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A B S T R A C T   

Cumulus expansion is an important indicator of oocyte maturation and has been suggested to be indicative of 
greater oocyte developmental capacity. Although multiple methods have been described to assess cumulus 
expansion, none of them is considered a gold standard. Additionally, these methods are subjective and time- 
consuming. In this manuscript, the reliability of three cumulus expansion measurement methods was assessed, 
and a deep learning model was created to automatically perform the measurement. Cumulus expansion of 232 
cumulus-oocyte complexes was evaluated by three independent observers using three methods: (1) measurement 
of the cumulus area, (2) measurement of three distances between the zona pellucida and outer cumulus, and (3) 
scoring cumulus expansion on a 5-point Likert scale. The reliability of the methods was calculated in terms of 
intraclass-correlation coefficients (ICC) for both inter- and intra-observer agreements. The area method resulted 
in the best overall inter-observer agreement with an ICC of 0.89 versus 0.54 and 0.30 for the 3-distance and 
scoring methods, respectively. Therefore, the area method served as the base to create a deep learning model, AI- 
xpansion, which reaches a human-level performance in terms of average rank, bias and variance. To evaluate the 
accuracy of the methods, the results of cumulus expansion calculations were linked to embryonic development. 
Cumulus expansion had increased significantly in oocytes that achieved successful embryo development when 
measured by AI-xpansion, the area- or 3-distance method, while this was not the case for the scoring method. 
Measuring the area is the most reliable method to manually evaluate cumulus expansion, whilst deep learning 
automatically performs the calculation with human-level precision and high accuracy and could therefore be a 
valuable prospective tool for embryologists.   

1. Introduction 

Mammalian oocytes are surrounded by multiple layers of specialized 
somatic cells, called cumulus cells [1]. These cells are connected to the 
oocyte through transzonal projections, providing the oocyte with me-
tabolites and regulatory molecules during the maturation process [2–4]. 
Likewise, during fertilization, the cumulus cells attract [5], trap [5], and 
select [6] spermatozoa, and prevent premature hardening of the zona 

pellucida [7], which are all actions required for successful fertilization. 
As such, cumulus cells assist the oocyte in completing the processes of 
maturation, fertilization, and early embryonic development [6,7]. To 
effectively carry out their function, cumulus cells need to respond to 
gonadotropins whereby a mucinous matrix of hyaluronic acid is created 
extracellularly, causing the cumulus to expand [8–12]. Since adequate 
cumulus expansion has been correlated with high developmental po-
tential [13,14], the degree of cumulus expansion is considered an 
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important parameter for oocyte quality [15,16] and has been correlated 
with successful fertilization in mice [12] and embryo development in 
pigs [17]. 

Multiple methods for the assessment of cumulus expansion have 
been described [9–11,18–27], including both invasive and non-invasive 
techniques. Quantitative measurement of hyaluronic acid is the most 
precise approach [10,26], but it impairs further embryo development 
and can represent health hazards for the operator since it requires the 
application of radioactive material [26]. The most frequently used 
method for cumulus expansion assessment is a classification into groups 
by scoring the degree of cumulus expansion on a Likert scale [14,19,21, 
23,25,28]. This procedure was first proposed by Downs in 1989 [21] and 
is favored among embryologists since it is fast and easy to perform 
directly via microscopy while manipulating the oocyte for in vitro pro-
cessing. No additional equipment is necessary and further in vitro 
development of the oocyte remains possible. The downside of this 
approach is that it is highly dependent on the expertise of the embry-
ologist and is thus considered to be a subjective method. The develop-
ment of built-in cameras and image analysis software, first reported by 
Furnus et al., 1998 [27] enabled alternative methods such as measuring 
the area [9,27] and longitudinal axes of the cumulus cells [18,24,29,30], 
aiming to diminish subjectivity. Yet, all proposed visual methods are 
time-consuming and none of them can record the three-dimensional 
structure of the cumulus-oocyte complex (COC). Also, no direct com-
parisons had been made to evaluate the precision, accuracy, and 
repeatability of the proposed methods. 

