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Abstract. Many practical applications often need to form a team of
agents to solve a task since no agent alone has the full set of required
competencies to complete the task on time. Here we address the prob-
lem of distributing individuals in non-overlapping teams, each team in
charge of a specific task. We provide the formalisation of the problem,
we encode it as a linear program and show how hard it is to solve it.
Given this, we propose an anytime heuristic algorithm that yields feasi-
ble team allocations that are good enough solutions. Finally, we report
the results of an experimental evaluation over the concrete problem of
matching teams of students to internship programs in companies.
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1 Introduction

Many real-world problems require allocating teams of individuals to tasks. For
instance, forming teams of robots for search and rescue missions [6], forming
teams of Unmanned Aerial Vehicles (UAVs) for surveillance [28], building teams
of people to perform projects in a company [31], or grouping students to under-
take school projects [4]. In this paper, we study the allocation of many teams
to many tasks with size constraints, permitting no overlaps. That is, each agent
can be part of at most one team, each team can be allocated to at most one
task, and each task must be solved by at most one team. We illustrate our re-
sults in the domain of education, where it is very common that students shall
form teams and collaborate with their teammates towards some common goal.
For example, in primary and secondary schools teachers usually need to divide
their students into study groups (teams) to carry out some school projects. Sim-
ilarly, in universities, students are usually requested to work in teams in order
to carry out semester projects. Moreover, educational authorities often need to
form student teams and match them with internship programs, as it is more
and more common that students spend time with companies to gain experience
in the industry. Currently, teachers and education authorities obtain such al-
locations mainly by hand, but given the combinatorial nature of the problem,
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manual allocation requires a large amount of work. Beyond the activities within
classrooms, the problem of allocating non-overlapping teams to tasks can also be
found in events and competitions where participants need to work in teams and
compete with each other, such as hackathons; or in situations where different
teams need to work in parallel towards a common goal, and individuals cannot
be in more than one team at a time, such as in search and rescue missions.

The multi-agent systems (MAS) literature has tackled the problem of allo-
cating teams to tasks in several ways. The existing literature includes research
on how to form a single team and allocate it to a single task [1,23,2]; how to form
a single team and match it with multiple tasks [11]; and how to form multiple
teams to solve the very same task [4]. Moreover, there is a handful of research
works on forming multiple teams to match with multiple tasks, either by allowing
agent overlaps (agents participate in multiple teams [6]), and/or task overlaps
(different teams jointly solve a task [5]). However, the problem of distributing
agents in non-overlapping teams, each to solve a different task, has deserved little
attention, with the exception of [12,29,30]. This non-overlapping many teams to
many tasks (NOMTMT) allocation problem is the one we address in this paper.

In most works, regardless of the type of team allocation problem, the al-
location is decided based on due to agents’ competences. As noted in [4], the
literature on team composition and formation considers either a Boolean model
of competences (an agent has or has not a competence) [1,23,2,12], or a graded
model (an agent has a competence up to some degree) [3,4,7]. In many cases,
competences are not explicitly considered, but they are ‘concealed’ behind some
utility function [6,5,29]. Common to all these models is the assumption that a
team assigned to a task must possess the competences exactly as required by the
task. This is rather limiting to cope with real-world problems. For instance, even
if a student does not posses a specific competence, they might still be qualified
for a task if any of their already-acquired competences is similar enough. How-
ever, the semantic relationship between competences has been disregarded when
matching teams to tasks. This prevents, for instance, that a team is allocated
to a task requiring competences similar to those offered by the team. Against
this background, here we make headway in the non-overlapping “many teams to
many tasks” matching problem through the following novel contributions:3
1. A method for computing the semantic matching between a task and a team
based on an ontology of competences.
2. A formalisation of the NOMTMT allocation problem as an optimisation prob-
lem together with a complexity analysis.
3. An integer linear programming (ILP) encoding for solving optimally the
NOMTMT allocation problem.
4. An anytime heuristic algorithm to solve the NOMTMT allocation problem.
5. A threefold empirical evaluation: (a) we compare our heuristic algorithm
against CPLEX [20] using synthetic data, and show that it outperforms CPLEX
in terms of solving time; (b) we use real-world data from students that must
be allocated to internships, and show that our heuristic algorithm solves large

3 This work is an extended version of our earlier work presented in [16,17].
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problem instances that CPLEX cannot handle; and (c) a group of experts in
education confirm that the allocations produced by our heuristic algorithm are
better than those manually produced by experienced teachers.

2 The NOMTMT Allocation Problem

This section formally casts our problem as an optimisation one. To do so, we
first refer to the basic concepts of the problem, then we discuss the competence
model to be used, and finally we define the problem as an optimisation problem.

