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1 Introduction

This chapter presents several results on the complexity of predicate fuzzy logics, un-
derstood as first-order versions of (4-)core propositional fuzzy logics (see the previous
chapter). We will discuss several semantics for them, and for each semantics we will try
to classify the complexity (in the sense of arithmetical hierarchy) of the sets of tautolo-
gies (formulae which are always evaluated into 1), of the positive tautologies (formulae
which are always evaluated into a strictly positive value), of satisfiable formulae (formu-
lae which are evaluated into 1 by some evaluation) and of positively satisfiable formulae
(formulae which are evaluated into a strictly positive number by some evaluation).

The most important semantics we will discuss are the general semantics (given by
all chains for the logic), the real semantics (given by all the chains for the logic having
as lattice reduct [0, 1]) and the standard semantics (that is, the intended semantics for the
logic, in some case coinciding with the real semantics, but in general a proper subclass
of the real semantics; we will be more precise in Section 3). We will also consider the
rational semantics (given by the rational valued chains for the logic), the finite semantics
(given by all finite chains for the logic), the complete chain semantics (given by all
complete chains for the logic), and the witnessed semantics (given by all models in
which the truth value of each universally quantified formula is the minimum of truth
values of instances and analogously for existential quantifier and maximum). Finally
we will also discuss fragments of predicate logics, like the falsum-free fragment, the
fragment with negation, implication and quantifiers and the monadic fragment.

The results, collected in tables present throughout the chapter, show that our pred-
icate logics, with a very few exceptions (like the monadic fragment of classical logic),
turn out to be undecidable (we will prove a quite general undecidability result in Sec-
tion 2). Hence, the main problem we will address in this chapter is not whether a given
predicate logic is decidable or not, but rather how undecidable it is, i.e. what is its unde-
cidability degree.

For the general semantics, the undecidability degrees are low (Σ1 for tautologicity
and Π1 for satisfiability). For the standard semantics, it depends: in the cases where
we have standard completeness, like MTL or IMTL, the undecidability degrees are
trivially as in the general semantics, in other cases, like Łukasiewicz first-order logic, the
undecidability degrees are higher but still in the arithmetical hierarchy, while in product
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logic or in BL logic both tautologicity and satisfiability for the standard semantics fall
outside the arithmetical hierarchy.

In this chapter, a basic knowledge of first-order fuzzy logics and arithmetic is as-
sumed. One can find the necessary background in the former chapters of this handbook.
In particular, for the arithmetical hierarchy, see the notes in Chapter X, Section 2.2. Re-
call classical logic with its deductive system and its models: a formula is provable if
and only if it is a tautology (true in all models—completeness of classical logic); the
set of all such formulae is recursively enumerable (i.e. in Σ1 in the sense of the arith-
metical hierarchy) and, if its language has at least one predicate whose arity is at least
binary, then it is Σ1-complete.1 Similarly for theories like Peano arithmetic PA: the
set of its provable formulae (equal to the set of formulae true in all its models) is Σ1-
complete. PA has its standard model: the structure N of natural numbers with addition
and multiplication. And the set of all formulae true in this standard model is extremely
undecidable, it is outside the arithmetical hierarchy.

As regards to axiomatic systems for arithmetic, we will mainly use Robinson’s arith-
metic Q+. Its axioms are those of equality plus the following ones:

(∀x)(S(x) 6= 0)
(∀x)(∀y)(S(x) = S(y)→ (x = y))
(∀x)(¬x = 0→ (∃y)(S(y) = x))
(∀x)(x+ 0 = x)
(∀x)(∀y)(x+ S(y) = S(x+ y))
(∀x)(x · 0 = 0)
(∀x)(∀y)(x · S(y) = x · y + x)
(∀x)(∀y)(x ≤ y ↔ ∃z(y = x+ z))
(∀x)(∀y)(x ≤ y ∨ y ≤ x)
(∀x)(∀y)(∀z)((x ≤ y ∧ y ≤ z)→ x ≤ z)
(∀x)(∀y)((x ≤ y ∧ y ≤ x)→ x = y)
(∀x)(∀y)((x ≤ y ∧ (x 6= y))↔ S(x) ≤ y).

For every natural number n, n is defined by 0 = 0 and n+ 1 = S(n). Peano
arithmetic PA is obtained from Q+ by adding for any formula φ(x1, . . . , xn, y) the
following induction schema: ∀x1 . . . ∀xn((φ(x1, . . . , xn, 0) ∧ ∀y(φ(x1, . . . , xn, y) →
φ(x1, . . . , xn, S(y))))→ ∀yφ(x1, . . . , xn, y)).

This chapter is organized as follows: Section 2 contains abstract results on any se-
mantics given by a class of linearly ordered algebras and in particular results on the gen-
eral semantics of fuzzy predicate logics. Section 3 is devoted to the complexity of stan-
dard semantics of logics extending the basic fuzzy logic BL∀, particularly Łukasiewicz,
Gödel and product logic, SBL∀ and BL∀ itself. Section 4 deals with the complexity of
semantics given by finite and rational chains and their relations to the real-valued seman-
tics. Section 5 completes the picture by presenting several further results on arithmetical
hierarchy of first-order fuzzy logics: complexity of semantics of witnessed models, com-
plexity of semantics of completely ordered models, results on some fragments of fuzzy

1Please do not confuse the completeness of a theory in a logic with the Σn-completeness or Πn-
completeness of a set of formulae in the sense of arithmetical hierarchy. Such set is Σn-complete if it is
in Σn and is Σn-hard; similarly for Πn.
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logics (with restricted set of connectives or only with monadic predicates), and results on
axiomatic extensions of Łukasiewicz. We conclude the section with a list of open prob-
lems. Finally, Section 6 completes the chapter with some historical and bibliographical
notes for further reading.

2 General results and general semantics

This section considers equality-free first-order fuzzy logics in the full vocabulary P ,
i.e. containing functional and relational symbols of all arities (monadic fragments are ad-
dressed in Section 5). Moreover, we will work with arbitrary classes of linearly ordered
MTL-algebras or their expansions corresponding to (4-)core fuzzy logics in richer lan-
guages. These classes will be usually denoted by K, and we will always assume (to
avoid dealing with non-interesting trivial cases) that they are not empty and do not con-
tain the trivial algebra. WhenK is a class of (expansions of) MTL-chains and no further
condition is assumed, we just say for simplicity that it is a class of chains.

DEFINITION 2.0.1. Given a classK of chains we define the following sets of sentences:

TAUT(K) ={ϕ ∈ SentP | for everyA ∈ K and every safeA-structure M,

‖ϕ‖AM = 1
A}.

TAUTpos(K) ={ϕ ∈ SentP | for everyA ∈ K and every safeA-structure M,

‖ϕ‖AM > 0
A}.

SAT(K) ={ϕ ∈ SentP | there existA ∈ K and a safeA-structure M such that

‖ϕ‖AM = 1
A}.

SATpos(K) ={ϕ ∈ SentP | there existA ∈ K and a safeA-structure M such that

‖ϕ‖AM > 0
A}.

DEFINITION 2.0.2. Let L be a (4-)core fuzzy logic. Instead of TAUT(K) we write

• genTAUT(L∀) if K is the class of all L-chains (the general semantics).

• realTAUT(L∀) if K is the class of all real L-chains, i.e. whose lattice reduct is
the real unit interval [0, 1].

• stTAUT(L∀) if K is a subclass of real L-chains which are considered the in-
tended real semantics (or standard semantics) of L.

• ratTAUT(L∀) if K is the class of all rational L-chains, i.e. whose lattice reduct
is the rational unit interval [0, 1]Q.

• intratTAUT(L∀) if K consists of a single rational L-chain which is considered
the intended rational L-chain.

• finTAUT(L∀) if K is the class of all finite L-chains.

We define analogous notations for the sets TAUTpos(K), SAT(K) and SATpos(K) in
all the cases.
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Given a (4-)core fuzzy logic L, we write Σ |=real(L∀) ϕ meaning that Σ |=K ϕ
when K is the class consisting of all real L-chains; moreover realCons(L∀,Σ) denotes
the set {ϕ ∈ SentP | Σ |=real(L∀) ϕ}, and the analogous definitions for the other
semantics.

LEMMA 2.0.3 ([5]). Let L be a (4-)core fuzzy logic. IfA andB are L-chains such that
there is a σ-embedding (i.e. an embedding preserving all existing infima and suprema)
fromA intoB, then:

1. TAUT(B) ⊆ TAUT(A),

2. TAUTpos(B) ⊆ TAUTpos(A),

3. SAT(A) ⊆ SAT(B),

4. SATpos(A) ⊆ SATpos(B).

The negation operation ¬a = a → 0 allows us to obtain several easy but useful
relations between sets of tautologies and satisfiable sentences. We choose a rather gen-
eral formulation to cope with other possible negations in logics expanded with extra
connectives as those presented in Chapter VIII.

LEMMA 2.0.4. Let K be a class of chains and let ∼ be an operation present in all
members of K such that for every x, ∼x = 1 iff x = 0. Then for every ϕ ∈ SentP :

1. ϕ ∈ TAUTpos(K) iff ∼ϕ /∈ SAT(K),

2. ϕ ∈ SATpos(K) iff ∼ϕ /∈ TAUT(K).

LEMMA 2.0.5. LetK be a class and let∼ be an operation present in all members of K
such that for every x, ∼x = 0 iff x = 1. Then for every ϕ ∈ SentP :

1. ϕ ∈ SAT(K) iff ∼ϕ /∈ TAUTpos(K),

2. ϕ ∈ TAUT(K) iff ∼ϕ /∈ SATpos(K).

The previous lemma applies, in particular, when ∼ is an involutive negation (i.e.
∼∼x = x for every x), e.g. when K can is a class of expansions of IMTL-chains.

LEMMA 2.0.6. Let K be a class of chains and let ∼ be an operation present in all
members of K such that for every x, ∼∼x = 1 iff x > 0. Then for every ϕ ∈ SentP :

1. ϕ ∈ TAUTpos(K) iff ∼∼ϕ ∈ TAUT(K),

2. ϕ ∈ SATpos(K) iff ∼∼ϕ ∈ SAT(K).

The previous lemma applies, in particular, when ∼ is a strict negation (i.e. ∼x = 0
for every x 6= 0), e.g. when K can is a class of expansions of SMTL-chains. For chains
with4 we have the following:
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LEMMA 2.0.7. LetK be a class of chains with the4 operation. Then for every sentence
ϕ we have the following relations:

1. ϕ ∈ SAT(K) iff ¬4ϕ /∈ TAUT(K),

2. ϕ ∈ TAUT(K) iff ¬4ϕ /∈ SAT(K) iff ¬4ϕ /∈ SATpos(K),

3. ϕ ∈ TAUTpos(K) iff ¬4(¬ϕ) ∈ TAUT(K),

4. ϕ ∈ SATpos(K) iff ¬4(¬ϕ) ∈ SAT(K).

We can obtain some lower bounds for the complexity of some of these problems. In
case of the sets of satisfiable sentences, it is easy that they are always Π1-hard.

PROPOSITION 2.0.8. For every class K of chains, SAT(K) is Π1-hard.

Proof. Recall that we assumeK to be non-empty. If ϕ is a sentence and {Pi | 1≤ i≤n}
are the predicate symbols from P appearing in ϕ, we define the sentence Crisp(ϕ) =∧

1≤i≤n(∀−→x )(Pi(
−→x ) ∨ ¬Pi(−→x )). Recall that B2 denotes the Boolean algebra of two

elements. Now just observe that for everyϕ ∈ SentP , ϕ ∈ SAT(B2) iffCrisp(ϕ)&ϕ ∈
SAT(K), and since the satisfiability problem in classical logic is Π1-hard so it must be
SAT(K).

Now we consider the TAUT problems. In the sequel, for every sentence ϕ, 2ϕ
denotes the sentence ¬((¬ϕ) & (¬ϕ)).

LEMMA 2.0.9. Let L be any (4-)core fuzzy logic. For every sentence ϕ, we have that
2ϕ ∨ 2(¬ϕ) ∈ genTAUT(L∀).

Proof. Let A be an L-chain and M an A-model. If ‖ϕ‖AM ≤ ‖¬ϕ‖AM, then we have
‖(¬¬ϕ)2‖AM = 0

A. If ‖ϕ‖AM > ‖¬ϕ‖AM, then ‖(¬ϕ)2‖AM = 0
A. (Observe that ¬x ≤ x

implies ¬x ≤ ¬¬x, thus ¬x → (¬x → 0) = 1, hence (¬x)2 → 0 = 1.) In either case
we have ‖¬(¬ϕ)2 ∨ ¬(¬¬ϕ)2‖AM = 1

A.

DEFINITION 2.0.10. Let ϕ be a classical sentence. Consider its prenex normal form
in classical logic, Q1x1 . . . Qnxn ψ(x1, . . . , xn), where ψ is a lattice combination of
literals. We define a formula ϕ? by induction as follows: if ϕ is a literal, then ϕ? = 2ϕ;
? commutes with quantifiers, ∧ and ∨.

LEMMA 2.0.11. Let ϕ be a lattice combination of literals, L be a (4-)core fuzzy logic
and K a class of L-chains. The following are equivalent:

(1) ϕ is a classical propositional tautology,

(2) ϕ? is an L-tautology,

(3) ϕ? is a tautology for every chain in K,

(4) ϕ? is a positive tautology for every chain in K.
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Proof. Recall that by our standing assumption K is non-empty. (2) ⇒ (3) and (3) ⇒
(4) are obvious. We prove (1)⇒ (2). By distributivity, ϕ can be equivalently written as∧n
i=1

∨ni
j=1 αi,j , where αi,j are literals. Thus, ϕ is a classical tautology iff for every i ∈

{1, . . . , n},
∨ni
j=1 αi,j is a classical tautology. This is the case if for every i ∈ {1, . . . , n}

there are j1, j2 ∈ {1, . . . , ni} such that αi,j1 = ¬αi,j2 . Hence, 2αi,j1 ∨ 2αi,j2 is an L-
tautology by previous lemma and, since this formula implies

∨ni
j=1 2αi,j , we have that

ϕ? is an L-tautology. We finally prove (4)⇒ (1) by contraposition. Ifϕ is not a classical
propositional tautology, then there is an evaluation e on B2 such that e(ϕ) = 0. Since
ϕ? and ϕ are equivalent in classical logic, we also have e(ϕ?) = 0. Now, given any
A ∈ K, it is clear that e can also be seen as an evaluation onA and e(ϕ?) = 0

A.

LEMMA 2.0.12. Let ϕ = (∃x1) . . . (∃xn) ψ(x1, . . . , xn), where ψ is a lattice combi-
nation of literals, be a purely existential formula, L be a (4-)core fuzzy logic and K a
class of L-chains. The following are equivalent:

(1) ϕ ∈ TAUT(B2),

(2) ϕ? ∈ genTAUT(L∀),

(3) ϕ? ∈ TAUT(K),

(4) ϕ? ∈ TAUTpos(K).

Proof. Again, (2) ⇒ (3) and (3) ⇒ (4) are obvious. (4) ⇒ (1) is proved as in
the previous lemma. We prove (1) ⇒ (2). Suppose that ϕ is a classical tautol-
ogy. By Herbrand’s Theorem, there is a classical propositional tautology of the form∨m
i=1 ψ(ti1, . . . , t

i
n), where the tij’s are closed terms. By the previous lemma, recalling

that ? commutes with ∨, we have that
∨m
i=1 ψ

?(ti1, . . . , t
i
n) ∈ genTAUT(L∀). By an

easy proof in L∀, we can derive ϕ? = (∃x1) . . . (∃xn) ψ?(x1, . . . , xn), and hence we
have proved (2).

THEOREM 2.0.13. For every class K of chains, the sets TAUT(K) and TAUTpos(K)
are Σ1-hard.

Proof. The set of provable existential formulae of first-order classical logic is Σ1-hard
(observe that here we are using our general hypothesis that assumes that our first-order
logics have a full vocabulary). Indeed, the Herbrand form ϕH of any sentence ϕ is
purely existential, and ϕ is provable iff ϕH is provable. The claim now follows from the
previous lemma.

In order to prove that the SATpos(K) problems are Π1-hard, we will deal with their
complement, the sets of K-contradictions:

• TAUT0(K) = {ϕ ∈ SentP | for every A ∈ K and every safe A-structure M,
‖ϕ‖AM = 0

A}.

An adaptation of the proof of the Σ1-hardness of the TAUT and TAUTpos problems
allows to obtain the same result for the newly defined set. We do it in the following
lemmata and their consequences.
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LEMMA 2.0.14. Let L be any (4-)core fuzzy logic. For every sentence ϕ we have
ϕ2 ∧ (¬ϕ)2 ∈ genTAUT0(L∀).

Proof. Let A be an L-chain and M an A-model. Otherwise, if ‖ϕ‖AM ≤ ‖¬ϕ‖AM, then
‖ϕ2‖AM = 0

A. If ‖ϕ‖AM > ‖¬ϕ‖AM, then ‖(¬ϕ)2‖AM = 0
A. In either case we obtain

‖ϕ2 ∧ (¬ϕ)2‖AM = 0
A.

This yields a definition analogous to the previous one:

DEFINITION 2.0.15. Let ϕ be a classical sentence. Consider its prenex normal form
in classical logic, Q1x1 . . . Qnxn ψ(x1, . . . , xn), where ψ is a lattice combination of
literals. We define a formula ϕ◦ by induction as follows: if ϕ is a literal, then ϕ◦ = ϕ2;
◦ commutes with quantifiers, ∧ and ∨.

LEMMA 2.0.16. Let ϕ be a lattice combination of literals, L be a (4-)core fuzzy logic
and K a class of L-chains. The following are equivalent:

(1) ϕ is a classical propositional contradiction,

(2) ϕ◦ is an L-contradiction,

(3) ϕ◦ is a contradiction for every chain in K.

Proof. (2)⇒ (3) is trivial. We show (1)⇒ (2). By distributivity, ϕ can be equivalently
written as

∨n
i=1

∧ni
j=1 αi,j , where αi,j are literals. Thus, ϕ is a classical contradiction

iff for every i ∈ {1, . . . , n},
∧ni
j=1 αi,j is a classical contradiction. Hence, for every

i ∈ {1, . . . , n} there are j1, j2 ∈ {1, . . . , ni} such that αi,j1 = ¬αi,j2 . Therefore,
α2
i,j1
∧ α2

i,j2
is an L-contradiction by the previous lemma and, since this formula is

implied by
∧ni
j=1 α

2
i,j , we have that ϕ◦ is an L-contradiction too. (3) ⇒ (1) can be

easily proved by contraposition. If ϕ is not a classical propositional contradiction, then
there is an evaluation e on B2 such that e(ϕ) = 1. Since ϕ◦ and ϕ are equivalent in
classical logic, we also have e(ϕ◦) = 1. Now, given any A ∈ K, it is clear that e can
also be seen as an evaluation onA and e(ϕ◦) = 1

A.

LEMMA 2.0.17 (Dual Herbrand’s Theorem). Let ϕ = (∀x1) . . . (∀xn) ψ(x1, . . . , xn)
be a purely universal sentence. ϕ is a classical contradiction if, and only if, there exists
m and closed terms {ti1, . . . , tin | i = 1, . . . ,m} such that

∧m
i=1 ψ(ti1, . . . , t

i
n) is a

classical propositional contradiction.

Proof. It is a trivial consequence of the usual Herbrand’s Theorem.

LEMMA 2.0.18. Let ϕ = (∀x1) . . . (∀xn) ψ(x1, . . . , xn), where ψ is a lattice combi-
nation of literals, be a purely universal formula, L be a (4-)core fuzzy logic and K a
class of L-chains. The following are equivalent:

(1) ϕ ∈ TAUT0(B2),

(2) ϕ◦ ∈ genTAUT0(L∀),

(3) ϕ◦ ∈ TAUT0(K).
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Proof. Again, (2) ⇒ (3) is trivial and (3) ⇒ (1) is proved as in Lemma 2.0.16. Let
us show (1) ⇒ (2). Suppose that ϕ is a classical contradiction. By the dual Her-
brand’s Theorem, there are closed terms tij such that

∧m
i=1 ψ(ti1, . . . , t

i
n) is a classi-

cal propositional contradiction. By Lemma 2.0.16, recalling that ◦ commutes with ∧,
we have that

∧m
i=1 ψ

◦(ti1, . . . , t
i
n) ∈ genTAUT0(L∀). Therefore, we obtain ϕ◦ =

(∀x1) . . . (∀xn) ψ◦(x1, . . . , xn) ∈ genTAUT0(L∀).

LEMMA 2.0.19. The set of classical purely universal first-order contradictions is Σ1-
hard.

Proof. First observe that the set all contradictions is Σ1-hard (again because we are in
the full vocabulary). Indeed, the set of all tautologies is Σ1-hard and we have that for
any sentence ϕ, ϕ is a contradiction iff ¬ϕ is a tautology. Now given any sentence
ϕ we can write the following chain of equivalencies: ϕ is a contradiction iff ¬ϕ is a
tautology iff its Herbrand form (purely existential) (¬ϕ)H is a tautology iff ¬(¬ϕ)H is
a contradiction. The latter is a purely universal formula, so we are done.

THEOREM 2.0.20. For every (non-empty) class K of chains, the set TAUT0(K) is
Σ1-hard and thus SATpos(K) is Π1-hard.

Proof. It follows from the previous two lemmata and the fact that SATpos(K) is the
complementary set of TAUT0(K).

On the other hand, completeness with respect to a Hilbert-style calculus gives upper
bounds for the complexity:

PROPOSITION 2.0.21. Let L be a recursively axiomatizable (4-)core fuzzy logic andK
be a class of L-chains. If L∀ has the FSKC, then TAUT(K) and TAUTpos(K) are
Σ1, while SAT(K) and SATpos(K) are Π1.

Proof. TAUT(K) is Σ1 because it is the set of theorems of a recursively axiomatizable
logic. Using Lemma 2.0.4 (ϕ ∈ SATpos(K) iff ¬ϕ /∈ TAUT(K)) we obtain that
SATpos(K) is Π1. As regards to SAT(K), notice that for everyϕ ∈ SentP we have: ϕ ∈
SAT(K) iff ϕ 6|=K 0 iff ϕ 0L∀ 0. Using again Lemma 2.0.4 (now ϕ ∈ TAUTpos(K) iff
¬ϕ /∈ SAT(K)) we obtain that TAUTpos(K) is Σ1.

In particular, since a first-order logic is always complete with respect to the seman-
tics of all chains, we obtain:

COROLLARY 2.0.22. For every recursively axiomatizable first-order (4-)core fuzzy
logic L∀, genTAUT(L∀) and genTAUTpos(L∀) are Σ1-complete, genSAT(L∀) and
genSATpos(L∀) are Π1-complete.

Moreover, it yields the following general undecidability result:

COROLLARY 2.0.23. For every (4-)core fuzzy logic, the first-order logic L∀ is unde-
cidable.