In all cases, the results remain dependent on the subjectivity intro-
duced by the human observer. A possible solution to remove this human 
factor is to apply deep learning (DL) modeling. Deep learning is a sub-
field of artificial intelligence that is based on learning hierarchical 
knowledge from data rather than rule-based programming [31]. The 
number of applications for artificial intelligence is growing in several 
areas of medicine and biology [32–35], and lately in assisted repro-
duction, in order to automate time-consuming and subjective tasks 
[36–38]. Non-invasive methods to assess cumulus expansion, both 
qualitatively and (semi-) quantitatively, depend deeply on human 
interpretation and require a considerable amount of time. Hence, the 
development of a tool that can objectively and accurately automate this 
task could improve the reliability of the correlation between cumulus 
expansion and oocyte developmental capacity and facilitate the assess-
ment for researchers and embryologists. 

Cumulus expansion is an important marker of successful COC 
maturation and its assessment is often used in reproductive bio-
technologies [12,39]. However, reports on cumulus expansion mea-
surement lack uniformity as none of the available non-invasive methods 
can be considered as a gold standard. Besides, all of these techniques are 
time-consuming and involve a degree of subjectivity. In the present 
manuscript, the results are reported of a side-by-side comparison be-
tween three commonly used evaluation methods to identify the method 
with the best intraclass correlation coefficient (ICC) between and within 
observers. The goal of this study is to provide evidence-based data on the 
different measurement techniques, so that in future studies a consentient 
approach can be used for cumulus expansion measurement. Addition-
ally, based on the results of this comparison, AI-xpansion, a DL method 
to automate cumulus expansion measurement, is created. 

2. Materials and methods 

Ethical approval was not necessary for this experiment, since ovaries 
were collected post-mortem from cows in a commercial slaughterhouse. 

2.1. Media and reagents 

Tissue culture medium (TCM-199), gentamicin, and phosphate- 
buffered saline were purchased from Life Technologies Europe (Ghent, 
Belgium). All other chemicals were obtained from Sigma-Aldrich 

(Overijse, Belgium) unless otherwise listed. All media were filtered 
before use (0.22 μm; GE Healthcare-Whatman (Diegem, Belgium)). 

2.2. Oocyte collection and in vitro maturation 

Bovine COCs were matured in vitro as previously described by Azari- 
Dolatabad et al. [18]. In brief, bovine ovaries were collected from a local 
slaughterhouse and processed within 2 h after collection. Ovaries were 
rinsed three times in warm (37 ◦C) physiological saline supplemented 
with kanamycin (25 mg/mL) and sterilized with 90 % ethanol. 
Cumulus-oocyte complexes were aspirated from follicles between 4 and 
8 mm in diameter, using an 18-gauge needle attached to a 10 mL syringe 
and transferred into a 15 mL tube containing 2.5 mL of HEPES Tyrode’s 
albumin–pyruvate–lactate (HEPES-TALP) medium. Cumulus-oocyte 
complexes were subsequently cultured individually in droplets of 20 
μL of maturation medium (TCM-199, supplemented with 20 ng/mL 
epidermal growth factor (EGF) and 50 μg/mL gentamicin) covered with 
7.5 mL paraffin oil (SAGE oil for tissue culture, ART-4008–5P, Cooper 
Surgical Company) for 22 h at 38.5 ◦C in 5 % CO2 in humidified air. 

2.3. Image acquisition 

Images from COCs were acquired at 0 h of in vitro maturation (pre- 
IVM stage) and 22 h after in vitro maturation (post-IVM stage) using an 
inverted Olympus stereomicroscope, connected to a ToupCam camera in 
concordance with ToupView software (version 3.7.13270.20181102). 
Images were obtained under the same magnification (56X), with the 
plane of focus on the zona pellucida of a single oocyte in the middle of 
the field. Images were saved as PNG files at a resolution of 2592 × 1944 
pixels in RGB. Sixty-eight images were excluded since the zona pellucida 
was not clearly in focus, the demarcation of the outer cumulus cells was 
not clear and/or the COC rotated into the 3-dimensional field during 
maturation, causing the pre- and post-maturation images to be acquired 
from different 2-dimensional fields. After exclusion, a total of 232 paired 
(before and after maturation) images of COCs were presented to three 
observers. 

2.4. Cumulus expansion measurement 

Cumulus expansion of bovine COCs during the process of in vitro 
maturation was measured by three independent observers, with suffi-
cient experience. The observers scored each COC by three different 
methods (area, 3-distance, and scoring method) in duplicate, at different 
times, and in random order. 