2.1 Basic Concepts

A competence corresponds to a specified capability, skill, or knowledge. We as-
sume there is a known, predefined and fixed set of competences, denoted by C. A
task is characterised by a set of requirements on agents’ competences and team
size constraints. For instance, an internship program in a computer tech com-
pany might require three competences (ML principles, coding in Python, and
web development), and a team of size four. Thus, the company needs four em-
ployees that together possess the three required competences. In general, there
might be further constraints, such as temporal or spatial constraints (i.e., when
and where the task can be realised). However, within the scope of this paper,
we only focus on team size constraints. The competences’ relative importance is
often part of the task description. Formally, a task τ is a tuple ⟨t_id, C, w, s⟩,
where t_id is a unique task identifier, C ⊆ C is the set of required competences,
w : C → (0, 1] is a function that weighs the importance of competences, and
s ∈ N+ is the required team size. The set of all tasks to perform is denoted by
T , with |T | = m. We describe each agent via its acquired competences. Thus, an
agent a is given by a tuple ⟨a_id, C ′⟩, where a_id is a unique agent identifier,
and C ′ ⊆ C is a set of acquired competences. The set of agents is denoted by A,
with |A| = n. Given τ ∈ T , we denote the set of all size-compliant teams for τ
as Kτ = {K ⊆ A : |K| = sτ}4, where sτ is the team size required by task τ .

2.2 Competence coverage and affinity

To match a team with a task, it is essential that the team is capable of solving
the task. That is, before allocating a team of agents K to some task τ , we
need to verify whether the agents, as a team, are equipped with the necessary
competences, as determined by Cτ . Given a task τ and a team of agents K, we
say that K is suitable for τ if K can cover the required competences of τ . That
is, for each required competence c ∈ Cτ , there is at least one agent a ∈ K with
competence c. As mentioned above, the existing literature considers competences
as Boolean or graded features and determines the ‘matching quality’ of a team
4 Note: we use subscript a to refer to the set of competences and the identifier of an

agent a ∈ A, and subscript τ to refer to the elements of task τ ∈ T .
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when assigned to a task through some function, usually expressed as a utility
function. As already mentioned, the existing models are limiting. To overcome
such limits we consider the matching quality in terms of the semantic similarity
between competences required by tasks and offered by teams. Here we present
an intuitive way of determining this ‘matching quality’ as competence coverage.

Given some domains, competences are usually structured by an ontology
which determines similarities between different competences. For example, com-
petences c1 (coding in Python) and c2 (coding in Java), are different, but share
essential principles (e.g. both are object-oriented languages). We can therefore
assume that an agent with competence c1 can somewhat be adequate for a task
requiring competence c2.

We assume that there is a known competence ontology which structures the
competences in C according to their semantics, and for every pair of competences
c, c′ provides a similarity degree sim(c, c′) ∈ [0, 1]. Let assume that the ontology is
structured as an acyclic directed graph, where each node is a specialised, refined
version of its parent node. In section 5, we exploit well-established ontologies with
such properties. We compute the semantic similarity between two competences
c, c′ as: sim(c, c′) = e−λl eκh−e−κh

eκh+e−κh if l ̸= 0 and 1 otherwise, where: l is the
shortest path in the graph between c and c′; h is the depth of the deepest
competence subsuming both c and c′; and κ, λ ∈ [1, 2] are parameters regulating
the influence of l and h on the similarity metric. Our semantic similarity function
is a variation of the metric introduced in [24], which guarantees the reflexive
property of similarity: a node is maximally similar to itself, independently of its
depth. In other words, nodes at zero distance (l = 0) have maximum similarity.
Similarly to [27], the values of semantic similarities lie in [0, 1].

Given this, we assume that an agent a can cover competence c with degree
cvg(c, a) = maxc′∈Ca sim(c, c′). Then, given a task τ with required competences
Cτ and an agent a with acquired competences Ca, the competence coverage of
task τ by agent a is: cvg(a,Cτ ) =

∏
c∈Cτ

cvg(c, a) =
∏

c∈Cτ
maxc′∈Ca

{sim(c, c′)}.
The product captures a’s competence coverage over all competences.

Moving now from a single agent to a team of agents, allocating a team to a
task requires to solve a competence assignment problem.5 That is, given a task
τ , we need to assign to each agent a in a team K a subset of competences
of Cτ for which it will be responsible. As such, for each pair ⟨τ,K⟩ we need a
competence assignment function ητ→K : K → 2Cτ that maps each agent in K with
a subset of the required competencies. According to [4], a competence assignment
function (CAF) for a size-compliant team of agents K ∈ Kτ and a task τ is
such that

⋃
a∈K ητ→K(a) = Cτ . Moreover, we consider the reverse competence

assignment function (r-CAF), denoted by θτ→K : Cτ → 2K , where θτ→K(c)
indicates the agents that are assigned to cover competence c. Note that Θτ→K

contains |Cτ | · (2|K|−1) different CAFs. However, not all CAFs are equivalent or
equally desired. Hence, here we adopt the concept of fair competence assignment
function (FCAF) following the notion of inclusive assignments in [3] by adding

5 As noted by [22], recent definitions on the term team refer to the specific subtask/
competences that will be performed by each agent.
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an upper bound on the number of competences that can be assigned to an
agent. An FCAF ensures that each competence required by the task τ is covered
by at least one agent, and each agent covers at least one and at most

⌈
|Cτ |
|K|

⌉
competences. This bound avoids overloading a few very competent agents with
excessive responsibilities.

