
A Complete Calculus for Max-SAT?

Maŕıa Luisa Bonet1, Jordi Levy2, and Felip Manyà2

1 Dept. Llenguatges i Sistemes Informàtics (LSI),
Universitat Politècnica de Catalunya (UPC),
Jordi Girona, 1-3, 08034 Barcelona, Spain.

2 Artificial Intelligence Research Institute (IIIA),
Spanish Scientific Research Council (CSIC),

Campus UAB, 08193 Bellaterra, Spain.

Abstract. Max-SAT is the problem of finding an assignment minimiz-
ing the number of unsatisfied clauses of a given CNF formula. We propose
a resolution-like calculus for Max-SAT and prove its soundness and com-
pleteness. We also prove the completeness of some refinements of this
calculus. From the completeness proof we derive an exact algorithm for
Max-SAT and a time upper bound.

1 Introduction

The Max-SAT problem for a CNF formula φ is the problem of finding an assign-
ment of values to variables that minimizes the number of unsatisfied clauses in
φ. Max-SAT is an optimization counterpart of SAT and is NP-hard.

The most competitive exact Max-SAT solvers [1–3, 7, 9, 11–13] implement
variants of the following branch and bound (BnB) schema: Given a CNF for-
mula φ, BnB explores the search tree that represents the space of all possible
assignments for φ in a depth-first manner. At every node, BnB compares the
upper bound (UB), which is the best solution found so far for a complete as-
signment, with the lower bound (LB), which is the sum of the number of clauses
unsatisfied by the current partial assignment plus an underestimation of the
number of clauses that will become unsatisfied if the current partial assignment
is completed. If LB ≥ UB the algorithm prunes the subtree below the current
node and backtracks to a higher level in the search tree. If LB < UB, the algo-
rithm tries to find a better solution by extending the current partial assignment
by instantiating one more variable. The solution to Max-SAT is the value that
UB takes after exploring the entire search tree.

The amount of inference performed by BnB at each node of the proof tree is
limited compared with DPLL-style SAT solvers. Since unit propagation is un-
sound for Max-SAT,1 when branching is applied on a literal l, BnB just removes

? This research has been partially founded by the CICYT research projects iDEAS
(TIN2004-04343), Mulog (TIN2004-07933-C03-01/03) and SofSAT (TIC2003-
00950).

1 The multiset of clauses {a, a∨b, a∨b, a∨c, a∨c} has a minimum of one unsatisfied
clause. However, setting a to true (by unit propagation) leads to a non-optimal
assignment falsifying two clauses.

the clauses containing l and deletes the occurrences of l. The new unit clauses
derived as a consequence of deleting the occurrences of l are not propagated as in
DPLL. To mitigate that problem some simple inference rules have been incorpo-
rated into state-of-the-art Max-SAT solvers: (i) the pure literal rule [1, 6, 11, 13,
14]; (ii) the dominating unit clause rule first proposed in [8], and applied in [2, 6,
8, 11]; (iii) the almost common clause rule, first proposed in [4] and extended to
weighted Max-SAT in [2]; that rule was called neighborhood resolution in [5] and
used as a preprocessing technique in [2, 6, 10]; and (iv) the complementary unit
clause rule [8]. All these rules, which are sound but not complete, have proved
to be useful in practice.

The main objective of this paper is to make a step forward in the study of
resolution-like inference rules for Max-SAT by defining a sound and complete
resolution rule. That rule should subsume the previous rules, and provide a gen-
eral framework that should allow us to define complete refinements of resolution
and devise faster Max-SAT solvers.

In the context of SAT, a sound rule has to preserve satisfiability, like res-
olution does. However, in Max-SAT this is not enough; rules have to preserve
the number of unsatisfied clauses for every possible assignment. Therefore, the
way we apply the rule is different. To obtain a sound calculus, instead of adding
the conclusion, which would make the number of unsatisfied clauses increase,
we replace the premises of the rule by its conclusion. Then, the resolution rule
x∨A, x∨B ` A∨B is not sound for Max-SAT, because an assignment satisfying
x and A, and falsifying B, would falsify one of the premises, but would satisfy
the conclusion. So the number of unsatisfied clauses would not be preserved for
every truth assignment.

