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Abstract: Finding dominating sets in graphs is very important in the context of numerous real-world
applications, especially in the area of wireless sensor networks. This is because network lifetime
in wireless sensor networks can be prolonged by assigning sensors to disjoint dominating node
sets. The nodes of these sets are then used by a sleep–wake cycling mechanism in a sequential way;
that is, at any moment in time, only the nodes from exactly one of these sets are switched on while
the others are switched off. This paper presents a population-based iterated greedy algorithm for
solving a weighted version of the maximum disjoint dominating sets problem for energy conservation
purposes in wireless sensor networks. Our approach is compared to the ILP solver, CPLEX, which is
an existing local search technique, and to our earlier greedy algorithm. This is performed through its
application to 640 random graphs from the literature and to 300 newly generated random geometric
graphs. The results show that our algorithm significantly outperforms the competitors.

Keywords: population-based iterated greedy; disjoint dominating sets; lifetime maximization;
wireless sensor networks

1. Introduction

The field of wireless sensor networks (WSNs) has been enjoying a lot of attention in
the last 20 years, both in research and in industry. This is certainly due to a multitude of dif-
ferent applications, including environmental monitoring, medical and health applications,
security surveillance, transportation applications, structural applications, and emergency
operations [1,2], just to name a few. WSNs are generally composed of a number of small
devices equipped with one or more sensors, limited storage capacity, a limited power
supply, and a radio communication system. As the weight of sensor devices often plays an
important role, power supply—for example, by means of a battery—is generally limited,
and battery-saving techniques are often used. The lifetime of a sensor device (in hours)
may be computed by a division of the battery capacity (in Watt hours) and the average
power drain (in Watts). However, the estimation of the lifetime of a sensor node is not a
trivial task (see [3]) because energy consumption is the result of various factors, including,
for example, the environmental temperature.

For these reasons, one of the principal research topics concerning WSNs is about
network lifetime extension, while at the same time, providing sufficient communication
reliability and sensing coverage. Note that in this context, the term network lifetime refers to
the time during which the network is fully operational with respect to its tasks. In other
words, the network lifetime is the time duration in which the overall sensing coverage is
maintained. The lifetime of a WSN, therefore, heavily depends on the energy consumption
of the individual sensor devices. Real-world examples of mechanisms for maximizing
the network lifetime are manifold. They include, but are not limited to, smart agriculture
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monitoring [4], structural health monitoring [5], human activity monitoring [6], and road
traffic monitoring [7]. Power-saving strategies such as the ones found in these examples
can—according to [8]—be classified as belonging to one of the following groups:

• Sleep–wake cycling, also referred to as duty cycling. Here, sensor devices alternate
between active and sleep mode;

• Power control through the adjustment of the transmission range of the radio commu-
nication systems;

• Routing and data gathering in an energy efficient way;
• Reduction of the amount of data transmissions and avoidance of useless activity.

In this paper, we will provide a technique for WSN lifetime extension that falls into the first
category. More precisely, our technique makes use of the so-called communication graph.
The nodes of this graph are the sensor devices belonging to the network (together with their
locations). Two such nodes are connected by an edge if the corresponding sensor devices
can communicate with each other via their radio communication systems. Note that sensor
nodes have at least two tasks, also known as functionalities: (1) sensing data and (2) data
processing and forwarding data to a base station. Between these two tasks, the latter one
is by far more energy-intensive than the first one. In order to keep energy spending to a
minimum, the nodes in a sensor network may be organized in terms of dominating sets
in which the dominators (that is, the sensor nodes that form part of the dominating set)
assume the task of cluster heads that take care of data processing and forwarding. However,
sensor nodes are never switched off in this model. Those sensor nodes that do not form
part of the (current) dominating set save energy by not having to perform data processing
and forwarding. In contrast, data sensing is performed by all sensor nodes at all times.
Such a model (or similar models) have been used in a wide range of papers in the literature;
for example, see refs. [9–11]. For the above-mentioned reasons, our technique organizes
the sensor nodes into a number of disjoint dominating sets, which are used—one after the
other—for data processing and data forwarding.

1.1. Necessary Graph Theoretic Concepts

This paper makes use of some basic definitions and notations from graph theory. The
most important ones are outlined in the following. (For a more profound introduction, the
interested reader may refer to [12].) First, the communication graph is modeled by means
of an undirected graph, G = (V, E), where V is the set of nodes, and E is the set of edges
connecting (some of) the nodes. Hence, two nodes, v 6= u ∈ V, which are connected by
an edge, (v, u) ∈ E, are called neighbors. They may also be called adjacent nodes. The open
neighborhood of a node, v ∈ V, is defined as N(v) := {u ∈ V | (v, u) ∈ E}. Sometimes,
however, it is necessary to refer to the closed neighborhood N[v] of a node, v ∈ V, which
is defined by adding v to N(v), that is, N[v] := N(v) ∪ {v}. Next, the degree deg(v) of a
node, v ∈ V, is defined as the cardinality of N(v), that is, deg(v) := |N(v)|. The concept of
neighborhood can also be extended, from nodes to sets of nodes, in the following way. The
open neighborhood, N(D), of a set, D ⊆ V, is defined as

⋃
v∈D N(v). Correspondingly, a

node v’s closed neighborhood, N[D], is defined as N[D] := N(D) ∪ D.
In this context, we also formally introduce the terms: dominating set, domatic partition,

and domatic number of a graph. First, a subset, D ⊆ V, in which each node, v ∈ V \ D,
has at least one neighbor that forms part of D is called a dominating set of G. A node,
v ∈ D—where D is a dominating set—is said to cover all its neighbors, in addition to
itself. A trivial example of a dominating set of an undirected graph, G = (V, E), is V.
Next, a set D = {D1, D2, · · · , Dk} of subsets Di ⊆ V is called a domatic partition of a
given, undirected graph, G = (V, E), if the following two conditions are fulfilled: (1) Di
(i = 1, . . . , k) is a dominating set of G, and (2) all sets of D are pairwise disjoint, that is,
Di ∩ Dj = ∅ for all 1 ≤ i < j ≤ k. If D = {D1, D2, · · · , Dk} is a set of disjoint dominating
sets of G with (1)

⋃
Di∈D Di ⊂ V and (2) V \ ⋃Di∈D Di is not a dominating set, a domatic

partition D′ of G can easily be obtained by adding all vertices from V \ ⋃Di∈D Di, for
example, to Dk. The domatic number of an undirected graph, G = (V, E), is defined as the
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size of the largest domatic partition of G, that is, the domatic number of G is |D∗|, where
D∗ := argmax{|D| | D is a domatic partition of G}. It was shown in the literature that the
domatic number of a graph, G, can be at most δ + 1, where δ := min{deg(v) | v ∈ V}. The
problem of identifying a domatic partition of an undirected graph, G, is sometimes called
the maximum disjoint dominating sets (MDDS) problem.