See all the results for the general semantics in Table 1.
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Problem Complexity
genTAUT(L∀) Σ1-complete
genSAT(L∀) Π1-complete

genTAUTpos(L∀) Σ1-complete
genSATpos(L∀) Π1-complete

Table 1. Complexity results for the general semantics.

3 Complexity of standard semantics

Let L be a (4-)core fuzzy logic. Recall that the standard semantics of L is given
by a subclass class K of the class of all real L-chains which are considered to be the
intended real L-chains. What are the intended real L-chains? This can possibly have
several meanings but for t-norm based logics we may understand it as follows: if the L
is introduced as the logic of a (left-)continuous t-norm ∗ then the intended chain is just
[0, 1]∗ (like Łukasiewicz logic, etc.); if it is introduced as the logic of a set of t-norms
(like BL) then K is the set of the corresponding algebras [0, 1]∗. Note that each real
BL-chain is given by a continuous t-norm, thus for BL all real BL-chains are intended,
and hence in the case of BL standard chains coincide with real chains.

We shall discuss particular prominent logics: first logics extending BL∀ and then
logics extending MTL∀ (but not BL∀). The main results we will obtain are collected
in Table 2, where (Ł⊕)∀ stands for any logic given by a continuous t-norm which is
an ordinal sum of Łukasiewicz t-norm with any continuous t-norm (i.e. Łukasiewicz
t-norm is its first component in the ordinal sum representation with possibly infinitely
many components); analogously for (G⊕)∀ and (Π⊕)∀.

We will often identify a standard BL-algebra A with its corresponding continuous
t-norm, and hence we identify the components of the t-norm with the corresponding
algebras, which will be called t-norm components of A. Thus, when speaking e.g. of a
product component of a t-norm we may indifferently mean either the isomorphic copy
of the product t-norm or the isomorphic copy of the standard product algebra.

We start with Gödel logic G∀. It is clear that each countable G-chain A embeds
into the standard G-chain [0, 1]G by an isomorphism preserving all infinite suprema and
infima existing inA. This gives standard completeness. Therefore:

stTAUT(G∀) = genTAUT(G∀) stTAUTpos(G∀) = genTAUTpos(G∀)
stSAT(G∀) = genSAT(G∀) stSATpos(G∀) = genSATpos(G∀).

LEMMA 3.0.1. The sets stTAUT(G∀) and stTAUTpos(G∀) are Σ1-complete, while
the sets stSATpos(G∀) and stSAT(G∀) are Π1-complete.

Now let us turn to first-order Łukasiewicz logic. First, it is easy to show that
stTAUT(Ł∀) is in Π2. This follows immediately from the Pavelka-style complete-
ness of RPL∀ discussed in Chapter VIII: ϕ ∈ stTAUT(Ł∀) iff the provability degree
|ϕ|RPL∀ ofϕ equals 1, i.e. (∀r < 1 rational)(∃d)(d is an RPL-proof of (r → ϕ)). Clearly,
this condition is Π2. The proof of Π2-hardness is much harder. From now on, our logic
is Ł∀.
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Logic stTAUT stSAT stTAUTpos stSATpos

MTL∀ Σ1-complete Π1-complete Σ1-complete Π1-complete
IMTL∀ Σ1-complete Π1-complete Σ1-complete Π1-complete
SMTL∀ Σ1-complete Π1-complete Σ1-complete Π1-complete

WCMTL∀ Σ1-hard Π1-hard Σ1-hard Π1-hard
ΠMTL∀ Σ1-hard Π1-hard Σ1-hard Π1-hard

BL∀ Non-arithmetic Non-arithmetic Non-arithmetic Non-arithmetic
SBL∀ Non-arithmetic Non-arithmetic Non-arithmetic Non-arithmetic
Ł∀ Π2-complete Π1-complete Σ1-complete Σ2-complete
G∀ Σ1-complete Π1-complete Σ1-complete Π1-complete
Π∀ Non-arithmetic Non-arithmetic Non-arithmetic Non-arithmetic

(Ł⊕)∀ Π2-hard Π1-complete Σ1-complete Σ2-complete
(G⊕)∀ Σ1-hard Π1-complete Σ1-complete Π1-complete
(Π⊕)∀ Non-arithmetic Non-arithmetic Non-arithmetic Non-arithmetic

CnMTL∀ Σ1-complete Π1-complete Σ1-complete Π1-complete
CnIMTL∀ Σ1-complete Π1-complete Σ1-complete Π1-complete

WNM∀ Σ1-complete Π1-complete Σ1-complete Π1-complete
NM∀ Σ1-complete Π1-complete Σ1-complete Π1-complete

Table 2. Complexity results for the standard semantics of prominent first-order fuzzy
logics.

DEFINITION 3.0.2.
(1) Call a formula classical if all connectives it contains are among ∧,∨,¬.

(2) A standard model M (of Ł∀) is predefinite if for each classical formula ϕ and
each evaluation v, ‖ϕ‖M,v 6= 1

2 .

(3) For an n-ary predicate P , δ(P ) is the formula
[(∀x1, . . . , xn)(P (x1, . . . , xn) ∨ ¬P (x1, . . . , xn)]2.

It is easy to verify that a model M is predefinite if, and only if, ‖δ(P )‖M > 0 for
each predicate P .

DEFINITION 3.0.3. For each predefinite structure M = 〈M, 〈PM〉P , 〈fM〉f 〉 the cor-
responding Boolean structure is M/01 = 〈M, 〈P ′M〉P , 〈fM〉f 〉 where P ′M(−→a ) = 1 iff
PM(−→a ) > 1

2 , otherwise P ′M(−→a ) = 0.

LEMMA 3.0.4. Let M be predefinite and ϕ a classical formula. Then

‖ϕ‖M/01
= 1 iff ‖ϕ‖M > 1

2 iff ‖ϕ2‖M > 0.

Proof. This is clear for atomic formulae and follows by an easy induction for all classical
formulae (elaborate the induction step for ¬,∧,∀ using the preceding lemma).

We shall need the following fact from recursion theory:
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LEMMA 3.0.5. There is a Σ1-relation C ⊆ N2 such that, if we define Cm = {n |
〈m,n〉 ∈ C} then the set Fin = {m | Cm is finite} is a Σ2-complete set (thus N \ Fin
is a Π2-complete set).

DEFINITION 3.0.6. Assume that γ(x, y) is a Σ1-formula defining a binary relation C
in the standard model of arithmetics N , i.e. such that for each m,n ∈ N,

〈m,n〉 ∈ C iff ‖γ(m,n)‖N = 1.

Let Predef stand for δ(=) ∧ δ(≤) and let, for each m, γ∗m stand for the formula
Predef ∧ (Q+)2 ∧ (∀x, y)(2γ(m,x) ∧ 2γ(m, y) ∧ 2(x 6= y) → ¬(U(x) ↔ U(y)))
where U is a new unary predicate (see page 854 for a presentation of Q+).

LEMMA 3.0.7. Under the above relation, Cm is finite iff γ∗m ∈ stSATpos(Ł∀).

Proof. First assume that Cm is finite, say Cm = {n1, . . . , nk}. Take N and expand it
to a model M by defining UM(ni) = i/k, UM(j) = 0 for j distinct from n1, . . . , nk.
Verify easily that ‖γ∗m‖M ≥ 1

k . Indeed, ‖Predef‖M = 1, ‖Q+‖M = 1. Take a, b ∈ N
and assume that the value ‖2γ(m, a) ∧ 2γ(m, b) ∧ 2(a 6= b)‖M is positive (otherwise
there is nothing to prove). This means that the values of γ(m, a), γ(m, b), a 6= b are
> 1

2 and hence = 1 (since in M everything except UM is crisp). But then a 6= b and
a, b ∈ Cm; thus for some i, j ≤ k we have a = ni, b = nj , i 6= j and ‖¬(U(a) ↔
U(b))‖M = | ik −

j
k | ≥

1
k . Thus ‖γ∗m‖M ≥ 1

k .
Conversely, let Cm be infinite, Cm = {ni}∞i=1. We show that γ∗m is not positively

satisfiable. Assume it is, let ‖γ∗m‖M = t > 0. Delete UM from M; we obtain a predefi-
nite model M′ of the language of Q+, hence M′′ = M′

/01 is a model of Q+. We may
assume that N is an initial segment of M′′. Since ‖γ(m,ni)‖N = 1 for i = 1, 2, . . . ,
we have ‖γ(m,ni)‖M′′ = 1, thus ‖γ(m,ni)‖M′ > 1

2 . Hence ‖2γ(m,ni)‖M′ = 1.
For i 6= j we obtain ‖2(ni 6= nj)‖M′ = 1. Come back to M (returning UM). Since
‖γ∗m‖M = t we obtain ‖¬(U(ni) ↔ U(nj))‖M ≥ t, thus putting ‖U(ni)‖M = ti we
obtain |ti − tj | ≥ t for i 6= j. But this is a clear contradiction, because i, j run over all
natural numbers and ti, tj , t are positive reals. This completes the proof.

THEOREM 3.0.8. The set stSATpos(Ł∀) is Σ2-complete and the set stTAUT(Ł∀) is
Π2-complete.

Proof. The mapping associating to each natural m the formula γ∗m reduces the Σ2-
complete set Fin from the Lemma 3.0.5 to the set stSATpos(Ł∀).

Now let us discuss stTAUTpos(Ł∀) and stSAT(Ł∀) (it is easy to check the same
result could be proved for RPL∀ as well).

THEOREM 3.0.9. stTAUTpos(Ł∀) is a Σ1-complete set and hence stSAT(Ł∀) is a
Π1-complete set.

Proof. If ϕ ∈ stTAUTpos(Ł∀) then ¬ϕ has no model over [0, 1]Ł (no standard model)
and therefore is contradictory; recall that each consistent theory over Ł∀ has a standard
model (see e.g. [12, 13]); thus ¬ϕ `Ł∀ 0. Conversely, if ¬ϕ `Ł∀ 0 then ¬ϕ has no
model and hence ϕ ∈ stTAUTpos(Ł∀). Clearly ¬ϕ `Ł∀ 0 is a Σ1 condition; thus
stTAUTpos(Ł∀) is in Σ1. It is Σ1-hard by Theorem 2.0.13.
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Now let us consider the logics (Ł⊕)∀ and (G⊕)∀ and their standard semantics.
Take an arbitrary continuous t-norm which is an ordinal sum whose first summand isC,
C being Łukasiewicz, Gödel or product t-norm. Denote this t-norm by C⊕ and for
simplicity assume that the first positive idempotent is 1

2 . This can always be always be
achieved up to an isomorphism. Furthermore, we may assume without loss of generality
that the isomorphism from the restriction of C⊕ to [0, 1

2 ] to C defined on [0, 1] is just
the mapping sending x to 2x. Let us say that our t-norm begins well with C. ‖ϕ‖CM
denotes the truth value of a sentence ϕ in a C-model M; similarly for ‖ϕ‖C⊕M . (C⊕)∀
is the predicate logic given by C⊕.

DEFINITION 3.0.10. Let h be the following mapping of [0, 1] onto itself: h(x) = 2x
for x ≤ 1

2 , h(x) = 1 for x ∈ [ 1
2 , 1]. Let M = 〈M, 〈PM〉P∈P , 〈fM〉f∈F〉 be a

[0, 1]-structure of the language in question. We define a structure h(M) of the form
〈M, 〈P ′M〉P∈P , 〈fM〉f∈F〉 where for each P (n-ary) and each tuple a1, . . . , an ∈ M ,
P ′M(a1, . . . , an) = h(PM(a1, . . . , an)). Furthermore, we define another structure M/2
as 〈M,

〈
PM/2

〉
P∈P, 〈fM〉f∈F〉 where (PM/2)(a1, . . . , an) = PM(a1, . . . , an)/2.

LEMMA 3.0.11. Let C⊕ begin well with C and let h be the mapping in the previ-
ous definition. Then h is an algebraic homomorphism of 〈[0, 1],C⊕,→C⊕, 0, 1〉 onto
〈[0, 1],C,→C , 0, 1〉 preserving infinite joins and meets. Consequently, for each sen-
tence ϕ,

(1) h(‖ϕ‖C⊕M ) = ‖ϕ‖Ch(M),

(2) ‖ϕ‖CM = h(‖ϕ‖C⊕M/2).

The proof is easy.

THEOREM 3.0.12. A sentence ϕ is a standard positive tautology of C⊕ iff it is a
standard positive tautology ofC. Moreover, ϕ is standardly positivelyC⊕-satisfiable iff
ϕ is standardly positively C-satisfiable. In symbols we have: stTAUTpos((C⊕)∀) =
stTAUTpos(C∀) and stSATpos((C⊕)∀) = stSATpos(C∀).

Proof. This is immediate from the preceding lemma which shows that there is an M
with ‖ϕ‖C⊕M = 0 iff there is an M with ‖ϕ‖CM = 0, and the same for 6= 0.

LEMMA 3.0.13. Let C be Ł or G and let ϕ be a sentence such that ϕ ∈ stSAT(C∀).
Then there exists a Henkin theory T proving ϕ. For C being Ł, T can be assumed to be
maximally consistent.

Proof. It follows from the properties of Henkin theories, see Section 4 of Chapter II.

Call a model M fully named if each element of M is the interpretation of a con-
stant. Recall that the canonical model CM(T ) of a Henkin theory T is fully named (see
Chapter II). In particular, for each formula (∃x)α(x, y, . . . ) and each a, . . . ∈ CM(T ),
if (∃x)α(x, a, . . . ) is 1-true in CM(T ) then there is a b ∈ CM(T ) such that α(b, a, . . . )
is 1-true there. This is used in the proof of the next theorem.

LEMMA 3.0.14. Let C be Ł or G and let C⊕ be a t-norm beginning by C. For an
arbitrary sentence ϕ, if ϕ ∈ stSAT(C) then ϕ ∈ stSAT(C⊕).
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Proof. Given ϕ, let T0 = {ϕ}, let T be its Henkin extension over the logic C∀ and let
M = CM(T ). ForC being Gödel use the fact that each (countable) model over G∀ can
be understood as a standard model by embedding the G-algebra of truth functions into
[0,1] by a 1-1 mapping of truth values preserving all infinite joins and meets (easy). Thus
M is a standard fully named Henkin model of ϕ. Now let C be Łukasiewicz. One can
show that the Lindenbaum algebra Lind used to construct the canonical model CM(T )
is Archimedean, i.e. for each its element x < 1 there is a natural n such that xn = 0.
Furthermore, each (countable) Archimedean MV-chain embeds to the standard algebra
[0, 1]Ł by an isomorphic embedding i preserving all infinite joins and meets existing in
this chain. Hence the Ł-model M = CM(T ) is made standard by replacing each value
from Lind by its i-image. (If necessary consult [12] and some references thereof.)

Thus in both cases we have a standard fully named model of Henkin theory T . Let
f(x) = x

2 for x < 1, f(1) = 1. Make M to aC⊕-structure M′ (with theC-component
on [0, 1

2 ]) and with the same domain as M by defining PM′(a1, . . . ) = f(PM(a1, . . . ))

for all P and a1, . . . We show by induction on the complexity of closed T -formulae α,
‖α‖C⊕M′ = f(‖α‖CM).

This is evident for atoms and connectives (since [0, 1
2 ) ∪ {1} is a C-subalgebra of

[0, 1]∗) and for ∀ (since f preserves infinite meets); similarly for ‖(∃x)β‖CM1
< 1. For

‖(∃x)β‖CM1
= 1 use witnessing: there is a c such that ‖β(c)‖CM1

= 1. In particular,
since ‖ϕ‖CM = 1 we obtain ‖ϕ‖CM1

= 1 and ‖ϕ‖C⊕M′ = 1.

THEOREM 3.0.15.

(1) stSATpos(G∀) = stSAT(G∀).

(2) stSAT((G⊕)∀) = stSAT(G∀).

(3) stSAT((Ł⊕)∀) = stSAT(Ł∀).

Proof. (1) Clearly each sentence standardly satisfiable in G∀ is positively satisfiable
there. Conversely if 0 < r = ‖ϕ‖GM < 1 for some standard M then taking a one-one
increasing mapping of [0, 1] onto itself produce an isomorphic copy M′ of M such that
‖ϕ‖GM′ = 1

2 . Then apply the homomorphism h from Definition 3.0.10 and observe that
it is a homomorphism of the G-structure M′ to the G-structure h(M′) sending 1

2 to 1.
Thus ‖ϕ‖Gh(M′) = 1.

(2) Each sentence standardly satisfiable in (G⊕)∀ is standardly satisfiable in G∀ by
Lemma 3.0.11; the converse inclusion follows from Lemma 3.0.14. A similar line of
reasoning proves (3).

COROLLARY 3.0.16.

stSATpos((G⊕)∀) = stSATpos(G∀) = stSAT(G∀) = stSAT((G⊕)∀).

LEMMA 3.0.17. If ∗ begins with Ł then for each ϕ, ϕ is a standard tautology of Ł∀ iff
¬¬ϕ is a tautology of ∗; similarly for satisfiability.

Proof. By Lemma 3.0.11, ϕ is a standard tautology of Ł∀ iff ϕ is a [ 1
2 , 1]-tautology of ∗

(for each M, ‖ϕ‖C⊕M ∈[ 1
2 , 1]) iff ¬¬ϕ is a tautology of ∗. Similarly for satisfiability.
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The following theorem collects results of arithmetical complexity not stated till now.

THEOREM 3.0.18.

(1) stSAT((G⊕)∀) = stSATpos((G⊕)∀) is Π1-complete, stTAUTpos((G⊕)∀) is
Σ1-complete and stTAUT((G⊕)∀) is Σ1-hard.

(2) stTAUTpos((Ł⊕)∀) and stSAT((Ł⊕)∀) are Σ1-complete, stSATpos((Ł⊕)∀) is
Σ2-complete, and stTAUT((Ł⊕)∀) is Π2-hard.

Proof. (1) By Corollary 3.0.16, and Theorems 3.0.12 and 2.0.20. (2) By Theorem 3.0.12,
Lemma 3.0.13, Theorem 3.0.15, Lemma 3.0.17 and Theorem 3.0.9.

We now characterize the classes K of standard BL-algebras such that TAUT(K) is
recursively axiomatizable. More precisely, we will prove that TAUT(K) is recursively
axiomatizable iff K is the singleton of [0, 1]G.

In the sequel, if the free variables of ψ are among x1, . . . , xn and a1, . . . , an ∈M ,
we write ‖ψ(a1, . . . , an)‖AM to mean ‖ψ‖AM,v where v(xi) = ai (i = 1, . . . , n).

We warn the reader that even if we identify the t-norm components with their as-
sociated algebras, t-norm components of a standard BL-algebra are in general different
from its Wajsberg components. Here below we list some basic differences.

(1) The top of a Wajsberg component is 1, and its supremum or its infimum may fail
to be in the component. To the contrary, 1 need not belong to a Łukasiewicz or
product or Gödel component, and such components contain their supremum and
their infimum.

(2) An infinite Wajsberg component can never be a product algebra, and product com-
ponents are ordinal sums of a two-element Wajsberg algebra and a cancellative
hoop (possibly with 1 replaced by the supremum of the component).

(3) A Gödel component is considered as the ordinal sum of uncountably many two-
element Wajsberg hoops, again, possibly with 1 replaced by the supremum of the
component.

(4) In an ordinal sum of Wajsberg components there must be a first component,
whereas the same is not true of an ordinal sum of t-norm components.

(5) In an ordinal sum of Wajsberg components, each component is a subhoop of the
whole algebraA, whereas the same is not true of t-norm components (considered
as BL-algebras), because if x ≤ y are in a t-norm component Ai of A such that
max(Ai) < 1 and if→ and→i denote the residual in A and in Ai respectively,
then x→i y = max(Ai), and x→ y = 1.

For any two formulae λ and υ, we write λ ↑ υ for (λ → υ) → υ, and we adopt a
similar notation for elements of a BL-chain.

LEMMA 3.0.19. LetA be a BL-chain, M a first-orderA-structure and λ, υ sentences,
possibly with parameters from M . Then, ‖λ ↑ υ‖AM = 1

A
if either ‖υ‖AM = 1

A
or

‖λ‖AM = 1
A

, or ‖λ‖AM > ‖υ‖AM and ‖λ‖AM and ‖υ‖AM are not in the same Wajsberg
component. Otherwise, ‖λ ↑ υ‖AM = max{‖λ‖AM, ‖υ‖AM}.
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Proof. The claim is trivial if either ‖υ‖AM = 1
A or ‖λ‖AM = 1

A. Thus, suppose
‖υ‖AM < 1

A and ‖λ‖AM < 1
A. If ‖λ‖AM and ‖υ‖AM are in the same Wajsberg com-

ponent, then clearly ‖λ ↑ υ‖AM = ‖λ ∨ υ‖AM, and the claim follows.
If ‖λ‖AM ≤ ‖υ‖AM, then ‖λ ↑ υ‖AM = ‖υ‖AM, and again the claim follows. Finally,

if ‖λ‖AM > ‖υ‖AM and these two elements are not in the same Wajsberg component, then
‖λ→ υ‖AM = ‖υ‖AM, and ‖λ ↑ υ‖AM = 1

A.

Let φ be a sentence. We define for every sentence ψ, possibly with parameters from
M , the sentence ψφ in the following inductive way:

• ψφ = ψ ∨ φ if ψ is atomic and different from 0 and 1; 0
φ

= φ and 1
φ

= 1.

• φ commutes with→, ∃ and ∀, i.e. (ψ → γ)φ = ψφ → γφ, ((∃x)ψ)φ = (∃x)(ψφ)
and ((∀x)ψ)φ = (∀x)(ψφ).

• (ψ & γ)φ = (ψφ & γφ) ∨ φ.

Note that `BL∀ φ→ ψφ for every formula ψ.

In the sequel, given a Łukasiewicz or Gödel or product component C of a standard
BL-algebra A, given a formula φ and an A-structure M such that ‖φ‖AM ∈ C, but
‖φ‖AM 6= max(C), Cφ denotes the algebra whose domain is {c ∈ C | ‖φ‖AM ≤ c},
whose bottom is ‖φ‖AM and whose operations are x ?φ y = max{(x ? y), ‖φ‖AM}, and
x →φ y = min{(x → y),max(C)}. Note that Cφ is isomorphic to C if C is either
a Łukasiewicz or a Gödel component, or if C is a product component and ‖φ‖AM =
min(C). On the other hand, if C is a product component and ‖φ‖AM > min(C), then
Cφ is isomorphic to [0, 1]Ł.

