.24.

Some more results on complexity of finite-chain semantics will be obtained in next sub-
section when comparing such semantics with the standard and rational ones.

3.3 Complexity of standard and rational semantics and their relation to
finite-chain semantics

Let us now consider the semantics given by all standard chains or all rational chains. The
completeness properties with respect to those semantics have been studied in the literature.
We extract Table 6 from [6] with some known results.

On the other hand, the arithmetical complexities w.r.t. the standard semantics of con-
tinuous t-norm based logics has been deeply studied in several papers. We summarize the
known results in the following theorem.

Theorem 3.30. Let us denote by R the set of all standard BL-chains, and given A ∈
{[0, 1] L, [0, 1]Π, [0, 1]G} let us denote by A⊕ the subset of R of those chains whose ordinal
sum decomposition starts with A.

• TAUT1([0, 1] L) is Π2-complete [43]; TAUT1([0, 1]G) is Σ1-complete [20]; for every K ⊆
R \ {[0, 1]G} TAUT1(K) is Π2-hard [37]; if K ⊆ R contains at least one algebra non-
isomorphic to any of [0, 1]G, [0, 1] L, [0, 1] L⊕ [0, 1]G, [0, 1]G⊕ [0, 1] L, [0, 1] L⊕ [0, 1] L and
[0, 1] L ⊕ [0, 1]G ⊕ [0, 1] L, then TAUT1(K) is not arithmetical [37].

• SAT1([0, 1] L) = SAT1([0, 1] L⊕) and SAT1([0, 1]G) = SAT1([0, 1]G⊕), and they are Π1-
complete; if K ⊆ R contains some chain from [0, 1]Π⊕, then SAT1(K) is not arithmetical
[21, 24].

• TAUTpos([0, 1] L) = TAUTpos([0, 1] L⊕) and TAUTpos([0, 1]G) = TAUTpos([0, 1]G⊕),
and they are Σ1-complete; if K ⊆ R contains some chain from [0, 1]Π⊕, then
TAUTpos(K) is not arithmetical [21, 24].
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Logic RC, FSRC QC, FSQC
MTL∀ Yes Yes
IMTL∀ Yes Yes
SMTL∀ Yes Yes

WCMTL∀ ? ?
ΠMTL∀ ? ?

BL∀ No No
SBL∀ No No

 L∀ No Yes
Π∀ No Yes
G∀ Yes Yes

CnMTL∀ Yes Yes
CnIMTL∀ Yes Yes

WNM∀ Yes Yes
NM∀ Yes Yes

Table 6: Completeness properties w.r.t. distinguished semantics for some prominent first-order
fuzzy logics.

• SATpos([0, 1] L) = SATpos([0, 1] L⊕) and it is Σ2-complete; SATpos([0, 1]G) =
SATpos([0, 1]G⊕) and it is Π1-complete; if K ⊆ R contains some chain from [0, 1]Π⊕,
then SATpos(K) is not arithmetical [21, 24].

Combining this knowlegde with our new general results in Subsection 3.1 we can obtain
many arithmetical complexity results w.r.t. the standard and rational semantics for prominent
logics as collected in tables 7 and 8. In the case of BL∀ and SBL∀ we need an additional
result:

Proposition 3.31. The sets ratTAUT1(BL∀) and ratTAUT1(SBL∀) are in Σ1, and hence
ratSATpos(BL∀) and ratSATpos(SBL∀) are in Π1.

Proof. Following [6] consider the extensions of BL∀ and SBL∀ by adding the schema Φ =
(∀x)(χ&ϕ)→ (χ&(∀x)ϕ), where x is not free in χ. Call them BL∀+ and SBL∀+, respectively.
Φ is known to be satisfied by every model on a densely ordered BL-chain [20, page 102] but it is
not a 1-tautology for all BL-chains [12]. In [6, Th. 5.34] it is proved that BL∀+ (resp. SBL∀+)
enjoys strong completeness with respect to models over rational BL-chains (resp. SBL-chains),
and it is not necessary to require that those models satisfy the additional schema because their
chains are densely ordered. Therefore, ratTAUT1(BL∀) turns out to be the set of theorems
of the logic BL∀+, and analogously for ratTAUT1(SBL∀); this proves the result.