2.4.1. Area 
The area of the pre- and post-IVM COCs was measured by drawing 

the contour of the COC using the freehand selection in ImageJ software 
[40] (version 1.49 q; National Institutes of Health, USA). To calculate 
the absolute growth, the pre-IVM COC area was subtracted from the 
post-IVM COC area. The difference in growth was divided by the area of 
the pre-IVM COC to compute the cumulus expansion (%) (Fig. 1). 

2.4.2. 3-Distance 
The shortest, medium and longest distance between the zona pellu-

cida and the extremes of the cumulus cells was measured in pre-IVM 
COCs, using the straight lines tool in ImageJ. Next, the average value 
of these three distances was calculated. The same was done for post-IVM 
COCs. The average value related to the pre-IVM COC was subtracted 
from the post-IVM COC’s average value, which resulted in absolute 
growth. Cumulus expansion (%) was then determined by dividing the 
absolute growth by the average value of the pre-IVM COC (Fig. 1). 

2.4.3. Scoring 
The images of pre-IVM and corresponding post-IVM COCs were 

directly compared to each other to evaluate the expansion of the 
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cumulus cells by assigning a score on a 5-point Likert scale, as previously 
described by Downs [21]. In brief, the score ranged from 0 to 4, with “0”: 
no expansion; “1”: separation of only the outermost layers of cumulus 
cells; “2”: further expansion involving the outer half of the cumulus 
oophorous; “3”: further expansion up to, but not including the corona 
radiata; and “4”: complete expansion, including the innermost corona 
radiata cells. (Fig. 2). 

2.5. AI-xpansion: a deep learning model for cumulus expansion 
measurement 

As the area method resulted in the highest ICC for inter- and intra- 
observer agreement, the automatization of this method was pursued 
for the creation of AI-xpansion: a DL algorithm that recognizes the area 
of the COC automatically and can thus be used for measuring cumulus 

Fig. 1. Cumulus expansion measurements applying the area and 3-distance method. For the area method, the contour of the cumulus cells was drawn to calculate the 
area before (a) and after (b) maturation. For the 3-distance method, the shortest (S), medium (M), and longest (L) distance between the zona pellucida and the outer 
border of the cumulus was measured and the mathematical average was calculated before (c) and after (d) maturation. The scale bar applies to all images. 

Fig. 2. Scoring method to measure cumulus expansion. Cumulus-oocyte complexes were compared before and after maturation (rows) and scored (columns) as 
follows: “0” No expansion; “1” separation of only the outermost layers of cumulus cells; “2” further expansion involving the outer half of the cumulus oophorous; “3” 
further expansion up to, but not including the corona radiata; “4” complete expansion including the innermost corona radiata cells. Scale bar of the lower image is 
also applicable to the image above. 
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expansion. AI-xpansion, technically explained in detail in Athanasiou 
et al. [41] exploits DL modeling to automatically calculate cumulus 
expansion. To construct the DL model, AI-xpansion combines transfer 
learning and image pre-processing with a U-Net network inspired by 
Ronneberger et al. [42]. 

The adopted U-Net architecture has a contraction segment made up 
of four blocks. Each block includes two 3 × 3 convolutional layers, 
followed by a ReLU [43]activation layer and a 2 × 2 max-pooling layer 
with a stride of 2. One of these blocks also incorporates a dropout layer 
with a probability of 0.5. On the other side, the expansive segment is 
comprised of four blocks that include an up-sampling transposed con-
volutional layer, a layer for concatenation, two 3 × 3 convolutional 
layers, a ReLU activation layer, and finally, an additional convolutional 
layer at the end. 

We utilized the Keras [44] open-source library and TensorFlow [45] 
as the underlying framework to implement this architecture. The Dice 
coefficient [46]was chosen to gauge the effectiveness of the segmenta-
tion method. This coefficient measures how well two areas overlap in 
space, with a value between 0 and 1. A value of 0 means no overlap, 
while 1 indicates complete overlap. The equation for this coefficient is: 

Dice(f , x, y)=
2 •

∑

ij
f (x)ijyij

∑

ij
f (x)ij +

∑

ij
yij  

where y stands for the ground truth, x represents the input image, and f 
(x) is the model’s prediction. To train the U-Net architecture, we used 
Dice loss as the performance metric. The formula for Dice loss can be 
articulated as: 

LDice(f , x, y)= 1− Dice(f , x, y)

The improvement of AI-xpansion’s performance relied on transfer 
learning from a publicly available dataset of melanoma images [47]. 
This was used to generate the first pre-trained DL model, which served as 
a starting point for training AI-xpansion with images of pre- and 
post-IVM COCs. From data acquired in section 2.3, a subset of 100 COCs 
was randomly selected, due to image annotation costs. This is translated 
into 200 annotated images. Experts provided segmentation masks by 
manually drawing the area of pre- and post-IVM COCs. These images 
and their corresponding segmentation masks were used as the training 
input for AI-xpansion. 