1.2. Graph Problems Used to Model WSN Lifetime Maximization

The related literature offers different approaches for the maximization of the sensor
network lifetime. Most of these approaches have modeled this problem either in terms
of the set K-cover problem (also known as the target coverage problem) or as the MDDS
problem. Modeling the problem as a K-cover problem was performed for the first time
in [13]. In the same work, the problem was shown to be NP-hard. In this context, note that
the set K-cover problem is defined on the basis of a bipartite graph in which the first set of
nodes are the sensor devices and the second set of nodes are the sensing targets. The aim of
the problem is to partition the sensor devices into a maximum number of disjoint sets, with
each one covering all targets. As mentioned before, these disjoint sets are then activated
one after the other in order to keep the network alive for the maximum period of time. Due
to the NP-hardness of the problem, a range of approximate algorithms have been proposed
in the literature in order to solve it. Examples, which also include algorithms for closely
related problem formulations, are a greedy heuristic [13], some memetic algorithms [14–16],
a cuckoo search approach [17], and finally, a genetic algorithm [18].

As already indicated above, the problem of maximizing sensor network lifetime is also
frequently modeled as an MDDS problem, the goal of which is to identify a partition of the
sensor devices into a maximum number of disjoint dominating sets of the corresponding
communication graph. The MDDS problem, which belongs to the important family of
dominating set problems [19–21], was shown to be NP-hard for general graphs [22]. Cardei
et al. [23] proved the NP-completeness of a special case of the MDDS problem known as
the 3-disjoint dominating sets problem. This variant deals with the question of whether
or not a given graph contains three disjoint dominating sets. Nguyen and Huynh [9]
proved that the 3-disjoint dominating sets problem remains NP-complete even for the
special cases of planar unit disk graphs. Moreover, they introduced and evaluated the
performance of four greedy heuristics for the general MDDS problem. In [23], it was also
proved that unless P = NP, the MDDS problem has no polynomial-time approximation
with a performance guarantee better than 1.5. Finally, the same authors introduced a graph
coloring-based heuristic approach. Next, Feige et al. [24] showed that any graph with n
nodes, a maximum degree of ∆, and a minimum degree of δ has a domatic partition with
a size of (1− o(1))(δ + 1)/ ln ∆. Note that the term o(1) tends to zero with increasing n.
Moreover, the same authors were able to show the non-existence of an approximation
algorithm with an approximation ratio of (1+ o(1)) ln n unless NP ⊆ DTIME(nO(log log n)).
Finally, they also introduced a centralized algorithm generating a domatic partition with
a size of Ω(δ/ ln ∆). Moscibroda and Wattenhöfer [25] regarded the MDDS problem
as one with a maximizing cluster lifetime. They introduced a randomized, distributed
algorithm having—with high probability—a performance ratio of O(log(n)). Finally, a
greedy heuristic for the MDDS problem, with a time complexity of O(n3), was described
in [26].

1.3. Existing Work for the MWDDS Problem and Our Contribution

Recently, a weighted variant of the MDDS problem, in which the weights of the nodes
of a given undirected graph, G = (V, E), indicate the remaining lifetime of single sensor
devices, was introduced in [27]. The authors labeled this problem as the maximum weighted
disjoint dominating sets (MWDDS) problem. The lifetime of a dominating set in G is hereby
defined as the minimum of the lifetimes of the nodes that form part of the set. The MWDDS
problem asks to identify a domatic partition that maximizes the sum of the lifetimes of the
corresponding dominating sets.
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In addition, three algorithms based on a local search were provided in [27]. Each of
these local search methods takes a solution generated by a greedy heuristic from [26] as
the initial solution. The proposed local search methods make use of swap neighborhoods,
trying, for example, to exchange nodes between different dominating sets and to incor-
porate nodes not belonging to any dominating set of the current solution. The three local
search methods differ in the type of swaps that are considered. The current state-of-the-art
approach for the MWDDS problem is, surprisingly, a greedy heuristic that was introduced
in [28]. This algorithm generates one dominating set after the other by adding one node at
a time to the partial dominating set under construction.

Given that the greedy heuristic from [28] seems to be very powerful, in this work, we
propose a metaheuristic extension of this greedy heuristic. More specifically, we propose
a population-based iterated greedy (PBIG) algorithm on the lines of [29,30]. Just as with
any other iterated greedy (IG) approach [31], our algorithm iteratively generates a new
solution to the problem by partially destroying incumbent solutions and re-constructing the
obtained partial solutions by means of a randomized greedy technique. As we will show
in the section on the experimental results, our proposed approach clearly outperforms
all existing algorithms for the MWDDS problem. In addition to 640 problem instances
from the related literature, we likewise evaluate our algorithm—in comparison to the
competitors—on 300 random geometric graphs.

1.4. Paper Organization

The remainder of this paper is organized as follows. The MWDDS problem is formally
introduced, together with notations and basic definitions, in Section 2. This also includes a
graphical example and an ILP model for the MWDDS problem. In Section 3, we introduce
our algorithmic proposal, a population-based iterated greedy algorithm for solving the
MWDDS problem. Finally, Section 4 presents a comprehensive experimental evaluation
and a comparison to the current state of the art, while Section 5 summarizes our paper and
offers directions for future lines of work.

2. The MWDDS Problem

Let G = (V, E, lifetime) be an undirected, node-weighted graph. As already mentioned
before, V refers to the set of nodes, while E ⊆ V × V is the set of edges. Moreover,
lifetime : V → R+ is a weight function defined over the set of nodes, assigning a positive
weight, lifetime(v) > 0, to each node, v ∈ V. The maximum weighted disjoint dominating
sets (MWDDS) problem is then defined, such that any domatic partition D of G is a valid
solution. The objective function value of a valid solution, D = {D1, . . . , D|D|}, is defined
as follows:

f (D) :=
|D|

∑
i=1

min{lifetime(v) | v ∈ Di} (1)

In other words, the quality of a subset, Di, is determined as the minimum lifetime of all
its nodes. The objective is to find a valid solution, D∗, that maximizes objective function f .

2.1. Graphical Example

Figure 1 shows a graphical example of the MWDDS problem. In particular, Figure 1a
shows an undirected graph on seven nodes. The labels printed within the nodes have the
format x, y, where x is the nodes’ ID and y is the nodes’ lifetime. These lifetime values
are normalized to the range [0, 1] for the sake of simplicity. Furthermore, the graphic in
Figure 1b shows a feasible solution, D := {D1 = {3, 4}, D2 = {1, 5, 6}}, which consists of
two dominating sets, D1 = {3, 4} and D2 = {1, 5, 6}. According to the node labels, the
remaining lifetimes of nodes 3 and 4 are 0.7 and 0.4, respectively. Correspondingly, D1 has
a lifetime of 0.4. Next, it can also be easily calculated that the lifetime of D2 is 0.1 because
the individual lifetimes of nodes 1, 5, and 6 are 0.8, 0.8, and 0.1, respectively. The objective
function value f (D) of D is calculated as the sum of the lifetimes of the dominating sets
in D. Therefore, the lifetime of D is 0.5. Finally, the graphic in Figure 1c demonstrates the
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optimal solution, D∗ := {D1 = {1, 3, 5}, D2 = {2, 4, 6}}, to this problem instance. Hence,
the lifetime of D1 is 0.7, while the lifetime of D2 is 0.1. Therefore, the objective function
value f (D∗) of D∗ is 0.8. Since this small sample graph contains a node with a degree of 1,
any valid solution can contain at most two disjoint dominating sets.