Suppose now thatC is a Łukasiewicz or Gödel or product component of a standard
BL-algebraA, let m be its maximum, and let M be anA-structure. Let φ be a sentence
such that ‖φ‖AM ∈ C \ {m}, and let Cφ be as shown above. Let S = {a ∈ A |
∀c ∈ C(c ≤ a)}. Note that m ∈ S, and that S is closed under ?. Indeed, if a, b ∈ S,
then assuming without loss of generality a ≤ b, either a is an idempotent, and then
a ? b = a ∈ S, or a belongs to a Wajsberg component W whose intersection with
C is either empty or reduced to the minimum of S. In any case W ⊆ S, therefore
a ? b ∈ W ⊆ S. Now define a Cφ-structure Mφ such that constants and function
symbols are interpreted as in M and for every n-ary predicate P and every a1, . . . , an ∈
M , PMφ(a1, . . . , an) = (PM(a1, . . . , an) ∨ ‖φ‖AM) ∧ m. The interpretation is then
extended to a map ‖ . . . ‖Cφ

Mφ from the set of all formulae into Cφ in the usual way. For
simplicity, let us write ‖ψ‖φ instead of ‖ψ‖Cφ

Mφ , and ‖ψ‖ instead of ‖ψ‖AM.

LEMMA 3.0.20. For every formula ξ one has:

(i) ‖ξφ‖ ∈ S iff ‖ξ‖φ = m.

(ii) If ‖ξφ‖ /∈ S, then ‖ξ‖φ = ‖ξφ‖.
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Proof. First of all, note that if ‖ξφ‖ /∈ S, then ‖ξφ‖ ∈ Cφ \ {m}, because ‖ξφ‖ ≥
‖φ‖ = min(Cφ). We prove the first claim by induction on ξ.

The claim is obvious if ξ is atomic (in particular, if ξ = 0 or ξ = 1). If ξ = λ & υ,
then (i) follows immediately from the induction hypothesis and from the fact that S is
closed under ?. As regards to (ii), if ‖ξφ‖ /∈ S, then at least one of ‖ξφ‖, ‖υφ‖ is not
in S, since S is closed under ?. If they are both in Cφ \ {m}, then by the induction
hypothesis, ‖λ & υ‖φ = ‖λ‖φ ?φ ‖υ‖φ = ‖λφ‖ ?φ ‖υφ‖ = ‖(λφ & υφ) ∨ φ‖ = ‖ξφ‖.
If, say, ‖λφ‖ ∈ S and ‖υφ‖ ∈ Cφ \ {m}, then ‖ξφ‖ = ‖υφ‖, and by the induction
hypothesis, ‖ξφ‖ = ‖υφ‖ = ‖υ‖φ = m ?φ ‖υ‖φ = ‖λ‖φ ?φ ‖υ‖φ = ‖ξ‖φ.

Suppose now that ξ = λ → υ; as regards to (i), ‖ξφ‖ ∈ S iff either ‖υφ‖ ∈ S or
‖λφ‖ ≤ ‖υφ‖ and ‖υφ‖ ∈ Cφ \ {m}. In the former case, ‖υ‖φ = m, and ‖ξφ‖ ∈ S.
In the latter case, by the induction hypothesis, ‖ξ‖φ = ‖λ‖φ →φ ‖υ‖φ = ‖λφ‖ →φ

‖υφ‖ = m.
Conversely, if ‖ξ‖φ = m, then ‖λ‖φ ≤ ‖υ‖φ, therefore either ‖υ‖φ = m and

then, by the induction hypothesis, ‖υφ‖ ∈ S and ‖ξφ‖ ∈ S, or ‖λφ‖ ≤ ‖υφ‖, and then
‖ξφ‖ = 1. In any case, ‖ξφ‖ ∈ S.

As regards to (ii), if ‖ξφ‖ ∈ Cφ \ {m}, then we must have ‖υφ‖ ∈ Cφ \ {m},
and ‖υφ‖ < ‖λφ‖. If ‖λφ‖ ∈ S, then ‖ξφ‖ = ‖υφ‖, and by the induction hypothesis
‖ξ‖φ = ‖υ‖φ = ‖υφ‖ = ‖ξφ‖. If ‖λφ‖ ∈ Cφ \ {m}, then ‖ξ‖φ = ‖λ‖φ →φ ‖υ‖φ =
‖λφ‖ → ‖υφ‖ = ‖ξφ‖.

Next, suppose ξ = (∀x)λ(x). If ‖ξφ‖ ∈ S, then for all d ∈ M , ‖λ(d)φ‖ ∈ S.
Hence claim (i) follows from the induction hypothesis. If ‖ξφ‖ ∈ Cφ \ {m}, then since
inf(S) = m ∈ S, there is a d ∈ M such that ‖λ(d)φ‖ ∈ Cφ \ {m}, and claim (ii)
follows from the induction hypothesis.

Finally, suppose that ξ = (∃x)λ(x). If for some d ∈ M , ‖λ(d)φ‖ ∈ S, then
claim (i) follows from the induction hypothesis. If ‖ξφ‖ ∈ S, but for all d ∈ M ,
‖λ(d)φ‖ ∈ CF \ {m}, then ‖ξφ‖ = m. Thus, by the induction hypothesis, ‖ξ‖φ =
sup{‖λ(d)‖φ | d ∈M} = sup{‖λ(d)φ‖ | d ∈M} = m, as desired.

THEOREM 3.0.21. Let K be a class of standard BL-algebras that contains a BL-
algebra A which is not isomorphic to [0, 1]G. Then TAUT(K) is Π2-hard. Therefore,
the only logic L which is complete with respect to a class K of standard BL-algebras
such that realTAUT(L∀) is recursively axiomatizable is Gödel logic.

Proof. We will recursively reduce the set stTAUT(Ł∀), which is known to be Π2-
complete, to TAUT(K). Let us extend the language by adding of a new unary predicate
symbol U . Let φ = (∀x)U(x), let γ = (∀x)((U(x) → φ) ∨ (U(x) ↑ φ), and let, for
every sentence ψ of L, ψ? be the sentence

ψ? = ψφ ∨ (∃x)(ψφ ↑ U(x)) ∨ γ.

LEMMA 3.0.22. Let A ∈ K, let ? and → be its monoid operation and its residual
respectively, and let M be anA-structure such that ‖ψ?‖AM 6= 1. Then:

(i) There is d ∈M such that ‖U(d)‖AM and ‖φ‖AM are in the same Wajsberg compo-
nentW , and ‖φ‖AM < ‖U(d)‖AM < 1.

(ii) ‖ψφ‖AM ∈W \ {1}.
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Proof. Throughout the whole proof we write ‖ . . . ‖ for ‖ . . . ‖AM.

(i) If for all d ∈ M either ‖φ‖ = ‖U(d)‖, or ‖U(d)‖ = 1, or ‖φ‖ and ‖U(d)‖
do not belong to the same component, then by Lemma 3.0.19 for all d ∈ M we
would have either ‖U(d) → φ‖ = 1, or ‖U(d) ↑ φ‖ = 1. Hence, ‖γ‖ = 1, and
‖ψ?‖ = 1, a contradiction.

(ii) Let W be the Wajsberg component which ‖φ‖ belongs to. If ‖ψφ‖ /∈ W \ {1},
then since ‖ψφ‖ ≥ ‖φ‖ = inf{‖U(d)‖ | d ∈M}, we have that for some d ∈M ,
‖U(d)‖ < ‖ψφ‖, and either ‖ψφ‖ = 1 or ‖U(d)‖ and ‖ψφ‖ are not in the same
component. In the first case ‖ψ?‖ = 1, and in the second one by Lemma 3.0.19 we
would have ‖(∃x)(ψφ ↑ U(x))‖ ≥ ‖ψφ ↑ U(d)‖ = 1, and once again ‖ψ?‖ = 1,
which is impossible.

The rest of the proof of Theorem 3.0.21 Now letA, M, φ,W , etc. be as in the lemma,
and let m = sup(W ) and c = inf(W ). Let us write once again ‖ . . . ‖ for ‖ . . . ‖AM.
By Lemma 3.0.22 (i), W is a Wajsberg component of A with more than two elements.
Let C = (W \ {1}) ∪ {c,m}. Then since A is a standard BL-algebra and since W
has more than two elements, C is the domain of a t-norm component C of A, which is
either a Łukasiewicz or a product component (remember that a Gödel t-norm component
is the ordinal sum of Wajsberg components of two elements, and hence if it has more
than two elements it is not a Wajsberg component). Moreover, by Lemma 3.0.22 (i),
‖φ‖ < m. Finally, if C is a product component, then c < ‖φ‖, because ‖φ‖ ∈ W , W
is cancellative (hence unbounded), and c = inf(W ) /∈W . Now letCφ be defined from
C as in Lemma 3.0.20. ThenCφ is an isomorphic copy of [0, 1]Ł. Let S and ‖ . . . ‖φ be
defined as in Lemma 3.0.20. Then by Lemma 3.0.20 for every sentence λ we have:

(i) If ‖λφ‖ ∈ S, then ‖λ‖φ = m.

(ii) If ‖λφ‖ /∈ S, then ‖λ‖φ = ‖λφ‖.

We conclude the proof of Theorem 3.0.21 by demonstrating that ψ ∈ stTAUT(Ł∀)
iff ψ? ∈ TAUT(K). Suppose ψ? /∈ TAUT(K). Let A be a standard BL-chain and M
be an A-structure such that ‖ψ?‖AM < 1. Let W , C and Cφ be as in Lemma 3.0.22.
Then by Lemma 3.0.22Cφ is isomorphic to [0, 1]Ł, and by Lemma 3.0.20 we obtain an
interpretation ‖ . . . ‖φ into Cφ such that ‖ψ‖φ < 1. Hence ψ /∈ stTAUT(Ł∀).

Conversely, suppose ψ /∈ stTAUT(Ł∀). Let A ∈ K be not isomorphic to [0, 1]G
and M be a [0, 1]Ł-structure such that ‖ψ‖[0,1]Ł

M < 1. Then A has either a Łukasiewicz
component or a product component, C say. We define anA-structure M′ as follows:

• The domain of M′ is the domain M of M, and the interpretation of all constant
symbols and function symbols is as in M.

• For all d0 ∈M , let UM′(d0) be such that UM′(d0) ∈ C, and 0
C
< inf{UM′(d) |

d ∈M} < UM′(d0) < sup{UM′(d) | d ∈M} < 1
C .

• Before defining the interpretation of the other predicate symbols, we note that for
all d ∈ M , 0

C
< ‖φ‖AM′ < ‖U(d)‖AM′ < 1

C , and hence the algebra Cφ de-
fined from C as in Lemma 3.0.20, is isomorphic to [0, 1]Ł via an isomorphism h.
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Then define for every n-ary predicate P and for every d1, . . . , dn ∈ M we have:
PM′(d1, . . . , dn) = h(PM(d1, . . . , dm)).

Now let us write ‖ . . . ‖ for ‖ . . . ‖AM′ , and let us define an interpretation ‖ . . . ‖φ from
‖ . . . ‖ as in Lemma 3.0.20. Then by Lemma 3.0.20 we obtain 1C > ‖ψ‖φ = ‖ψφ‖.
Moreover, since for all d ∈ M , ‖φ‖ < ‖U(d)‖ and ‖φ‖, ‖U(d)‖ ∈ Cφ \ {1}, by
Lemma 3.0.19, ‖γ‖ < 1

C . Finally, again by Lemma 3.0.19, ‖(∃x)(ψφ ↑ U(x))‖ =

max{sup{‖U(d)‖ | d ∈ M}, ‖ψφ‖} < 1
C . Thus, we have ‖ψ?‖ < 1

C ≤ 1, and
ψ? /∈ TAUT(K). This concludes the proof of Theorem 3.0.21.

We now prove the non-arithmeticity of sets of the form TAUT(K), TAUTpos(K),
SAT(K), and SATpos(K), where K is a set of standard BL-algebras which contains a
BL-algebra which is either isomorphic to [0, 1]Π or begins with Π. See e.g. [22]. We
start with the SAT classes.

THEOREM 3.0.23. Suppose that K contains a standard BL-algebra which begins with
Π or is isomorphic to [0, 1]Π. Then SAT(K) and SATpos(K) are not arithmetical.

Proof. We work in a language containing the language of Peano Arithmetic PA, in-
cluding a binary predicate symbol ≤ for order, plus an additional unary predicate U .
For every formula ψ of PA, we denote by ψ¬¬ the formula obtained replacing every
atomic subformula γ of ψ by ¬¬γ. Note that if a BL-chain either begins with Π or is
isomorphic to [0, 1]Π, then ψ¬¬ is interpreted either as 0 or as 1. We now consider the
following formulae:

• θ1 = (∀x)¬¬U(x) & ¬(∀x)U(x).

• θ2 = (∀x)(∀y)((U(x)→ (U(y) & U(x)))→ U(y)).

• The conjunction of all formulae σ¬¬ such that σ is an axiom of Q+. We denote
such conjunction by θ3.2

• The formula θ4 = (∀x)(U(S(x))↔ ((∀y)((y ≤ x)¬¬ → U(y)))3.

LEMMA 3.0.24. If A is a standard BL-algebra and M is an A-structure such that
‖θ1 & θ2‖AM > 0, thenA begins with Π or is isomorphic to [0, 1]Π.

Proof. Suppose first that A begins with a Łukasiewicz component (or is isomorphic
to [0, 1]Ł). If for some b, ‖U(b)‖AM is in the first component, then ‖(∀x)U(x)‖AM =
‖(∀x)¬¬U(x)‖AM, and ‖θ1‖AM = 0. If either A begins with a Gödel component or
has no first t-norm component, then we must have inf{‖U(d)‖ | d ∈ M} = 0 and
‖U(d)‖ > 0 for all d ∈ M , otherwise ‖θ1‖ = 0. Hence, if either A begins with a
Gödel component or has no first t-norm component, then for all d ∈ M there must be
d′ ∈ M such that ‖U(d′)‖AM < ‖U(d)‖AM and ‖U(d)‖AM and ‖U(d′)‖AM are not in the
same Wajsberg component. This implies ‖(U(d′) → ((U(d′) & U(d))) → U(d)‖AM =
‖U(d)‖AM, and ‖θ2‖AM = 0.

2We assume that θ3 includes γ¬¬ when γ is an axiom of equality or the crispness axiom x = y∨¬(x = y)
for =.
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LEMMA 3.0.25.
IfA is a standard BL-algebra, M is anA-model, and ‖θ1 & θ2 & θ3 & θ4‖AM > 0, then:

(1) For every formula γ(x1, . . . , xn) in the language of PA whose free variables are
among x1, . . . , xn and for all d1, . . . , dn ∈M , ‖γ¬¬(d1, . . . , dn)‖AM ∈ {0, 1}.

(2) Let M¬¬ be the classical structure whose domain3 is M , in which function and
constant symbols are interpreted as in M and such that for every n-ary predi-
cate symbol P and for all d1, . . . , dn ∈ M , one has M¬¬ |= P (d1, . . . , dn) iff
‖P¬¬(d1, . . . , dn)‖AM = 1. Then M¬¬ is a (classical) model of Q+.

(3) M¬¬ is isomorphic to the standard model N of natural numbers.

Proof. (1) Let us write ‖ . . . ‖ instead of ‖ . . . ‖AM. By Lemma 3.0.24,A begins with Π or
is isomorphic to [0, 1]Π, and hence it is an SBL-chain. Therefore, for every sentence ψ,
‖ψ¬¬‖ ∈ {0, 1}.

(2) By an easy induction, we see that M¬¬ |= ψ iff ‖ψ¬¬‖ = 1 for every sen-
tence ψ. Moreover by (1), ‖θ3‖ ∈ {0, 1}, and by our assumptions, ‖θ3‖ > 0. Hence,
‖θ3‖ = 1. It follows that every axiom of Q+ is true in M¬¬.

(3) Suppose, by the way of contradiction, that M¬¬ is a non-standard model ofQ+.
First of all, note that

(+) inf{‖U(d)‖ | d ∈M} = 0 and for all d ∈M , ‖U(d)‖ > 0,

(otherwise ‖θ1‖ = 0). We claim that there is a c ∈M such that for all b ∈M ,

(++) if M¬¬ |= c ≤ b, then ‖U(S(b))‖ ≤ (‖(∀x)((x ≤¬¬ b)→ U(x))‖)2.

Indeed, if

(*) ‖U(S(b))‖ > (‖(∀x)((x ≤¬¬ b)→ U(x))‖)2,

then ‖U(S(b)) → ((∀x)(x ≤¬¬ b → U(x)))3‖ ≤ ‖(∀x)(x ≤¬¬ b → U(x))‖, and if
(*) holds for unboundedly many b, (that is, if for all c ∈ M there is a b ∈ M such that
M¬¬ |= c ≤ b and (*) holds), then ‖θ4‖ = 0, against our assumption.

Since inf{‖U(d) | d ∈M} = 0, there is a d ∈M such that ‖U(d)‖ < 1, and since
if condition (++) holds for c ∈M , then it holds for all c′ ∈M such that M¬¬ |= c ≤ c′,
we can suppose, without loss of generality, M¬¬ |= d < c, and by (++), ‖U(c)‖ ≤
‖U(d)‖2 < 1. Moreover, by the previous observation (that is, condition (*) is upward
preserved), we may assume without loss of generality that c is non-standard. Hence, by
an iterated use of (++) we see that for every natural number n, ‖U(c+n)‖ ≤ ‖U(c)‖2n ,
and inf{‖U(c+ n)‖ | n ∈ N} = 0. But since c is non-standard, then M¬¬ |= c+ c >
c+n for every n ∈ N, and hence, by (*), ‖U(c+ c)‖ ≤ (‖U(c+n)‖)2 for every natural
number n. It follows ‖U(c+ c)‖ = 0, contradicting condition (+).

We have derived a contradiction from our assumption that M¬¬ was not standard,
and hence M¬¬ is isomorphic to N.

3If the predicate = for equality is not interpreted as crisp equality, then instead of M we have to take as
domain the set of all equivalence classes of elements of M modulo the equivalence ≡ defined by a ≡ b iff
‖a =¬¬ b‖AM = 1.
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We conclude the proof of Theorem 3.0.23. Since the set of sentences of PA which
are true in N is not arithmetical, it suffices to prove:

LEMMA 3.0.26. Let ψ be any PA-sentence. Then, N |= ψ iff θ1 &θ2 &θ3 &θ4 &ψ¬¬ ∈
SAT(K) iff θ1 & θ2 & θ3 & θ4 & ψ¬¬ ∈ SATpos(K).

Proof. If N 6|= ψ, then we have seen that if A ∈ K and M is an A-structure such
that ‖θ1 & θ2 & θ3 & θ4‖AM > 0, then M¬¬ is isomorphic to N. Moreover, an easy
induction shows that for every formula γ(x1, . . . , xn) of T and for all d1, . . . , dn ∈M ,
one has M¬¬ |= γ(d1, . . . , dn) iff ‖γ¬¬(d1, . . . , dn)‖AM = 1. Hence, ‖ψ¬¬‖AM = 0,
and θ1&θ2&θ3&θ4&ψ¬¬ /∈ SATpos(K). A fortiori, θ1&θ2&θ3&θ4&ψ¬¬ /∈ SAT(K).

Conversely, assume N |= ψ. Take A ∈ K which either begins with Π or is isomor-
phic to [0, 1]Π, and define an A-structure M as follows: the domain M of M is N
and the constants and the function symbols of PA are interpreted as in N. More-
over, for d1, . . . , dn ∈ M and for every n-ary predicate of the language of PA, we
set PM(d1, . . . , dn) = 1 if N |= P (d1, . . . , dn) and PM(d1, . . . , dn) = 0 otherwise.
Finally, UM(n) = (1

2 )3n , where each real number is thought of as an element of the first
component [0, 1]Π ofA.

It is easily seen that ‖θ1&θ2&θ3&θ4&ψ¬¬‖AM = 1. Hence, θ1&θ2&θ3&θ4&ψ¬¬ ∈
SAT(K), and a fortiori θ1 & θ2 & θ3 & θ4 &ψ¬¬ ∈ SATpos(K). This ends the proof of
Lemma 3.0.26.

At this point the proof of Theorem 3.0.23 is immediate.

COROLLARY 3.0.27. For every L ∈ {Π,BL,SBL,Π⊕}, the sets stSAT(L∀) and
stSATpos(L∀) are not arithmetical.

We now consider the complexity of TAUT(K) and TAUTpos(K) where K is a set
of standard BL-chains such that at least one of them begins with Π or is isomorphic to
[0, 1]Π. Let T , θ1, θ2, θ3 and θ4 be as in the proof of Theorem 3.0.23.

THEOREM 3.0.28. Let ψ be a sentence of PA and ψ? the sentence (θ1&θ2&θ3&θ4)→
ψ¬¬. Then, N |= ψ iff ψ? ∈ TAUT(K) iff ψ? ∈ TAUTpos(K). Hence, TAUT(K) and
TAUTpos(K) are not arithmetical.

Proof. Suppose first N 6|= ψ. LetA ∈ K be such thatA begins with Π or is isomorphic
to [0, 1]Π, and consider an A-structure M as follows: the domain M of M is N and the
constants and the function symbols of T are interpreted as in N. Moreover, for every
n-ary predicate of PA and for all k1, . . . , kn ∈ N, we stipulate that PM(k1, . . . , kn) = 1
if N |= P (k1, . . . , kn) and PM(k1, . . . , kn) = 0 otherwise. Finally, UM(n) = ( 1

2 )3n ,
where each real number is thought of as an element of the first component [0, 1]Π ofA.
It is easily seen that ‖θ1 & θ2 & θ3 & θ4‖AM = 1, and ‖ψ¬¬‖AM = 0. Hence, ψ? /∈
TAUTpos(K), and a fortiori ψ? /∈ TAUT(K).

Now suppose that N |= ψ, and let us prove that ψ? ∈ TAUT(K) (hence, a fortiori,
ψ? ∈ TAUTpos(K)). Thus, let A ∈ K and M be any A-structure, and let us prove that
‖ψ?‖AM = 1. Once again,we will write ‖ . . . ‖ instead of ‖ . . . ‖AM. Clearly, ‖ψ?‖ = 1
if ‖θ1 & θ2 & θ3 & θ4‖ = 0. Hence, we may assume, without loss of generality, that
‖θ1 & θ2 & θ3 & θ4‖ > 0. By Lemma 3.0.24 we have that either A begins with Π or
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is isomorphic to [0, 1]Π, and by Lemma 3.0.25 we can construct a classical model M¬¬

which is isomorphic to N and such that for every sentence γ in the language of PA,
one has M¬¬ |= γ iff ‖γ¬¬‖ = 1. Hence, if N |= ψ, then ‖ψ¬¬‖ = 1, and finally
‖ψ?‖ = 1. Summing up, if N |= ψ, then ψ? ∈ TAUT(K), and the claim is proved.

COROLLARY 3.0.29. For every L ∈ {Π,BL,SBL,Π⊕}, the sets stTAUT(L∀) and
stTAUTpos(L∀) are not arithmetical.

We now prove that with a finite number of exceptions, for all classes K of stan-
dard BL-algebras, TAUT(K) is not arithmetical. We first prove that TAUT(K) is not
arithmetical when K contains a standard BL-algebra with a product component (not
necessarily the first component).