Observe that the completeness properties imply that for many prominent logics we have
genTAUT1(L∀) = stTAUT1(L∀) = ratTAUT1(L∀). On the other hand, in [20, Theorem
5.4.30] Hájek proved that the standard 1-tautologies of first-order  Lukasiewicz logic coincide
with the 1-tautologies over the finite-chain semantics, i.e. stTAUT1( L∀) = finTAUT1( L∀).
Now, in addition, we will consider the semantics given by canonical rational chains. Of course,
this can only be done for those logics where it makes sense to have an intended semantics
over the rational unit interval, i.e. logics L∗ given by a left-continuous t-norm ∗ such that
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Logic stTAUT1 stSAT1 stTAUTpos stSATpos

MTL∀ Σ1-complete Π1-complete Σ1-complete Π1

IMTL∀ Σ1-complete Π1-complete Σ1-complete Π1-complete
SMTL∀ Σ1-complete Π1-complete Σ1-complete Π1-complete

WCMTL∀ Σ1-hard Π1-hard Σ1-hard ?
ΠMTL∀ Σ1-hard Π1-hard Σ1-hard Π1-hard

BL∀ Non-arithmetical Non-arithmetical Non-arithmetical Non-arithmetical
SBL∀ Non-arithmetical Non-arithmetical Non-arithmetical Non-arithmetical

 L∀ Π2-complete Π1-complete Σ1-complete Σ2-complete
Π∀ Non-arithmetical Non-arithmetical Non-arithmetical Non-arithmetical
G∀ Σ1-complete Π1-complete Σ1-complete Π1-complete

CnMTL∀ Σ1-complete Π1-complete Σ1-complete Π1

CnIMTL∀ Σ1-complete Π1-complete Σ1-complete Π1-complete
WNM∀ Σ1-complete Π1-complete Σ1-complete Π1

NM∀ Σ1-complete Π1-complete Σ1-complete Π1-complete

Table 7: Complexity results for the standard semantics.

its restriction to [0, 1]Q is well-defined. We denote the corresponding algebra as [0, 1]Q∗ . This
can be done, for instance, for a special kind of t-norms corresponding to extensions of WNM,
namely those which are determined by a finite partition of the unit interval in subintervals
where the negation function is either constant or involutive, provided that the extremal points
of such subintervals are rational numbers; denote the class of those t-norms by WNM-finQ

(see [41] for further details).

Proposition 3.32. Let ∗ ∈WNM-finQ and let Ia be its maximum constant interval (with
possibly a = 1) and let A be a countable L∗-chain. Then:

• If IA
1
A = {1A}, then there exists an embedding from A into [0, 1]Q∗ .

• If IA
1
A 6= {1

A}, then there exists an embedding from A into [0, 1]Q∗ /F a (where F a denotes
the filter generated by a).

Proof. It suffices to inspect the proof of the analogous fact for real chains in [41] and realize
that the embedding can be in fact defined into the rationals.

Corollary 3.33. Let ∗ ∈WNM-finQ and let Ia be its maximum positive constant interval,
if it exists. Then:

• If a = 1 or ∗ has no positive constant intervals, then the logic L∗ is strongly complete
with respect to [0, 1]Q∗ , and hence TAUT1([0, 1]Q∗ ) is Σ1-complete.

• If a 6= 1, then the logic L∗ is strongly complete with respect to {[0, 1]Q∗ , [0, 1]Q∗ /F a}, and
hence TAUT1([0, 1]Q∗ , [0, 1]Q∗ /F a) is Σ1-complete.