The most natural variant of a sound resolution rule for Max-SAT was defined
in [5]:

x ∨ A

x ∨ B

A ∨ B

x ∨ A ∨ B

x ∨ A ∨ B

However, two of the conclusions of this rule are not in clausal form, and the
application of distributivity:

x ∨ a1 ∨ . . . ∨ as

x ∨ b1 ∨ . . . ∨ bt

a1 ∨ . . . ∨ as ∨ b1 ∨ . . . ∨ bt

x ∨ a1 ∨ . . . ∨ as ∨ b1

· · ·
x ∨ a1 ∨ . . . ∨ as ∨ bt

x ∨ b1 ∨ . . . ∨ bt ∨ a1

· · ·
x ∨ b1 ∨ . . . ∨ bt ∨ as

results into an unsound rule. As we show in the next section, obtaining a sound
rule requires a more sophisticated adaptation of the resolution rule.

This paper proceeds as follows. First, in Section 2 we define Max-SAT resolu-
tion and prove its soundness. Despite of the similitude of the inference rule with
the classical resolution rule, it is not clear how to simulate classical inferences
with the new rule. To obtain a complete strategy, we need to apply the new rule
widely to get a saturated set of clauses, as described in Section 3. In Section 4
we prove the completeness of the new rule, and in Section 5 we prove that this
result extends to ordered resolution. Finally, in Section 6 we deduce an exact
algorithm and give a worst-case time upper bound in Section 7.

2 The Max-SAT Resolution Rule and its Soundness

In Max-SAT we use multisets of clauses instead of just sets. For instance, the
multiset {a, a, a, a ∨ b, b}, where a clause is repeated, has a minimum of two
unsatisfied clauses.

Max-SAT resolution, like classical resolution, is based on a unique inference
rule. In contrast to the resolution rule, the premises of the Max-SAT resolution
rule are removed from the multiset after applying the rule. Moreover, apart from
the classical conclusion where a variable has been cut, we also conclude some
additional clauses that contain one of the premises as sub-clause.

Definition 1. The Max-SAT resolution rule is defined as follows:

x ∨ a1 ∨ . . . ∨ as

x ∨ b1 ∨ . . . ∨ bt

a1 ∨ . . . ∨ as ∨ b1 ∨ . . . ∨ bt

x ∨ a1 ∨ . . . ∨ as ∨ b1

x ∨ a1 ∨ . . . ∨ as ∨ b1 ∨ b2

· · ·
x ∨ a1 ∨ . . . ∨ as ∨ b1 ∨ . . . ∨ bt−1 ∨ bt

x ∨ b1 ∨ . . . ∨ bt ∨ a1

x ∨ b1 ∨ . . . ∨ bt ∨ a1 ∨ a2

· · ·
x ∨ b1 ∨ . . . ∨ bt ∨ a1 ∨ . . . ∨ as−1 ∨ as

This inference rule is applied to multisets of clauses, and replaces the premises
of the rule by its conclusions.

We say that the rule cuts the variable x.
The tautologies concluded by the rule are removed from the resulting multiset.

Similarly, repeated literals in a clause are also removed.

Definition 2. We write C ` D when the multiset of clauses D can be obtained
from the multiset C applying the rule finitely many times. We write C `x D when
this sequence of applications only cuts the variable x.

The Max-Sat resolution rule concludes many more clauses than the classical
version. However, when the two premises share literals, some of the conclusions
are tautologies, hence removed. In particular we have x∨A, x∨A ` A. Moreover,
as we will see when we study the completeness of the rule, there is no need to
cut the conclusions of a rule among themselves. Finally, we will also see that the
size of the worst-case proof of a set of clauses is similar to the size for classical
resolution.

Notice that the instance of the rule not only depends on the two clauses of
the premise and the cut variable (like in resolution), but also on the order of the
literals. Notice also that, like in classical resolution, this rule concludes a new
clause not containing the variable x, except when this clause is a tautology.