From the proof of Theorem 3.0.28 it follows that the set of standard tautologies of
Π∀ of the form ψ = θ3 → γ (where θ3 is as in the proof of Theorem 3.0.28) is not
arithmetical. Hence, it suffices to find an algorithm that associates to every sentence
ψ of the form shown above a sentence ψ? such that ψ ∈ stTAUT(Π∀) if, only if,
ψ? ∈ TAUT(K). Once again, U denotes a unary predicate symbol not in the language
of Π∀, and we define φ = (∀x)U(x). Moreover, let us define:

θ = (∀x)(U(x) ↑ φ),

σ = (∀x)(∀y)((U(x) ↑ U(y))↔ (U(y) ↑ U(x))).

For every sentence ψ in the language of Π∀ of the form θ3 → γ, we define ψ? =
((θ & σ)→ ψφ) ∨ (∃x)(ψφ ↑ U(x)).

THEOREM 3.0.30. Let K a set of standard BL-algebras containing one with a prod-
uct component (not necessarily the first component). Then for every sentence ψ of
the form θ3 → γ and not containing the symbol U , one has: ψ ∈ stTAUT(Π∀) iff
ψ? ∈ TAUT(K). Thus (by Theorem 3.0.28) TAUT(K) is not arithmetical.

Proof. We start with one lemma.

LEMMA 3.0.31. LetA be a standard BL-algebra, let ? and→ be its monoid operation
and its residual respectively, and let M be anA-structure such that ‖ψ?‖AM 6= 1. Let us
write ‖ . . . ‖ for ‖ . . . ‖AM. Then:

(i) For all a ∈M , ‖U(a)‖ and ‖φ‖ do not belong to the same Wajsberg component.

(ii) The set {‖U(a)‖ | a ∈M} has no minimum (hence it is infinite).

(iii) There is an a ∈ M such that the set {‖U(b))‖ | ‖U(b))‖ ≤ ‖U(a)‖} is included
in a single Wajsberg component W of A, which is necessarily a cancellative
component. Moreover, ‖ψφ‖ ∈ (W ∪ {‖φ‖}) \ {1}.

Proof. (i) Suppose that ‖U(a)‖ and ‖φ‖ are in the same Wajsberg component. Then
since ‖U(b)‖ ≥ ‖φ‖ for all b ∈ M , by Lemma 3.0.19 ‖U(a) ↑ φ‖ = ‖U(a)‖,
and ‖(∀x)(U(x) ↑ φ)‖ = inf{‖U(a)‖ | a ∈M} = ‖φ‖. Since ‖φ‖ ≤ ‖ψφ‖, one
would have ‖ψ?‖ = 1, a contradiction.
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(ii) If {‖U(a)‖ | a ∈ M} has a minimum, then this minimum is equal to ‖φ‖, which
is in contradiction with (i).

(iii) Suppose, by way of contradiction, that for every a ∈ M there is a b ∈ M such
that ‖U(b)‖ < ‖U(a)‖ and ‖U(a)‖, ‖U(b)‖ do not belong to the same Wajsberg
component. Then, by Lemma 3.0.19, we have ‖U(b) ↑ U(a)‖ = ‖U(a)‖, and
‖U(a) ↑ U(b)‖ = 1. Hence ‖σ‖ = inf{‖U(a)‖ | a ∈ M} = ‖φ‖. It follows
that ‖σ‖ ≤ ‖ψφ‖, and ‖ψ?‖ = 1, a contradiction. Thus there are a ∈ M and a
Wajsberg componentW ofA such that for all b ∈M , if ‖U(b)‖ ≤ ‖U(a)‖, then
‖U(b)‖ ∈ W . Now W is either a cancellative hoop or (the reduct of) a Wajsberg
algebra. In the latter case ‖φ‖, being the infimum of a subset of W (namely, of
{‖U(b)‖ | ‖U(b)‖ ∈ W}) would be in W . This contradicts (i). Hence W is
a cancellative component. Finally, suppose ‖ψφ‖ /∈ (W ∪ {‖φ‖}) \ {1}. Then
clearly ‖ψφ‖ 6= 1, otherwise ‖ψ?‖ = 1. Thus ‖ψφ‖ /∈ W ∪ {‖φ‖}. Now
‖ψφ‖ ≥ ‖φ‖. Thus if b ∈ M is such that ‖U(b)‖ ∈ W \ {1}, then ‖ψφ‖ >
‖U(b)‖, and ‖ψφ‖ and ‖U(b)‖ do not belong to the same component. Therefore,
‖ψφ ↑ U(b)‖ = 1, and ‖(∃x)(ψφ ↑ U(x))‖ = 1. It follows that ‖ψ?‖ = 1, a
contradiction.

The rest of the proof of Theorem 3.0.30 If ψ? /∈ TAUT(K), then by Lemma 3.0.31,
there is an a ∈ M such that the set {‖U(b))‖ | ‖U(b))‖ ≤ ‖U(a)‖} is included in a
single cancellative component W of A. Moreover, ‖ψφ‖ ∈ (W ∪ {‖φ‖}) \ {1}. Let
m = sup(W ), and let C = (W \ {1}) ∪ {‖φ‖,m}. Then C is the domain of a product
component C of A. Let Cφ be constructed from C as in the proof of Lemma 3.0.20.
Then, since ‖φ‖ = min(C), Cφ = C. Now let S = {a ∈ A | ∀b ∈ C(b ≤ a)},
and let ‖ . . . ‖φ be defined as in Lemma 3.0.20, taking into account that Cφ = C. Then
by Lemma 3.0.31 (iii), ‖ψφ‖ /∈ S, and by Lemma 3.0.20 we obtain ‖ψ‖φ 6= 1. Hence
ψ /∈ stTAUT(Π∀).

Conversely, suppose that ψ /∈ stTAUT(Π∀). Then there is a [0, 1]Π-structure M

such that ‖ψ‖[0,1]Π
M 6= 1. Then we must have ‖θ3‖[0,1]Π

M = 1, and hence the domain M
of M must be infinite (its domain is a model of Q+).

Now take an element A ∈ K with a product t-norm component C. Up to iso-
morphism, we may assume that M is a C-structure. We define an A-structure M′

such that ‖ψ?‖AM′ 6= 1 as follows. The domain M ′ of M′ is the domain M of M.
Moreover, for all d ∈ M , let UM′(d) be such that 0

C
< UM′(d), sup{UM′(d)) |

d ∈ M} < 1
C , and inf{UM′(d) | d ∈ M} = 0

C . Then ‖φ‖AM′ = 0
C , and

Cφ = C (cf. the proof of Theorem 3.0.28 for the construction of Cφ from C). More-
over, for every n-ary predicate P different from U , and for every d1, . . . , dn ∈ M , we
define PM′(d1, . . . , dn) = h(PM(d1, . . . , dn)), where h is an isomorphism between
[0, 1]Π and C. Thus if PM(d1, . . . , dn) = 1, then PM′(d1, . . . , dn) = 1

C
= sup(C).

Note that the interpretation ‖ . . . ‖φ constructed from ‖ . . . ‖ = ‖ . . . ‖AM′ according to
Lemma 3.0.20 is just ‖ . . . ‖CM. Hence, by Lemma 3.0.20, we obtain that ‖ψφ‖AM′ =

‖ψ‖CM ∈ C \ {1
C}. Moreover, for all d ∈ M , ‖φ‖AM < ‖U(d)‖AM, and ‖φ‖AM is not in

the same Wajsberg component as ‖U(d)‖AM. Thus, by Lemma 3.0.19, ‖σ‖AM = 1. Also,
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all elements of the form ‖U(d)‖AM with d ∈ M are in the same Wajsberg component.
Hence, by Lemma 3.0.19 again, ‖θ‖AM = 1, and ‖(σ & θ)→ ψφ‖AM < 1. Finally,

‖(∃x)(ψφ ↑ U(x))‖AM = sup{‖ψφ ↑ U(d)‖AM | d ∈M} =

= sup{max{‖ψφ‖AM, ‖U(d)‖AM} | d ∈M} =

= max{‖ψφ‖AM, sup{‖U(d)‖AM | d ∈M}} < 1.

It follows that ‖ψ?‖AM < 1, and ψ? /∈ TAUT(K). This concludes the proof of Theo-
rem 3.0.30.

Now we extend this non-arithmeticity result to the case whereK contains a standard
algebra with at least one Łukasiewicz t-norm component which is neither the first nor
the last component. Clearly, we may assume that there is no algebra inK with a product
component, otherwise we already know that TAUT(K) is not arithmetical. In order
to prove our claim, we will directly reduce the set of sentences which are valid in the
standard model N of natural numbers to TAUT(K).

Let θ3, U and ¬¬ be as in the proof of Theorem 3.0.23, let φ = (∀x)U(x) and let φ

be as in Theorem 3.0.21. Consider the following formulae:

• γ1 = (∀x)¬¬U(x).

• γ2 is defined to be the conjunction of all formulae of the form

∀x1 . . . ∀xn(¬P (x1, . . . , xn) ∨ ¬¬P (x1, . . . , xn)),

where P is a predicate symbol of PA, including equality if it is not assumed to be
crisp.

• δ1 = (∃x)((U(x) ↑ φ) ∨ (U(x)→ φ2)).

• δ2 = (∃x)(U(S(x))2 → (∃y)(y ≤¬¬ x& U(y))).

Now let for every formula ψ in the language of PA,

ψ? = (γ1 & γ2 & θ3)→ (ψ¬¬ ∨ φ ∨ δ1 ∨ δ2).

THEOREM 3.0.32. Let K be a class of standard BL-algebras containing an element
with a Łukasiewicz component which is neither the first one nor the last one. Then for
every formula ψ of the language of arithmetic, one has: N |= ψ iff ψ? ∈ TAUT(K).

Proof. (⇒). We argue contrapositively. Suppose that ψ? /∈ TAUT(K). LetA ∈ K and
let M be an A-structure such that ‖ψ?‖AM 6= 1. Once again, let us write ‖ . . . ‖ instead
of ‖ . . . ‖AM.

LEMMA 3.0.33.

(i) There is a Wajsberg component W of A, isomorphic to [0, 1]Ł, which is not the
first component ofA, and for all d ∈M , ‖U(d)‖ ∈W\{1}. Moreover, ‖φ‖ ∈W .

(ii) For every PA-sentence with parameters in M , ‖λ¬¬‖ ∈ {0, 1}.

(iii) Define a model M¬¬ from M as in the proof of Theorem 3.0.23. Then M¬¬ is
isomorphic to the standard model of natural numbers.
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Proof. (i) For all d ∈ M , ‖U(d)‖ 6= 1, otherwise ‖ψ?‖ ≥ ‖δ1‖ = 1. Moreover
all the elements of the form ‖U(d)‖ with d ∈ M belong to the same Wajsberg compo-
nent W , because if ‖U(a)‖ < ‖U(b)‖ and ‖U(a)‖, ‖U(b)‖ do not belong to the same
component, then since for all a ∈ M , ‖φ‖ ≤ ‖U(a)‖, by Lemma 3.0.19 we obtain that
‖U(b) ↑ φ‖ = 1, and ‖ψ?‖ ≥ ‖δ1‖ = 1. For the same reason, ‖φ‖ ∈ W . Now W
cannot be a cancellative component, because by our assumptionsA contains no product
component. Moreover it cannot be isomorphic toB2, otherwise for all d ∈M we would
have ‖U(d)→ φ2‖ = 1, and ‖ψ?‖ ≥ ‖δ1‖ = 1. HenceW must be an isomorphic copy
of [0, 1]Ł. Now if W were the first component, then for all d ∈ M , ‖¬¬U(d)‖ =
‖U(d)‖, ‖γ1‖ = ‖φ‖, and ‖ψ?‖ ≥ ‖γ1 → (ψ¬¬ ∨ φ)‖ = 1, which is impossible.

(ii) The proof is by induction on the formula λ. Actually, the induction steps are
immediate, so it suffices to prove the claim for atomic formulae P (d1, . . . , dn). If
P¬¬(d1, . . . , dn) /∈ {0, 1}, then P¬¬(d1, . . . , dn) is in the first Wajsberg component,
otherwise by Lemma 3.0.19 ‖¬¬P (d1, . . . , dn)‖ = 1. It would follow that ‖γ2‖ is in
the first Wajsberg component and is different from 1. Since ‖φ‖ is the infimum of a
Wajsberg component which is not the first component, ‖γ2‖ ≤ ‖φ‖ ≤ ‖ψ¬¬ ∨ φ‖, and
‖ψ?‖ = 1, which is impossible.

(iii) First of all, we must have ‖θ3‖ > 0, otherwise ‖ψ?‖ = 1. Since ‖θ3‖ ∈ {0, 1},
‖θ3‖ = 1, and hence M¬¬ is a model of Q+ (recall that if λ is a sentence of PA, then
M¬¬ |= λ iff ‖λ¬¬‖ = 1). Now ‖δ2‖ < 1, otherwise ‖ψ?‖ = 1. Hence, for all d ∈ M
we must have ‖U(S(d))‖2 > sup{‖U(b)‖ |M¬¬ |= b ≤ d}. Now let for n ∈ N, dn be
the realization of n in M¬¬. Then ‖U(d1)‖2 > ‖U(d0)‖, ‖U(d2)‖2 > ‖U(d1)‖, etc.
Continuing, since by (i), for every n, ‖U(dn)‖ ∈ W \ {1} and since W is isomorphic
to [0, 1]Ł, we easily obtain that sup{‖U(dn)‖ | n ∈ N} = sup(W \ {1}). Now suppose
that d is a non-standard element in M¬¬. Then we should have that ‖U(S(d))‖2 >
sup(W \{1}), which is impossible, because by (i) we have ‖U(S(d))‖ ∈W \{1}.

The rest of the proof of Theorem 3.0.32 At this point, the proof of (⇒) is immediate:
if ‖ψ?‖ 6= 1, then ‖ψ¬¬‖ = 0, and M¬¬ 6|= ψ. Since M¬¬ is isomorphic to N, we
conclude that N 6|= ψ.

(⇐) Suppose that N 6|= ψ. Take A ∈ K with a Łukasiewicz t-norm component
C which is neither the first nor the last component. Clearly C is isomorphic to the
Łukasiewicz t-norm. Let for every q ∈ Q ∩ [0, 1], qC denote the isomorphic copy of q
in C. Define an A-structure M as follows: the domain, M , of M is N, the function
symbols and the constants of PA are interpreted as in N, = is interpreted as crisp equal-
ity (that is, n =M m = 1 if n = m and n =M m = 0 otherwise, and ≤ is interpreted
similarly as the usual order in N. Then clearly ‖ψ¬¬‖AM = 0.

Now defineUM(n) recursively byUM(0) = (1
2 )C, andUM(n+1)) =

(UM(n)+3
4

)C
.

For all n ∈ N we have ( 1
2 )C ≤ ‖U(n)‖ < ‖U(n + 1)‖ < 1

C . Thus ‖U(n)‖ ∈
W \ {1}. Moreover ‖U(n+ 1)2‖ = ‖U(n)‖+1

2 > ‖U(n)‖ and therefore ‖U(S(n))2 →
(∃x)(x ≤¬¬ n & U(x))‖ < 1

C . It follows that ‖δ2‖ = 1
C
< 1, because C is not the

last component. Also, it is easily seen that ‖γ1 &γ2‖ = 1 and that ‖(ψ¬¬∨φ)‖ = ( 1
2 )C .

Finally, for every n ∈ N, ‖U(n) → φ2‖ ≤ ( 1
2 )C , and ‖U(n) ↑ φ‖ = ‖U(n)‖. Thus

‖δ1‖ = sup{‖U(n)‖ | n ∈ N} = 1
C
< 1. Hence, ‖ψ?‖ = 1

C
< 1.
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It follows:

THEOREM 3.0.34. LetK be a class of standard BL-algebras containing an element not
isomorphic to any of [0, 1]G, [0, 1]Ł, [0, 1]Ł ⊕ [0, 1]G, [0, 1]G ⊕ [0, 1]Ł, [0, 1]Ł ⊕ [0, 1]Ł
and [0, 1]Ł ⊕ [0, 1]G ⊕ [0, 1]Ł. Then TAUT(K) is not arithmetical.

Proof. If a standard BL-algebra is not among the ones shown above, then either it con-
tains a product t-norm component or it contains a Łukasiewicz t-norm component which
is neither the first component nor the last component. The claim follows from Theo-
rems 3.0.30 and 3.0.32.

In the final part of this section we consider the arithmetical complexity of the stan-
dard semantics of logics of left-continuous t-norms in proper sense, i.e. logics extending
MTL∀ but not BL∀, such as MTL∀ itself, IMTL∀ or SMTL∀. Since these logics are
typically introduced as the logics of certain semantics of t-norms all their real chains are
actually intended models and hence standard chains.

THEOREM 3.0.35. Let L∀ be a logic enjoying the FSKC for K being the class of all
real L-chains. Then realTAUT(L∀) and realTAUTpos(L∀) are Σ1-complete, while
realSAT(L∀) and realSATpos(L∀) are Π1-complete.

Proof. It is a consequence of Propositions 2.0.8 and 2.0.21, and Theorems 2.0.13 and
2.0.20.

The prominent logics of left-continuous t-norms collected in Table 2 fall under the
scope of this theorem and, thus, the complexities thereof are justified.

4 Complexity of finite and rational-chain semantics

Let A be any finite chain and let 0 = a1 < · · · < an = 1 be the elements of A in
increasing order. LA, the first-order many-valued logic based on A, is defined seman-
tically as follows: LA has a language PA containing, besides parentheses, variables,
predicate symbols, function symbols, a k-ary connective F for each k-ary operation FA

on A (different symbols for different operations), plus the quantifiers ∃ and ∀. For
each connective F introduced in this way, we refer to FA as the realization of F in A.
Since A is finite, each A-structure M = 〈M, 〈PM〉P∈PA

, 〈fM〉f∈PA
〉 is safe, because

universal quantifiers are interpreted by taking the minimum value of instances, and ex-
istential quantifiers by taking the maximum value of instances.

For every set T ∪ {φ} of sentences of LA, the consequence relation |=LA
in LA is

defined as follows: T |=LA
φ iff for every A-structure M, one has that if 〈A,M〉 |= ψ

for all ψ ∈ T , then 〈A,M〉 |= φ. If ∅ |=LA
φ, then we say that φ is anA-tautology and

we write |=LA
φ.

THEOREM 4.0.1. For every finite chainA, the set ofA-tautologies is Σ1.

Proof. We will associate to A a recursively axiomatized classical first-order theory TA
and to every sentence φ of LA a formula φT in the language of TA such that the map
φ 7→ φT is computable and φ is an A-tautology iff φT is a theorem of TA. This will
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clearly suffice to prove the theorem. First of all, the theory TA has all function sym-
bols in LA. Moreover TA has a constant symbol cT for each element c of A, plus an
additional constant u (for undefined) and an additional k-ary functional symbol fφ for
each formula φ with k free variables (the intended meaning is that fφ(d1, . . . , dk) =
‖φ(d1, . . . , dk)‖AM; in particular, if φ is a sentence, then fφ is a constant). TA has two
binary predicate symbols = and <. The intended meaning of x = y is that x is equal to
y, and the intended meaning of x < y is that x, y ∈ A and x is less than y in the order
ofA. Finally TA has two unary predicate symbols M and A. The intended meanings of
M(v) and of A(v) are: v is in the domain M of individuals of the first-order structure
we are referring to, and v is an element of the algebraA, respectively.

It is a little bit boring to write all the axioms of TA, therefore we only describe them
informally and we leave the obvious formal translation to the reader.

(0) Identity axioms for = .

(1) A group of axioms which say that the domain M of individuals is disjoint from A
and u is neither in M nor in A.

(2) An axiom saying that every element is either in A or in M or u.

(3) Axioms describing the structure ofA, that is:
(3a) cTi < cTj for each 1 ≤ i < j ≤ n, and ¬(cTi < cTj ) for each j ≤ i;
(3b) axioms of the form ¬(cTi = cTj ) for each i 6= j;
(3c) axioms of the form F (eT1 , . . . , e

T
k ) = eT for each k-ary connective F and

for all e1, . . . , ek, e ∈ A such that FA(e1, . . . , ek) = e;
(3d) (∀v)(A(v)↔ (v = cT1 ∨ · · · ∨ v = cTn ) saying that A = {c1, . . . , cn};
(3e) axioms saying that for every connective F corresponding to an operation FA,

F (x1, . . . , xk) is undefined (i.e. it is equal to u) if some of the xi is not inA;
(3f) an axiom saying that if x < y then x, y ∈ A.

(4) Axioms describing the structure M, that is for every:
(4a) constant symbol d of LA, an axiom saying that d ∈M ;
(4b) k-ary function symbol g of LA, an axiom saying that for all x1, . . . , xk,

g(x1, . . . , xk) ∈M if x1, . . . , xk ∈M and g(x1, . . . , xk) = u otherwise.

(5) Axioms describing the behavior of ‖φ(v1, . . . , vk)‖AM, that is:
(5a) if v1, . . . , vk are all in M , then fφ(v1, . . . , vk) is in M , otherwise we define

fφ(v1, . . . , vk) = u;
(5b) for every k-ary connective F of LA we define fF (φ1,...,φk)(v1, . . . , vl) =

F (fφ1(v1, . . . , vl), . . . , fφk(v1, . . . , vl)) (thus fF (φ1,...,φk)(v1, . . . , vl) = u
if for some i, fφi(v1, . . . , vl) = u, otherwise fF (φ1,...,φk)(v1, . . . , vl) ∈ A);

(5c) an axiom saying that for j = 1, . . . , n, f(∀v)φ(v1, . . . , vk) = cj iff (i)
v1, . . . , vk ∈ M , (ii) for all v ∈ M , fφ(v, v1, . . . , vk) ≥ cj and (iii) for
some v ∈M , fφ(v, v1, . . . , vk) = cj ;

(5d) an axiom saying that for j = 1, . . . , n, f(∃v)φ(v1, . . . , vk) = cj iff (i)
v1, . . . , vk ∈ M , (ii) for all v ∈ M , fφ(v, v1, . . . , vk) ≤ cj and (iii) for
some v ∈M , fφ(v, v1, . . . , vk) = cj .
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LEMMA 4.0.2.

(a) Let M be an A-structure for LA. Then there is a model M∗ of TA (in the sense
of classical logic) such that for every sentence φ of LA and for every ci ∈ A one
has: M∗ |= fφ = cTi iff ‖φ‖AM = ci.

(b) Let H be a model of TA (again, in the sense of classical logic). Then there is
an A-structure H+ for LA such that for every sentence φ of LA and for every
ci ∈ A one has: H |= fφ = cTi iff ‖φ‖AH+ = ci.

Proof. (a) Given M, we can assume without loss of generality that M ∩ A = ∅. Let
u∗ /∈M ∪A, and consider the model M∗ whose universe is M∗ = M ∪A ∪ {u∗} and
whose constants, operations and predicates are as follows:

(i) If cTi is a constant for an element of A, then (cTi )M
∗

= ci; if c is a constant of
LA, then cM

∗
= cM; if c is a constant of the form fφ, φ a sentence of LA, then

cM
∗

= ‖φ‖AM. Finally, u is interpreted as u∗.