1, 0.8

2, 0.2

3, 0.7

4, 0.4

5, 0.8

6, 0.1

7, 0.2

(a)

1, 0.8

2, 0.2

3, 0.7

4, 0.4

5, 0.8

6, 0.1

7, 0.2

(b)

1, 0.8

2, 0.2

3, 0.7

4, 0.4

5, 0.8

6, 0.1

7, 0.2

(c)

Figure 1. An illustrative example of the MWDDS problem. (a) Problem instance; (b) Feasible
solution D = {{3, 4}, {1, 5, 6}}, with f (D) = 0.5; (c) Optimal solution D∗ = {{1, 3, 5}, {2, 4, 6}}, with
f (D∗) = 0.8.

2.2. ILP Model for the MWDDS Problem

The following integer linear programming (ILP) model for the MWDDS problem was
introduced in [28]. First, we describe the sets of variables and their domains utilized by
this model:

1. A binary variable, xij, for each combination of a node, vi (i = 1, . . . , n), and a possible
disjoint set, Dj (j = 1, . . . , δ(G) + 1), indicates whether or not node vi forms part of
the dominating set Dj. That is, when xij = 1, node vi is assigned to the dominating
set Dj. In this context, remember that (1) δ(G) := min{deg(v) | v ∈ V}, and (2) the
number of disjoint dominating sets in a graph is bounded from above by δ(G) + 1.

2. Second, a binary variable, yj (j = 1, . . . , δ(G) + 1), indicates whether the j−th domi-
nating set is utilized at all.

3. Finally, a real-valued variable, zj ∈ [0, M], is used to store the weight of the j−th
dominating set. In our implementation of the model, we used M := max{lifetime(v) |
v ∈ V}.
The MWDDS can then be stated in terms of an ILP model in the following way:

max
δ(G)+1

∑
j=1

zj (2)

s. t.
δ(G)+1

∑
j=1

xij ≤ 1 i = 1, . . . , n (3)

∑
vk∈N(vi)

xkj ≥ yj − xij j = 1, . . . , δ(G) + 1 (4)

yj ≥ xij i = 1, . . . , n and j = 1, . . . , δ(G) + 1 (5)

xij · lifetime(vi) + (1− xij) ·M ≥ zj i = 1, . . . , n and j = 1, . . . , δ(G) + 1 (6)

yj ·M ≥ zj j = 1, . . . , δ(G) + 1 (7)

yj ≥ yj+1 j = 1, . . . , δ(G) (8)

zj ≥ zj+1 j = 1, . . . , δ(G) (9)

The objective function is the sum of the weight values of all dominating sets. Constraints (3)
ensure that each node is assigned to one dominating set at most. In this way, the chosen
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dominating sets are disjoint. Next, constraints (4) are the usual dominating set constraints,
that is, they make sure that the set of nodes assigned to the j-th set (if utilized) form a
dominating set of G. Furthermore, constraints (5) make sure that nodes can only be assigned
to utilized dominating sets. Constraints (6) correctly determine the lifetimes of the utilized
dominating sets. This is accomplished by setting the value of the variable zj of the j-th
dominating set (if utilized) to the minimum of the lifetime values of all nodes assigned to it.
Next, note that the objective function (Equation (2)) is only correct if the weight value of the
dominating sets not utilized is set to zero. This is ensured by constraints (7). The remaining
two sets of constraints, (8) and (9), are not required for the correctness of the ILP. They were
introduced for tie-breaking purposes that have the following effect: (1) if k dominating
sets are utilized, they are assigned to sets 1, . . . , k, and (2) the utilized dominating sets are
ordered according to a non-increasing weight value.

3. Proposed Algorithm

Our population-based iterated greedy (PBIG) algorithm is a population-based ex-
tension of the well-known iterated greedy (IG) metaheuristic [31], that is, it produces a
sequence of solutions by iterating over a constructive greedy heuristic in the following
way. At each iteration, first, some part of the current/incumbent solution is removed,
and second, the greedy heuristic is applied to the resulting partial solution in order to
again obtain a complete solution. The first of these phases is called the destruction phase,
while the second one is known as the reconstruction phase. A high-level description of our
PBIG algorithm for solving the MWDDS problem is given in Algorithm 1. Apart from a
problem instance, PBIG requires seven input parameters: (1) the population size (psize),
(2) the lower bound of the degree of greediness during solution construction (detmin), (3)
the upper bound of the degree of greediness during solution construction (detmax), (4) the
lower bound of the degree of solution destruction (destrmin), (5) the upper bound of the
degree of solution destruction (destrmax), (6) the maximum number of iterations without
the improvement of the best-so-far solution Dbsf before applying a restart (maxnoimpr), and
(7) the degree of partial solution removal (rdel). Moreover, note that in our algorithm, each
solution D has two solution-specific parameters: the individual destruction rate, destrD ,
and the individual degree of greediness, detD . The use of all parameters will be carefully
described below.

Algorithm 1 PBIG for the MWDDS problem.

Input: A problem instance G = (V, E, lifetime) and values for parameters psize, destrmin,
destrmax, detmin, detmax, maxnoimpr, and rdel.

Output: A family of disjoint dominating sets D = {D1, D2, · · · , Dk}
1: P := GenerateInitialPopulation()
2: Dbsf := argmmax{ f (D) | D ∈ P}
3: cnt := 0
4: while termination condition not satisfied do
5: Pnew := ∅
6: for each candidate solution D ∈ P do
7: Dp := DestroyPartially(D)
8: D̂ := GreedyMWDDS(Dp) // see Algorithm 2
9: Pnew ← Pnew ∪ {D̂}