To evaluate the segmentation models, i.e. the ability of AI-xpansion 
to detect the cumulus demarcation, a 10-fold cross-validation was used 
since the dataset size was limited and this approach provided stable 
results [48]. At each fold, 90 COCs (pre- and post-IVM; 180 images) were 
used for training, and 10 COCs (20 images) for validation. The model 
was trained on mini-batches of 32 for 200 epochs. For each fold, a 
segmentation mask was generated for the 20 validation images, result-
ing in a total of 200 masks after going through all the folds. Then, the 

generated masks were compared with masks of the same COCs that were 
provided by each of the experts (Fig. 3). To evaluate the similarity be-
tween two masks, the dice coefficient was used [46]. The mean dice 
performance of the majority-vote model converged at around 95 %. 

2.6. Cumulus expansion and embryo development 

Bovine COCs (n = 427, 14 replicates) were harvested and matured in 
vitro as described in 2.2, with the additional condition that only oocytes 
surrounded by a compact cumulus of at least 5 layers, and a homoge-
neously dark or slightly granular ooplasm were selected for further 
processing. Frozen sperm of a bull of known fertility was thawed in a 
38 ◦C water bath and passed over a Percoll gradient (GE Healthcare 
Biosciences, Uppsala, Sweden) to select viable spermatozoa. The COCs 
were co-incubated with selected spermatozoa in individual droplets (1 
COC/20 μL) of IVF-TALP medium supplemented with bovine serum al-
bumin (BSA; Sigma A8806; 6 mg/mL) and heparin (20 μg/mL) up to a 
concentration of 1 × 106 spermatozoa/mL. Droplets were covered with 
paraffin oil and incubated for 21h at 38.5 ◦C in 5 % CO2 humidified air. 
After in vitro fertilization, cumulus cells were removed by gentle pipet-
ting (140 μm EZ-Tip®, CooperSurgical, Malov, Denmark), and excessive 
sperm cells were removed by washing the presumed zygotes in HEPES- 
TALP medium. Subsequently, zygotes were transferred to individual 
droplets (1 zygote/20 μL) of synthetic oviductal fluid medium supple-
mented with 0.4 % BSA (Sigma A9647) and ITS (5 μg/mL insulin +5 μg/ 
mL transferrin +5 ng/mL selenium) covered with paraffin oil. Embryos 
were cultured until day eight post-fertilization, at 38.5 ◦C in 5 % CO2, 5 
% O2, and 90 % N2. At day eight of culture, embryonic development was 
reported as blastocyst rate (i.e. embryos that developed to the blastocyst 
stage (defined by the presence of a blastocoel or cavity) divided by the 
total number of presumed zygotes). 

Images of the COCs were acquired before and after maturation as 
previously reported (2.3), and cumulus expansion was evaluated by one 
observer using the area, 3-distances, and scoring method (2.4) and by 
AI-xpansion (2.5). 

2.7. Statistical analyses 

To compare the three different methods for cumulus expansion 
measurement, the following variables were studied: (1) median cumulus 
expansion of all COCs considered, (2) inter-observer agreement, i.e. the 
variation in cumulus expansion as scored between the three different 
observers, (3) overall inter-observer agreement, i.e. the average of the 
two measurement repetitions for the inter-observer agreement (as the 
measurements were performed in duplicate) and (4) intra-observer 
agreement, i.e. the variation in cumulus expansion scored between 
repeated measurement for each of the observers. 