Example 1. The Max-SAT resolution rule removes clauses after using them in
an inference step. Therefore, it could seem that it can not simulate classical
resolution when a clause needs to be used more than once, like in:

a ∨ c a a ∨ b b ∨ c

c b

c

However, this is not the case. We can derive the empty clause as follows
(where already used clauses are put into boxes):

a ∨ c a a ∨ b b ∨ c

c

a ∨ c

b ∨ c

a ∨ b ∨ c

a ∨ b ∨ c

c

More precisely, we have derived a, a ∨ b, a ∨ c, b ∨ c ` , a ∨ b ∨ c, a ∨ b ∨ c,
where any truth assignment satisfying {a∨ b∨ c, a∨ b∨ c} minimizes the number
of falsified clauses in the original formula.

Notice that the structure of the classical proof and the Max-SAT resolution
proof is quite different. It seems difficult to adapt a classical resolution proof to
get a Max-SAT resolution proof, and it is an open question if this is possible
without increasing substantially the size of the proof.

Theorem 1 (Soundness). The Max-SAT resolution rule is sound. i.e. the rule
preserves the number of unsatisfied clauses for every truth assignment.

Proof: For every assignment I, we will prove that the number of clauses that
I falsifies in the premises of the inference rule is equal to the number of clauses
that it falsifies in the conclusions.

Let I be any assignment. I can not falsify both upper clauses, since it satisfies
either x or x.

Suppose I satisfies x ∨ a1 ∨ . . . ∨ as but not x ∨ b1 ∨ . . . ∨ bt. Then I falsifies
all bj ’s and sets x to true. Now, suppose that I satisfies some ai. Say ai is the
first of such elements. Then I falsifies x ∨ b1 ∨ . . . ∨ bt ∨ a1 ∨ . . . ∨ ai−1 ∨ ai and
it satisfies all the others in the set below. Suppose now that I falsifies all ai’s.
Then, it falsifies a1 ∨ . . . as ∨ b1 ∨ . . . ∨ bt but satisfies all the others.

If I satisfies the second but not the first, then it is the same argument.

Finally, suppose that I satisfies both upper clauses. Suppose that I sets x to
true. Then, for some j, bj is true and I satisfies all the lower clauses since all of
them have either bj or x.

3 Saturated Multisets of Clauses

In this Section we define saturated multisets of clauses. This definition is based
on the classical notion of sets of clauses closed by (some restricted kind of) infer-
ence, in particular, on sets of clauses closed by cuts of some variable. In classical
resolution, given a set of clauses and a variable, we can saturate the set by cut-
ting the variable exhaustively, obtaining a superset of the given clauses. If we
repeat this process for all the variables, we get a complete resolution algorithm,
i.e. we obtain the empty clause whenever the original set was unsatisfiable. Our
completeness proof is based on this idea. However, notice that the classical sat-
uration of a set w.r.t. a variable is unique, whereas in Max-SAT, it is not (see
Remark 1). In fact, it is not even a superset of the original set. Moreover, in
general, if we saturate a set w.r.t. a variable, and then w.r.t. another variable,
we obtain a set that is not saturated w.r.t. both variables. Fortunately, we still
keep a good property: given a multiset of clauses saturated w.r.t. a variable x,
if there exists an assignment satisfying all the clauses not containing x, then it
can be extended (by assigning x) to satisfy all the clauses (see Lemma 4).

Definition 3. A multiset of clauses C is said to be saturated w.r.t. x if for every
pair of clauses C1 = x ∨ A and C2 = x ∨ B, there is a literal l such that l is in
A and l is in B.

A multiset of clauses C′ is a saturation of C w.r.t. x if C ′ is saturated w.r.t.
x and C `x C′, i.e. C′ can be obtained from C applying the inference rule cutting
x finitely many times.

The following is a trivial equivalent version of the definition.

Lemma 1. A multiset of clauses C is saturated w.r.t. x if, and only if, every
possible application of the inference rule cutting x only introduces clauses con-
taining x (since tautologies get eliminated).

We assign a function P : {0, 1}n → {0, 1} to every clause, and a function
P : {0, 1}n → N to every multiset of clauses as follows.