10: AdaptParameters(D, D̂)
11: end for
12: Dib := argmax{ f (D) | D ∈ Pnew}
13: if f (Dib) > f (Dbsf) then Dbsf := Dib, cnt := 0 else cnt := cnt + 1 end if
14: P ← SelectNextPopulation(P ,Pnew, cnt)
15: end while
16: return Dbsf
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The algorithm works as follows. A set of psize solutions for the initial population are
generated in the function GenerateInitialPopulation() (see line 1 of Algorithm 1). Moreover,
the best-so-far solution, Dbsf, and the cnt counter are initialized. Afterwards, the main loop
of the algorithm starts. Each iteration consists of the following steps. Each solution, D ∈ P ,
is partially destroyed using procedure DestroyPartially(D) (see line 7 of Algorithm 1), result-
ing in a partial solution, Dp. On the basis of Dp, a complete solution, D̂, is then constructed
using the procedure GreedyMWDDS(Dp) (see line 8 of Algorithm 1). Each newly obtained
complete solution is stored in an initially empty, new population, Pnew. Moreover, the indi-
vidual destruction rates and the individual degree of greediness of D and D̂ are adapted in
the function, AdaptParameters(D, D̂). Then, the iteration-best solution, Dib, is determined,
and in case this solution improves over Dbsf, the non-improvement counter cnt is set back
to zero. Otherwise, this counter is incremented. As a last step in each iteration proce-
dure, SelectNextPopulation(P ,Pnew, cnt) chooses the solutions for the population of the
next iteration, maintaining the population size constant at psize at all times. Finally, the
algorithm terminates when a given CPU time limit has been reached, and the best found so-
lution is returned. The five procedures mentioned above are described in more detail below.

GenerateInitialPopulation(psize): Each of the psize solutions of the initial population is con-
structed by applying the procedure GreedyMWDDS(·), with the empty solution D0 = ∅ as
input. Note that this procedure depends on the degree of greediness, which is the same for
all solutions because each empty partial solution, D0, is initialized with detD0 = detmax,
that is, the upper bound for the greediness of solution construction. Moreover, it is also
initialized with destrD0 = destrmin, that is, the lower bound of the destruction rate is set as
the initial value.

GreedyMWDDS(Dp): The reconstruction procedure follows the general principle of a greedy
algorithm, which builds a complete solution step-by-step, selecting one additional node
at each construction step. In this work, we adopt the recent greedy heuristic presented
in [28]. However, we extend this greedy heuristic (1) in order to allow for randomized steps
and (2) to be able to take a partial (possibly non-empty) solution as input. In other words,
our randomized greedy mechanism takes as input a partial solution, Dp, which might be
empty. Note that such a partial solution is composed of independent, partially destroyed
dominating sets. Now, the construction of a complete solution, D = {D1, D2, · · · , Dm}, on
the basis of Dp = {Dp

1 , Dp
2 , · · · , Dp

k } (where k ≤ m) is performed by consecutively dealing
with the generation of Di starting from Dp

i for all i = 1, . . . , m. In this process, whenever
i > |Dp| or Dp = ∅, Di is initialized with the empty set. In the following, Vrem denotes the
set that includes all nodes that are not yet added to a dominating set of a current (partial)
solution Dp. That is, when receiving a partial solution Dp as input, Vrem := V\⋃|Dp |

i=1 Dp
i .

Thus, if Dp = ∅, then Vrem := V.
In the following, we describe the way to obtain a dominating set, Di, starting from

a partial dominating set, Dp
i (possibly being empty). At the start, all nodes in V can be

divided into three disjoint subsets with respect to Di:

• Black nodes: node from Di;
• Gray nodes: nodes that are not in Di but are dominated by black nodes, that is, all

nodes in N(Di) \ Di, where N(Di) :=
⋃

v∈Di
N(v) and N(v) is the neighborhood of v

in G;
• White nodes: all nodes from V that are neither black nor gray.
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With this classification of the nodes, we can define the white degree of a node, v ∈ Vrem—
with respect to Di—as the number of white nodes from the closed neighborhood of v:

white_degree(v) := |{u ∈ N[v] ∩Vrem | u is a white node with respect to Di}| (10)

To be able to choose the next node to be added to set Di at the current construction
step, all nodes from Vrem are evaluated using a greedy function denoted by score(·), which
is calculated as follows:

score(v) := lifetime(v) ∗ white_degree(v) ∀v ∈ Vrem (11)

Then, the randomization incorporated in our greedy heuristic is implemented using
a quality-based restricted candidate list (RCL). The size of the RCL is controlled by the
solution-specific parameter, detD ∈ [0, 1], called the degree of greediness. Its value is
adaptive and depends on the quality of the generated solution, as explained further below.

Let scoremin := min{score(v)|v ∈ Vrem} and scoremax := max{score(v)|v ∈ Vrem}. The
RCL then contains all nodes, v ∈ Vrem, whose scoring value is greater than or equal to
scoremin + detD(scoremax − scoremin). Note that when detD = 1, our solution construction
procedure behaves similar to a deterministic greedy heuristic. On the other hand, setting
detD = 0 leads to pure random construction. Finally, a node is selected at random from the
RCL to be incorporated into the partial dominating set, Di.

Once Di is a dominating set, it might contain redundant nodes which—after
identification—can be safely removed. In this context, note that a node is redundant
if and only if any node from its closed neighborhood is dominated by at least two nodes
from Di. If, by removing redundant nodes, the node with the lowest lifetime in Di can
be removed, the overall lifetime of Di is improved. After removing redundant nodes,
Di is placed in the solution, D, under construction. Afterwards, the set Vrem is updated
accordingly before moving to the construction of the next dominating set, Di+1. This
solution construction process ends once no further dominating set can be generated from
the nodes in Vrem. This occurs when it is impossible to complete the partial dominating
set under construction because either (1) Vrem is empty or (2) no node from Vrem has a
white closed neighbor. The pseudo-code of the complete procedure is shown in Algorithm 2.

DestroyPartially(D): Let D = {D1, D2, · · · , Dm} be the valid solution given as input to the
destruction procedure. In the following, we outline the three strategies for destruction that
are conducted sequentially: partial solution removal, worst node removal, and random
node removal. In this context, it is important to note that, on the one hand, the best solution
does not necessarily correspond to the solution with the maximum number of disjoint
dominating sets; on the other hand, the size of a re-constructed solution after performing
the destruction and reconstruction phases may be different to the size of the solution
that served as input to these two phases. With this in mind, some disjoint dominating
sets should be completely removed as a first step of partial solution destruction. For this
purpose, the max{1, brdel · |D|c} randomly chosen dominating sets are removed from D,
resulting in a partial solution Dp = {Dp

1 , Dp
2 , · · · , Dp

r }, where r < m.

Then, since the quality of a subset, Di ∈ D, is determined as the minimum lifetime
of all its nodes, keeping the node with the smallest lifetime during the partial destruc-
tion makes its further improvement impossible. For this reason, the removal of the node,
vworst := argmin{lifetime(v) | v ∈ Dp

i }, from each subset, Dp
i ∈ D

p, i = 1, · · · , r, becomes
necessary. Afterwards, a set of bdestrD × |D

p
i |c randomly chosen nodes are removed from

each subset, Dp
i ∈ D

p, in an iterative way. Thus, at each step, exactly one randomly chosen
vertex is removed.
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Algorithm 2 Procedure GreedyMWDDS(DP).

Input: A (possibly empty) partial solution Dp = {Dp
1 , Dp

2 , · · · , Dp
k }.