Notice, in particular, that the logic NM∀ is under the scope of the first point in the last
corollary, and so we have genTAUT1(NM∀) = stTAUT1(NM∀) = canratTAUT1(NM∀) and
they are Σ1-complete.
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Logic ratTAUT1 ratSAT1 ratTAUTpos ratSATpos

MTL∀ Σ1-complete Π1-complete Σ1-complete Π1

IMTL∀ Σ1-complete Π1-complete Σ1-complete Π1-complete
SMTL∀ Σ1-complete Π1-complete Σ1-complete Π1-complete

WCMTL∀ Σ1-hard Π1-hard Σ1-hard ?
ΠMTL∀ Σ1-hard Π1-hard Σ1-hard Π1-hard

BL∀ Σ1-complete Π1-hard Σ1-hard Π1

SBL∀ Σ1-complete Π1-hard Σ1-hard Π1-complete
 L∀ Σ1-complete Π1-complete Σ1-complete Π1-complete
Π∀ Σ1-complete Π1-complete Σ1-complete Π1-complete
G∀ Σ1-complete Π1-complete Σ1-complete Π1-complete

CnMTL∀ Σ1-complete Π1-complete Σ1-complete Π1

CnIMTL∀ Σ1-complete Π1-complete Σ1-complete Π1-complete
WNM∀ Σ1-complete Π1-complete Σ1-complete Π1

NM∀ Σ1-complete Π1-complete Σ1-complete Π1-complete

Table 8: Complexity results for the rational semantics.

Observe now that the three main continuous t-norms satisfy the required property as well,
i.e. we have well-defined algebras over the rationals [0, 1]Q L , [0, 1]QΠ and [0, 1]QG; the same goes
for their ordinal sums. Let Q be the set of ordinal sums of these three rational BL-chains.
Given K ⊆ Q, K̄ will denote the subset of R given by the substitution in the elements of K
of each component for its corresponding basic real chain. We start with the case of [0, 1]Q L .

Lemma 3.34. Let M and M′ be two first-order structures with the same domain M over
[0, 1] L, and let φ, ψ be first-order sentences with parameters from M and δ(x) be a first-order
formula with parameters from M and with x as its only free variable. Let for any two real num-
bers α, β, d(α, β) denote the distance between α and β, that is, d(α, β) = max {α− β, β − α}.
Then for every positive real number γ we have:
(i) If d(‖φ‖M, ‖φ‖M′) ≤ γ then d(‖¬φ‖M, ‖¬φ‖M′) ≤ γ.
(ii) If d(‖φ‖M, ‖φ‖M′) ≤ γ and d(‖ψ‖M, ‖ψ‖M′) ≤ γ then d(‖φ&ψ‖M, ‖φ&ψ‖M′) ≤ 2γ.
(iii) If for all a ∈M , d(‖δ(a)‖M, ‖δ(a)‖M′) ≤ γ then d(‖∀xδ(x)‖M, ‖∀xδ(x)‖M′) ≤ γ.

Proof. Almost trivial.

Corollary 3.35. If φ is a sentence of complexity k and M and M′ are first-order structures
with the same domain M over [0, 1] L such that for every closed atomic subformula ψ of φ,
d(‖ψ‖M, ‖ψ‖M′) ≤ γ, then d(‖φ‖M, ‖φ‖M′) ≤ 2kγ.

Lemma 3.36. Let φ be a first-order sentence of complexity k and let for every n,  Ln denote
the finite MV-chain with n + 1 elements. Let M be a first-order structure over [0, 1] L with
domain M such that ‖φ‖M < 1 and let n be such that 2−n < 1 − ‖φ‖M. Then there is a
first-order structure M′ over  L2k+n such ‖φ‖M′ < 1.