(ii) If f is a k-ary function symbol in LA, then fM
∗

is defined by fM
∗
(d1, . . . , dk) =

fM(d1, . . . , dk) if d1,...,dk ∈ M , and fM
∗
(d1, . . . , dk) = u∗ otherwise; if F is a

k-ary connective of LA, then FM∗(d1, . . . , dk)=FA(d1, . . . , dk) if d1, . . . , dk∈A,
and FM∗(d1, . . . , dk)=u∗ otherwise; if φ(v1, . . . , vk) is a formula of LA with free
variables v1, . . . , vk, then fM

∗

φ (d1, . . . , dk) = ‖φ(d1, . . . , dk)‖AM if d1, . . . , dk ∈
M , and fM

∗

φ (d1, . . . , dk) = u∗ otherwise.

(iii) M∗ |= d = e iff d is equal to e; M∗ |= d < e iff d, e ∈ A and d < e in the order
ofA; M∗ |= M(d) iff d ∈M and M∗ |= A(d) iff d ∈ A.

It is clear that for every formula φ(v1, . . . , vk), for every ci ∈ A and for every
d1, . . . , dk ∈ M : M∗ |= fφ(d1, . . . , dk) = cTi iff ‖φ(d1, . . . , dk)‖AM = ci, and (a)
follows.

(b) Let H be a model of TA; we define an algebra A+ and an A+-structure H+

based onA+ as follows:

(i) The domain A+ ofA+ is the set {d ∈ H | H |= A(d)} and the operations ofA+

are the restrictions to A+ of the operations FH of H such that F is a connective
of LA. Trivially, A+ is isomorphic to A (here we use in a crucial way the fact
thatA is finite).

(ii) H+ = {d ∈ H | H |= M(d)}; for every constant c of LA, cH
+

= cH; for every
k-ary function symbol g of LA, gH

+

is the function from (H+)k into H+ defined
for all d1, . . . , dk ∈ H+, by gH

+

(d1, . . . , dk) = gH(d1, . . . , dk) (i.e. gH
+

is the
restriction of gH to (H+)k).

(iii) For every k-ary predicate P and every d1, . . . , dk ∈ H+, ‖P (d1, . . . , dk)‖AH+ =
fHP (d1, . . . , dk).

Then ‖.‖AH+ uniquely extends to all formulae in such a way that for every formula
φ(v1, . . . , vk), for every ci ∈ A and for every d1, . . . , dk ∈M : H |= fφ(d1, . . . , dk) =
cTi iff ‖φ(d1, . . . , dk)‖AH+ = ci, and (b) follows.



880 Petr Hájek, Franco Montagna, and Carles Noguera

The rest of the proof of Theorem 4.0.1 It suffices to associate to every sentence φ of
LA the formula fφ = 1

T (remind that 1 is the top element ofA). Then by Lemma 4.0.2
we have that the following are equivalent:

(i) There is anA-structure M such that ‖φ‖AM 6= 1.

(ii) There is a model H of TA such that fφ = 1
T is not valid in H.

Thus we conclude that φ is an A-tautology iff TA ` fφ = 1
T , and the set of A-

tautologies is Σ1.

We have seen that TAUT(A) is Σ1. Similar arguments show that for every sen-
tence φ of LA we have:

• φ ∈ TAUTpos(A) iff TA ` 0
T
< fφ,

• φ ∈ SAT(A) iff TA plus fφ = 1
T is consistent,

• φ ∈ SATpos(A) iff TA plus fφ > 0
T is consistent.

THEOREM 4.0.3. Let A be a finite chain. TAUT(A) and TAUTpos(A) are in Σ1.
Moreover, SAT(A) and SATpos(A) are in Π1.

Observe that the proof of this theorem would be completely analogous if instead of
a linearly ordered algebra A would be an arbitrary finite algebra (in a finite language),
as this was the essential requirement to build the classical first-order theory TA.

By the general hardness results from Section 2 we obtain:

COROLLARY 4.0.4. For every finite chainA,

1. TAUT(A) and TAUTpos(A) are Σ1-complete,

2. SAT(A) and SATpos(A) are Π1-complete.

From these results, we can obtain some upper bounds for the arithmetical com-
plexities with respect to the finite-chain semantics, when the class of finite chains is
recursively enumerable:

THEOREM 4.0.5. Suppose that L is a (4-)core fuzzy logic such that there is a com-
putable enumeration of all (up to isomorphism) finite L-chains. Then:

(a) finTAUT(L∀) and finTAUTpos(L∀) are in Π2.

(b) finSAT(L∀) and finSATpos(L∀) are in Σ2.

Proof. Let A1,A2, . . . ,An, . . . be a computable enumeration of all finite L-chains.
Then φ ∈ finTAUT(L∀) iff (∀n)(φ ∈ TAUT(An)) and φ ∈ finTAUTpos(L∀) iff
(∀n)(φ ∈ TAUTpos(An)). Since the sequence 〈An | n ∈ N〉 is computable, by The-
orem 4.0.3, {〈φ, n〉 | φ ∈ TAUT(An)} and {〈φ, n〉 | φ ∈ TAUTpos(An)} are in Σ1,
and claim (a) follows.

Regarding claim (b), we have that φ ∈ finSATpos(L∀) iff (∃n)(φ ∈ SATpos(An)),
and φ ∈ finSAT(L∀) iff (∃n)(φ ∈ SAT(An)), and the claim follows from the com-
putability of the sequence 〈An | n ∈ N〉 and from Theorem 4.0.3 (note that if R(n, x)
is Π1, then (∃n)R(n, x) is in turn Σ2).
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Problem Complexity
finTAUT(L∀) Σ1-hard, Π2

finSAT(L∀) Π1-hard, Σ2

finTAUTpos(L∀) Σ1-hard, Π2

finSATpos(L∀) Π1-hard, Σ2

Table 3. Arithmetical complexity bounds for the finite-chain semantics when L is recur-
sively axiomatizable.

THEOREM 4.0.6. If L is a finitely axiomatizable (4-)core fuzzy logic, then there is a
computable enumeration of all (up to isomorphism) finite L-chains.

Proof. We can obtain a computable enumeration of all finite L-chains as follows: clearly
there is a computable enumeration of all the finite algebras of the signature of L (first
put the trivial algebra in the list, then enumerate all the (finitely many) structures with
two elements, 0 and 1, then all the (finitely many) structures with three elements, 0, 1
and 2, etc.). Let C1,C2, . . . ,Cn, . . . be the computable list of structures obtained in
this way, and assume without loss of generality that C1 is the trivial algebra. Now
let A1 = C1 (note that the trivial algebra is a totally ordered algebraic model of any
logic with that signature); then for every n, check whether Cn is a chain and whether
it satisfies the finite axiomatization of L. This can be done with a finite computation. If
so, letAn = Cn; otherwise, letAn = C1.

From the last two theorems, together with the general results in Section 2, we can
obtain uniform bounds for the complexity of finite-chain semantics in recursively ax-
iomatizable (4-)core fuzzy logics; see the results in Table 3. It applies, in particular, to
all the prominent fuzzy logics, for instance if L is Ł, G, Π, BL, SBL, MTL, SMTL,
IMTL, ΠMTL, WCMTL, CnMTL, CnIMTL, WNM, or NM, finTAUT(L∀) is Π2,
etc. Note that the sets finTAUT(L∀) for these logics may have repetitions, e.g. if L has
only finitely many totally ordered algebraic models (this is the case for L = Π or for
L = ΠMTL). In this case, finTAUT(L∀) is not only Π2, but even Σ1: for instance
finTAUT(Π∀) and finTAUT(ΠMTL∀) coincide with the set of classical first-order
tautologies, which is Σ1-complete. Next will show that in some cases the upper bounds
are reached as well.

THEOREM 4.0.7. Let L be a recursively axiomatizable (4-)core fuzzy logic such that
the following conditions hold:

(1) For every finite cardinal m, there is a finite L-chain with at least m elements.

(2) There is an L-formula φ(p) such that for every L-chain A and for every A-
evaluation v, v(φ(p)) ∈ {0A, 1A}, and there are evaluations v0 and v1 such
that v0(φ(p)) = 0

A
and v1(φ(p)) = 1

A
.

Then the set finTAUT(L∀) is Π2-complete.
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Proof. Let Φ denote the conjunction of all axioms of Q+ and let for every formula γ,
γ+ be the result of replacing in γ every atomic formula δ by φ(δ). Notice that for every
model 〈A,M〉 the value ‖γ+‖AM is crisp.

Let M be a first-order safe structure over an L-chain A such that ‖Φ+‖AM = 1
A.

We define a classical model MQ+

for the language of Q+ as follows. The domain of
MQ+

is the domain M of M modulo the equivalence ∼ defined as: d ∼ d′ if, and
only if, ‖φ(d = d′)‖AM = 1. For every n-ary function symbol f of Q+ and for every

d1, . . . , dn ∈ M , fM
Q+

([d1], . . . , [dn]) = [fM(d1, . . . , dn)], where for each d ∈ M ,
[d] denotes its equivalence class modulo ∼. Finally, for every n-ary predicate symbol P

of Q+ and for every d1, . . . , dn ∈M , we stipulate that 〈[d1], . . . , [dn]〉 ∈ PMQ+

if, and
only if, ‖φ(P (d1, . . . , dn))‖AM = 1

A. By induction on δ we can easily prove:
Claim 1: For each formula δ(x1, . . . , xn) and any elements d1, . . . , dn ∈ M we have:
‖δ(d1, . . . , dn)+‖AM = 1

A iff MQ+ |= δ([d1], . . . , [dn]).

Conversely, given a model H of Q+ and an L-chainA we define a first-order struc-
ture HA on A (restricted to the language of Q+) as follows: the domain of HA coin-
cides with the domainH of H and the function symbols and the constants are interpreted
as in H; moreover, let z, o be elements of A such that for every evaluation v, we have
v(φ(p)) = 0

A if v(p) = z and v(φ(p)) = 1
A if v(p) = o. Then for every n-ary

predicate symbol P and for every d1, . . . , dn ∈ H , we define ‖δ(d1, . . . , dn)‖AHA = o
if H |= δ(d1, . . . , dn) and ‖δ(d1, . . . , dn)‖AHA = z otherwise. Then, again by induction
on δ, we can easily prove:
Claim 2: For every formula δ(x1, . . . , xn) of Q+ and for every d1, . . . , dn ∈ H one
has: ‖δ(d1, . . . , dn)+‖AHA = 1

A iff H |= δ(d1, . . . , dn).

Now let X = {n | (∀m)(∃k)R(n,m, k)}, with R recursive, be a Π2-complete
set. Let R′(x, y, z) be a formula of Q+ representing R in Q+, that is, for all n,m, k, if
R(n,m, k) is true, then R′(n,m, k) is provable in Q+ and if R(n,m, k) is false, then
¬R′(n,m, k) is provable in Q+. Let R+ be the formula obtained from R′ by replacing
every atomic subformula ψ by φ(ψ). ThenR+ behaves as a crisp formula. Finally, let P
be a new unary predicate, and let Ψ(x) be the formula

Φ+ → (∀y)((∃u)((u ≤ y)+ ∧ (P (S(u))→ P (u))) ∨ (∃z)R+(x, y, z)).

We claim that for every n, n ∈ X iff Ψ(n) is true in every first-order model over a
finite L-chain. Indeed, suppose n ∈ X . Let A be an L-chain with m elements, and let
M be a first-order model over A. If ‖Φ+‖AM = 0

A, then ‖Ψ(n)‖AM = 1
A. Otherwise,

‖Φ+‖AM = 1
A, that is, the translation of every axiom of Q+ is true in 〈A,M〉.

Claim 3: If ‖Φ+‖AM = 1
A, then for every theorem ψ of Q+, ‖ψ+‖AM = 1

A.

Proof of Claim 3: Suppose not. Then, by Claim 1, MQ+

would be a model of Q+

which does not satisfy ψ, a contradiction.
Now let y be an element of the universe of M. If ‖(y ≤ m)+‖AM = 1

A, then by
Claim 3, ‖(y = 0 ∨ y = 1 ∨ · · · ∨ y = m)+‖AM = 1

A, because Q+ ` (∀x)(x ≤ m ↔
(x = 0 ∨ x = 1 ∨ · · · ∨ x = m)).
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Moreover since n ∈ X , for y = 0, 1, . . . ,m, there is a ky such that R(n, y, ky) is
true. Then for such ky ,R′(n, y, ky) is provable inQ+ and ‖R+(n, y, ky)‖AM = 1

A, again
by Claim 3. If ‖(y > m)+‖AM = 1

A, then for some i such that ‖(i ≤ y)+‖AM = 1
A,

we must have ‖P (S(i)) → P (i)‖AM = 1
A, otherwise ‖P (0)‖AM < ‖P (1)‖AM <

· · · < ‖P (m+ 1)‖AM and A would have more than m elements. Thus in this case
(∃u)((u ≤ y)+ ∧ (P (S(u)) → P (u))). In any case, if ‖Φ+‖AM = 1

A and n ∈ X then
‖(∀y)((∃u)((u ≤ y)+∧ (P (S(u))→ P (u)))∨ (∃z)R+(x, y, z))‖AM = 1

A. Thus Ψ(n)

has truth value 1
A.

Now suppose that n /∈ X . Then for some m there is no k such that R(n,m, k).
Let A be an L-chain with more than m elements. Let 0

A
= a0 < a1 < · · · < ah = 1

A

with h ≥ m, be the elements of A. Consider the first-order structure NA over A ob-
tained from the standard model N of natural numbers according to Claim 2. Moreover,
let us set, for i = 0, . . . , h, PNA

(i) = ai and for i > h, PNA

(i) = 1
A. Then by

Claim 2, ‖Φ+‖ANA = 1
A, ‖(∃u)((u ≤ m)+ ∧ (P (S(u))→ P (u)))‖ANA = ah−1 < 1

A

and ‖(∃z)R+(n,m, z))‖ANA = 0
A. It follows that ‖Ψ(n)‖ANA = ah−1 < 1

A.

COROLLARY 4.0.8. Let L be a recursively axiomatizable (4-)core fuzzy logic such
that for every finite cardinal m, there is a finite L-chain with at least m elements. Then
finTAUT(L∀) is Π2-complete if one of the following sufficient conditions is satisfied:

1. L has a strict negation ∼.

2. L expands WNM.

3. L is a4-core fuzzy logic.

Proof. By the hypothesis, all logics above satisfy condition (1) of Theorem 4.0.7. As
regards to condition (2), for logics with a strict negation ∼, take φ(p) = ∼∼p, and note
that for every evaluation v in an L-chain, if v(p) = 0, then v(φ(p)) = 0, otherwise
v(φ(p)) = 1. For logics expanding WNM, take φ(p) = ¬((¬((¬¬p)2))2) and note that
for any evaluation v in an L-chain, if v(¬¬p) ≤ v(¬p), then v(φ(p)) = 0, otherwise
v(φ(p)) = 1. As regards to 4-core fuzzy logics, it is clear that φ(p) = 4(p) satisfies
condition (2) of Theorem 4.0.7.

COROLLARY 4.0.9. For every L ∈ {SMTL,NM,WNM,SBL,G}, we have that
finTAUT(L∀) is Π2-complete.

COROLLARY 4.0.10. Let L be a4-core fuzzy logic such that for every finite cardinal
m, there is a finite L-chain with at least m elements. Then finTAUTpos(L∀) is Π2-
complete, and finSAT(L∀) and finSATpos(L∀) are Σ2-complete.

Proof. It follows from Corollary 4.0.8 by using some relations in Lemma 2.0.7:

• ϕ ∈ finTAUTpos(L∀) iff ¬4(¬ϕ) ∈ TAUT(L∀),

• ϕ ∈ finTAUT(L∀) iff ¬4ϕ /∈ finSAT(L∀) iff ¬4ϕ /∈ finSATpos(L∀).
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From the general results in Section 2 and the real and rational completeness proper-
ties we obtain many arithmetical complexity results with respect to the rational seman-
tics for prominent logics as collected in Table 4. In the case of BL∀ and SBL∀ we need
an additional result:

PROPOSITION 4.0.11. The sets ratTAUT(BL∀) and ratTAUT(SBL∀) are in Σ1,
and hence ratSATpos(BL∀) and ratSATpos(SBL∀) are in Π1.

Proof. Consider the extensions of BL∀ and SBL∀ by the schema Φ = (∀x)(χ& ϕ)→
(χ& (∀x)ϕ), where x is not free in χ. Call them BL∀+ and SBL∀+, respectively. Φ is
valid in every model on a densely ordered BL-chain, but it is not a tautology for all BL-
chains (see [21]). It is easy to see that BL∀+ (resp. SBL∀+) enjoys strong completeness
with respect to models over rational BL-chains (resp. SBL-chains) (see Chapter V) and
it is not necessary to require that those models satisfy the additional schema because
their chains are densely ordered. Therefore, ratTAUT(BL∀) turns out to be the set of
theorems of the logic BL∀+, and analogously for ratTAUT(SBL∀); this proves the
result.

On the other hand, as we prove later in this section, finTAUT(Ł∀) is Π2-complete.
This allows to prove the following result:

PROPOSITION 4.0.12. finTAUT(BL∀) is Π2-complete.

Proof. For every sentence ϕ we consider the formula ϕ¬¬ resulting from ϕ by adding
double negation ¬¬ to all atoms. Then for every ϕ ∈ SentP : ϕ¬¬ ∈ finTAUT(BL∀)
iff ϕ ∈ finTAUT(Ł∀). Indeed, the left-to-right implication is obvious because the
negation is involutive in Łukasiewicz logic; as for the converse one let us assume that
ϕ ∈ finTAUT(Ł∀) and consider any model M over a finite BL-chain A. Taking into
account the structure of BL-chains described in previous chapters, it is enough to distin-
guish two cases:

(1) Assume thatA is an ordinal sumC1⊕C2 whereC1 is a finite MV-chain. Then
we define a model M′ overC1 from M in the following way: take the same domain, the
same interpretation of constants and functionals, and for every n-ary predicate symbol
P and elements a1, . . . , an in the domain set PM′(a1, . . . , an) = PM(a1, . . . , an) if
PM(a1, . . . , an) ∈ C1 and PM′(a1, . . . , an) = 1

A otherwise. Now it is easy to prove
by induction that for every formula α and every evaluation v: ‖α¬¬‖AM,v = ‖α‖C1

M′,v.
Hence ‖ϕ¬¬‖AM = ‖ϕ‖C1

M′ = 1
A.

(2) Assume that A is an SBL-chain (i.e. its negation is strict). Then we define a
model M′ over B2 from M in the following way: take the same domain, the same in-
terpretation of constants and functionals, and for every n-ary predicate symbol P and el-
ements a1, . . . , an in the domain set PM′(a1, . . . , an) = 0 if PM(a1, . . . , an) = 0

A and
PM′(a1, . . . , an) = 1 otherwise. Now we have: ‖ϕ¬¬‖AM = ‖ϕ¬¬‖B2

M′ = ‖ϕ‖B2

M′ = 1.
Therefore, we have proved that finTAUT(BL∀) is Π2-hard. The Π2 containment fol-
lows from Theorems 4.0.5 and 4.0.6.

Some more results on complexity of finite-chain semantics will be obtained soon
when comparing such semantics with the real and rational ones.
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Logic ratTAUT ratSAT ratTAUTpos ratSATpos

MTL∀ Σ1-complete Π1-complete Σ1-complete Π1-complete
IMTL∀ Σ1-complete Π1-complete Σ1-complete Π1-complete
SMTL∀ Σ1-complete Π1-complete Σ1-complete Π1-complete

WCMTL∀ Σ1-hard Π1-hard Σ1-hard Π1-hard
ΠMTL∀ Σ1-hard Π1-hard Σ1-hard Π1-hard

BL∀ Σ1-complete Π1-hard Σ1-hard Π1-complete
SBL∀ Σ1-complete Π1-hard Σ1-hard Π1-complete
Ł∀ Σ1-complete Π1-complete Σ1-complete Π1-complete
Π∀ Σ1-complete Π1-complete Σ1-complete Π1-complete
G∀ Σ1-complete Π1-complete Σ1-complete Π1-complete

CnMTL∀ Σ1-complete Π1-complete Σ1-complete Π1-complete
CnIMTL∀ Σ1-complete Π1-complete Σ1-complete Π1-complete

WNM∀ Σ1-complete Π1-complete Σ1-complete Π1-complete
NM∀ Σ1-complete Π1-complete Σ1-complete Π1-complete

Table 4. Complexity results for the rational semantics.

Observe that the completeness properties imply that for some prominent logics we
have genTAUT(L∀) = realTAUT(L∀) = ratTAUT(L∀). Now, in addition, we will
consider the semantics given by intended rational chains. Of course, this can only be
done for those logics where it makes sense to have an intended semantics over the ratio-
nal unit interval, i.e. logics L∗ given by a left-continuous t-norm ∗ such that its restriction
to [0, 1]Q is well-defined. We denote the corresponding algebra as [0, 1]Q∗ . This can be
done, for instance, for the logic NM corresponding to the nilpotent minimum t-norm.
By inspecting the usual the proof of the fact that every countable NM-chain can be σ-
embedded into [0, 1]NM one realizes that the embedding can be in fact defined into the ra-
tionals and thus we have genTAUT(NM∀) = stTAUT(NM∀) = intratTAUT(NM∀)
and they are Σ1-complete. The three main continuous t-norms satisfy the required prop-
erty as well, i.e. we have well-defined algebras over the rationals [0, 1]QŁ , [0, 1]QΠ and
[0, 1]QG; the same goes for their ordinal sums. Let Q be the set of ordinal sums of these
three rational BL-chains. Given K ⊆ Q, K will denote the subset of R given by the
substitution in the elements of K of each component for its corresponding basic real
chain. We start with the case of [0, 1]QŁ .

LEMMA 4.0.13. Let M and M′ be two first-order structures with the same domain M
over [0, 1]Ł, and let φ, ψ be first-order sentences with parameters from M and δ(x) be
a first-order formula with parameters from M and with x as its only free variable. Let
for any two real numbers α, β, d(α, β) denote the distance between α and β, that is,
d(α, β) = max {α− β, β − α}. Then for every positive real number γ we have:

(i) If d(‖φ‖M, ‖φ‖M′) ≤ γ, then d(‖¬φ‖M, ‖¬φ‖M′) ≤ γ.

(ii) If d(‖φ‖M, ‖φ‖M′) ≤ γ and d(‖ψ‖M, ‖ψ‖M′) ≤ γ,
then d(‖φ& ψ‖M, ‖φ& ψ‖M′) ≤ 2γ.
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(iii) If for all a ∈M , d(‖δ(a)‖M, ‖δ(a)‖M′) ≤ γ,
then d(‖(∀x)δ(x)‖M, ‖(∀x)δ(x)‖M′) ≤ γ.

Proof. Almost trivial.