Therefore, given an FCAF ητ→K , we want to evaluate the suitability of a
given team K for task τ . To do so, we first define a team’s competence affinity
with respect to a task taking into consideration the importance of each com-
petence and the agents’ assigned competences while satisfying the following re-
quirements: (i) the higher the coverage of an assigned competence, the higher the
competence affinity; (ii) the lower the importance of an assigned competence,
the higher the competence affinity; and (iii) the competence affinity is at most
equal to the coverage of any assigned competence with maximal importance.
Formally, we define an agent’s competence affinity as:

Definition 1 (Agents’ Competence Affinity). Given an agent a ∈ A, a task
τ ∈ T , and a competence assignment function ητ→K , the competence affinity of
a to τ is:

aff(a, τ, ητ→K) =
∏

c∈ητ→K(a)

max
{(

1− wτ (c)
)
, cvg(c, a)

}
. (1)

Since we are targeting FCAFs, i.e., we want balanced assignments of respon-
sibilities, the competence affinity of a team of agents K ⊆ A to task τ is defined
a-la-Nash, as the product6 of the competence affinity of the individuals in K to
τ with respect to some fair competence assignment function ητ→K The product
assigns a larger value to teams where all agents equally contribute to a task,
rather than to teams with unbalanced contributions.

Definition 2 (Team’s Competence Affinity). Given a team of agents K ⊆
A, a task τ ∈ T , and a fair competence assignment ητ→K , the competence affinity
of K to τ is:

aff(K, τ, ητ→K) =
∏
a∈K

aff(a, τ, ητ→K). (2)

Observe that the competence affinity of a team to a task depends on the com-
petence assignment function. In other words, for a given team K and a given
task τ , different competence assignment functions result in different competence
affinities. Finding the competence assignment function that yields the highest
competence affinity is in fact an optimisation problem in itself:

η∗
τ→K = argmax

η∈Θτ→K

aff(K, τ, η) (3)

where Θτ→K denotes the family of all CAFs for task τ and team K.
However, considering that, in practice, for a task τ both team size sτ and

the number of required competences |Cτ | are relatively small (2 − 5 members,
and ≤ 10, respectively), solving this sub-problem optimally, e.g. by means of

6 As noted in [9], the product favours both increases in overall team allocation utility
and inequality-reducing distributions of team values.
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a linear program, is rather inexpensive. With this in mind, the optimum team
for task τ is the one that: (i) maximises competence affinity; and (ii) satisfies
the team size requirement. Note that the size of Kτ , which is the set of all size-
compliant teams, is

(
n
sτ

)
. The optimum team K∗ is the one that maximises the

competence affinity, under an optimal competence assignment function: K∗ =
argmaxK∈Kτ

aff(K, τ, η∗τ→K).

2.3 The Optimisation Problem

Finding a good allocation of agents for a collection of tasks is yet another
optimisation problem that tries to maximise the overall competence affinity
of all teams for their assigned tasks. For a single task τ , the best candidate
would be the team that maximises the competence affinity, that is, K∗ =
argmaxK∈Kτ

aff(K, τ, η∗τ→K). For a collection of tasks T , with |T | > 1, we
must maximise the competence affinity of all candidate teams with the tasks
each one is matched to, given that each agent can participate in at most one
team, each team can be allocated to at most one task, and each task can be as-
signed to at most one team. First we need to formally define what is a Feasible
Team Allocation Function (FTAF), and then proceed on finding the optimum
one, i.e., the one that maximises the competence affinity.

Definition 3 (Feasible Team Allocation Function (FTAF)). Given a set
of tasks T , and a set of agents A, a feasible team allocation function g is a
function g : T → 2A such that: (1) every task τ ∈ T is allocated its requested
number of agents, so that |g(τ)| = sτ ; and (2) an agent can only be assigned
to one team: for every pair of tasks τ, τ ′ ∈ T , such that τ ̸= τ ′, it holds that
g(τ) ∩ g(τ ′) = ∅.

The family of all feasible team allocation functions is denoted by G. To achieve
balanced allocations, the optimum team allocation function g∗ maximises the
product of competence affinities of the teams to their assigned tasks.

Definition 4 (Non-Overlapping Many Teams to Many Tasks (NOMTMT)
Allocation Problem). Given a set of tasks T , and a set of agents A, the Non-
Overlapping Many Teams to Many Tasks Allocation Problem is to find a team
allocation function g∗ ∈ G that maximises the overall team affinity:

g∗ = argmax
g∈G

∏
τ∈T

aff(g(τ), τ, η∗
τ→g(τ)) (4)

Note that in a NOMTMT allocation problem, for each team allocation g ∈ G
and each task τ we need to find the competence assignment function with the
highest competence affinity for team g(τ), namely η∗τ→g(τ). Thus, for each team
allocation we need to solve |T | optimisation problems (one per task) in order to
determine η∗τ→g(τ).

7 Here we want to highlight that the problem we address here

7 Note that the NOMTMT allocation problem is interrelated with the |T | optimisation
problems. However, for a fixed team allocation, the inner optimisation problems are
independent from one another.
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is a non-trivial generalisation of the problem tackled in [4], which unlike us only
copes with forming teams for a single task. Next, we show that the NOMTMT
allocation problem is NP-complete by reduction to a well-known problem.

Theorem 1. The NOMTMT allocation problem for more than one task is NP-
complete.

Proof. Due to space limitations, the proof can be found in: https://bit.ly/3A2uoSK

Notably, the problem we solve here can be cast as a cooperative game [8] where
the agents and the tasks correspond to the players—with the constraint that
exactly one task-player must exist in each coalition—and the competence affinity
comprise the game’s utility function. Therefore, we would seek for the a coalition
structure that maximizes the Nash Social Welfare [26].

