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Through the years, Mathematical Fuzzy Logic has undergone a process of
increasing generality of its studied logical systems by progressively weakening
their logical laws (described by Petr Hájek as removing legs from the flea [16]).
The first works of the area focused on logics based on particular continuous t-
norms:  Lukasiewicz logic, Gödel–Dummett logic and Product logic. A first step
in the generalization process was taken by Petr Hájek when he introduced BL
as a first “basic fuzzy logic” [15], which turn out to be complete with respect to
the semantics given by all continuous t-norms [4]. The three main fuzzy logics
based on continuous t-norms we have just mentioned can all be seen as axiomatic
extensions of BL. In a similar fashion, by dropping the divisibility law, Esteva
and Godo introduced the system MTL, which was proved to be complete with
respect to the semantics given by all left-continuous (i.e. residuated) t-norms
[17]. This system was later further weakened in two different directions: (a) by
dropping commutativity of conjunction Jenei and Montagna obtained a system,
psMTLr, complete with respect to the semantics on non-commutative residu-
ated t-norms [18], and (b) by removing integrality (i.e. not requiring the neutral
element of conjunction to be maximum of the order) Metcalfe and Montagna
proposed the logic UL which is, in turn, complete with respect to left-continuous
uninorms [20]. An alternative path in the search for weaker fuzzy systems has
consisted in restricting the language by considering fragments of fuzzy logics
(see e.g. [11, 5]). One can observe that the common feature of all the mentioned
systems is that they enjoy a standard completeness theorem, i.e. completeness
with respect to a semantics of algebras defined on the real unit interval [0, 1],
which is implicitly regarded by many authors (and sometimes even explicitly
e.g. in [20]) as an essential requirement for fuzzy logics.

On the other hand, it is well-known that fuzzy logics are closely related to
substructural logics (see e.g. [10]). Recall the full Lambek logic FL, a basic sub-
structural logic which does not satisfy any of the usual three structural rules:
exchange, weakening, and contraction. Although firstly presented by means of
a Gentzen calculus, it can be given a Hilbert-style presentation and shown to
be an algebraizable logic in the sense of [2] whose equivalent algebraic seman-
tics is the variety of lattice-ordered residuated monoids (usually referred to as
residuated lattices or FL-algebras). The main extensions of FL, obtained by
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adding some of the structural rules, correspond to subvarieties of residuated
lattices satisfying corresponding extra algebraic properties (see e.g. [12]). Ac-
tually, many fuzzy logics have been shown to be axiomatic extensions of some
of these prominent substructural logics by adding some axioms that enforce
completeness with respect to some class of linearly ordered residuated lattices
(or chains). For instance, Gödel–Dummett logic is the logic of linearly ordered
Heyting algebras, MTL is the logic of FLew-chains, UL is the logic of FLe-chains,
and psMTLr is the logic of FLw-chains. Interestingly enough, the logic FL` of
FL-chains (a common generalization of UL and psMTLr) does not enjoy stan-
dard completeness (see [21]), therefore, for many authors, it cannot be taken as
a good candidate for a really basic fuzzy logic (even though for some it is fuzzy
enough [1]). Moreover, one can also argue that FL` is still not basic enough be-
cause it satisfies a remaining structural rule: associativity. There have actually
been several studies on non-associative substructural logics, starting with the
original Lambek non-associative calculus [19] (without lattice connectives), and
followed (in the full language) e.g. by Buszkowski and Farulewski in [3]. For
our goals the most relevant publication is a recent paper by Galatos and Ono
[14] where they have introduced a Gentzen-style and a Hilbert-style calculus for
the non-associative version of the Full Lambek calculus and proved that it is an
algebraizable logic with the equivalent algebraic semantics being the variety of
lattice-ordered residuated unital groupoids.

Recently, a general algebraic framework to study fuzzy logics as a subfamily
of substructural logics with SL as the base logic has been developed in [8]. As a
crucial tool, the notion of almost (MP)-based logic has been introduced: a logic
with a Hilbert-style presentation where modus ponens is the only binary rule,
there are no rules with more than two premises, and all unary rules are of the
form ϕ ` δ(ϕ), for δ ∈ DT, where the set of terms DT satisfies some good prop-
erties; the logic is (MP)-based if DT = ∅. It has been proved that every almost
(MP)-based substructural logic enjoys a local deduction theorem and a certain
form of proof by cases property (PCP), which can arguably be seen as the defin-
ing property of a reasonable generalized notion of disjunction (see [9, 6]). By
using these disjunctions, given a substructural logic L, one can easily describe
an axiomatization of the least logic L` extending L which is complete with re-
spect to a semantics of chains. Such logics and their algebraic counterparts,
following the terminology introduced in a previous paper [7], are called semilin-
ear, because the subdirectly irreducible members of their corresponding classes
of algebras are linearly ordered. Most fuzzy logics studied in the literature are
actually semilinear substructural logics, including, of course, those which satisfy
a standard completeness theorem in the sense we have mentioned above, and
including FL`.

As shown in [8], the main associative substructural logics (FL, FLe, FLw,
FLew, etc.) are (almost) (MP)-based. Thus, in particular, we obtained axiom-
atizations for FL`, FL`

e, FL`
w, and FL`

ew (actually we obtained an alternative
presentation, as some other axiomatizations of these logics were already known
using different methods, see e.g. [13]). However the problems of axiomatization
and standard completeness of SL` were left open. In this talk we show a solution
for both of them. Actually we present the solution for all semilinear logics SL`

S,
where S ⊆ {e, c, i, o} is a set of axioms corresponding to structural rules.

First we present an alternative Hilbert-style axiomatization of SL which
allows to show that this logic, together with all its axiomatic extensions, is
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almost (MP)-based. Namely, besides modus ponens, it has the following rules:

(Adju) ϕ ` ϕ ∧ 1

(α) ϕ ` δ & ε→ δ & (ε& ϕ)

(α′) ϕ ` δ & ε→ (δ & ϕ) & ε

(β) ϕ ` δ → (ε→ (ε& δ) & ϕ)

(β′) ϕ ` δ → (ε (δ & ε) & ϕ)

Thus we obtain an axiomatization of the logic SL` of linearly ordered residuated
unital groupoids (and present simpler forms of this axiomatization in stronger
logics SL`

S). Furthermore this result entails several additional interesting logical
and algebraic consequences for the logics SL`

S: a form of the local deduction
theorem, a description of intersection of filters and of the filter generated by
a given set, an axiomatization of the intersection of two axiomatic extensions
of a given logic, and equational bases of varieties of SLS-algebras generated by
positive universal classes of SLS-algebras.

Secondly, by using purely algebraic constructions, we prove that every logic
SL`

S is complete with respect to the class of all countably infinite dense SLS-
chains, and with respect to the class of all SLS-chains on [0, 1], i.e. they enjoy
the standard completeness theorem. Therefore, in particular, we have obtained
a logic, SL`, which can reasonably be regarded as really basic, for it does not
satisfy any structural rule (not even associativity), and really fuzzy, as it still
enjoys a standard completeness theorem.
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logic. In P. Cintula, P. Hájek, and C. Noguera, editors, Handbook of Math-
ematical Fuzzy Logic - Volume 1, volume 37 of Studies in Logic, Mathemat-
ical Logic and Foundations. 103–207, London, 2011.

[9] J. Czelakowski. Protoalgebraic Logics, volume 10 of Trends in Logic.
Kluwer, Dordrecht, 2001.
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