COROLLARY 4.0.14. If φ is a sentence of complexity k and M and M′ are first-
order structures with the same domain M over [0, 1]Ł such that for every closed atomic
subformula ψ of φ, d(‖ψ‖M, ‖ψ‖M′) ≤ γ, then d(‖φ‖M, ‖φ‖M′) ≤ 2kγ.

LEMMA 4.0.15. Let φ be a first-order sentence of complexity k and let for every n, Łn
denote the finite MV-chain with n + 1 elements. Let M be a first-order structure over
[0, 1]Ł with domain M such that ‖φ‖M < 1 and let n be such that 2−n < 1 − ‖φ‖M.
Then there is a first-order structure M′ over Ł2k+n such ‖φ‖M′ < 1.

Proof. Let for every atomic formula ψ with parameters in M , m(ψ) denote the maxi-
mum natural number such that m(ψ)

2n+k ≤ ‖ψ‖M. Define a new first-order structure M′

with domain M letting for every atomic formula ψ with parameters in M , ‖ψ‖M′ =
m(ψ)
2n+k . Then d(‖ψ‖M, ‖ψ‖M′) < 1

2n+k and by Corollary 4.0.14, d(‖φ‖M, ‖φ‖M′) ≤
2k 1

2n+k = 1
2n < 1 − ‖φ‖M. It follows that ‖φ‖M′ < 1. Now M′ has been defined as

a first-order structure over [0, 1]Ł, but since for every sentence δ, ‖δ‖M′ ∈ Ł2k+n , M′

can be also regarded as a first-order structure over Ł2k+n .

THEOREM 4.0.16. stTAUT(Ł∀) = intratTAUT(Ł∀) = finTAUT(Ł∀) and they are
Π2-complete.

Proof. The Inclusions from left to right follow from Lemma 2.0.3, therefore it suffices to
prove that finTAUT(Ł∀) ⊆ stTAUT(Ł∀). But this is immediate from Lemma 4.0.15.

Recall that ifK is a class of MV-chains, then SATpos(K) = {φ | ¬φ /∈ TAUT(K)}.
Thus we obtain:

THEOREM 4.0.17. stSATpos(Ł∀) = intratSATpos(Ł∀) = finSATpos(Ł∀) and they
are Σ2-complete.

In the SAT case the situation is different:

THEOREM 4.0.18. finSAT(Ł∀) ( intratSAT(Ł∀).

Proof. The inclusion is obvious; let us show the difference with an example. Let S be
a unary function symbol, P be a unary predicate symbol and 0 be a constant symbol.
Consider the following sentence:

Φ = (P (0)↔ ¬P (0)) & (∀x)(P (x)↔ ((P (S(x))⊕ P (S(x))))

On the one hand, Φ is satisfiable in [0, 1]QŁ . Indeed, take the structure M on [0, 1]Ł
whose domain is the set of natural numbers, 0 and S are respectively interpreted as 0 and
the successor function, and ‖P (n)‖M = 1

2n+1 . On the other hand Φ is not satisfiable
in models over finite MV-chains. Indeed, let M be a first-order structure over a finite
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chain Łn. The first conjunct of Φ is satisfiable if the chain has a negation fixpoint (i.e.
it has an odd number of truth-values); assume it. A contradiction will be reached when
combining it with the satisfiability of the second conjunct. Thus, assume, in addition,
that ‖(∀x)(P (x) ↔ ((P (S(x)) ⊕ P (S(x)))‖M = 1. This means that for every a ∈
M , PM(a) = PM(SM(a)) ⊕ PM(SM(a)); therefore, if PM(a) 6= 1, then PM(a) >
PM(SM(a)). So we obtain PM(0) > PM(SM(0)) > PM(SM(SM(0))) > · · · , a
contradiction with the finiteness of Łn.

Similarly, Theorems 4.0.16 and 4.0.17 do not extend to finite consequence relation:

COROLLARY 4.0.19. There are formulae φ and ψ of Łukasiewicz logic such that φ ∈
finCons(Ł, ψ) and φ /∈ intratCons(Ł, ψ).

Proof. It is immediate from the last theorem. Indeed, take any ϕ ∈ intratSAT(Ł∀) \
finSAT(Ł∀), and then it is clear than 0 ∈ finCons(Ł, ϕ) and 0 /∈ intratCons(Ł, ϕ).

We consider now other intended rational chains.

THEOREM 4.0.20. Let K ⊆ Q such that there exists A ∈ K whose first compo-
nent is product. Then TAUT(K), SAT(K), TAUTpos(K) and SATpos(K) are non-
arithmetical.

Proof. Let T , θ1, θ2, θ3 and θ4 be as in the proof of Theorem 3.0.23. Then one can
prove the following claims for every Φ in the language of PA:

N |= Φ iff θ1 & θ2 & θ3 & θ4 → Φ¬¬ ∈ TAUT(K)
iff θ1 & θ2 & θ3 & θ4 → Φ¬¬ ∈ TAUTpos(K).

N |= Φ iff θ1 & θ2 & θ3 & θ4 & Φ¬¬ ∈ SAT(K)
iff θ1 & θ2 & θ3 & θ4 & Φ¬¬ ∈ SATpos(K).

We justify the first claim (the second one is proved analogously). Assume that N |=
Φ. By Lemma 3.0.26, this implies that θ1&θ2&θ3&θ4 → Φ¬¬ ∈ TAUT(K), and hence
θ1 &θ2 &θ3 &θ4 → Φ¬¬ ∈ TAUT(K) and θ1 &θ2 &θ3 &θ4 → Φ¬¬ ∈ TAUTpos(K).
Assume now that N 6|= Φ. Then we construct a countermodel M overA as follows:

(a) The domain of M is the set of natural numbers, and the constant 0 and the function
symbols of Q+ are interpreted as in the standard model N of natural numbers.

(b) If P is an n-ary predicate symbol of Q+ and k1, . . . , kn are natural numbers, then
PM(k1, . . . , kn) = 1 if P (k1, . . . , kn) is true in N and PM(k1, . . . , kn) = 0
otherwise.

(c) Let f be the affine bijective transformation from [0, 1]Q to the interval where the
first component ofA is defined. For every natural number n, UM(n) = f(2−3n).

It is readily seen that ‖θ1 & θ2 & θ3 & θ4‖AM = 1 and ‖Φ¬¬‖AM = 0. Therefore,
‖θ1 & θ2 & θ3 & θ4 → Φ¬¬‖AM = 0 and hence θ1 & θ2 & θ3 & θ4 → Φ¬¬ /∈ TAUT(K)
and θ1 & θ2 & θ3 & θ4 → Φ¬¬ /∈ TAUTpos(K).
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THEOREM 4.0.21.

1. If C is the first component of a chainA ∈ Q, then TAUTpos(A) = TAUTpos(C)
and SATpos(A) = SATpos(C).

2. SATpos([0, 1]QG) = SAT([0, 1]QG) and it is Π1-complete.

3. If A ∈ Q begins with a Gödel component, then SAT(A) = SAT([0, 1]QG).

4. TAUTpos([0, 1]QG) is Σ1-complete.

5. TAUT([0, 1]Π) = TAUT([0, 1]QΠ).

6. If K ⊆ Q contains some component non-isomorphic to [0, 1]QG, then TAUT(K)
is Π2-hard.

7. If K ⊆ Q contains at least one algebra non-isomorphic to any of [0, 1]QG, [0, 1]QŁ ,
[0, 1]QŁ ⊕ [0, 1]QG, [0, 1]QG⊕ [0, 1]QŁ , [0, 1]QŁ ⊕ [0, 1]QŁ and [0, 1]QŁ ⊕ [0, 1]QG⊕ [0, 1]QŁ ,
then TAUT(K) is non-arithmetical.

Proof. The first four claims are proved by checking that the proofs of the corresponding
results for the standard semantics actually work as well for intended rational seman-
tics. 5 is proved in the appendix of [4]. Point 6 is shown by reducing the problem to
TAUT([0, 1]QŁ), which we know is Π2-hard, as in the proof of Theorem 3.0.21. Sim-
ilarly, for the last point we use the fact, proved in the previous theorem, that the set
TAUT([0, 1]QΠ) is non-arithmetical and perform the analogous reduction to that prob-
lem as in Theorem 3.0.30.

As for the relation between tautologies over real and finite chains, we have the
following result:

THEOREM 4.0.22. Let L be a consistent (4-)core fuzzy logic. If there exist L-chains
over [0, 1] whose t-norm is not isomorphic to Łukasiewicz, then realTAUT(L∀) 6=
finTAUT(L∀) and genTAUT(L∀) 6= finTAUT(L∀).

Proof. Let [0, 1]∗ be a real L-chain defined by a left-continuous t-norm ∗ non-isomorphic
to the Łukasiewicz t-norm. Then:

(i) If ∗ is continuous, then the formula

(C∀) (∃x)(P (x)→ (∀y)P (y))

is anA-tautology for any finite L-chainA, but it is not a [0, 1]∗-tautology.

(ii) If ∗ is not continuous, then the formula Φ

(∀x)(χ& ψ)→ (χ& (∀x)ψ), where x is not free in χ

is anA-tautology for any finite L-chainA, but it is not a [0, 1]∗-tautology.
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Indeed:

(i) It is well known that, for any continuous t-norm ∗ which is not isomorphic to
Łukasiewicz t-norm, the corresponding negation n∗(x) = x ⇒∗ 0 is not (right)
continuous at x = 0. Let b = limx→0+ n∗(x). We know that b < 1. Take an
infinite decreasing sequence 1 > a1 > a2 > · · · > an · · · > 0 with limit 0.
Consider the [0, 1]∗-model M = 〈N, PM〉 where PM(n) = an. Then we have
‖(∃x)(P (x)→(∀y)P (y))‖[0,1]∗

M,e = supn{an ⇒∗ (infn an)} = supn{an ⇒∗ 0}=
supn n∗(an) = b < 1. On the other hand, it is clear that the formula has value 1

A

in any structure over a finite L-chainA.

(ii) For simplicity, let us take the following instance of Φ:

(∀x)(P (c) &Q(x))→ P (c) & (∀x)Q(x)

where c is a 0-ary functional symbol. If the t-norm is not right-continuous there
is a sequence 〈an | n ≥ 1〉 and an element b such that b ∗ inf{an | n ≥ 1} <
inf{b ∗ an | n ≥ 1}. Consider the [0, 1]∗-model M = 〈N, PM, QM〉 and an
evaluation of variables e such that PM(cM) = b and QM(n) = an for every n.
Then ‖(∀x)(P (c) &Q(x))→ P (c) & (∀x)Q(x)‖[0,1]∗

M,e = inf{b ∗ an, n ≥ 1} ⇒∗
(b∗ inf{an, n ≥ 1}) < 1. But an easy computation shows that for any finite chain
the formula is a tautology (take into account that the inf becomes a min).

5 Further topics on arithmetical hierarchy in first-order logics

5.1 Semantics of witnessed models

The semantics of witnessed models has been introduced in Chapter II; we quickly
recall a few necessary notions for the reader’s convenience. For each continuous t-norm
∗, the propositional logic given by it (Definition 1.1.19 of Chapter I) is denoted L∗ and
the corresponding predicate logic is denoted L∗∀. Let A be a BL-chain. A model
〈A,M〉 is witnessed if for each formula ϕ(x, y, . . . ) and for each b, . . . ∈M ,

‖(∀x)ϕ(x, b, . . . )‖AM = min
a
‖ϕ(a, b, . . . )‖AM,

‖(∃x)ϕ(x, b, . . . )‖AM = max
a
‖ϕ(a, b, . . . )‖AM,

(i.e. there is an a with minimal (maximal) value of ‖ϕ(a, b, . . . )‖). Alternatively we say
that M isA-witnessed.

FACT 5.1.1 ([20]). Over the Łukasiewicz logic Ł∀, each countable standard model M
is an elementary submodel of a witnessed standard model M′.

Given a logic L, we denote by L∀w the logic L∀ extended by the following axioms:

(C∀) (∃x)(ϕ(x)→ (∀y)ϕ(y)),
(C∃) (∃x)((∃y)ϕ(y)→ ϕ(x)).
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FACT 5.1.2 (Chapter II and [20]).

(1) For our logics, the logic L∀w is strongly complete w.r.t. witnessed models.

(2) A model〈A,M〉 is elementarily embeddable into a witnessed model iff (C∀) and
(C∃) are true in 〈A,M〉.

(3) The following are equivalent:

– (C∀), (C∃) ∈ genTAUT(L∗∀),
– (C∀), (C∃) ∈ stTAUT(L∗∀),
– ∗ is the Łukasiewicz t-norm.

For each L∗-chain A let A¬¬ be the homomorphic image of A defined by the
mapping f(x) = ¬¬x. For each L∗-model 〈A,M〉, M = 〈M, 〈PM〉P , 〈fM〉f 〉, let
M¬¬ be the A¬¬-model M¬¬ = 〈M, 〈P¬¬M 〉P , 〈fM〉f 〉, where, for each P and a,
P¬¬M (a) = f(PM(a)) = ¬¬PM(a). For a t-norm with Gödel negationA¬¬ is the two-
element Boolean algebra; for a t-norm beginning by a Łukasiewicz component A¬¬ is
Łukasiewicz.

FACT 5.1.3. LetA be an L∗-chain and 〈A,M〉 a witnessed model. Then 〈A¬¬,M¬¬〉
is a witnessed model such that for each formula ϕ and each tuple a of elements of M ,
‖ϕ(a)‖A¬¬M¬¬ = ‖¬¬ϕ(a)‖AM.

Now we start to discuss the arithmetical complexity of general and standard se-
mantics of the predicate logics given by continuous t-norms with semantics restricted
to (standard and general) witnessed models. We write wgenTAUT(L∗∀) for the set of
formulae true in all witnessed general models, wstTAUT, wgenSAT and wstSAT in
the obvious analogous sense.

THEOREM 5.1.4. For each ∗, wgenTAUT(L∗∀) is Σ1-complete and wgenSAT(L∗∀)
is Π1-complete.

Proof. The fact that wgenTAUT(L∗∀) is in Σ1 follows from the completeness theo-
rems for the corresponding logic. Similarly, wgenSAT(L∗∀) is in Π1 since satisfiability
is equivalent to consistency.

Concerning the Σ1-completeness of wgenTAUT(L∗∀): For Łukasiewicz it follows
from the fact that tautologies are the same as witnessed tautologies. For ∗ with strict
negation observe that ϕ is a Boolean tautology iff ϕ¬¬ is a witnessed general tautology
of L∗∀. Finally for a t-norm ∗ beginning by Łukasiewicz, ϕ is a (witnessed) general
tautology of Łukasiewicz logic iff ϕ¬¬ is a witnessed general tautology of L∗∀. This
reduces a Σ1-complete set to our set wgenTAUT(L∗∀).

THEOREM 5.1.5. For every ∗ with strict negation:

(1) The following five sets of formulae are equal: wgenSAT, wgenSATpos, wstSAT,
wstSATpos, SAT(B2).

(2) The following sets are equal: wgenTAUTpos, wstTAUTpos, TAUT(B2) (but
different from wstTAUT, wgenTAUT).
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Proof. (1) All sets include SAT(B2) and are included in wgenSATpos. Thus if a for-
mula is Boolean satisfiable it is in all sets in question. Conversely, if ϕ ∈ wgenSATpos,
thus for some witnessed 〈M,A〉 it holds ‖ϕ‖AM > 0, then ‖¬¬ϕ‖AM = 1, hence
‖ϕ‖B2

M¬¬ = 1, i.e. ϕ is Boolean satisfiable.
(2) Clearly, wgenTAUTpos ⊆ wstTAUTpos ⊆ TAUT(B2). Conversely, if ϕ

is not in wgenTAUTpos, thus for some witnessed 〈A,M〉 it holds ‖ϕ‖AM = 0, then
‖¬¬ϕ‖AM = 0 hence ‖ϕ‖B2

M¬¬ = 0, i.e. ϕ is not a Boolean tautology. Finally, the
tertium non datur formula (∀x)(P (x) ∨ ¬P (x)) is a formula in TAUT(B2) but not in
wstTAUT, hence not in wgenTAUT.

Now recall Definition 3.0.10 of the mapping h (for all x ∈ [0, 1], let h(x) = 2x for
x ≤ 1/2 and h(x) = 1 for x ≥ 1/2), the model h(M) for each standard model M and
the notation C⊕ for a continuous t-norm whose first component is C on [0, 1

2 ]. Also
recall the mapping f from (the proof of) 3.0.14 (f(x) = x

2 for x < 1, f(1) = 1).

LEMMA 5.1.6. Let M be a standard model, ϕ(a1, . . . , an) a formula with a1, . . . , an ∈
M substituted for free variables. Write ϕ for ϕ(a1, . . . , an) for brevity.

(1) h(‖ϕ‖C⊕M ) = ‖ϕ‖Ch(M).

(2) If M is C-witnessed then ‖ϕ‖C⊕f(M) = f(‖ϕ‖CM).

(3) Consequently, if M is C⊕-witnessed then h(M) is C-witnessed; if M is C-
witnessed then f(M) is C⊕-witnessed.

Proof. Easy; compare it with the proofs of 3.0.10 and 3.0.14.

THEOREM 5.1.7. For a continuous t-norm C⊕:

(1) wstSATpos(C⊕) = wstSATpos(C),

(2) wstTAUTpos(C⊕) = wstTAUTpos(C),

(3) wstSAT(C⊕) = wstSAT(C).

Proof. For (1) observe that, for M [C]-witnessed, ‖ϕ‖CM > 0 implies ‖ϕ‖C⊕j(M) > 0 and

for M [C⊕]-witnessed, ‖ϕ‖C⊕M > 0 implies ‖ϕ‖Ch(M) > 0.
For (2) replace > by =. For (3) observe that, similarly to the above and under the

respective witnessedness, ‖ϕ‖CM = 1 implies ‖ϕ‖C⊕j(M) = 1 and ‖ϕ‖C⊕M = 1 implies
‖ϕ‖Ch(M) = 1,

THEOREM 5.1.8. For • being ‘wst’ or ‘wgen’, and each continuous t-norm ∗,

(1) ϕ ∈ •TAUTpos(L∗∀) iff ¬ϕ 6∈ •SAT(L∗∀),

(2) ϕ ∈ •SATpos(L∗∀) iff ¬ϕ 6∈ •TAUT(L∗∀).

Proof. This is true since ‖¬ϕ‖AM = 1 iff ‖ϕ‖AM = 0, for any BL-chainA.
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wstTAUT wstSAT wstTAUTpos wstSATpos

Ł∀ Π2-complete Π1-complete Σ1-complete Σ2-complete
G∀ Σ1-complete Π1-complete Σ1-complete Π1-complete
Π∀ Π2-hard Π1-complete Σ1-complete Π1-complete

(Ł⊕)∀ Π2-hard Π1-complete Σ1-complete Σ2-complete
(G⊕)∀ Σ1-hard Π1-complete Σ1-complete Π1-complete
(Π⊕)∀ Σ2-hard Π1-complete Σ1-complete Π1-complete

Table 5. Complexity of standard witnessed semantics.

COROLLARY 5.1.9. For each continuous t-norm ∗,

(1) wgenTAUTpos(L∗∀) is Σ1-complete.

(2) wgenSATpos(L∗∀) is Π1-complete.

Proof. By the preceding theorem and Theorem 5.1.4.

COROLLARY 5.1.10.

(1) If wstSAT(L∗∀) = wgenSAT(L∗∀), then
wstTAUTpos(L∗∀) = wgenTAUTpos(L∗∀).

(2) If wstTAUT(L∗∀) = wgenTAUT(L∗∀), then
wstSATpos(L∗∀) = wgenSATpos(L∗∀).

THEOREM 5.1.11. The set wstTAUT(Ł∀) recursively reduces to wstTAUT((Ł⊕)∀).

Proof. Let ϕ be an arbitrary sentence. If M is a witnessed Ł-model with ‖ϕ‖ŁM < 1 then
for the mapping f as above, f(M) is a witnessed (Ł⊕)-model with ‖¬¬ϕ‖Ł⊕f(M) < 1.

On the other hand, M is a witnessed (Ł⊕)-model with ‖¬¬ϕ‖Ł⊕M < 1 then h(M¬¬)
is a witnessed Ł-model in which the value of ϕ is < 1. Thus the mapping assigning to
each ϕ its double negation is the claimed reduction.

The complexity results for the witnessed semantics we can obtain are collected in
Table 5. Let us justify them. First, the values for witnessed Ł∀ (first row) are the same as
for Ł∀ (without assuming witnessed) due to Fact 1 above. Now for the first column: For
G∀ see Theorem 5.1.4; for Π∀ see [16]. For (Ł⊕)∀ see Theorem 5.1.11. For (G⊕)∀
and (Π⊕)∀ the only thing we know is by 2.0.13; it is a problem what more can be
shown. Theorem 5.1.11 gives also the rest for Ł⊕; for wstSAT and wstSATpos the
results follows by Theorem 5.1.5 (1) and for wstTAUTpos by Theorem 5.1.5 (2).

5.2 Semantics of models over complete chains

In this subsection we present an overview of results about complexity of the se-
mantics over complete signs (for more details see [21]). We start from a very sim-
ple observation. Let L be a (recursively axiomatizable) axiomatic extension of MTL
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such that the MacNeille completion of every L-chain is an L-chain. Then every L-
chain can be σ-embedded into a complete L-chain. Hence, L∀ is strongly complete
with respect to the class of complete L-chains. Let complTAUT(L∀) denote the set of
all sentences which are valid in every complete L-chain, and let complTAUTpos(L∀),
complSAT(L∀), complSATpos(L∀) be defined analogously.

THEOREM 5.2.1. Let L be a (recursively axiomatizable) axiomatic extension of MTL
such that the MacNeille completion of every L-chain is an L-chain. Then:

(1) complTAUT(L∀) = genTAUT(L∀), and hence it is Σ1-complete.

(2) complTAUTpos(L∀) = genTAUTpos(L∀), and hence it is Σ1-complete.

(3) complSAT(L∀) = genSAT(L∀), and hence it is Π1-complete.

(4) complSATpos(L∀) = genSATpos(L∀), and hence it is in Π1.

The theorem applies to several prominent fuzzy logics, including the following:
MTL, IMTL, SMTL, NM, or CnBL for n > 0 (i.e. BL plus the n-contraction schema
φn → φn+1).

We now investigate the first-order logics of complete chains of extensions of BL.
First, we prove the non-arithmeticity of sets of the form TAUT(K) or TAUTpos(K) or
SAT(K) or SATpos(K), where K is a set of complete BL-chains which either contains
an infinite product chain or contains a BL-chain of the formB⊕C whereB is an infinite
product chain and C is a BL-chain. In this case, we will say that K does not exclude
Π. Moreover, we will give a characterization of recursively axiomatizable extensions L
of BL such that set of first-order sentences valid in all complete L-chains is recursively
axiomatizable. Namely, we will prove that if L is a recursively axiomatizable schematic
extensions of BL andK is the class of complete L-chains, then TAUT(K) is recursively
axiomatizable iff L proves the n-contraction schema φn → φn+1 for some n. We start
from the non-arithmeticity results.