Definition 4. For every clause C = x1 ∨ . . . ∨ xs ∨ xs+1 ∨ . . . ∨ xs+t we define
its characteristic function as PC(x) = (1 − x1) . . . (1 − xs)xs+1 . . . xs+t.

For every multiset of clauses C = {C1, . . . , Cm}, we define its characteristic
function as PC = Σm

i=1PCi
(x).

Notice that the set of functions {0, 1}n → N, with the order relation: f ≤ g if
for all x, f(x) ≤ g(x), defines a partial order between functions. The strict part
of this relation, i.e. f < g if for all x, f(x) ≤ g(x) and for some x, f(x) < g(x),
defines a strictly decreasing partial order.

Lemma 2. Let PC be the characteristic function of a multiset of clauses C. For
every assignment I, PC(I) is the number of clauses of C falsified by I.

The inference rule replaces a multiset of clauses by another with the same
characteristic function.

Lemma 3. For every multiset of clauses C and variable x, there exists a multiset
C′ such that C′ is a saturation of C w.r.t. x.

Moreover, this multiset C ′ can be computed applying the inference rule to any
pair of clauses x ∨ A and x ∨ B satisfying that A ∨ B is not a tautology, using
any ordering of the literals, until we can not apply the inference rule any longer.

Proof: We proceed by applying nondeterministically the inference rule cutting
x, until we obtain a saturated multiset. We only need to prove that this process
terminates in finitely many inference steps, i.e that there does not exist infinite
sequences C = C0 ` C1 ` . . ., where at every inference we cut the variable x and
none of the sets Ci are saturated.

At every step, we can divide Ci into two multisets: Di with all the clauses that
do not contain x, and Ei with the clauses that contain the variable x (in positive
or negative form). When we apply the inference rule we replace two clauses of Ei

by a multiset of clauses, where one of them, say A, does not contain x. Therefore,
we obtain a distinct multiset Ci+1 = Di+1 ∪ Ei+1, where Di+1 = Di ∪ {A}. Since
A is not a tautology the characteristic function PA is not zero for some value.

Then, since PCi+1
= PCi

and PDi+1
= PDi

+ PA, we obtain PEi+1
= PEi

− PA.
Therefore, the characteristic function of the multiset of clauses containing x

strictly decreases after every inference step. Since the order relation between
characteristic functions is strictly decreasing, this proves that we can not perform
infinitely many inference steps.

Remark 1. Although every multiset of clauses is saturable, its saturation is not
unique. For instance, the multiset {a, a∨ b, a∨ c} has two possibles saturations
w.r.t. a: the multiset {b, b∨ c, a∨ b∨ c, a∨ b∨ c} and the multiset {c, b∨ c, a∨
b ∨ c, a ∨ b ∨ c}.

Another difference with respect to classical resolution is that we can not
saturate a set of clauses simultaneously w.r.t. two variables by saturating w.r.t.
one, and then w.r.t. the other. For instance, if we saturate {a∨c, a∨b∨c} w.r.t.
a, we obtain {b∨ c, a∨ b∨ c}. This is the only possible saturation of the original
set. If now we saturate this multiset w.r.t. b, we obtain again the original set
{a∨ c, a∨ b∨ c}. Therefore, it is not possible to saturate this multiset of clauses
w.r.t. a and b simultaneously.

Lemma 4. Let C be a saturated multiset of clauses w.r.t. x. Let D be the subset
of clauses of C not containing x. Then, any assignment I satisfying D (and not
assigning x) can be extended to an assignment satisfying C.

Proof: We have to extend I to satisfy the whole C. In fact we only need to set
the value of x. If x has a unique polarity in C \ D, then the extension is trivial
(x = true if x always occurs positively, and x = false otherwise). If, for any
clause of the form x∨A or x∨A, the assignment I already satisfies A, then any
choice of the value of x will work. Otherwise, assume that there is a clause x∨A

(similarly for x∨A) such that I sets A to false. We set x to true. All the clauses
of the form x ∨ B will be satisfied. For the clauses of the form x ∨ B, since C is
saturated, there exists a literal l such that l ∈ A and l ∈ B. This ensures that,
since I falsifies A, I(l) = false and I satisfies B.