3 Solving the NOMTMT allocation problem optimally

Here we encode the NOMTMT allocation problem (Def. 4) as a linear program.
First, for each task τ ∈ T and each size-compliant team K ∈ Kτ , we use a binary
decision variable xτ

K to indicate whether team K is assigned to task τ in the
solution. Then, solving a NOMTMT allocation problem amounts to solving the
following non-linear program:

max
∏
τ∈T

∏
K∈Kτ

(
aff(K, τ, η∗

τ→K)
)xτ

K
(5)

subject to: ∑
K⊆Kτ

xτ
K ≤ 1 ∀τ ∈ T (5a)

∑
τ∈T

∑
K⊆Kτ
a∈A

xτ
K ≤ 1 ∀a ∈ A (5b)

xτ
K ∈ {0, 1} ∀K ⊆ A, τ ∈ T (5c)

Constraints (5b) ensure that each agent will be assigned to at most one task;
while constraints (5a) guarantee that each task is assigned to at most one team.
Notice that the objective function (Eq (5)) is non-linear. Nevertheless, we lin-

earise it by maximising the logarithm of
∏

τ∈T

∏
K∈Kτ

(
aff(K, τ, η∗τ→K)

)xτ
K

.
Thus, solving the non-linear program above is equivalent to solving the following
binary linear program:

max
∑
τ∈T

∑
K∈Kτ

xτ
K · log

(
1 + aff(K, τ, η∗

τ→K)
)

(6)

subject to: equations (5a), (5b), and (5c). Note that the above is an equivalent
optimisation problem: without affecting the monotonicity of the function (i) we

https://bit.ly/3A2uoSK
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use the log(·) to convert the double product to double sum, and the powered
factor into a product; and (ii) we change the function’s domain to avoid log(0).
We can solve this LP with the aid of an off-the-shelf solver (e.g. CPLEX [20],
Gurobi [19]), GLPK [18], or SCIP [15]). Given sufficient time, an LP solver will
return an optimal solution to the NOMTMT allocation problem.

Note that building such an LP requires to pre-compute the values of aff(K, τ, η∗τ→K),
which amounts to solving an optimisation problem for each pair of team and task.
This leads to large LPs as the number of agents and tasks grow.

4 An algorithm for the NOMTMT allocation problem

Our proposed algorithm consists of two stages in a similar manner as in [4]—as
we already said, our problem is a generalisation. The first stage finds an initial
feasible allocation of teams to tasks. The second one iteratively improves the
allocation by swapping agents between pairs of teams using different strategies.

4.1 Building an initial team allocation

The algorithm finds an initial, feasible, and promising team allocation. It se-
quentially picks up a team for each task, starting from the ‘hardest’ task to the
‘lightest’ one. We consider that a task is ‘hard’ if there are just a few agents that
can cover its competences. Picking teams for the harder tasks first is a heuristic
to avoid that the few agents that can cover it are picked by other ’simpler’ tasks.

Computing the allocation hardness of tasks. We measure the allocation
hardness of each task (referred as ’hardness’ hereafter) by considering the com-
petences required by the task with respect to the capabilities of all available
agents. Intuitively, the more agents offering high coverage of competence c, the
less hard a task requiring c is. Specifically, to characterise the hardness of com-
petences, and therefore the hardness of tasks, we exploit the notion of moment
of inertia based on [25]. We measure the hardness of a task as the hardness to
cover its competences based on the agent’s competences. That is, each agent can
cover each competence with an affinity in range [0, 1]. Thus, we capture the effort
to cover a competence as best as possible similar to the effort to rotate a rigid
body around some axis. In other words, we see the distribution of all agents’
coverage of a competence as the mass distribution of a rigid body. In our case,
the chosen axis to rotate around represents the ideal competence coverage, i.e.,
where all agents cover the competence with utmost affinity. We compute the mo-
ment of inertia for c as: I(c) =

∑
J∈I nc

J ·
(
1−mid(J)

)2, where: (i) I = {[0, 0.1),
[0.1, 0.2), [0.2, 0.3), [0.3, 0.4), [0.4, 0.5), [0.5, 0.6), [0.6, 0.7), [0.7, 0.8), [0.8, 0.9),
[0.9, 1]} is an interval partition of the domain of competence coverage [0, 1]; (ii)
nc
J = |{a ∈ A|cvg(c, a) ∈ J}| is the number of agents in A whose coverage of

competence c lies within interval J , and hence represents the mass of c in the
interval; and (iii) mid(J) corresponds to the midpoint of interval J .
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Now, we compute the hardness of each task from the hardness of each one of
the competences that it requires (inversely proportional to the moment of inertia
of its competences) as well as their relative importance weights. Thus, given task
τ , we define its hardness as h(τ) = ω ·

∑
c∈Cτ

wτ (c) ·I(c), where ω = 1∑
c∈Cτ

wτ (c)
,

is a normalising factor over the weights.