THEOREM 5.2.2. Suppose that K is a class of complete BL-chains which does not
exclude Π. Then the followings sets are non-arithmetical: TAUT(K), TAUTpos(K),
SAT(K), and SATpos(K).

Proof. The proof is similar to the proofs of Theorem 3.0.23 and of Theorem 3.0.28, and
hence we will only point out the parts where the proofs diverge. Let U , ¬¬, θ1, θ2,
θ3 and θ4 be as in the proof of Theorem 3.0.23. As in the proofs of Theorems 3.0.23
and 3.0.28, it suffices to prove:
Claim: Let ψ be any PA-sentence, and let θ = (θ1)2 & θ2 & θ3 & θ4. (Note that we
have replaced θ1 by θ2

1 for reasons that will become clear later). Then:

(1) If N |= ψ, then θ → ψ¬¬ ∈ TAUT(K), and if N 6|= ψ, then θ & ψ¬¬ /∈
SATpos(K).

(2) If N |= ψ, then θ & ψ¬¬ ∈ SAT(K) and if N 6|= ψ, then θ → ψ¬¬ /∈
TAUTpos(K).
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Proof of the claim: (1) Let A ∈ K and M be any A-structure. Let us write ‖ . . . ‖
instead of ‖ . . . ‖AM. The claim is clear if ‖θ‖ = 0, and hence assume ‖θ‖ > 0. We
first prove that A is either an infinite product chain or is the ordinal sum of an infinite
product chain and a BL-chain. Consider a = ‖(∀x)U(x)‖. Then a must belong to the
first Wajsberg component,W , ofA, otherwise ‖θ1‖ = 0.

We now prove that W has only two elements. Suppose not. If for some d ∈ M ,
‖U(d)‖ ∈ W \ {0, 1}, then ‖(∀x)¬¬U(x)‖ = ‖(∀x)U(x)‖. Hence, ‖θ1‖ = 0, and
‖θ‖ = 0. The same is true if for some d ∈ M , ‖U(d)‖ = 0. It remains to consider
the case where for all d ∈ M , either ‖U(d)‖ /∈ W or ‖U(d)‖ = 1, but ‖(∀x)U(x)‖ ∈
W \ {1}. But in this case, ‖(∀x)U(x)‖ is the unique coatom, a, of W , ‖¬(∀x)U(x)‖
is the unique atom of W , and (¬a)2 = 0. Hence ‖θ2

1‖ = 0 (here is the place where we
need θ2

1). Hence,A is an SBL-algebra.
It follows that inf{‖U(d)‖ | d ∈ M} = 0 and for all d ∈ M , ‖U(d)‖ > 0

(otherwise, ‖θ1‖ = 0). Using ‖θ2‖ > 0, we can derive that A is either an infinite
product chain or the ordinal sum of an infinite product chain and a BL-chain, by an
argument which is very similar to the one used in the proof of Lemma 3.0.24.

We now can prove an analogue of Lemma 3.0.25. That is:

(a) For every sentence γ of PA, ‖γ¬¬‖ ∈ {0, 1}.

(b) Since ‖θ3‖ > 0, by (1) we have ‖θ3‖ = 1. Moreover we can obtain as in
Lemma 3.0.25 a model M¬¬ from M such that for every sentence γ of PA, one
has M¬¬ |= γ iff ‖γ¬¬‖ = 1. Hence, M¬¬ |= Q+.

(c) We can prove as in Lemma 3.0.25 that M¬¬ is isomorphic to N. Analogously to
Lemma 3.0.25, we can see that there is a c ∈ M such that ‖U(c)‖ < 1 and for
all d ∈ M , if M¬¬ |= c ≤ d, then ‖U(S(d))‖ ≤ ‖(∀x)(x ≤¬¬ d → U(x))‖2.
It follows ‖U(c+ n)‖ ≤ ‖U(c)‖2n . Now the first component of A is a complete
product chain, and in a complete product chain, if a < 1, then inf{a2n | n ∈
N} = 0. Hence, the proof proceeds as in Lemma 3.0.25.

At this point, since N |= ψ and ‖θ‖ > 0, we must have ‖ψ¬¬‖ = 1, and also
‖θ → ψ¬¬‖ = 1. Therefore, if N |= ψ, then θ → ψ¬¬ ∈ TAUT(K), and hence
θ → ψ¬¬ ∈ TAUTpos(K). Moreover, if N 6|= ψ, then ‖θ‖ > 0 implies ‖ψ¬¬‖ = 0,
and θ & ψ¬¬ /∈ SATpos(K). A fortiori, θ & ψ¬¬ /∈ SATpos(K).

(2) Let A ∈ K be either an infinite product chain or the ordinal sum of an infinite
product chain and a BL-chain. Let a ∈ A be such that 0 < a < 1 and a is in the
first product component of A. Take an A-structure M whose universe is N and whose
constants and function symbols are interpreted as in N (if we do not want function sym-
bols, we may replace them by predicates as usual). Moreover, for every n-ary predicate
P and for d1, . . . , dn ∈ N we define PM(d1, . . . , dn) = 1 if N |= P (d1, . . . , dn) and
PM(d1, . . . , dn) = 0 otherwise. Moreover let for all n ∈ N, UM(n) = a3n . It is readily
seen that ‖θ‖AM = 1 and ‖ψ¬¬‖AM = 1 if N |= ψ and ‖ψ¬¬‖AM = 0 otherwise. Hence,
if N |= ψ, then θ & ψ¬¬ ∈ SAT(K), and a fortiori θ & ψ¬¬ ∈ SATpos(K). Moreover
if N 6|= ψ, then θ → ψ /∈ TAUTpos(K), and a fortiori θ → ψ /∈ TAUT(K).
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COROLLARY 5.2.3. For each logic L ∈ {Π,BL,SBL}, the following sets of senten-
ces are not arithmetical: complSAT(L∀), complSATpos(L∀), complTAUT(L∀), and
complTAUTpos(L∀).

The next theorem, which describes the complexity of satisfiability and of tautologic-
ity problems for Łukasiewicz logic with respect to the class of complete MV-chains, is
easy to prove:

THEOREM 5.2.4.

(i) complTAUT(Ł∀) = stTAUT(Ł∀), and so it is Π2-complete.

(ii) complSAT(Ł∀) = stSAT(Ł∀), and so it is Π1-complete.

(iii) complTAUTpos(Ł∀) = stTAUTpos(Ł∀), and so it is Σ1-complete.

(iv) complSATpos(Ł∀) = stSATpos(Ł∀), and so it is Σ2-complete.

Proof. Every complete MV-chain is either isomorphic to [0, 1]Ł or a finite MV-chain,
and hence it is a complete subalgebra of [0, 1]Ł. Hence, the semantics based on the class
of complete MV-chains is equivalent to the standard semantics for predicate Łukasiewicz
logic.

We now characterize the schematic extensions L of BL such that complTAUT(L∀)
is recursively axiomatizable.

THEOREM 5.2.5. Let L be a recursively axiomatizable schematic extension of BL, and
assume that L, as a propositional logic, is complete with respect to the class of complete
L-chains. Then the following are equivalent:

(1) For some natural number n ≥ 1, L proves the n-contraction schema φn → φn+1.

(2) complTAUT(L∀) is recursively axiomatizable.

Proof. (1)⇒ (2) Follows from Theorem 5.2.1, since in Chapter V it is proved that for
any variety V of CnBL-chains, the class of all chains in V is closed under MacNeille
completions.

(2)⇒ (1) Let V be the variety equivalent to L, and assume that for no natural num-
ber n, L proves the n-contraction schema. Then (see Chapter V) either V contains all
finite MV-chains, and hence it contains [0, 1]Ł, or it contains an infinite product chain.
In the latter case, it contains [0, 1]Π, and by Theorem 5.2.2, complTAUT(L∀) is not
arithmetical. In the former case, (2) follows from the following claim.
Claim: Let K be a class of complete BL-chains. If [0, 1]Ł ∈ K, then TAUT(K) is
Π2-hard.
Proof of the claim: Let, for every formula ψ, ψ¬¬ be the formula obtained by replacing
in ψ every atomic subformula γ by ¬¬γ. We claim that for every sentence ψ we have
ψ ∈ stTAUT(Ł∀) iff ¬¬ψ¬¬ ∈ TAUT(K). This clearly implies the claim of the
lemma and hence of Theorem 5.2.5.

If ¬¬ψ¬¬ ∈ TAUT(K), then since [0, 1]Ł ∈ K, we have ¬¬ψ¬¬ ∈ stTAUT(Ł∀),
and ψ ∈ stTAUT(Ł∀), as `Ł ψ ↔ ¬¬ψ¬¬.
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Conversely, consider any complete BL-chainA. ThenA has a complete first Wajs-
berg componentW , which is necessarily a complete Wajsberg algebra, and hence it can
be σ-embedded into [0, 1]Ł. Moreover for everyA-structure M, let us define M′ as fol-
lows: M′ has the same domain as M and the constants and the function symbols are in-
terpreted as in M; moreover for every n-ary predicate P and for every a1, . . . , an ∈M ,
PM′(a1, . . . , an) = ‖¬¬P (a1, . . . , an)‖. Then we can prove by induction on ψ, that
for every sentence ψ, the following conditions hold:

(1) If sup(W \ {1}) ∈W , then ‖ψ¬¬‖AM = ‖ψ‖WM′ .
(2) If sup(W \ {1}) /∈W and ‖ψ‖WM′ < 1, then ‖ψ‖WM′ = ‖ψ¬¬‖AM.
(3) If sup(W \ {1}) /∈ W and ‖ψ‖WM′ = 1, then either ‖ψ¬¬‖AM = 1 or ‖ψ¬¬‖AM =

sup(W \ {1}).
In any case, we have ‖¬¬ψ¬¬‖AM = ‖ψ‖WM′ . Hence, if ψ ∈ stTAUT(Ł∀), then

¬¬ψ¬¬ ∈ TAUT(K).

5.3 Fragments with implication and negation

Here we shall understand that a logic L1∀ is a fragment of the logic L2∀ given by
the subset C of connectives of L2∀ if L1∀-formulae are L2∀-formulae not containing
any connective which is not in C, and each L1∀-formula ϕ is L1∀-provable iff it is L2∀-
provable. If this is the case then for each L1∀-theory T and formula ϕ it follows that T
proves ϕ over L1∀ iff T proves ϕ over L2∀; moreover each L1∀-algebra (chain) is an
L2∀-algebra (chain). We are going to discuss fragments of some extensions of BL∀
given by the connectives→,¬ (equivalently,→, 0) and by all connectives except 0 (and
of course except ¬)—the hoop logics.

We shall discuss logics extending BL∀, particularly Łukasiewicz, Gödel, product
logic, SBL∀ and BL∀ itself. For such a logic L∀ we denote its fragment given by the
connectives →,¬ as L∀�(→,¬). These logics are recursively axiomatized, i.e. the set
genTAUT(L∀�(→,¬)) of general tautologies is Σ1 and the set genSAT(L∀�(→,¬))
of general satisfiable formulae (= consistent formulae) is Π1.

To prove hardness, recall that each Ł∀-formula is equivalent to some Ł∀�(→,¬)-
formula; thus the set genTAUT(Ł∀) recursively reduces to genTAUT(Ł∀�(→,¬)) and
similarly for genSAT (as well as for stTAUT, stSAT, as we shall need later).

For Gödel logic the set SAT(B2�(→,¬)) of classically satisfiable formulae with
connectives only→,¬ recursively reduces to genSAT(G∀�(→,¬)) by the mapping as-
sociating to each formula ϕ the formula ϕ¬¬ resulting from ϕ by adding double negation
to each atomic subformula; analogously for genTAUT.

This works also for any logic with strict negation. On the other hand, for a logic
L∗∀ given by any continuous t-norm ∗ whose first component is Łukasiewicz observe
that the mapping sending any ϕ to ϕ¬¬ recursively reduces genSAT(Ł∀�(→,¬)) to
genSAT(L∗∀�(→,¬)) and analogously for genTAUT.

LEMMA 5.3.1.
The set genTAUT(BL∀�(→,¬)) is Σ1-hard and genSAT(BL∀�(→,¬)) is Π1-hard.

Proof. Let ϕ¬ result from ϕ by replacing each atom by its negation. Recall that for
each sentence ϕ not containing the existential quantifier, ϕ is a general tautology of



Chapter XI: Arithmetical Complexity of First-Order Fuzzy Logics 897

Ł∀ iff ϕ¬ is a general tautology of BL∀ [12]. One can prove in the same way that ϕ is
generally satisfiable in Ł∀ iff ϕ¬ is generally satisfiable in BL∀. Clearly if ϕ is a (→, 0)-
formula then so is ϕ¬. The set of all (→, 0)-sentences not containing ∃ that are general
Ł∀ tautologies is Σ1-complete and the set of all such formulae that are generally Ł∀-
satisfiable is Π1-complete (since in Ł∀ each sentence is equivalent to a (→, 0)-sentence
not containing ∃). This gives the result.

We focus now on the standard semantics. In the case of first-order Łukasiewicz logic
we have that stTAUT(Ł∀) recursively reduces to stTAUT(Ł∀�(→,¬)) and conversely;
thus the set stTAUT(Ł∀�(→,¬)) is Π2-complete. Similarly to genSAT, we see that
the set stSAT(Ł∀�(→,¬)) is Π1-complete.

Finally we survey some results on non-arithmeticity. We shall only sketch their
proofs since they are rather laborious; for details see [18] and references thereof.

DEFINITION 5.3.2. For a setK of continuous t-norms, we denote the set of all finite sets
Σ of predicate (→, 0)-formulae that are standardly K-satisfiable (i.e. for some t-norm ∗
from K there is a standard interpretation M with ‖α‖∗M = 1 for each α ∈ Σ) by
stSAT(f)(K∀�(→, 0)). By ‖Σ‖∗M we denote the minimum of the values ‖α‖∗M for α∈Σ.

THEOREM 5.3.3. For each setK of continuous t-norms containing the product t-norm,
the set stSAT(f)(K∀�(→, 0)) is not arithmetical.

Let us sketch the proof. Recall the notation ϕ¬¬ for the formula resulting from
ϕ by putting double negation to all atomic subformulae of ϕ; for a set Ψ of formulae,
Ψ¬¬ is the set {ϕ¬¬|ϕ ∈ Ψ}. For a standard interpretation M, let M¬¬ result from
M by replacing each positive value by 1. Clearly, if ∗ is a continuous t-norm with
Gödel negation then for each standard interpretation M and each formula ϕ we have
‖ϕ¬¬‖∗M = ‖ϕ‖B2

M¬¬ .
Now recall the finite axiomatic system Q+ (see Introduction). Since it is a system

in classical logic we may assume that all axioms are (→, 0)-formulae (other connectives
being classically definable). Evidently, if ∗ has Gödel negation then for each (standard)
interpretation M, ‖(Q+)¬¬‖∗M > 0 iff M¬¬ is a classical model of Q+ (possibly with
non-absolute equality—you may factorize).

DEFINITION 5.3.4. Let U be a unary predicate distinct from the symbols of Q+. We
introduce the following axioms:

Ψ0 ¬(∀x)U(x)
Ψ1 (∀x)(∀y)(∀z)[((U(x)→ U(y))→ U(y))→

[(U(y)→ U(z))→ ((U(y)→ U(x))→ U(x))→ ((U(y)→ U(x))→ U(x))]]
Ψ2 (∀x)¬¬U(x)
Ψ3 (∀x)((U(x)→ U(S(x)))→ U(x)) (S is the successor from Q+)
Ψ4 (∀x)(∀y)(∀z)(¬¬(x ≤ y)→ (U(y)→ U(x)). (< from Q+))

Finally, Ψ will stand for the set {Ψi i = 0, . . . , 4} ∪ (Q+)¬¬

Note that all formulae in Ψ are (→, 0)-formulae.

LEMMA 5.3.5. Let Φ be a (→, 0)-formula of arithmetic. Φ is true in the standard
model N of arithmetic iff the finite set Ψ∪{Φ¬¬} is standardly LK∀�(→,¬)-satisfiable.



898 Petr Hájek, Franco Montagna, and Carles Noguera

Ł G Π SBL BL

genTAUT Σ1-compl. Σ1-compl. Σ1-compl. Σ1-compl. Σ1-compl.
genSAT Π1-compl. Π1-compl. Π1-compl. Π1-compl. Π1-compl.
stTAUT Π2-compl. Σ1-compl. NA NA NA

stSAT Π1-compl. Π1-compl. NA NA NA

Table 6. Arithmetical complexity of (→,¬)-fragments.

The theorem follows: the preceding lemma gives a recursive reduction of the set of
(→,¬)-formulae true in the standard model to our set stSAT(f)(LK∀�(→, 0)).

THEOREM 5.3.6. The set of standard tautologies of Π∀�(→, 0) is not arithmetical.

We again sketch a proof. Here we shall use Ψ0 and Ψ2 as well asQ+ defined above.
Let Ψ′3 be the axiom

(∀x))(U(S(x)) / (∀z)(¬¬(z < x)→ U(z)))

where α / β is (β → (β → α))→ β. Ψ will be the finite set {Ψ0,Ψ2,Ψ
′
3} ∪ (Q+)¬¬.

And let us agree that if T is a finite set {α1, . . . , αn} of formulae and β is a formula
then T → β means (α1 → (α2 → . . . (αn → β) . . . )).

LEMMA 5.3.7. Let Φ be a sentence of arithmetic. N |= Φ iff the formula Ψ→ Φ¬¬ is
a standard tautology of Π∀�(→,¬).

This shows that the function assigning to each (→, 0)-sentence Φ of arithmetic the
sentence Ψ → Φ¬¬ recursively reduces the non-arithmetical set of (→, 0)-sentences
true in N to the set of standard tautologies of Π∀�(→,¬). This completes the (sketch
of a) proof of Theorem 5.3.6.

THEOREM 5.3.8. For each setK of continuous t-norms containing the product t-norm,
the set of standard tautologies of the logic LK∀�(→,¬) is non-arithmetical.

For the proof sketch, we use the notation: ϕ ↑ ψ stands for (ϕ→ ψ)→ ψ. Θ is the
set {Ψ0,Ψ2,Σ} of formulae where Ψ0,Ψ2 is as above (i.e. (∀x)¬¬U(x), ¬(∀x)U(x))
and Σ is the formula (∀x, y)((U(x) ↑ U(y))→ (U(y) ↑ U(x))). Now, for each (→, 0)-
formula Φ not containing the predicate U take the pair {(Θ → Φ), (∃x)(Φ ↑ U(x))}.
Observe that both formulae are (→, 0)-formulae. Their disjunction will be denoted by
Φ#. This is not a (→, 0)-formula, but to say for some α, β that α ∨ β is a tautology
is the same as to say that (α ↑ β) ∧ (β ↑ α) is a tautology and this is to same as say
that both α ↑ β and β ↑ α are tautologies. One shows that under the assumptions of the
theorem a (→, 0)-formula Φ not containing the predicate U is a Π∀-tautology iff Φ#

is an LK∀-tautology hence if the corresponding two (→, 0)-formulae are LK∀�(→, 0)-
tautologies. This recursively reduces the (non-arithmetical) set stTAUT(Π∀�(→, 0)) to
the set stTAUT(LK∀�(→, 0)) which gives a proof of Theorem 5.3.8.

The results are summarized in the Table 6. One may also consult [7].
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5.4 Complexity of hoop logics

This section deals with falsity-free first-order fuzzy logics. They can be obtained
in two ways: given a (4-)core fuzzy logic L, (1) one can consider L∀−, the falsity-free
fragment of L∀, or (2) one can first take L−, the falsity-free fragment of L, and then
consider its first-order version L−∀. We are going to prove that in many important cases
both logics coincide.

DEFINITION 5.4.1. Let A be an L−-chain and let a ∈ A. By A↘ [a, 1] we mean the
algebra whose domain is [a, 1], whose lattice operations and whose implication are the
restrictions to [a, 1] of the corresponding operations ofA, and whose monoid operation
∗ is x ∗ y = (x · y) ∨ a. Moreover byA+ we denote the ordinal sum of the two element
MV-chain andA. ByA′ we denoteA+ ifA has no minimum, andA with 0 interpreted
as the minimum ofA otherwise.

The following lemma is easy to demonstrate.

LEMMA 5.4.2.

1. Let L be one of MTL, BL, Ł, or G, let A be an L−-chain and a ∈ A. Then
A↘ [a, 1] is an L-chain.

2. Let L be one of SMTL or SBL, and let A be an L−-chain. Then A+ is an
L-chain.

3. Let L be one of Π, ΠMTL, and letA be an L−-chain. ThenA′ is an L-chain.

PROPOSITION 5.4.3. Let L be an axiomatic extension of MTL such that at least one
of the following conditions hold:

1. For every L−-chainA, and for every a ∈ A,A↘ [a, 1] is an L-chain.

2. For every L−-chainA,A+ is an L-chain.

3. L extends SMTL and for every L−-chainA,A′ is an L-chain.

Then L∀− = L−∀.

Proof. Assume that 1 holds. Since both logics are finitary it is enough to prove that for
every finite set T ∪ {φ} of formulae of, T `L∀− φ iff T `L−∀ φ.

For the non-trivial direction, suppose that φ is invalidated in a model M of T on a
totally ordered L-semihoop H . Now let γ be the conjunction of all universal closures
of subformulae of T ∪ {φ} and let a = ‖γ‖HM. Consider H ↘ [a, 1] and define a new
interpretation M↘ [a, 1] letting for every n-ary predicate P , PM↘[a,1](a1, . . . , an) =
PM(a1, . . . , an) ∨ a. It is enough to prove that M ↘ [a, 1] is a safe structure on
H ↘ [a, 1] which is a model of T but not of ϕ. Thus, we want to see that for any first-
order formula χ in the language with 0, the value ‖χ‖H↘[a,1]

M↘[a,1] exists for any evaluation.
To this end, we define a translation 0 by induction as:

(P (x1, . . . , xn))0 = P (x1, . . . , xn) ∨ γ
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(ϕ& ψ)0 = (ϕ0 & ψ0) ∨ γ (ϕ→ ψ)0 = ϕ0 → ψ0

(ϕ ∧ ψ)0 = ϕ0 ∧ ψ0 (ϕ ∨ ψ)0 = ϕ0 ∨ ψ0

0
0

= γ ((∀x)ϕ)0 = (∀x)ϕ0 ((∃x)ϕ)0 = (∃x)ϕ0.

One can check, by an easy induction, that for every first-order formula χ in the
language with 0 and any evaluation v, ‖χ‖H↘[a,1]

M↘[a,1],v = ‖χ0‖HM,v . Therefore, we have
a safe structure. On the other hand, another easy induction shows that for every ψ

subformula of T ∪ {φ}, ‖ψ0‖HM,v = ‖ψ‖HM,v . Thus, for every ψ ∈ T , ‖ψ‖H↘[a,1]
M↘[a,1],v =

‖ψ0‖HM,v = ‖ψ‖HM,v = 1 and ‖φ‖H↘[a,1]
M↘[a,1],v = ‖φ0‖HM,v = ‖φ‖HM,v < 1.