4 Completeness of Max-SAT Resolution

Now, we prove the main result of this paper, the completeness of Max-SAT
resolution. The main idea is to prove that we can get a complete algorithm
by successively saturating w.r.t. all the variables. However, notice that after
saturating w.r.t. x1 and then w.r.t. x2, we get a multiset of clauses that is not
saturated w.r.t. x1. Therefore, we will use a variant of this basic algorithm:
we saturate w.r.t x1, then we remove all the clauses containing x1, and saturate
w.r.t x2, we remove all the clauses containing x2 and saturate w.r.t x3, etc. Using
Lemma 4, we prove that, if the original multiset of clauses was unsatisfiable, then
with this process we get the empty clause. Even better, we get as many empty
clauses as the minimum number of unsatisfied clauses in the original formula.

Theorem 2 (Completeness). For any multiset of clauses C, we have

C ` , . . . ,
︸ ︷︷ ︸

m

,D

where D is a satisfiable multiset of clauses, and m is the minimum number of
unsatisfied clauses of C.

Proof: Let x1, . . . , xn be any list of the variables of C. We construct two se-
quences of multisets C0, . . . , Cn and D1, . . . ,Dn such that

1. C = C0,
2. for i = 1, . . . , n, Ci ∪ Di is a saturation of Ci−1 w.r.t. xi, and
3. for i = 1, . . . , n, Ci is a multiset of clauses not containing x1, . . . , xi, and Di

is a multiset of clauses containing the variable xi.

By lemma 3, this sequences can effectively be computed: for i = 1, . . . , n, we
saturate Ci−1 w.r.t. xi, and then we partition the resulting multiset into a subset
Di containing xi, and another Ci not containing this variable.

Notice that, since Cn does not contain any variable, it is either the empty
multiset ∅, or it only contains (some) empty clauses { , . . . , }.

Now we are going to prove that the multiset D =
⋃n

i=1
Di is satisfiable by

constructing an assignment satisfying it. For i = 1, . . . , n, let Ei = Di ∪ . . .∪Dn,
and let En+1 = ∅. Notice that, for i = 1, . . . , n,

1. the multiset Ei only contains the variables {xi, . . . , xn},
2. Ei is saturated w.r.t. xi, and
3. Ei decomposes as Ei = Di ∪ Ei+1, where all the clauses of Di contain xi and

none of Ei+1 contains xi.

Now, we construct a sequence of assignments I1, . . . , In+1, where In+1 is the
empty assignment, hence satisfies En+1 = ∅. Now, Ii is constructed from Ii+1

as follows. Assume by induction hypothesis that Ii+1 satisfies Ei+1. Since Ei is
saturated w.r.t. xi, and decomposes into Di and Ei+1, by lemma 4, we can extend
Ii+1 with an assignment for xi to obtain Ii satisfy Ei. Iterating, we get that I1

satisfies E1 = D =
⋃n

i=1
Di.

Concluding, since by the soundness Theorem 1 the inference preserves the
number of falsified clauses for every assignment, m = |Cn| is the minimum num-
ber of unsatisfied clauses of C.

5 Complete Refinements

In classical resolution we can assume a given total order on the variables x1 >

x2 > . . . > xn and restrict inferences x∨A, x∨B ` A∨B to satisfy x is maximal
in x ∨ A and in x ∨ B. This refinement of resolution is complete, and has some
advantages: the set of possible proofs is smaller, thus its search is more efficient.

The same result holds for Max-SAT Resolution:

Theorem 3 (Completeness of Ordered Max-SAT Resolution). Max-SAT
resolution with the restriction that the cut variable is maximal on the premises
is complete.

Proof: The proof is similar to Theorem 2. First, given the ordering x1 > x2 >

. . . > xn, we start by computing the saturation w.r.t. x1 and finish with xn.
Now, notice that, when we saturate C0 w.r.t. x1 to obtain C1 ∪ D1, we only
cut x1, and this is the biggest variable. Then, when we saturate C1 w.r.t. x2 to
obtain C2 ∪ D2, we have to notice that the clauses of C1, and the clauses that
we could obtain from them, do not contain x1, and we only cut x2 which is the
biggest variable in all the premises. In general, we can see that at every inference
step performed during the computation of the saturations (no matter how they
are computed) we always cut a maximal variable. We only have to choose the
order in which we saturate the variables coherently with the given ordering of
the variables.