Building an initial team allocation. Our algorithm sorts tasks according
to their hardness and proceeds by sequentially allocating a team for each task
starting from the hardest one. Let Aτ ⊆ A be the set of available agents to
allocate to τ . First, the algorithm sorts the task’s competences, Cτ , based on
their relative importance, into a sequence C̄τ . We note as C̄i

τ the i-th competence
in C̄τ . To allocate an agent to the top competence in the sequence, C̄1

τ , we select
the agent that best covers the competence. Formally, we compute the agent
to allocate to C̄1

τ as σ(C̄1
τ ) = argmaxa∈Aτ

{cvg(C̄1
τ , a)}. After allocating that

agent to C̄1
τ , the set of agents available to allocate to the rest of competences

is Aτ − {σ(C̄1
τ )}. In general, given the i-th competence C̄i

τ , we obtain the agent
to allocate to the comptence as: σ(C̄i

τ ) = argmaxa∈Aτ−Σi−1
{cvg(C̄i

τ , a)}, where
Σi−1 =

⋃i−1
k=1{σ(C̄k

τ )} stands for the agents allocated so far up to competence
C̄i−1

τ . The selected team for task τ is K =
⋃sτ

i=1 σ(C̄
i
τ ). The agents in K are no

longer available for being chosen to participate in another team.

4.2 Improving team allocation

The second stage of our algorithm applies several heuristics implemented as
agent swaps. This stage is similar to the approach proposed in [4], with the
addition of an exploring step. The heuristics are applied until either: (1) the
global maximum competence affinity is reached; (2) no solution improvement
occurs for a number of iterations; or (3) the algorithm is stopped by the user. In
all cases, the most recently found solution is returned. This stage performs two
types of iterations:

1. Single pairing. We randomly select two tasks, and we apply over them the
following swaps:
(a) Exploiting swap. Find the optimal team allocation just considering

the agents in the teams currently allocated to both tasks.
(b) Exploring swap. Try a maximum of k times the following: (i) randomly

select one of the two tasks, one agent within that task and an unassigned
agent (if any); (ii) swap them; (iii) if the competence affinity is improved,
keep the change and stop the exploring swaps.

2. Exhaustive pairing. For every pair of tasks, swap every possible pair of
agents within them. If the competence affinity is improved, keep the change
and stop the exhaustive pairing.

5 Empirical Analysis

We evaluated our algorithm regarding: (1) the quality of solutions; (2) the time
required to produce optimal solutions; (3) its performance when solving a real-



10 Athina Georgara, Juan A. Rodríguez-Aguilar, and Carles Sierra

Scenario Time Savings wrt. CPLEX(%)
Small (10 Tasks) 60%
Medium (15 Tasks) 55%
Large (20 Tasks) 71%
Table 1: Time savings to reach optimality wrt. CPLEX.

world problem. Importantly, our algorithm was validated by experts on team
formation by comparing the allocations computed by our algorithm with respect
to the allocations provided by teachers with expertise in team formation.

We ran all the experiments on a PC with Intel Core i7 CPU, 8 cores, and 8GB
RAM. The implementation of our algorithm, along with all the necessary sup-
porting code, was made in Python3.7. In all experiments, we set our algorithm’s
parameters as follows: to compute similarities we used κ = 0.35, λ = 0.75; we
performed one exhaustive-pairing every 50 single-pairings; we stopped the algo-
rithm after completing two rounds of 50 single-pairings and after two rounds
of exhaustive pairings elapsed with no improvements. In what follows, in Sec-
tion 5.1, we pitch our algorithm against CPLEX to study its quality, as well as
its runtime and anytime performance. In Section 5.2, we solve a real-world prob-
lem and study our algorithm’s behaviour as the team-size parameter changes.
Finally, in Section 5.3, we compare the quality of our algorithm’s allocations
with the ones obtained by experts in team formation.

5.1 Quality, runtime and anytime analysis

Generating problem instances. In this analysis, we used as competence on-
tology the taxonomy developed by the Institute for the Development of Voca-
tional Training for Workers (ISFOL) [21]. For comparison purposes, we built
3 families of problem instances of different sizes (small, medium, large) that
could all be solved by CPLEX within acceptable time limits. We synthetically
generated agents, competencies and tasks as follows. First, we generated the
tasks to perform. We started by fixing a number of tasks from {10, 15, 20}. After
that, for each task τ we sampled: its required team size mτ∼U{1, 3}; its number
of required competencies |Cτ |∼U{2, 5}; and its importance weights c ∈ Cτ is
wτ (c)∼N

(
µ = U(0, 1), σ∼U(0.01, 0.1)

)
. Second, we generated agents to perform

tasks. For each task τ , we generated mτ agents such that the competencies of
each agent contain competencies that are either identical or a child-node in the
ISFOL taxonomy of some required competence in τ . Our experiments involve 60
problem instances distributed in three families: (1) 20 instances with 10 tasks
and ∼20.5 agents (average number of agents over 20 problem instances); (2) 20
instances with 15 tasks and ∼30.6 agents (average over 20); and (3) 20 instances
with 20 tasks and ∼41.35 agents (average over 20).
Quality analysis. Figure (1a) shows the evolution of the quality of our heuris-
tic algorithm calculated as the ratio between the competence affinity of the
solutions computed by our algorithm and the optimal competence affinity com-
puted by CPLEX. The figure plots the average of the quality ratio achieved by
our algorithm along time over 20 problem instances per scenario: low-size (10
tasks), medium-size (15 tasks), large-size (20 tasks). Variances for all cases are