The proof with assumptions 2 and 3 is rather similar, and we only point out the
differences with the proof from assumption 1. In the case of 2, we must take H+ and
in the case of 3 we must take H ′. Moreover in both cases we need not change M and
we need not use the translation. Safety follows from the fact that negation is strict and
hence negated formulae are evaluated either in 0 or in 1.

COROLLARY 5.4.4. Let L be any of MTL, BL, Ł, G, SMTL, SBL, Π or ΠMTL.
Then L∀− = L−∀.

We focus on the falsity-free fragments of the four most important fuzzy logics—
BL∀, Ł∀, G∀, and Π∀; they are denoted by BLH∀, ŁH∀, GH∀, ΠH∀ respectively.
According to the previous corollary, their general semantics is given by bounded hoops,
Wajsberg hoops, Gödel hoops and product hoops respectively. The standard semantics
are the 0-free reducts of the corresponding standard semantics of the original logic, i.e.
for BLH∀ all t-norm algebras, for ŁH∀, GH∀, ΠH∀ the corresponding t-norm algebra
with the same name.

As proved above, BL∀ is a conservative expansion of BLH∀ and the similarly for the
other logics. Thus general tautologies of BLH∀ are just falsity-free general tautologies
of BL∀ and the same for Ł, G, Π. For trivial reasons, the same holds for standard
tautologies: standard tautologies of BLH∀ are, by definition, just falsity-free standard
tautologies of BLH∀ and similarly for Ł, G, Π.

For any logic L∀ of our logics, let stTAUT(L∀) denote the set of all its standard
tautologies; for L∀ having 0 let stTAUT+(L∀) denote the set of all its standard falsity-
free tautologies (i.e. not containing 0). Recall that the sets stTAUT(G∀), stTAUT(Ł∀),
stTAUT(Π∀), stTAUT(BL∀) are respectively Σ1-complete, Π2-complete, not arith-
metical, not arithmetical. Our question is what is the arithmetical complexity of stan-
dard tautologies of the hoop logic, or equivalently the complexity of stTAUT+(G∀),
stTAUT+(Ł∀), stTAUT+(Π∀), stTAUT+(BL∀). We will show that it is the same as
the complexity of the corresponding set stTAUT.

To this end, we need to consider again, now for real-valued chains, the constructions
used above. Given a t-norm algebra B and 0 ≤ a < 1, we consider the BL-algebra
B ↘ [a, 1]. Clearly there is a monotone 1 − 1 mapping of [a, 1] onto [0, 1] transforms
B ↘ [a, 1] into a t-norm algebra. B ↘ [1, 1] is the degenerated one element algebra.
On the other hand, given a predicate language P andQ(d), a closed atomic formula with
Q, d not belonging to P , we define γ = Q(d) and for each formula ϕ of the language
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P define the formula ϕ0 as in the proof of Proposition 5.4.3. If M is a safe standard
interpretation of P and a ∈ [0, 1], then 〈M, a〉 is any expansion of M with ‖γ‖ =
a; M ↘ [a, 1] results from M by replacing the interpretation PM of each predicate P
(of P) by P ′M(u1, . . . , un) = max{PM(u1, . . . , un), a}. The following lemma is easily
verified by induction:

LEMMA 5.4.5. For each formula ϕ of P , M-evaluation v of variables, and a ∈ [0, 1],

‖ϕ0‖B〈M,a〉,v = ‖ϕ‖B↘[a,1]
M↘[a,1],v.

THEOREM 5.4.6. The sets stTAUT(BLH∀), stTAUT+(BL∀) and stTAUT(BL∀)
are mutually recursively reducible (and hence have the same Turing degree). Similarly
for Ł∀, ŁH∀ and G∀, GH∀.

Proof. Our lemma recursively reduces stTAUT(BL∀) to stTAUT+(BL∀) in the fol-
lowing way: ϕ ∈ stTAUT(BL∀) iff ϕ0 ∈ stTAUT+(BL∀). Conversely, a falsity-free
formula ϕ belongs to stTAUT+(BL∀) iff it belongs to stTAUT(BL∀), thus the identity
mapping of falsity-free formulae reduces stTAUT+(BL∀) to stTAUT(BL∀). Further
recall that stTAUT(BLH∀) = stTAUT+(BL∀). The same for Ł, G. Since if B is
the Łukasiewicz or Gödel t-norm algebra and a < 1 then B ↘ [a, 1] is isomorphic
toB.

THEOREM 5.4.7.

(1) stTAUT(ΠH∀), stTAUT+(Π∀), stTAUT(Π∀)∩stTAUT(Ł∀) are mutually re-
cursively reducible (have the same Turing degree).

(2) The set stTAUT(Π∀) ∩ stTAUT(Ł∀) is not arithmetical.

Proof. (1) The mapping sending each ϕ to ϕ0 reduces stTAUT(Π∀)∩ stTAUT(Ł∀) to
stTAUT+(Π∀) since for a = 0 and B being the standard product algebra, the algebra
B ↘ [a, 1] is just B and for 0 < a < 1 we know that B ↘ [a, 1] is isomorphic to the
standard Łukasiewicz algebra.

(2) Consult the proof of non-arithmeticity of TAUT(Π∀) in above: there is a closed
formula Ψ and for each formula Φ of Peano arithmetic a formula Φ′ of Π∀ such that
Φ is true in the standard model of arithmetic iff Ψ → Φ′ is in stTAUT(Π∀). Observe
that Ψ implies ¬(∀x)U(x) & (∀x)¬¬U(x) and this formula has in each interpretation
the value 0 when computed under standard Łukasiewicz semantics; thus Ψ → Φ′ is in
stTAUT(Ł∀) for any Φ. Hence the mapping sending each Φ to Ψ→ Φ′ reduces truth in
N to stTAUT(Π∀) ∩ stTAUT(Ł∀), which shows that the latter set is not arithmetical.

COROLLARY 5.4.8.

(1) The set stTAUT+(G∀) = stTAUT(GH∀) is Σ1-complete.

(2) The set stTAUT+(Ł∀) = stTAUT(ŁH∀) is Π2-complete.
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(3) stTAUT+(Π∀) = stTAUT(ΠH∀) and stTAUT+(BL∀) = stTAUT(BLH∀)
are not arithmetical.

REMARK 5.4.9. Every formula in the language of hoops is satisfiable and hence posi-
tively satisfiable (interpret every predicate into 1).

5.5 Monadic BL logics

It is well-known that monadic classical predicate logic, i.e. classical predicate logic
without function symbols and with only unary predicate symbols, is decidable. It is a
natural question to ask for which setsK of standard BL-algebras the set TAUTm(K) of
monadic predicate formulae valid in all algebras in K is decidable. An almost complete
answer to this question is provided by the next theorem.

THEOREM 5.5.1. If K is a class of standard BL-chains containing an algebra not
isomorphic to [0, 1]Ł or to [0, 1]Π, then TAUTm(K) is undecidable.

Proof. We will recursively reduce the classical theory T of two equivalence relations to
TAUTm(K). Since T is undecidable (see e.g. [28]) the claim will follow. Let P, Q
and H be unary predicate symbols, and let R = (∃x)H(x). Let E and S denote the
binary predicate symbols of T representing the two equivalence relations. We define for
every monadic formula ξ (possibly with parameters) of T , a formula ξ+ of monadic BL
logic in the following inductive way:

If ξ = E(a, b) (where a and b are either variables or parameters) then ξ+ =
(P (a)↔ P (b)) ∨R.

If ξ = S(a, b), then ξ+ = (Q(a)↔ Q(b)) ∨R.

If ξ = 0, then ξ+ = R.

If ξ = σ & γ, then ξ+ = (σ+ & γ+) ∨R.

If ξ = σ → γ, then ξ+ = σ+ → γ+.

If ξ = (∃x)σ, then ξ+ = (∃x)σ+.

If ξ = (∀x)σ, then ξ+ = (∀x)σ+.

Now for every ψ of T , we consider the formula ψ? = ((∀x)(R ↑ (P (x)∨Q(x)))→
(ψ+ ∨ (∃x)(P (x) ∨ Q(x)). We are going to prove that for every sentence ψ of T one
has: T ` ψ iff ψ? ∈ TAUTm(K). Since ? is recursive, this will give the desired result.

LEMMA 5.5.2. Let A be any BL-chain and M an A-structure such that ‖ψ?‖AM 6= 1.
Let us write ‖ . . . ‖ instead of ‖ . . . ‖AM. Then for all d ∈M , ‖P (d)∨Q(d)‖ < ‖R‖ < 1,
and ‖P (d) ∨Q(d)‖ and ‖R‖ do not belong to the same Wajsberg component.

Proof. If for some d ∈ M , ‖P (d) ∨ Q(d)‖ ≥ ‖R‖, then by Lemma 3.0.19 we obtain
‖R ↑ (P (d) ∨ Q(d))‖ = ‖P (d) ∨ Q(d)‖. Hence, ‖(∀x)(R ↑ (P (x) ∨ Q(x)))‖ ≤
‖(∃x)(P (x) ∨ Q(x))‖, and finally ‖ψ?‖ = 1, a contradiction. If ‖P (d) ∨ Q(d)‖ <
‖R‖, but ‖P (d) ∨ Q(d)‖ and ‖R‖ are in the same Wajsberg component, so again by
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Lemma 3.0.19 ‖R ↑ (P (d) ∨ Q(d))‖ = ‖R‖. Thus ‖(∀x)(R ↑ (P (x) ∨ Q(x)))‖ ≤
‖R‖ ≤ ‖ψ+‖, and ‖ψ?‖ = 1, which is a contradiction. Finally, if ‖R‖ = 1, then
‖ψ+‖ = 1 and ‖ψ?‖ = 1, which is impossible.

LEMMA 5.5.3. With reference to the notation of Lemma 5.5.2, let for all d ∈ M ,
‖P (d) ∨ Q(d)‖ < ‖R‖, and ‖P (d) ∨ Q(d)‖ and ‖R‖ are not in the same Wajsberg
component ofA. Then for every formula ξ of T , either ‖ξ+‖ = 1 or ‖ξ+‖ = ‖R‖.

Proof. Clearly, ‖0+‖ = ‖R‖. Now let a, b ∈ M , and let W and U be the Wajsberg
components of A such that ‖P (a)‖ ∈ W and ‖P (b)‖ ∈ U (possibly, W = U ). If
‖P (a)‖ = ‖P (b)‖, then ‖E(a, b)+‖ = ‖(P (a) ↔ P (b)) ∨ R‖ = 1. Otherwise, using
the definition of ordinal sum, it is readily seen that ‖P (a) ↔ P (b)‖ ∈ (W ∪ U) \ {1}.
Hence ‖P (a) ↔ P (b)‖ < ‖R‖, and ‖E(a, b)+‖ = ‖(P (a) ↔ P (b)) ∨ R‖ = ‖R‖.
Similarly, either ‖S(a, b)+‖ = 1 or ‖S(a, b)+‖ = ‖R‖. Hence, the claim holds if ξ
is atomic. The induction steps corresponding to →, ∃ and ∀ are immediate. Finally,
suppose ξ = σ & γ. Then ‖ξ+‖ = ‖(σ+ & γ+) ∨ R‖, and the claim follows from the
induction hypothesis.

Suppose that the hypotheses of Lemma 5.5.3 are satisfied. Define a model M¬¬ of
T from M as follows: the domain of M¬¬ is M , and for a, b ∈M , let M¬¬ |= E(a, b)
if ‖P (a) ↔ P (b)‖ = 1, and M¬¬ |= S(a, b) iff ‖Q(a) ↔ Q(b)‖ = 1. Clearly,
M¬¬ |= T .

LEMMA 5.5.4. Under the same assumptions as in Lemma 5.5.3, for every sentence ξ
of T with parameters in M , one has: M¬¬ |= ξ iff ‖ξ+‖ = 1.

Proof. We proceed by induction on ξ. If ξ = E(a, b), then M¬¬ |= ξ iff ‖P (a) ↔
P (b)‖ = 1 iff ‖(P (a)↔ P (b))∨R‖ = 1 (because by Lemma 5.5.4 ‖R‖ < 1). The case
where ξ = S(a, b) is treated similarly. If ξ = 0, then M¬¬ 6|= ξ and ‖ξ+‖ = ‖R‖ < 1.
Thus the claim holds for ψ atomic.

Suppose ξ = λ & σ. Then M¬¬ |= ξ iff M¬¬ |= λ and M¬¬ |= σ iff (by the
induction hypothesis) ‖λ+‖ = ‖σ+‖ = 1 iff ‖(λ+ & σ+) ∨R‖ = 1 iff ‖ξ+‖ = 1.

For the induction steps corresponding to →, to ∃ and to ∀ we use the fact that by
Lemmata 5.5.2 and 5.5.4 for every sentence γ of T , ‖γ+‖ ∈ {‖R‖, 1}, i.e., ‖γ+‖ can
assume only two truth values. Thus the semantic interpretations of →, ∃ and ∀ are
the same as in classical logic (with 0 replaced by ‖R‖), and the proof proceeds in a
straightforward way.

We conclude the proof of Theorem 5.5.1. Suppose that ψ? /∈ TAUTm(K). Let
A ∈ K and M an A-structure such that ‖ψ?‖AM 6= 1. Then, a fortiori, ‖ψ+‖AM 6= 1.
By Lemmata 5.5.2, 5.5.3 and 5.5.4, we have a model M¬¬ of T such that for every
sentence γ of T , M¬¬ |= γ iff ‖γ+‖AM = 1. Since ‖ψ+‖AM 6= 1, M¬¬ 6|= ψ, and
T 0 ψ.

Conversely, suppose T 0 ψ. Let MT be a finite or countable model of T such that
MT 6|= ψ. Take A ∈ K not isomorphic to any of [0, 1]Ł and [0, 1]Π. Then A must have
an idempotent element (i.e., an element a such that a ? a = a) which is different from
0 and from 1. Hence if 0 ≤ x < a < y < 1, then x and y do not belong to the same
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Wajsberg component. Now we can obtain an A-structure M such that the following
conditions hold:

(i) The domain M of M coincides with the domain MT of MT .

(ii) a < RM < 1 (since R = (∃x)H(x), it suffices to take HM(d) = a+1
2 for all

d ∈M ).

(ii) For all d ∈M , PM(d) < a and QM(d) < a.

(iii) For a, b ∈M , PM(a) = PM(b) iff MT |= E(a, b).

(iv) For a, b ∈M , QM(a) = QM(b) iff MT |= S(a, b).

Then we can easily check that the model M¬¬ built from M as in Lemma 5.5.4 is
isomorphic to MT . Thus, by Lemma 5.5.4, for every sentence γ of T , one has: MT |= γ
iff ‖γ+‖AM = 1. Hence, ‖ψ+‖AM 6= 1. Moreover by conditions (i) and (ii) and by
Lemma 3.0.19, for all d ∈M , ‖R ↑ (P (d) ∨Q(d))‖AM = 1, hence ‖(∀x)(R ↑ (P (x) ∨
Q(x)))‖AM = 1. Finally, ‖(∃x)(P (x) ∨Q(x))‖AM ≤ a < 1. Hence, ‖ψ?‖AM < 1.

An inspection on the proof of Theorem 5.5.1 yields that if ψ? can be invalidated in
some arbitrarily given linearly ordered BL-algebra A, then T 0 ψ. On the other hand,
if T 0 ψ, then by the proof of Theorem 5.5.1 we obtain a standard BL-algebra (hence a
fortiori a linearly ordered BL-algebra)A such that ψ? is not valid inA. In other words,
T ` ψ iff ψ? is valid in all linearly ordered BL-algebras. Since BL∀ is complete with
respect to the interpretations in linearly ordered BL-algebras, and since of course the
same property holds for its monadic version BLm∀, we have that for every sentence ψ
of the language of T , T ` ψ iff BLm∀ ` ψ?. It follows:

THEOREM 5.5.5. The monadic predicate logic BLm∀ is undecidable.

5.6 Extensions of Łukasiewicz logic

We survey the main results on complexity of logics properly extending Łukasiewicz
predicate logic Ł∀ (for details see [6]). Recall the definitions of finite Ł-algebras and
Komori algebras (see Chapter VI):

• Łn+1 is the subalgebra of [0, 1]Ł with the domain {0, 1
n , . . . ,

n−1
n , 1},

• Kn+1 = 〈{〈i, a〉 ∈ N×lex Z | 〈0, 0〉 ≤ 〈i, a〉 ≤ 〈n, 0〉},⊕Kn+1
,¬Kn+1

, 〈0, 0〉〉,
〈i, x〉⊕Kn+1〈j, y〉 = min{〈n, 0〉, 〈i+ j, x+ y〉} and¬Kn+1〈i, x〉 = 〈n− i,−x〉.

Recall Komori’s result saying that for each consistent propositional logic which is a
proper axiomatic extension of Łukasiewicz propositional logic there exist finite subsets
A,B of the set of natural numbers bigger than 1 such thatA∪B 6= ∅ and the set of stan-
dard tautologies of this logic is defined as

⋂
i∈A stTAUT(Ki) ∩

⋂
j∈B stTAUT(Łj).

(Łj is the finite Łukasiewicz algebra with j-elements). Thus the logic can be denoted by
ŁA,B ; its predicate version is denoted ŁA,B∀.
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The algebras Ki for i ∈ A and Łj for j ∈ B are the standard algebras of ŁA,B ; they
generate the variety of general ŁA,B-algebras. It can be shown that any Komori algebra
and any finite Łukasiewicz algebra is in the variety of general ŁA,B-algebras iff it is a
subalgebra of a generic ŁA,B-algebra. Each safe Kn-structure is witnessed.

THEOREM 5.6.1. Let ŁA,B be any consistent axiomatic extension of Ł. Then:

(1) genTAUT(ŁA,B∀) is Σ1-complete.

(2) stTAUT(ŁA,B∀) is Σ1-complete iff A is empty.

(3) stTAUT(ŁA,B∀) is Π2-complete iff A is non-empty.

(4) genSAT(ŁA,B∀) = stSAT(ŁA,B∀) and this set is Π1-complete.

COROLLARY 5.6.2. Let ŁA,B be any consistent axiomatic extension of Ł. Then:

(1) genSATpos(ŁA,B∀) is Π1-complete.

(2) stSATpos(ŁA,B∀) is Π1-complete iff A is empty.

(3) stSATpos(ŁA,B∀) is Σ2-complete iff A is non-empty.

(4) genTAUTpos(ŁA,B∀) = stTAUTpos(ŁA,B∀) and this set is Σ1-complete.

5.7 Open problems

Some unsolved problems in complexity of predicate fuzzy logics:

• What is the exact complexity of TAUTm(K), when K is the class of all standard
BL-algebras?

• Is any of TAUTm([0, 1]Ł) or TAUTm([0, 1]Π) decidable?4

• What is the complexity (outside the arithmetical hierarchy) of the non arithmetic
sets, such as standard tautologies of product logic, contained in this chapter?5

• If instead of the full vocabulary we consider one which has a countable number
of relational symbols of all arities (but not functional symbols), is the general
semantics of first-order fuzzy logics still undecidable?

• What are the complexities of sets of standard (positive) tautologies and satisfiable
sentences when4 is added to the language?

• For which (4-)core fuzzy logics L, does L∀− = L−∀ hold?

• What is the complexity of the monadic fragments in the case of the general se-
mantics?

• What are the complexities of first-order fuzzy logics when one considers the su-
persound semantics in the sense of [2]?

4Very recently Félix Bou has presented a proof of the undecidability of the monadic fragments of
Łukasiewicz and product predicate logics at a conference and at some seminars. As far as the authors know,
these results are still not in a written form at the moment of the publication of the present handbook.

5The paper [24] gives a rather tight bound to for the complexity of standard tautologies of BL∀ and Π∀,
showing that in both cases it is between ∅ω (the degree of true arithmetic) and ∅ω+1 (the degree of the halting
problem with oracle on ∅ω).
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6 Historical remarks and further reading

For a general reference on recursion theory and arithmetical hierarchy see e.g. [28].
Arguably, the first work considering the arithmetical complexity of a particular first-
order fuzzy logic is Scarpellini’s paper [29] published on 1962 which shows that the set
of (standard) tautologies of Łukasiewicz predicate logic is not recursively axiomatizable.
Ragaz proved in his PhD Thesis [27] from 1981 that this set is actually Π2-complete
(alternative proofs of the same fact have been obtained by Goldstern in [8] and by Hájek
in [11]; we have presented here the latter). When first-order versions (in full language)
for other propositional fuzzy logics started being systematically studied by Hájek in his
works during the nineties, their undecidability appeared as a general problem. Actually,
Montagna and Ono proved in [26] that all first-order versions of consistent axiomatic
extensions of MTL are undecidable and thus the issue of their arithmetical complexity
became a crucial item in the agenda of Mathematical Fuzzy Logic. Various results
concerning the position in the arithmetical hierarchy of the sets of tautologies, positive
tautologies, satisfiable sentences, and positively satisfiable sentences w.r.t. the standard
semantics of the three main fuzzy logics are in Hájek’s papers [9, 10] and in Chapter
6 of his monograph [11]. The next natural step was the study of complexity problems
for first-order logics based on other continuous t-norms: this was done again by Hájek
in [12, 13] and by Montagna in [22, 23]. Note that [12] contains the first result of
non-arithmeticity in the present context (non-arithmeticity of stSAT(Π∀)). In 2005, the
survey paper [14], besides collecting the mentioned results, provides a new study where
the standard semantics is replaced by the general semantics, i.e. the one given by models
over arbitrary linearly ordered BL-algebras. Recent works have extended the scope
of the studies on arithmetical complexity issues to: witnessed semantics over product
logic [16], logics of complete BL-chains [21], monadic fragments [23], logics with less
propositional connectives [17] and extensions of Łukasiewicz logic [6]. Moreover, the
recent survey [18] collects information (with references) on sets of standard/general
tautologies, satisfiable sentences, also for positive tautologies and satisfiable sentences
of important logics (extending BL∀), logics with Baaz’s4, with truth constants, logics
extending Łukasiewicz logic and Baaz-Gödel logics G(V ) whose set of truth values V
is a subset of the real unit interval. The latter are also studied in [1, 15]. Recently, in
the paper [25] Montagna and Noguera have presented a general approach to complexity
problems extending the scope to core and4-core fuzzy logics and to arbitrary semantics
(Sections 2 and 4 of the present chapter are based on this paper). Theorem 2.0.20 has
been obtained by Bou and Noguera in [3]. Finally, it is worth mentioning the recent
paper [19] which gives new important insight into undecidability issues in fuzzy logics
with an example of a decidable theory T over Łukasiewicz (propositional) logic and a
formula ϕ such that the theory T ∪ {ϕ} is undecidable.
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