Proof. Let for every atomic formula ψ with parameters in M , m(ψ) denote the maximum
natural number such that m(ψ)

2n+k ≤ ‖ψ‖M. Define a new first-order structure M′ with do-

main M letting for every atomic formula ψ with parameters in M , ‖ψ‖M′ = m(ψ)
2n+k . Then
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d(‖ψ‖M, ‖ψ‖M′) < 1
2n+k and by Corollary 3.35, d(‖φ‖M, ‖φ‖M′) ≤ 2k 1

2n+k = 1
2n < 1− ‖φ‖M.

It follows that ‖φ‖M′ < 1. Now M′ has been defined as a first-order structure over [0, 1] L, but
since for every sentence δ, ‖δ‖M′ ∈  L2k+n , M′ can be also regarded as a first-order structure
over  L2k+n . This ends the proof.

Theorem 3.37. stTAUT1( L∀) = canratTAUT1( L∀) = finTAUT1( L∀) and they are Π2-
complete.

Proof. Inclusions⊆ follow from Lemma 3.3, therefore it suffices to prove that finTAUT1( L∀) ⊆
stTAUT1( L∀). But this is immediate from Lemma 3.36.

Now recall that if K is a class of MV-chains then SATpos(K) = {φ | ¬φ /∈ TAUT1(K)}.
Thus we obtain:

Theorem 3.38. stSATpos( L∀) = canratSATpos( L∀) = finSATpos( L∀) and they are Σ2-
complete.

Open problem: Is it true that finTAUTpos( L∀) ⊆ stTAUTpos( L∀)? This would
imply: stTAUTpos( L∀) = canratTAUTpos( L∀) = finTAUTpos( L∀) and stSAT1( L∀) =
canratSAT1( L∀) = finSAT1( L∀).

Theorems 3.37 and 3.38 do not extend to finite consequence relation as shown in the next
theorem.

Theorem 3.39. There are formulae φ and ψ of  Lukasiewicz logic such that φ ∈ finCons( L, ψ)
and φ /∈ stCons( L, ψ).

Proof. Let S be a unary function symbol, P be a unary predicate symbol and 0 be a constant
symbol. Let ψ = ∀x(P (x) ↔ ((P (S(x)) ⊕ P (S(x)))) and φ = P (0) ∨ ¬P (0). We claim that
φ ∈ finCons(ψ) but φ /∈ stCons(ψ). Let M be a first-order structure over a finite chain  Ln
such that ‖ψ‖M = 1, let m be such that 2m > n and let for every k, kM = S(S . . . (S(0)) . . .)
(k times). If ‖P (0)‖M ∈ {0, 1} we have ‖φ‖M = 1. Otherwise, by the definition of ψ we
have ‖P (mM)‖ = ‖P (0)‖M

2m . Now if for some x with 0 < x < 1, x
2m belongs to a finite

MV-chain C, then C must have 2m + 1 elements at least. Since n < 2m, ‖P (0)‖M
2m cannot

belong to  Ln and a contradiction is reached. To prove that φ /∈ stCons( L, ψ), define a
structure M on [0, 1] L letting the domain M of M be the set ω of natural numbers, 0 the
minimum of ω, S the successor function and ‖P (n)‖ = 1

2n+1 . Then we have ‖ψ‖M = 1, but
‖P (0)‖M = ‖¬P (0)‖M = ‖φ‖M = 1

2 < 1.

We consider now other canonical rational chains.

Theorem 3.40. Let K ⊆ Q such that there exists A ∈ K whose first component is product.
Then TAUT1(K), SAT1(K), TAUTpos(K) and SATpos(K) are non-arithmetical.

Proof. In [36] the author defines a formula Ψ obtained as the conjunction of the following
formulae:

(a) γ¬¬, for each axiom γ of PA−.
(b) ∀x¬¬U(x), ¬∀xU(x) and ∀x(U(S(x))→ U(x)3).
Then one can prove the following claims for every Φ:

1. N |= Φ iff Ψ→ Φ¬¬ ∈ TAUT1(K) iff Ψ→ Φ¬¬ ∈ TAUTpos(K).
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2. N |= Φ iff Ψ&Φ¬¬ ∈ SAT1(K) iff Ψ&Φ¬¬ ∈ SATpos(K).