Allocating teams to tasks: an anytime heuristic competence-based approach 11

insignificant, ≤ 5 · 10−4, and hence we do not plot them. The timestamps are
also averages over the 20 problem instances. Notice that our heuritic algorithm
reaches optimality (quality 1), likewise CPLEX, in the three scenarios.
Runtime analysis. The greatest advantage of our heuristic algorithm is that
it is much faster than CPLEX. Table 1 shows the time we can save with respect
to CPLEX to reach optimality. Overall, using our heuristic can save from ∼55%
to ∼71% time with respect to CPLEX. Specifically, for problem instances with
10 tasks (small scenario), we save 60% time wrt. CPLEX; for problem instances
with 15 tasks (medium scenario), we save 55% time; and, for problem instances
with 20 tasks (large scenario) we save 71% time wrt. CPLEX. Note that the main
time consuming task for CPLEX is building of the LP encoding the problem.
Anytime analysis. Let topt be the seconds required by CPLEX to reach opti-
mality. Our algorithm finds the first solution: (1) after 10−3 ·topt (= 0.06) seconds
with a quality at 80% of the quality of the optimal in the small scenario, (2)
after 25 · 10−3 · topt (= 0.12) seconds and 70% in the medium scenario, and (3)
after 2 · 10−4 · topt (= 0.29) seconds and 65% in the large scenario (see Table 2).

5.2 Solving a real-world problem

As mentioned earlier, in the domain of education there is a need to allocate teams
of students to internship programs. Each student is equipped with competen-
cies, determined through the student’s educational background (type of school,
enrolment year, completed courses, past educational activities, etc.), while each
internship specifies a set of required competencies for the team. In this part
of the experimental analysis, we used real-world data. Specifically, we count on
a collection of 100 students whose competencies are described in the European
Skills/Competences qualifications and Occupations (ESCO) [13] ontology. ESCO

Scenario Quality Time in sec Proportion of topt
Small (10 Tasks) 80% 0.06 sec 10−3

Medium (15 Tasks) 70% 0.12 sec 25 · 10−3

Large (20 Tasks) 65% 0.29 sec 2 · 10−4

Table 2: Quality of the initial solution, the time needed in seconds, and the proportion
of time compared to the time required by CPLEX (topt).

(a) Our algorithm: Competence qualitywrt time. (b) Time required wrt team size

Fig. 1
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consists of a dictionary that describes, identifies and classifies professional oc-
cupations, skills, and qualifications relevant for the EU labour market and ed-
ucation and training. The ESCO ontology is a directed acyclic graph structure
of 6547 different competencies, with 7 levels, and an average branching factor of
1.26 (maximum branching factor 15). The collection of students in our dataset is
equipped with 118 different competencies, on average with 11.98 each. We also
used a collection of 50 real internship programs, whose competencies are also
described in ESCO. All 50 internships required 34 different competencies, while
each internship required on average 4 competencies.

Our following analysis shows the problem’s scalability as required team sizes
grow, and investigates the ability of our algorithm to handle the problem. Due
to the fact that the actual data regarding tasks (internship programs) did not
specify a required team size, we synthetically created problem instances of certain
team sizes. Specifically, we used datasets where all tasks required the same team
size, i.e., where all tasks required equal team sizes (either 2, 3, 4, or 5). These
team sizes are based on the following observation in [3]: “teams that are formed
within an educational environment shall not exceed 5 members.” Moreover, we
also created problem instances where tasks required varying team sizes (team
sizes in [2, 3], in [2, 4], in [2, 5], in [3, 4], in [3, 5], and in [4, 5]), where the team sizes
are equally distributed across the tasks within each problem instance. Consider
the scenario requiring teams of equal size 5 and 100 agents. The search space
has ∼ 7.5 · 107 different teams of size 5. To solve such a hard scenario instance
optimally (e.g., by using CPLEX), we would need to produce ∼75 millions of
decision variables just for a single internship with team size 5. Thus, generating
the LP encodings for the problem instances considered here is totally infeasible.
Analysis. Figure (1b) shows the time required to converge to a solution as the
average over 20 different problem instances with 100 agents and 20 tasks. The
bars illustrate the average time (in minutes:seconds) needed by our algorithm
to output an allocation per team size. As expected, settings with smaller team
sizes require much less time until they converge to a solution. In general, the
time needed by a problem instance requiring team sizes in [a, b] falls between
the times needed (a) by the problems requiring team sizes a and b, and (b) by
the problems requiring team sizes in [a, b−1] and [a+1, b]. Notably, we need less
than 50 minutes to yield a solution in settings where each task requires a team
of size 5, which is the hardest scenario. We deem this is acceptable considering
that this process is not required to run in real time with very demanding time
constraints. Note that the current practice is to match students to internships by
hand, which is much more time consuming, while LP solvers cannot even generate
the program in time. Hence, our results show the feasibility of employing our
algorithm to perform team allocation in the education scenario that we address.

5.3 Validation

Our last analysis focuses on having our algorithm validated by teachers experi-
enced in team formation. For that, we pitched our algorithm against some experts
(teachers) with experience in allocating students to internships. Specifically, we
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(a) Single Winner: Percentage out of
29 tournaments.