Corollary 1. For any multiset of clauses C, and for every ordering x1 > . . . >

xn of the variables, we have

C `x1
C1 `x2

· · · `xn
, . . . ,

︸ ︷︷ ︸

m

,D

where D is a satisfiable multiset of clauses, m is the minimum number of unsat-
isfied clauses of C, and in every inference step the cut variable is maximal.

6 An Algorithm for Max-SAT

From the proof of Theorem 2, we can extract the following algorithm:

input: C
C0 := C

for i := 1 to n

C := saturation(Ci−1, xi)
〈Ci, Di〉 := partition(C, xi)

endfor
m := |Cn|
I := ∅
for i := n downto 1

I := I ∪ [xi 7→ extension(xi, I,Di)]
output: m, I

Given an initial multiset of clauses C, this algorithm obtains the minimum
number m of unsatisfied clauses and an optimal assignment I for C.

The function partition(C, x) computes a partition of C into the subset of
clauses containing x and the subset of clauses not containing x.

The function saturation(C, x) computes a saturation of C w.r.t. x. As we
have already said, the saturation of a multiset is not unique, but the proof of
Theorem 2 does not depends on which particular saturation we take. Therefore,
this computation can be done with “don’t care” nondeterminism.

The function extension(x, I,D) computes a truth assignment for x such that,
if I assigns the value true to all the clauses of D containing x, then the function
returns false, if I assigns true to all the clauses of D containing x, then returns
true. According to Lemma 4 and the way the Di’s are computed, I evaluates to
true all the clauses containing x or all the clauses containing x.

The order on the saturation of the variables can be also freely chosen, i.e.
the sequence x1, . . . xn can be any enumeration of the variables.

7 Efficiency

In classical resolution, we know that there are formulas that require exponentially
long refutations on the number of variables, and even on the size of the formula,
but no formula requires more than 2n inference steps to be refuted, being n the
number of variables. We don’t have a better situation in Max-SAT resolution.
Moreover, since we can have repeated clauses, and need to generate more than
one empty clause, the number of inference steps is not bounded by the number
of variables. It also depends on the number of original clauses. The following
theorem states an upper bound on the number of inference steps, using the
strategy of saturating variable by variable:

Theorem 4. For any multiset C of m clauses on n variables, we can deduce
C ` , . . . , ,D, where D is satisfiable, in less than n · m · 2n inference steps.

Moreover, the search of this proof can be also done in time O(m 2n).

Proof: Let n be the number of variables, and m the number of original clauses.
Instead of the characteristic function of a clause, we will assign to every clause C

a weight w(C) equal to the number of assignments to the n variables that falsify
the clause. The weight of a multiset of clauses is then the sum of the weights of
its clauses. Obviously the weight of a clause is bounded by the number of possible
assignments w(C) ≤ 2n, being w(C) = 0 true only for tautologies. Therefore,
the weight of the original multiset is bounded by m 2n.

Like for the characteristic function, when C ` D, we have w(C) = w(D).
A similar argument to Lemma 3 can be used to prove that we can obtain

a saturation D of any multiset C w.r.t. any variable x in less than w(C) many
inference steps. If we compute the weight of the clauses containing x and of those
not containing x separately, we see that in each inference step, the first weight
strictly decreases while the second one increases. Therefore, the saturation w.r.t.
the first variable needs no more than m 2n inference steps.

When we partition C into a subset containing x and another not containing
x, both subsets will have weight smaller than w(C), so the weight of C when we
start the second round of saturations will also be bounded by the original weight.

We can repeat the same argument for the saturation w.r.t. the n variables, and
conclude that the total number of inference steps is bounded by nm 2n.

The proof of completeness for ordered Max-SAT resolution, does not depends
on which saturation we compute. Each inference step can be computed in time
O(n). This gives the worst-case time upper bound.