The data were analyzed with Python, version 3.10.6. A two-way 
random effects model was used to evaluate inter-observer agreement 

Fig. 3. Visual comparison of segmentation masks. From the original cumulus-oocyte complex (COC) image (a), a segmentation mask was drawn around the contours 
of the COC by human observers (b). This mask was compared to the segmentation that was performed by the deep learning model, AI-xpansion (c). 
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and a one-way random effects model was performed to evaluate the 
intra-observer agreement for each of the observers. Consequently, the 
ICCs and their 95 % confidence interval were computed using the 
intraclass_corr function in the Pingouin Python statistical library [49], 
version 0.5.2. The code used for the evaluation is available at the 
following link: https://github.com/IIIA-ML/cumulus_expansio 
n_variance_analysis. The ICC values were interpreted as proposed by 
Landis and Koch [50]: <0.20, poor agreement; 0.20–0.39, fair agree-
ment; 0.40–0.59, moderate agreement; 0.60–0.79, good agreement, 
>0.80, very good agreement. Data are reported as ICC and 95 % con-
fidence intervals. 

A retrospective sample size calculation was performed in R (version 
4.2.2) and R studio (2023.09.0 Build 463), using a balanced one-way 
analysis of variance test. The significance level was set at 0.05, the 
power was 0.80, the number of groups was 3 and the effect size was 
calculated as the smallest difference that was reported between inter- 
observer ICCs, which was 0.13. This resulted in a minimal required 
amount of 191 cumulus expansion measurements per technique. In this 
study, the cumulus expansion of 232 COCs was measured per technique. 

To compare the results of the DL method with the results of the 
human observers, the similarity among the annotations of each of the 
three observers was computed and compared with the similarity be-
tween each of the human observers and the proposed method. To 
evaluate the similarity between AI-xpansion and human observers, 
different metrics were used: average rank, bias, and variances. The first 
one focused on how many of the AI-xpansion estimations were closer to 
the observers. To do so, the average rank metric was used, in which the 
estimators were ranked concerning the proximity of their score to the 
score of reference. For example, if observer 1 is set as a reference, then 
the scores of observer 2, observer 3, and AI-xpansion, are compared to 
the score of observer 1. The scores are then ranked from 1 to 3, according 
to which estimator has the minimum distance to the reference. The same 
procedure was accomplished for every observer. Finally, the lowest 
value indicates better estimation, according to Supplementary Equation 
S1. Additionally, to support the results, the biases and variances among 
the AI-xpansion estimator and the observer’s annotations were exam-
ined, according to Supplementary Equations S2 and S3 respectively. 

The association between cumulus expansion and embryo develop-
ment was analyzed using the Mann-Whitney U test. The significance 
level was set as α = 0.05. The test is used to compare the cumulus 
expansion of COCs that did not develop successfully with that of those 
that did develop successfully. We considered as the null hypothesis H0 
that both expansion samples come from the same distribution, and the 
alternative hypothesis is that one of the samples presents larger ex-
pansions than the other. 

3. Results 

Three different methods to measure cumulus expansion were eval-
uated by three observers. The working principle and user-friendliness, 
(based on equipment and time requirements) of these methods are 
summarized in Table 1. Data concerning the distribution of cumulus 
expansion, measured by the three methods, is illustrated in Supple-
mentary Fig. S1. 

3.1. The area method is the most reliable to measure cumulus expansion 

3.1.1. Inter-observer agreement 
For all three methods, the agreement between the observers was 

evaluated by calculating the corresponding ICC, as illustrated in Fig. 4a 
and Table 2. This ICC was calculated in duplicate, as the measurements 
were performed twice by every observer for every method. In both 
repetitions, the inter-observer ICCs for the area method showed a very 
good level of agreement, while the 3-distance method resulted in a 
moderate level of agreement. The inter-observer agreement for the 
scoring method was fair in both repetitions. An overall inter-observer 
agreement level was calculated for every method, where both repeti-
tions of the inter-observer agreement were considered. This resulted in a 
very good overall agreement for the area method, a moderate overall 
agreement for the 3-distance method, and a poor overall agreement for 
the scoring method, as shown in Fig. 4b and Table 2. 

3.1.2. Intra-observer agreement 
The intra-observer agreement was evaluated by ICC calculations for 

every method and every observer (Fig. 4c; Table 2). Overall, intra- 
observer agreements for observers 1, 2, and 3 were very good for the 
area method, while moderate to good for the 3-distance method. The 
results for the scoring method varied per observer, as the level of intra- 
observer agreement ranged from poor, over moderate, to good. 