(b) Tie with 2 Winners: Percentage out
of 17 tournaments.

synthesised an instance of a task allocation problem involving 50 internships
(m = 50) and 100 students (n = 100) with team sizes within {1, 2, 3}. Notice
that such settings are similar to those employed in our actual-world evaluation
in Section 5.2. The problem instance used here is the largest one regarding the
number of tasks that we can generate with the 100 student profiles at hand.
Notably, to solve this problem optimally (e.g. by using CPLEX) would require
more than 1.8 million decision variables.

Thereafter, we proceed as follows. For the very same problem instance: (1)
we task an expert with matching by hand teams of students with tasks; (2) we
employ our algorithm to compute an allocation; and (3) we compute a random
allocation of teams of students to tasks. Henceforth, we note those three alloca-
tion methods as gexpert, gheuristic, and grandom respectively. Then, eight evaluators
(teachers as well), who are regularly engaged with the process of allocating stu-
dent to internships, were tasked to compare the quality of the three allocations,
without knowing the method that produced each allocation. Notably, our algo-
rithm yielded an allocation in less than 1 hour and 45 minutes, while the experts
reported that they approximately needed a whole working week in order to study
and analyse the students and internship data, and manually build an allocation.
Evaluation Process. Each evaluator was asked to mark the internship as-
signments produced by each one of the three allocation methods. Thus, each
evaluator marked each internship assignment with one of the following marks:
1 for first option, 2 for second option, and 3 for third option. Notice that we
allowed the evaluators to mark two assignments produced by two different allo-
cation methods with the same value if they considered them to be equivalent.
Handling missing data Here we want to point out that during this final anal-
ysis, we faced the problem of missing data. That is, the expert did not manage to
find a team for every internship. Specifically, the expert did not provide a team
assignment to 13 internships (out of 50), leaving 23 students (out of 100) without
internship. This led the evaluators work with incomplete data (two complete al-
locations, and a partial one), and, in their turn, provide incomplete evaluations.
In particular, since for some tasks gexpert was missing, the evaluators were un-
able to mark the three allocation methods (gexpert, gheuristic, and grandom). For
this reason we used the auxiliary mark 4 indicating absence, which is considered
worse than third option (mark 3). Therefore, any missing allocation was marked
with a 4 by all evaluators. Moreover, eventually the evaluators missed marking
some internships (different interships for each evaluator). In that case, we gen-
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erated a third-option mark (3) for missing evaluations.
Analysis. Our analysis is founded on finding the best allocation method for
each internship assignment based on the evaluators’ assessments. We consider
the evaluation of each internship assignment as a tournament consisting of three
competing rounds between pairs of allocation methods: (1) Heuristic vs Expert;
(2) Heuristic vs Random; (3) Expert vs Random.

The marks set by evaluators allow to pick the winning allocation method of
each round and of the tournament as a whole.8 The winning allocation method
of each round results from the aggregated marks of evaluators: the internship as-
signment with greater aggregated mark wins one point for its allocation method.
In case there is a tie between two internship assignments in a round, their cor-
responding allocation methods earn half a point each. Using the points accumu-
lated from each round of a tournament, we apply a Copelandα voting rule [10]
(with α = 0.5) to declare the winner of the tournament. As shown in [14] this
voting rule is “resistant to all the standard types of (constructive) electoral con-
trol”. In short, the allocation method that accumulates more points throughout
the three rounds wins the tournament. Again, in case of a tie between two allo-
cation methods, each one earns half a point. As an illustratory example, say that
for a given tournament: the 8 evaluators considered that our heuristic algorithm
provided the best assignment, 5 evaluators considered that the human expert
provided a better assignment than random, and 2 evaluators equally preferred
the assignments produced by the human expert and random. That would lead to
the following scores: our heuristic algorithm would get 8 · 1 points, the expert’s
allocation would get 5·1+2·0.5 = 6 points, and random would get 2·0.5+1·1 = 2
points. Therefore, the winner of this tournament would be our algorithm.

Each tournament may have a single winner, a tie with two winners, or no
winner. In our evaluation, we encounter 58% over 50 tournaments (i.e., intern-
ship assignments) that announced a single winner, and 34% that announced two
winners in a tie. Considering only the tournaments that announce a single win-
ner, in Figure 2a we observe that 55.17% of these tournaments announced as
winner the allocation yielded by our heuristic algorithm, while 34.48% of the
tournaments announced as winner the allocation provided by the human expert.
The random allocation method only won 10.34% of the tournaments. Therefore,
the evaluators preferred the assignments produced by our algorithm to those
produced by a human expert. Consider now the tournaments declaring 2 win-
ners (tie). Figure 2b shows that, as expected, our heuristic algorithm and the
human expert jointly won more than half of the tournaments (52.94%). Over-
all, regarding the tournaments declaring a tie with two winners, our heuristic
algorithm was part of the winning tie 88.23% of the times. To summarise, our
analysis indicates that expert evaluators deem our proposed heuristic algorithm
as the method of choice to assign teams of students to internships.