Output: A complete valid solution D = {D1, D2, · · · , Dm}
1: D := ∅
2: if DP = ∅, then Vrem := V else Vrem := V\⋃|Dp |

i=1 Dp
i

3: stopping_condition := false
4: i := 0
5: while not stopping_condition do
6: i := i + 1
7: for each node v ∈ V do
8: color(v) := WHITE
9: end for

10: if (DP = ∅ or i > |DP|), then Di := ∅ else Di := Dp
i

11: while Di is not a dominating set of G (that is, N[Di] 6= V) and not a
stopping_condition do

12: if Vrem = ∅ then
13: stopping_condition := true
14: else
15: scoremax := max{score(v)|v ∈ Vrem}
16: if scoremax = 0 then
17: stopping_condition := true {I No node from Vrem has a white closed neigh-

bor}
18: else
19: scoremin := min{score(v)|v ∈ Vrem}
20: RCL := {v ∈ Vrem | score(v) ≥ scoremin + detD(scoremax − scoremin)}
21: Choose v∗ uniformly at random from RCL
22: Di := Di ∪ {v∗}
23: Vrem := Vrem \ {v∗}
24: for each node u ∈ N(v∗) do
25: if ( color(u) = WHITE ) then
26: color(v) := GRAY
27: end if
28: end for
29: color(v∗) := BLACK
30: end if
31: end if
32: end while
33: if not stopping_condition then
34: Reduce(Di, Vrem) {I Remove redundant nodes}
35: D := D ∪ {Di}
36: end if
37: end while
38: return D.

AdaptParameters(D, D̂): The solution-specific parameters—concerning the degree of greed-
iness (RCL parameter) and the destruction rate—are adapted in relation to the results of the
destruct and re-construct procedures. More specifically, while the newly generated solution,
D̂, is initialized with the default values—that is, detD̂ := detmax and destrD̂ := destrmin—
the adaptation of the parameter values of D depends on D̂, and vice versa. In case
f (D̂) > f (D), D̂ will adopt the values of D, that is, detD̂ := detD and destrD̂ := destrD .
Otherwise, the values of D are adapted as follows:

detD := detD − 0.1 (12)

destrD := destrD +
destrmax − destrmin

9
(13)
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Once the value of detD falls below the lower bound, detmin, it is set back to the
upper bound, detmax. In the same way, once the value of destrD exceeds the upper bound,
destrmax, it is set back to the lower bound, destrmin.

Note that that the constants 0.1 and 9 were fixed after preliminary experiments. In
contrast, the values of seven important parameters will be determined by scientific tuning
experiments (see Section 4.2). The denominator in the case of the adaptation of destrD was
set to 9 in order to have 10 different values between destrmin and destrmax. The motivation
behind this adaptive scheme for the degree of greediness and the destruction rate is to
use a higher degree of greediness and a smaller solution destruction as this leads to better
solutions, and to move towards a lower degree of greediness and a higher destruction once
no more improving solutions are found.

SelectNextPopulation(P ,Pnew, cnt): This last function concerns the selection/generation
of the solutions for the population of the next iteration. If cnt < maxnoimpr, the new
population, P , is simply filled with the psize best solutions from P ∪ Pnew. In case cnt =
maxnoimpr, all solutions, apart from the best one, are deleted from P , and psize − 1 new
solutions are added via the use of the GreedyMWDDS(D) procedure (used with D = ∅ as
input). Note that in this case, the RCL parameter, detD , is each time randomly picked from
{0.5, 0.6, 0.7, 0.8, 0.9, 1}. This set of values was chosen after preliminary experiments. The
variation in this set potentially ensures some diversification in the search space, with the
hope of covering unexplored areas of the search space. Moreover, cnt is set to zero. In
summary, this function implements a restart procedure which is performed once maxnoimpr
iterations have been performed without the improvement of the best-so-far solution, Sbsf.

4. Experimental Evaluation

We implemented the proposed PBIG algorithm in ANSI C++ using GCC 10.2.0 for the
compilation of the software. Moreover, we decided to compare PBIG with the following
algorithmic approaches: (1) the best of three available local search approaches from the
literature, called VD (Variable Depth) [27]; (2) our own greedy heuristic, labeled GH-
MWDDS+ [28]; (3) application of the ILP solver ILOG CPLEX 20.01 in a single-threaded
mode to all problem instances. Note that, surprisingly, GH-MWDDS+ is currently the
state-of-the-art method used to solve the MWDDS problem, outperforming both the local
search method (VD) and CPLEX. In order to conduct a fair comparison to the VD algorithm,
we used the original source code provided by the authors of [27].

The time limit for each application of CPLEX was set to 2 CPU hours. Moreover,
the experiments were performed on a cluster of machines with two Intel® Xeon® Silver
4210 CPUs, with 10 cores of 2.20 GHz and 92 Gbytes of RAM.

4.1. Problem Instances

All considered techniques were applied to two sets of benchmark instances. The
first set, consisting of 640 random graph instances, was already used for the evaluation of
GH-MWDDS+ in [28]. In particular, this set—henceforth called SET1—contained graphs
with n ∈ {50, 100, 150, 200, 250} nodes. For each value of n, there were graphs of different
densities, expressed by the average degree, d. In the case of n = 50, for example, Set1
contained graphs with average degrees of d ∈ {15, 20, 25, 30, 35}. For each combination of
n and d, SET1 contained 20 randomly generated graphs.

In order to test our algorithms on graphs that are also commonly used to model
sensor networks, we generated an additional set of benchmark instances (SET2) consist-
ing of random geometric graphs (RGGs). These graphs were generated by scattering
n ∈ {100, 500, 1000} nodes randomly on the square, [0, 1]2. This means that each node, i,
had its location in (xi, yi) ∈ [0, 1]2. Two nodes, i and j, were then connected by an edge if
and only if the Euclidean distance between i and j was smaller or equal to a predefined
threshold value, r > 0. For each n ∈ {100, 500, 1000}, we considered five different threshold
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values. Moreover, for each combination of n and r, we randomly generated 20 graphs.
Accordingly, SET2 consists of 300 problem instances.

Finally, note that—both in the case of SET1 and SET2—each node (sensor) of the
network was given a random real value between 0 and 1 as node weight (lifetime). Both
benchmark sets can be obtained at https://www.iiia.csic.es/~christian.blum/research.
html#Instances (accessed on 16 January 2022).

4.2. Algorithm Tuning

PBIG requires well-working parameter values for the following seven parameters:

1. Population size (psize);
2. Lower bound of the determinism rate (detmin);
3. Upper bound of the determinism rate (detmax);
4. Lower bound of the destruction rate (destrmin);
5. Upper bound of the destruction rate (destrmax);
6. Number of iterations without improvement (maxnoimpr);
7. Deletion rate (rdel).