3.2. AI-xpansion automatically measures cumulus expansion based on the 
COCs’ area 

3.2.1. AI-xpansion processor capacity 
As the area method resulted in the highest ICC values for measuring 

cumulus expansion manually, a DL model, AI-xpansion, was created 
based on this method. The pre-processing stage, during which the region 
of interest (i.e. the COC) was detected, was able to correctly determine 
98 % of the region of interest. Failure of detection was due to a very low 
signal of the COC and to the presence of an oil droplet in the image 
which interfered with the model. These two cases were excluded from 
further analyses, leading to a total of 98 COCs used to train the model as 
explained in section 2.5. 

3.2.2. Al-xpansion performs similarly to human observers 
The average rank metric, i.e. the comparison of the different scores 

among the estimators, is reported in Table 3. In 2 out of 3 cases, AI- 
xpansion had a lower average rank metric than the human observers 
and performed better compared to the other observers. Overall, the 
performance of AI-xpansion in measuring the COCs’ area was similar to 
that of the observers (p = 0.15). 

Bias and variance among the human observers and between human 
observers and AI-xpansion are reported in Supplementary Tables S1 and 
S2, respectively. Measuring cumulus expansion using AI-xpansion 
resulted in lower bias and less variance compared to the human ob-
servers in 1 out of 3 times. For the remaining 2 cases, AI-xpansion scored 
similarly for both bias and variance to the human observers, proving 
that AI-xpansion reaches a human-level performance. 

Table 1 
Comparison of methods to measure cumulus expansion. Methods were compared by three observers and evaluated for equipment- and time requirements. +, easy or 
low; ++, moderate; +++, complicated or high.  

Method Working principle Equipmenta Time 

Area Measuring the area by drawing the COC contour ++ ++

3-distance Measuring 3 distances between zona pellucida and outer cumulus ++ +++

Scoring 5-point Likert scale + +

a Equipment required: apart from a stereomicroscope, software was needed to calculate cumulus expansion for the area and 3-distance method. 
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3.3. Cumulus expansion is related to embryo development 

To evaluate the accuracy of the different methods, the association 
between embryo development and cumulus expansion was studied. In 
this study, cumulus expansion was measured by the area, 3-distance-, 
scoring method, and AI-xpansion Embryo development was defined 
successfully when the embryos reached the blastocyst stage at day eight 
post-fertilization. From a total of 427 presumed zygotes, 118 developed 
successfully into a blastocyst (27.6 %) whilst 309 (72.4 %) failed and 
arrested their development at an earlier stage. 

Median cumulus expansion was significantly lower in embryos that 

failed to develop compared to embryos that succeeded in development 
to the blastocyst stage. This was true when cumulus expansion was being 
measured by AI-xpansion (64.95 % (IQR: 48.30 %) and 77.88 % (IQR: 
55.96 %) for unsuccessful and successful embryos respectively, p =
0.011), the area method (72.15 % (IQR: 58.55 %) and 80.75 % (IQR: 
62.81 %) respectively, p = 0.024) and the 3-distance method (46.83 % 
(IQR: 49.74 %) and 55.20 % (IQR: 50.50 %) respectively, p = 0.046). 
Median cumulus expansion evaluated by the scoring method was not 
significantly different between unsuccessful and successful embryos 
(2.00 (IQR: 2.0) and 2.00 (IQR: 1.0) respectively, p = 0.256). These 
results are depicted in Fig. 5. 

Fig. 4. Intraclass correlation coefficients (ICC) and their 95 % confidence intervals were calculated and displayed according to their corresponding level of 
agreement for (a) inter-observer agreement, (b) overall inter-observer agreement, and (c) intra-observer agreement. Cumulus expansion of all cumulus-oocyte 
complexes was evaluated twice per method, resulting in two ICC values for inter-observer agreement per method. 

Table 2 
Intraclass correlation coefficients for three cumulus expansion measurement methods. Data are reported as intraclass correlation coefficients with their respective 95 % 
confidence intervals.  