8 Notably, the marks applied by the evaluators indicate rankings and therefore these
numbers are meaningless; thus we turn to tournaments.
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6 Related Work

Team formation has received much attention by the AI and MAS community.
Anagnostopoulos et al. in [1] thoroughly study the problem of forming a single
team to resolve a single task, and show the employability of several algorithms in
large scale communities. Lappas et al. in [23] tackle the problem of finding a single
team of experts for a given task in an attempt to minimize the communication
cost among the team. [2] study an online version of the team formation problem
and propose algorithms in order to form teams as a stream of tasks sequentially
arrives (one task at a time). Notably, [2] form a single team for a single task
at a time; while agents can be ‘reused’ in teams of different tasks, permitting
overlapping teams. Kurtan et al. [22] study the dependencies between subtasks
of a given task, and propose algorithms for building a single team for a single
task considering some desired qualities, such as preserving privacy.

Chad et al. [11] add a new dimension to the problem by considering ro-
bustness, and focus on finding a single robust team to perform several tasks.
Andrejczuck et al. [4] tackle the many teams to single task problem and present
algorithms for partitioning a set of agents into equal-size teams in order to per-
form resolve the very same task. Capezzuto et al. in [6] tackle the many teams
to many tasks team formation problem considering temporal and spacial con-
straints, and propose an anytime, efficient algorithm. However, compared to the
problem we tackle here, the proposed algorithm in [6] provides solutions with
overlapping teams, and aims to maximise the number of tasks solved per team.

Regarding the many teams to many tasks team formation problem with no
overlaps—i.e., problems for which different teams share no common agents, each
team can be allocated to only one task, and each task can be assigned to only
one team—we can find a handful of works in the literature. Specifically, we have
singled out two works, namely [12,29], which can be considered as the most
directly related to ours. Although these papers tackle the general many teams
to many tasks problem, their version of the problem is essentially different to
ours, hence preventing us from conducting meaningful comparisons. In more
detail, [29] propose a branch-and-bound technique to determine the optimal
team size structure and then they proceed with a brute-force search. Given that
the problem we tackle in this work assumes that team sizes are known a priori
(team size is part of each task’s requirements), comparing against [29] would
be equivalent to compare against brute-force search. Notably, brute-force search
becomes prohibitive as the number of agents and tasks rise; and considering the
problem instances in our analysis such a comparison would be infeasible.

On the other hand, Czatnecki and Dutta [12] propose an algorithm for match-
ing non-overlapping teams of robots with tasks. Similarly to [29], [12] sets no
constraints on the team sizes. However, even if we could ‘bypass’ the team size
misalignment (by allowing [12] to yield a result, and use these team sizes in our
version), there is yet another essential difference between [12] and our approach.
Our algorithm pursues to optimise the competence affinity between all teams
with their assigned tasks while targeting at balanced allocations (i.e., all teams
are more or less equally competent for their task). Instead, [12] targets at find-
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ing Nash stable teams, i.e., teams whose agents have not incentive to unilaterally
abandon their current team and task without harming the others. As such, [12]
and our approach differ notably in their objectives.

Regardless of the type of team allocation problem, all the works above use
a rather simplistic competence model. That is, following the observation in [3],
all these works assume either that an agent may have or have not a competence
(Boolean) [1,23,2,12,22]; or that an agent may have a competence up to a degree
(Graded) [3,4,7]. Nonetheless, all works consider that a team must collectively
possess all the required competences, exactly as requested. However, in this work
we identify that an agent, and therefore a team, can perform a task when they
count on competences that are similar to the ones required, even if they are
not exactly the same. This is natural, especially when the agents correspond to
humans. Given that ontologies such as ESCO [13] describe semantic relations
among competences, not having a specific competence for a tasks is not an ob-
stacle provided that agents have similar enough competences. For example, when
students move from school to industry, they count on competences, acquired at
the school, which are not exactly the same as those required by industry. And
yet, these student can be considered adequate for jobs in industry. As such, in
this work we put forward a methodology to resolve such issues.

7 Conclusions and future work

In this work, we studied a particular type of team formation problem, and hence
we focused on the Non-Overlapping Many Teams to Many Tasks (NOMTMT)
allocation problem. First, we provided the formulation of the problem. At this
point, we identified and tackled an existing issue regarding the competence mod-
els that we find essential when solving real-world cases. As such, we introduced
a new ontology-based competence model, and proposed a methodology to com-
pute semantic similarities between the competencies required by a task and those
offered by a team. Then, we cast the NOMTMT allocation problem as an opti-
misation one, and show how to solve optimally it by the means of LP. Thereafter,
motivated by the practical limitations of solving the problem optimally, we in-
troduced a novel anytime, heuristic algorithm. Finally, we conducted a three-fold
evaluation of our proposed algorithm. Our results: (i) showed that our heuristic
algorithm can reach optimality in notably less time than an LP solver, saving up
to 71% of time; (ii) showed that our algorithm can handle large, real-world prob-
lems with 100 agents and 20 tasks in less than an hour, while solving the problem
optimally is infeasible; and (iii) our algorithm outperformed experts while re-
quiring much less time (one hour and half vs a whole working week). Notably,
besides the problem’s size, another time consuming factor for the human experts
is the need of manually discerning the similarities between the competences re-
quired by a task and those offered by a team. As future work, we plan to relax
our team size constraints, and use instead allowable intervals—e.g., at least 2
and at most 5 members—since, these assumptions are not fundamental to our
model. Moreover, we will address the notion of “robustness”, and work towards
not only forming good allocations, but also forming robust allocations.
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