For the the purpose of parameter tuning, we used the scientific tuning software
irace [32]. More specifically, we tuned PBIG separately for SET1 and SET2. For this
purpose, we generated specific tuning instances as follows. For SET1, exactly one in-
stance was randomly generated for the following combinations of n (number of nodes)
and d (average degree): (n = 50, d = 15), (n = 50, d = 35), (n = 100, d = 20), (n =
100, d = 60), (n = 150, d = 30), (n = 150, d = 90), (n = 200, d = 40), (n = 200, d = 100),
(n = 250, d = 50), and (n = 250, d = 140). In other words, 10 instances were specifically
generated in order to tune PBIG for its application to instances from SET1. In this case,
the irace software was run with a budget of 5000 algorithm applications. Regarding SET2,
we randomly generated one tuning instance for each of the following combinations of n
and r (threshold value for connecting two nodes): (n = 100, r = 0.2), (n = 100, r = 0.3),
(n = 500, r = 0.1), (n = 500, r = 0.2), (n = 1000, r = 0.05), and (n = 1000, r = 0.15). In
this case, as irace is applied with only six tuning instances, the budget was limited to 3000
algorithm applications. The obtained parameter value settings are shown in Table 1.

Table 1. Parameters, value domains, and values chosen for PBIG by irace.

Parameter Domain Value (SET1) Value (SET2)

psize {1, . . . , 100} 62 42
detmin [0, 1] 0.91 0.56
detmax [0, 1] 0.96 0.99

destrmin [0, 1] 0.44 0.22
destrmax [0, 1] 0.61 0.44

maxnoimpr {1, 500} 417 244
rdel [0.1, 0.5] 0.11 0.17

4.3. Results and Discussion

First of all, note that PBIG was applied exactly once to each problem instance, with a
computation time limit of n/2 CPU seconds. Table 2 presents the results of all competing
methods—that is, CPLEX, VD, GH-MWDDS+, and PBIG—for the instances of SET1. The
first two columns indicate the problem instance type in terms of: (1) the number of nodes
(n) and (2) the average degree (d). Naturally, the density of the networks grows with
an increasing average degree, d. Each table row provides the average result of each
competing algorithm for the 20 generated problem instances concerning the corresponding
combination of n and d. Table columns 3 and 4 show the results of CPLEX. The first of
these columns (with the heading “Value”) provides the average quality of the best solutions
generated by CPLEX for 20 instances, while the second column presents the average gap
(in percent) between the objective function value of the solutions obtained by CPLEX and

https://www.iiia.csic.es/~christian.blum/research.html#Instances
https://www.iiia.csic.es/~christian.blum/research.html#Instances
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the best upper bounds identified by CPLEX. The results of the other three competitors are
shown by the columns with the headings “Value” and “Time”. The first column provides—
as in the case of CPLEX—the average quality of the generated solutions, while the second
one provides the computation time. In the case of VD and GH-MWDDS+, the computation
time corresponds to the time at which the algorithm terminated, while in the case of PBIG,
the computation time is the time at which the best solution of a run was found on average.
The corresponding standard deviation in the case of PBIG is provided in an additional
column with the heading “σTime”. Finally, note that the best result in each row is indicated
in bold font.

The results displayed in Table 2 allow for the following observations:

• As already mentioned in [28], solving the MWDDS problem by means of an ILP solver
such as CPLEX is only useful in the context of the smallest of all problem instances. In
fact, even though CPLEX obtains the best results in the case of (n = 50, d = 15), the
gap information indicates that—even in this case—CPLEX is far from being able to
prove optimality.

• For all instances, apart from (n = 50, d = 15), PBIG outperforms the remaining ap-
proaches. In particular, the current state-of-the-art method, GH-MWDDS+, is consis-
tently outperformed. This shows that our way of extending the solution construction
mechanism of GH-MWDDS+ into a PBIG algorithm was successful.

• Both GH-MWDDS+ and PBIG clearly outperform the best local search algorithm (VD)
from the literature. In fact, while VD achieves an average solution quality of 1.757,
GH-MWDDS+ obtains an average solution quality of 9.515, and PBIG achieves one
of 10.321. This does not only hold for solution quality but also for computation time.
While VD requires a computation time of 984.143 seconds on average, GH-MWDDS+

requires only 0.006 seconds. Even the average computation time of PBIG is, with
20.125 seconds, around 50 times lower than that of VD.

Next, we study the results obtained by CPLEX, GH-MWDDS+, and PBIG for the new
RGG instances from SET2. These results are shown in Table 3, which has the same structure
as Table 2. The only exception is the second table column, which provides the threshold
value, r, used to generate the RGGs, instead of the average degree, d. The following
conclusions can be drawn based on the obtained results:

• First of all, CPLEX does seem to have fewer problems in solving RGG instances in
comparison to random graphs. In fact, CPLEX is able to solve all 60 instances with
n = 100 and r ∈ {0.2, 0.225, 0.25} to proven optimality. Furthermore, 19 out of 20
instances with n = 100 and r = 0.275 are solved to optimality, as well as 18 out of 20
cases with n = 100 and r = 0.3. This is in contrast to the case of RGs, for which CPLEX
was not even able to solve problem instances with 50 nodes to optimality. Nevertheless,
for the larger instances (with n ∈ {500, 1000}) CPLEX was, with very few exceptions,
only able to derive the trivial solutions that do not contain any dominating sets.

• PBIG obtains the same results as CPLEX in those cases in which CPLEX is able to
provide optimal solutions. Moreover, PBIG is able to do so in very short computation
times of less than 10 s.

• As in the case of the instances in SET1, PBIG also consistently outperforms the other
competitors for the RGG instances in SET2. While GH-MWDDS+ obtains an average
solution quality of 2.911, PBIG achieves one of 3.134.

Finally, we decided to study the structure of the solutions provided by GH-MWDDS+

and PBIG in more detail. In particular, this was performed for two cases: the first (out
of 20) RGG graphs with 100 nodes and a threshold value of r = 0.2, and the first (out
of 20) RGG graphs with 100 nodes and a threshold value of r = 0.3. In both cases, we
graphically present the solutions of GH-MWDDS+ and PBIG in Figures 2 (for the graph
with r = 0.2) and Figure 3 (for the graph with r = 0.3). Note that the node color in all the
graphics indicates the dominating set to which a node belongs; the purple color indicates
that the corresponding node is not assigned to any of the disjoint dominating sets. The four
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solutions shown in these figures are additionally provided in textual form in Table 4. The
four sub-tables provide all disjoint dominating sets, the color in which these sets are shown
in the graphics of Figures 2 and 3, the number of nodes contained in all dominating sets,
their lifetime, and the lists of nodes belonging to the dominating sets.