Method Inter-observer agreement Overall inter-observer agreement Intra-observer agreement  

Repetition 1 Repetition 2 Observer 1 Observer 2 Observer 3 

Area 0.89 (0.88–0.92) 0.90> (0.85–0.93) 0.89 (0.85–0.93) 0.87 (0.84–0.90) 0.90 (0.87–0.92) 0.96 (0.95–0.97) 
3-distance 0.56 (0.49–0.63) 0.51 (0.44–0.59) 0.54 (0.44–0.63) 0.61 (0.53–0.69) 0.59 (0.50–0.67) 0.64 (0.56–0.71) 
Scoring 0.23 (0.12–0.34) 0.38 (0.3–0.47) 0.30 (0.12–0.47) 0.69 (0.63–0.76) 0.11 (− 0.01–0.24) 0.51 (0.42–0.6)  

Table 3 
Average rank metric calculated in the comparison between the different human observers and human ob-
servers vs AI-xpansion. This table shows the similarity between the average rank of three observers (O1–O3) 
and the deep learning method (AI-xpansion). Scores closer to zero indicate that the performance is closer to 
the reference observer (columns). 

 O1 O2 O3 

O1  2.04 1.93 

O2 2.04  2.15 

O3 1.97 2.11  

AI-xpansion 1.99 1.85 1.93 
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4. Discussion 

In this study, the three most commonly used methods for non- 
invasive cumulus expansion evaluation were compared in terms of 
inter- and intra-observer agreement. Since no gold standard is described, 
this study aimed to provide evidence-based data on the reliability of the 
different measurement techniques. We demonstrated that comparing 
the area of the COC before and after IVM is the most precise and 
repeatable non-invasive method to assess cumulus expansion manually. 
As a result, the area method was used as a basis to develop a DL model, 
AI-xpansion. This model measures the area of COCs with similar reli-
ability to the human observers and objectively calculates cumulus 
expansion with limited time and labor requirements. A significant as-
sociation was demonstrated between embryo development and cumulus 
expansion, when measured by AI-xpansion, the area- and the 3-distance 
method. Consequently, oocyte developmental competence could 
partially be predicted by cumulus expansion, employing these three 
measurement techniques. 

When comparing the three most commonly used techniques for 
manual evaluation of cumulus expansion, the area method was shown to 
be the least prone to subjectivity. The obtained results for cumulus 
expansion were similar between the different observers, as reflected by 
the very good inter-observer agreement. From this, it can be concluded 
that the selection of an observer is of little consequence for the area 
method [51]. The 3-distance and scoring method resulted in a moderate 
and fair inter-observer agreement respectively (Fig. 5a). This indicates 
that the results of cumulus expansion measured by multiple random 
raters will be more distinct from each other and that these methods are 
more vulnerable to observer bias [51]. 

An embryologist’s self-consistency in rating cumulus expansion is 
highest when he or she employs the area method, as suggested by the 
very good intra-observer agreement for the area method for all three 
observers. The intra-observer ICC values for the 3-distance method 
varied from moderate to good, although the values were close to each 
other for the three observers. This result indicates that the self- 
consistency in measuring 3 distances is not optimal. This is concor-
dant for the three observers. This result is in contrast with the high 
variation that was noted in intra-observer agreements for the scoring 
method between the different observers (i.e. poor, moderate, and good 

for observers 1, 2, and, 3, respectively; Fig. 5c). Consequently, it can be 
suggested that the scoring method is the least reproducible manner to 
evaluate cumulus expansion. 

Although the scoring method is the most commonly used technique 
to evaluate cumulus expansion, this manuscript shows that it is also the 
least reliable technique. The inadequate levels of inter- and intra- 
observer agreement for the scoring method are in agreement with 
what is known in other research fields, where the use of a scoring sys-
tem, such as a Likert scale, is often debated due to its subjective nature 
[52–54]. The large variation in morphological presentation of cumulus 
expansion (and COC shape as such) may contribute to the subjective 
interpretation. It can therefore be expected that human observers have a 
different interpretation of the categorization of cumulus expansion, 
hence perhaps the low ICC values for the scoring method. Also, the 
design of the scoring system, e.g. the number of points on the Likert 
scale, could influence its reliability [52,55]. 