8 Conclusions

We have defined a complete resolution rule for Max-SAT which subsumes the
resolution-like rules defined so far. To the best of our knowledge, this is the
first complete logical calculus defined for Max-SAT. We have also proved the
completeness of the ordered resolution refinement, described an exact algorithm
and computed a time upper bound.

In a longer version of this paper, we have extended the contributions to
weighted Max-SAT and we have found formulas that require exponential refuta-
tions. There remain many interesting directions to follow both from a theoretical
and practical perspective. For example, define further complete refinements, and
use the rule to derive equivalent encodings of a given instance and study the im-
pact on the performance of exact and non-exact Max-SAT solvers.

References

1. T. Alsinet, F. Manyà, and J. Planes. Improved branch and bound algorithms
for Max-SAT. In Proc. of the 6th Int. Conf. on the Theory and Applications of

Satisfiability Testing, SAT’03, 2003.
2. T. Alsinet, F. Manyà, and J. Planes. A Max-SAT solver with lazy data struc-

tures. In Proc. of the 9th Ibero-American Conference on Artificial Intelligence,

IBERAMIA’04, number 3315 in LNCS, pages 334–342, Puebla, México, 2004.
Springer.

3. T. Alsinet, F. Manyà, and J. Planes. Improved exact solver for weighted Max-
SAT. In Proc. of the 8th Int. Conf. on Theory and Applications of Satisfiability

Testing, SAT’05, number 3569 in LNCS, pages 371–377, St. Andrews, Scotland,
2005. Springer.

4. N. Bansal and V. Raman. Upper bounds for MaxSat: Further improved. In Proc.

of the 10th Int. Symposium on Algorithms and Computation, ISAAC’99, number
1741 in LNCS, pages 247–260, Chennai, India, 1999. Springer.

5. J. Larrosa and F. Heras. Resolution in Max-SAT and its relation to local consis-
tency in weighted CSPs. In Proc. of the 19th Int. Joint Conference on Artificial

Intelligence, IJCAI’05, pages 193–198, Edinburgh, Scotland, 2005. Morgan Kauf-
mann.

6. C. M. Li, F. Manyà, and J. Planes. Exploiting unit propagation to compute lower
bounds in branch and bound Max-SAT solvers. In Proc. of the 11th Int. Conf.

on Principles and Practice of Constraint Programming, CP’05, number 3709 in
LNCS, pages 403–414, Sitges, Spain, 2005. Springer.

7. C. M. Li, F. Manyà, and J. Planes. Detecting disjoint inconsistent subformulas for
computing lower bounds for Max-SAT. In Proc. of the 21st National Conference

on Artificial Intelligence, AAAI’06, Boston, USA, 2006.

8. R. Niedermeier and P. Rossmanith. New upper bounds for maximum satisfiability.
Journal of Algorithms, 36(1):63–88, 2000.

9. H. Shen and H. Zhang. Study of lower bound functions for MAX-2-SAT. In Proc. of

the 19th National Conference on Artificial Intelligence, AAAI’04, pages 185–190,
San Jose, California, USA, 2004.

10. H. Shen and H. Zhang. Improving exact algorithms for MAX-2-SAT. Annals of

Mathematics and Artificial Intelligence, 44(4):419–436, 2005.
11. Z. Xing and W. Zhang. Efficient strategies for (weighted) maximum satisfiability. In

Proc. of the 10th Int. Conf. on Principles and Practice of Constraint Programming,

CP’04, number 3258 in LNCS, pages 690–705, Toronto, Canada, 2004. Springer.
12. Z. Xing and W. Zhang. An efficient exact algorithm for (weighted) maximum

satisfiability. Artificial Intelligence, 164(2):47–80, 2005.
13. H. Zhang, H. Shen, and F. Manya. Exact algorithms for Max-SAT. In 4th Int.

Workshop on First-Order Theorem Proving, FTP’03, Valencia, Spain, 2003.
14. H. Zhang, H. Shen, and F. Manya. Exact algorithms for Max-SAT. Electronic

Notes in Theoretical Computer Science, 86(1), 2003.