Table 2. Numerical results for the instances of SET1 (random graphs).

n d
CPLEX VD GH-MWDDS+ PBIG

Value Gap (%) Value Time (s) Value Time (s) Value Time (s) σTime

50 15 2.779 32.839 0.555 1.984 2.191 0.002 2.716 2.935 6.080
20 3.922 121.088 1.014 7.651 3.450 0.000 3.960 2.763 5.228
25 5.098 158.038 1.490 4.885 4.672 0.000 5.244 2.269 5.475
30 6.432 200.567 2.780 13.117 6.042 0.000 6.663 1.993 2.607
35 7.929 197.434 3.166 25.048 7.546 0.000 8.189 5.615 5.841

100 20 2.467 405.669 0.423 30.458 2.842 0.001 3.475 17.670 17.685
30 3.202 >1000.0 0.576 31.796 4.580 0.001 5.402 19.162 16.345
40 3.338 >1000.0 1.341 183.921 6.794 0.002 7.695 23.592 16.882
50 3.857 >1000.0 2.407 225.704 8.525 0.002 9.687 24.898 17.007
60 5.804 823.022 3.226 362.775 11.174 0.002 12.123 36.212 11.447

150 30 0.055 >1000.0 0.326 106.602 4.141 0.002 4.990 39.013 21.052
40 0.028 >1000.0 0.745 156.994 5.872 0.002 6.830 49.541 18.100
50 0.011 >1000.0 1.009 182.630 7.570 0.002 8.618 59.876 17.433
60 0 >1000.0 1.521 646.268 9.371 0.005 10.445 58.715 15.019
70 0 >1000.0 2.464 1028.650 11.446 0.005 12.573 60.901 10.934
80 0 >1000.0 3.036 549.900 13.611 0.003 14.744 64.143 11.666
90 0 >1000.0 4.193 906.030 15.589 0.005 16.600 59.969 13.109

200 40 0 >1000.0 0.370 81.750 5.486 0.005 6.486 81.318 15.772
50 0 >1000.0 0.483 186.900 6.848 0.006 7.760 91.498 7.205
60 0 >1000.0 0.917 313.850 8.710 0.008 9.635 82.300 12.738
70 0 >1000.0 1.680 3112.950 10.395 0.008 11.252 81.530 17.200
80 0 >1000.0 1.795 1629.400 12.529 0.003 13.415 88.926 10.166
90 0 >1000.0 2.045 1364.400 14.046 0.009 14.693 77.539 23.186
100 0 >1000.0 3.098 3024.830 15.993 0.009 16.941 82.575 14.761

250 50 0 >1000.0 0.329 557.676 6.783 0.008 7.536 103.797 23.062
60 0 >1000.0 0.945 1400.788 8.285 0.010 9.021 99.990 30.057
70 0 >1000.0 1.326 2380.366 9.699 0.013 10.499 97.342 29.580
80 0 >1000.0 1.445 647.763 11.571 0.013 12.096 52.149 49.798
90 0 >1000.0 1.591 1242.663 12.978 0.016 13.589 70.928 50.748
100 0 >1000.0 2.443 2210.880 14.800 0.016 15.392 41.700 53.728
120 0 >1000.0 2.781 2249.350 18.418 0.018 18.895 41.508 52.769
140 0 >1000.0 4.713 6624.596 22.514 0.020 23.123 25.103 41.312

Avg 1.757 984.143 9.515 0.006 10.321 51.483 20.125
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(a) Solution of GH-MWDDS+. Value: 1.430.
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(b) Solution of PBIG. Value: 1.663.

Figure 2. Solutions of GH-MWDDS+ (a) and PBIG (b) for the first RGG graph with 100 nodes and a
threshold value of r = 0.2. The lifetime of each node is provided as the node label. Moreover, the
node colors indicate to which dominating set a node belongs. In both cases, the color purple indicates
that the respective node is not chosen for a dominating set.
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(a) Solution of GH-MWDDS+. Value: 2.908.
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(b) Solution of PBIG. Value: 3.106.

Figure 3. Solutions of GH-MWDDS+ (a) and PBIG (b) for the first RGG graph with 100 nodes and a
threshold value of r = 0.3. The lifetime of each node is provided as the node label. Moreover, the
node colors indicate to which dominating set a node belongs. In both cases, the color purple indicates
that the respective node is not chosen for a dominating set.
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The following interesting observations can be made. First, in both cases, the structure
of the PBIG solution is quite different to the structure of the GH-MWDDS+ solution. This
means that PBIG does not just locally improve the GH-MWDDS+ solutions; it often seems to
perform a profound restructuring. Second, in the case of the graph with (n = 100, r = 0.2),
PBIG comes up with a solution that contains one more dominating set than the GH-
MWDDS+ solution. This leads to the fact that the PBIG solution leaves less nodes unused
in comparison to the GH-MWDDS+ solution (44 nodes unused vs. 58 nodes). Third, the
solutions of PBIG and GH-MWDDS+, in the case of the graph with n = 100 and r = 0.3
(Figure 3), indicates that making use of more nodes does not always lead to better solutions.
More specifically, both algorithms generate solutions with six disjoint dominating sets.
While the GH-MWDDS+ solution makes use of 47 nodes, the PBIG solution only makes
use of 46 nodes. Nevertheless, the PBIG solution is better, with an objective function value
of 3.106, in comparison to a quality of 2.908 for the solution generated by GH-MWDDS+.
This is because the dominating sets in the PBIG solutions have a longer lifetime on average
than those in the GH-MWDDS+ solution.

Table 3. Numerical results for the instances of SET 2 (random geometric graphs).

n r
CPLEX GH-MWDDS+ PBIG

Value Gap (%) Value Time (s) Value Time (s) σTime

100 0.2 1.116 0.000 1.064 0.000 1.116 0.051 0.088
0.225 1.451 0.000 1.354 0.000 1.451 1.933 4.674
0.25 1.848 0.000 1.763 0.000 1.848 0.586 1.657
0.275 2.610 0.204 2.462 0.001 2.610 1.040 3.835
0.3 3.047 7.640 2.931 0.001 3.047 2.826 9.378

500 0.1 0.021 >1000.0 1.004 0.006 1.037 5.428 17.623
0.125 0.000 >1000.0 1.922 0.011 2.012 2.490 5.020
0.15 0.000 >1000.0 3.318 0.016 3.606 28.489 41.489
0.175 0.000 >1000.0 4.517 0.021 4.929 43.215 67.606
0.2 0.000 >1000.0 6.634 0.029 7.141 82.951 81.343

1000 0.05 0.000 >1000.0 0.262 0.014 0.266 0.373 1.093
0.075 0.000 >1000.0 1.243 0.030 1.369 12.425 20.908
0.1 0.000 >1000.0 2.721 0.056 3.083 83.973 106.192
0.125 0.000 >1000.0 4.791 0.092 5.199 196.269 187.676
0.15 0.000 >1000.0 7.680 0.141 8.295 363.599 136.273

Avg 2.911 0.028 3.134 55.043 45.657

Finally, we decided to show the evolution of the quality of the solutions produced
by PBIG over time. This was performed for two of the hardest cases. In particular, we
chose the first random graph, with n = 250 nodes and an average node degree of d = 50,
and the first random geometric graph, with n = 1000 nodes and a threshold of r = 0.15.
Remember that the computation time limit is n/2 CPU seconds in both cases. The graphics
in Figure 4 show PBIG’s evolution for 10 runs per problem instance. The shaded area
around the average behavior line indicates the variance of the algorithm. Moreover, the
horizontal, dashed lines indicate the quality of the solutions produced by GH-MWDDS+.
Note that in both cases, PBIG outperforms GH-MWDDS+ very early in each run. In the
case of Figure 4a, most of the runs even start off with a solution better than the one of
GH-MWDDS+. Additionally, note that the given computation time is sufficient in both
cases as PBIG shows clear signs of convergence before reaching the computation time limit
of 125 CPU seconds in the case of Figure 4, and 500 CPU seconds in the case of Figure 4b.
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Table 4. Detailed textual description of the solutions displayed in Figures 2 and 3.