The general performance of the area method was more repeatable 
than the 3-distance method. This can be explained by the fact that the 
three distances are chosen arbitrarily, and the selection of the “shortest”, 
“medium” and “longest” distance may thus be ambiguous. Also, in some 
images the zona pellucida is not clearly distinguishable because of an 
overlying cloud of cumulus cells, which could also explain the moderate 
reliability of the 3-distance method. Nonetheless, the area method 
contains some scope for subjectivity as well (although limited), as no ICC 
score was equal to 1. This variation was probably caused by the 
demarcation of the outer cumulus cells, which could be open for inter-
pretation, especially when the outer cumulus cells are completely 
expanded. Moreover, the inability to evaluate the 3-dimensional shape 
of the COC is an important limitation associated with all visual inspec-
tion methods, as positional changes of the COC in the 3-dimensional 
field could result in erroneous measurements and calculations. This 
drawback is absent in non-visual methods for cumulus expansion mea-
surement, like spectrophotometry and high-performance liquid chro-
matography to measure the amount of hyaluronic acid-degrading 
products in conditioned media [56]. Still, these methods are not 
routinely performed in the IVF lab since specific equipment and exper-
tise are required. 

In recent years, assisted reproductive technologies have benefited 
from the increased use of artificial intelligence techniques such as DL 

Fig. 5. Distribution of cumulus expansion in cumulus-oocyte complexes (COCs) that resulted in unsuccessful and successful embryo development. Cumulus 
expansion was measured using (a) AI-xpansion, (b) the area method, (c) the 3-distance method and (d) the scoring method. Cumulus expansion was significantly 
different between unsuccessful and successful COCs (*p ≤ 0.05), when being measured by AI-xpansion, area- and the 3-distance method. 
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and image segmentation [37,57–62], although segmenting images of 
bovine COCs had not been done yet. AI-xpansion was therefore devel-
oped to automatically measure the area of pre- and post-IVM bovine 
COCs by image segmentation and to consequently calculate the relative 
expansion of the cumulus cells. Although AI-xpansion was created using 
bovine COCs, its algorithm could be extrapolated to other species where 
IVM is performed, such as horses [63], wildlife [64], and humans [65]. 
The performance of AI-xpansion reaches the same level of reliability as 
the human observers, as the average rank metric was not significantly 
different between the human observers and AI-xpansion. In addition, the 
efficiency of our DL model is at human-level as well, since it generates 
results with similar bias and variance as human observers, and even 
outperformed human observers in one case. However, when cumulus 
cells expand extremely, the border between the cumulus and the back-
ground may become translucent. This can cause difficulties in surpassing 
the human-level performance. However, if more images of COCs were to 
be presented to AI-xpansion to cover the extreme cases in a follow-up 
study, this minor limitation could be resolved. Further refinement of 
AI-xpansion with using more diverse COC images, or the investigation of 
other AI techniques for objective cumulus expansion measurement, 
could serve as an interesting topic of future studies. AI-xpansion mea-
sures cumulus expansion from a 2-dimensional image. Future research 
may focus on 3-dimensional imaging, for example, the optimization of 
3-D microscopy such as lens-free imaging [66] could be proposed to 
evaluate cumulus expansion in 3 dimensions without affecting the 
COC’s developmental capacity. 

The biological relevance of cumulus expansion during oocyte 
maturation is well-known [7,25] and was confirmed in this study. The 
association between cumulus expansion and successful embryo devel-
opment was demonstrated here for the first time in an individual bovine 
in vitro model. According to the obtained results, cumulus expansion, 
measured by AI-xpansion, area- or 3-distance method, is significantly 
higher in COCs with successful developmental competence, compared to 
COCs that failed to develop. This is in agreement with previous studies, 
where a significant positive correlation was shown between cumulus 
expansion (measured using derivates of the area method) and fertiliza-
tion potential in mice [12]; and blastocyst development in pigs [17]. In 
these studies [12,17], COCs and embryos were cultured in groups, which 
inhibits linking cumulus expansion of a specific COC to this COC’s 
developmental outcome. The present manuscript is the first to report a 
direct and individual association between cumulus expansion and em-
bryonic development in a bovine in vitro model while considering 
different measurement methods. 

5. Conclusion 

The area method was the most reliable method to measure cumulus 
expansion by visual inspection, whereas the scoring method, which is 
most frequently used in literature, was the least reliable. Next, the area 
method was used to create an objective alternative, the DL algorithm AI- 
xpansion. AI-xpansion could be a useful tool for embryologists and re-
searchers in the in vitro embryo production lab to adequately measure 
cumulus expansion with human-level performance. The biological 
relevance of measuring cumulus expansion was confirmed, since by 
using either AI-xpansion, the area and the 3-distance method, we were 
able to show that median cumulus expansion was significantly increased 
in competent COCs as opposed to COCs that failed to reach the blastocyst 
stage. 
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