Assume that N |= Φ. As proved in [36] this implies that Ψ → Φ¬¬ ∈ TAUT1(K̄), and
hence Ψ→ Φ¬¬ ∈ TAUT1(K) and Ψ→ Φ¬¬ ∈ TAUTpos(K). Assume now that N 6|= Φ. Let
Then we construct a countermodel M over A as follows:

(a) the domain of M is the set of natural numbers, and the constant 0 and the function
symbols of PA− are interpreted as in the standard model N of natural numbers.

(b) if P is an n-ary predicate symbol of PA− and k1, . . . , kn are natural numbers, then
PM (k1, . . . , kn) = 1 if P (k1, . . . , kn) is true in N and PM (k1, . . . , kn) = 0 otherwise.

(c) Let f be the affine bijective transformation from [0, 1]Q to the interval where the first
component of A is defined. For every natural number n, UM(n) = f(2−3n).

It is readily seen that ‖Ψ‖M,A = 1 and ‖Φ¬¬‖M,A = 0. Therefore, ‖Φ → Φ¬¬‖M,A = 0
and hence Ψ→ Φ¬¬ /∈ TAUT1(K) and Ψ→ Φ¬¬ /∈ TAUTpos(K).

The second claim is proved analogously.

Theorem 3.41. 1. If C is the first component of a chain A ∈ Q, then TAUTpos(A) =
TAUTpos(C) and SATpos(A) = SATpos(C).

2. SATpos([0, 1]QG) = SAT1([0, 1]QG) and it is Π1-complete.

3. If A ∈ Q begins with a Gödel component, then SAT1(A) = SAT1([0, 1]QG).

4. TAUTpos([0, 1]QG) is Σ1-complete.

5. If K ⊆ Q contains some component non-isomorphic to [0, 1]QG, then TAUT1(K) is Π2-
hard.

6. if K ⊆ Q contains at least one algebra non-isomorphic to any of [0, 1]QG, [0, 1]Q L , [0, 1]Q L ⊕
[0, 1]QG, [0, 1]QG⊕ [0, 1]Q L , [0, 1]Q L ⊕ [0, 1]Q L and [0, 1]Q L ⊕ [0, 1]QG⊕ [0, 1]Q L , then TAUT1(K) is
not arithmetical

Proof. The first four claims are proved by checking that the proofs of the corresponding
results for standard semantics in [24] actually work as well for canonical rational semantics.
Point 5. is shown by reducing the problem to TAUT1([0, 1]Q L ), which we know is Π2-hard, as
in [37]. Similarly, for the last point we use the fact, proved in the previous theorem, that
TAUT1([0, 1]QΠ) is non-arithmetical and perform the analogous reduction to that problem as
in [37].

As for the relation between 1-tautologies over real and finite chains, the issue has been
already considered in [17] where it has been proved that for every left-continuous t-norm ∗,
stTAUT1(L∗∀) = finTAUT1(L∗∀) iff [0, 1]∗ ∼= [0, 1] L. That result is achieved by showing for
every ∗ not isomorphic to  Lukasiewicz t-norm a sentence ϕ such that every model over a finite
L∗-chain validates ϕ but there is a [0, 1]∗-model M such that 〈M, [0, 1]∗〉 6|= ϕ. That allows
for the following generalization to our framework:

Theorem 3.42. Let L be a consistent (∆-)core fuzzy logic. If there exist L-chains over [0, 1]
whose t-norm is not isomorphic to  Lukasiewicz, then stTAUT1(L∀) 6= finTAUT1(L∀) and
genTAUT1(L∀) 6= finTAUT1(L∀).

Proof. It suffices to take the aforementioned counterexamples from [17].
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