Solution of GH-MWDDS+ for the 1st RGG Graph with 100 Nodes and r = 0.2; see Figure 2a.

ID disjoint set Color (Figure 2a) #Nodes Lifetime Node IDs

1 blue 13 0.681
7, 27, 36, 43, 60, 62, 71, 72, 78, 82, 88,
89, 91

2 red 14 0.564
2, 5, 6, 8, 10, 12, 20, 37, 76, 79, 80, 87,
95, 97

3 light green 15 0.185
15, 28, 32, 40, 44, 46, 50, 54, 56, 67, 69,
75, 81, 86, 98

unused nodes purple 58

0, 1, 3, 4, 9, 11, 13, 14, 16, 17, 18, 19,
21, 22, 23, 24, 25, 26, 29, 30, 31, 33, 34,
35, 38, 39, 41, 42, 45, 47, 48, 49, 51, 52,
53, 55, 57, 58, 59, 61, 63, 64, 65, 66, 68,
70, 73, 74, 77, 83, 84, 85, 90, 92, 93, 94,
96, 99

Best solution of PBIG for the first RGG graph with 100 nodes and r = 0.2; see Figure 2b.

ID disjoint set Color (Figure 2b) #Nodes Lifetime Node IDs

1 blue 14 0.754
12, 27, 36, 37, 43, 60, 62, 71, 78, 80, 82,
88, 89, 91

2 dark green 13 0.564
2, 5, 6, 7, 8, 10, 20, 72, 79, 87, 95, 97,
98

3 light green 15 0.185
15, 28, 32, 40, 44, 46, 50, 54, 56, 63, 67,
75, 81, 83, 86

4 red 14 0.160
16, 24, 31, 42, 51, 53, 57, 59, 68, 69, 76,
85, 90, 96

unused nodes purple 44

0, 1, 3, 4, 9, 11, 13, 14, 17, 18, 19, 21,
22, 23, 25, 26, 29, 30, 33, 34, 35, 38, 39,
41, 45, 47, 48, 49, 52, 55, 58, 61, 64, 65,
66, 70, 73, 74, 77, 84, 92, 93, 94, 99

Solution of GH-MWDDS+ for the first RGG graph with 100 nodes and r = 0.3; see Figure 3a.

ID disjoint set Color (Figure 3a) #Nodes Lifetime Node IDs

1 dark green 6 0.715 26, 27, 58, 64, 73, 95
2 light green 9 0.657 1, 6, 20, 24, 40, 51, 83, 88, 94
3 red 7 0.588 12, 25, 72, 76, 89, 91, 98
4 blue 9 0.532 2, 15, 38, 39, 61, 75, 79, 93, 99
5 brown 8 0.337 8, 18, 21, 36, 44, 46, 90, 92
6 orange 8 0.079 14, 17, 43, 54, 55, 81, 84, 85

unused nodes purple 53

0, 3, 4, 5, 7, 9, 10, 11, 13, 16, 19, 22,
23, 28, 29, 30, 31, 32, 33, 34, 35, 37, 41,
42, 45, 47, 48, 49, 50, 52, 53, 56, 57, 59,
60, 62, 63, 65, 66, 67, 68, 69, 70, 71, 74,
77, 78, 80, 82, 86, 87, 96, 97

Best solution of PBIG for the first RGG graph with 100 nodes and r = 0.3; see Figure 3b.

ID disjoint set Color (Figure 3b) #Nodes Lifetime Node IDs

1 blue 8 0.834 6, 20, 22, 26, 27, 51, 73, 95
2 red 7 0.736 12, 25, 58, 72, 76, 88, 94
3 orange 8 0.532 1, 2, 15, 24, 36, 38, 93, 98
4 dark green 6 0.588 44, 61, 64, 74, 83, 89
5 brown 8 0.337 8, 18, 21, 39, 46, 90, 91, 92
6 light green 9 0.079 14, 17, 43, 75, 79, 81, 84, 85, 99

unused nodes purple 54

0, 3, 4, 5, 7, 9, 10, 11, 13, 16, 19, 23,
28, 29, 30, 31, 32, 33, 34, 35, 37, 40, 41,
42, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56,
57, 59, 60, 62, 63, 65, 66, 67, 68, 69, 70,
71, 77, 78, 80, 82, 86, 87, 96, 97
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(b) First RGG with n = 1000 and r = 0.15.

Figure 4. Evolution of the quality of the solutions produced by PBIG over time. Both graphics show
the results of 10 independent PBIG runs.

5. Conclusions

This paper dealt with lifetime maximization in wireless sensor networks by means of
solving an optimization problem known as the maximum weighted disjoint dominating
sets problem. As shown by the weak results of the ILP solver, CPLEX, this problem is a
challenging combinatorial optimization problem. In this work, we extended an existing
high-quality greedy algorithm from the literature towards a population-based iterated
greedy algorithm. This algorithm worked on a population of solutions. At each iteration, it
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applied partial destruction to each solution in the population. Subsequently, the obtained
partial solutions were subjected to re-construction, often resulting in different and improved
solutions. We compared our approach to three competitors: the application of CPLEX, the
best greedy algorithm from the literature, and the best available local search method. This
comparison was based on two benchmark sets. The first set, consisting of 640 random
graphs, was taken from the related literature, while the second set, consisting of 300 random
geometric graphs, was newly generated for this work. In summary, we can say that our
population-based iterated greedy algorithm consistently outperformed all competitors. This
algorithm can therefore be called the new state-of-the-art approach for the tackled problem.

Given the weak performance of CPLEX for this problem, one promising line of future
work might be that of dealing with the development of specialized exact approaches.
Another line of research might focus on hybrid techniques such as construct, merge, solve,
and adapt (CMSA) [33]. In particular, CMSA allows users to take profit from ILP solvers
such as CPLEX, even in the context of large problem instances for which a direct application
of CPLEX is currently not beneficial.
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