
Improving function filtering for computationally

demanding DCOPs

Marc Pujol-Gonzalez, Jesus Cerquides,
Pedro Meseguer, and Juan Antonio Rodriguez-Aguilar

Artificial Intelligence Research Institute (IIIA-CSIC),

Universitat Autònoma de Barcelona,

E-98324 Catalonia (Spain)

{mpujol,cerquide,pedro,jar}@iiia.csic.es
http://www.iiia.csic.es/

Abstract. In this paper we focus on solving DCOPs in computation-

ally demanding scenarios. GDL optimally solves DCOPs, but requires

exponentially large cost functions, being impractical in such settings.

Function filtering is a technique that reduces the size of cost functions.

We improve the effectiveness of function filtering to reduce the amount of

resources required to optimally solve DCOPs. As a result, we enlarge the

range of problems solvable by algorithms employing function filtering.

1 Introduction

Distributed constraint optimization (DCOP) is a model for representing multi-
agent systems in which agents cooperate to optimize a global objective. There
are several complete DCOP algorithms that guarantee global optimality such
as ADOPT [7], DPOP [8], and its generalization GDL [1, 13]. Since DCOPs are
NP-Hard [7], solving them requires either an exponential number of linear size
messages (ADOPT), or a linear number of exponentially large messages (DPOP,
GDL).

Nonetheless, some application domains are specially resource constrained.
For instance, in wireless sensor networks, memory, bandwith, and computation
are severely limited [15]. As computational requirements grow, so does the rele-
vance of resource constraints. Hence, in this paper we focus on computationally
demanding scenarios. An approach in these domains is to drop optimality in
favor of lower complexity approximate algorithms with weaker guarantees [10].
As an alternative, we aim at reducing resource usage while keeping optimality.

Function filtering [12] is a technique that reduces the size of cost functions
by filtering out those tuples that are found unfeasible to be extended into an
optimal solution. Function filtering can be applied to GDL, as detailed in [3],
where they present the so-called DIMCTEf algorithm. Provided a lower bound
on the cost of the best extension of the tuple, and an upper bound on the cost
of the optimal solution, a tuple is filtered out when its lower bound is greater
than the upper bound. Thus, the amount of filtered tuples strongly depends on

99

the quality of both lower and upper bounds. The tighter the bounds, the larger
the size reduction of cost functions.

In [9], the authors reduce DIMCTEf communication needs whilst keeping
memory and computation needs. However, this alternative turns out to be infea-
sible in computationally demanding scenarios. The purpose of this paper is to
improve the effectiveness of function filtering by tightening the lower and upper
bounds in [3]. More effective filtering reduces the amount of resources required
to optimally solve DCOPs. Empirically, we estimate a reduction of up to 72% on
communication costs and up to 32% on computational costs. Furthermore, we
also obtain a significant memory reduction, allowing agents to solve up to 75%
more problem instances given the same constraints. To summarize, we manage
to increase the range of problems that can be solved optimally by algorithms
employing function filtering.

The structure of the paper is as follows. Section 2 introduces DCOPs, and
Section 3 outlines GDL with function filtering. Section 4 focuses on improving
lower bounds, whereas Section 5 focuses on improving upper bounds. Finally,
Section 6 draws some conclusions.

2 DCOP

A Distributed Constraint Optimization Problems (DCOP) is defined as a tuple
(X, D, C, A,α), where:

– X = {x1, . . . , xn} is a set of n variables.
– D = {D(x1), . . . ,D(xn)} is a collection of domains, where D(xi) is the finite

set of xi’s possible values.
– C is a set of cost functions. Each fS ∈ C is defined on the ordered set S ⊆ X,

and specifies the cost of every combination of values of variables in S, namely
fS :

�
xj∈S D(xj) �→ R+. S is fS ’s scope, and |S| is its arity.

– A is a set of p agents.
– α : X → A maps each variable to some agent.

The objective of DCOP algorithms is to find the assignment of individual
values to variables, such that the total (aggregated) cost over all cost functions
is minimized. We make the common assumption that there are as many agents as
variables, each agent controlling one variable, so from now on the terms variable
and agent will be used interchangeably.

Next, we introduce concepts and operations that will be used throughout the
paper.

A tuple tS , with scope S, is an ordered set of values assigned to each variable
in S ⊆ X. The cost of a complete tuple tX , that assigns a value to each variable
xi ∈ X is the addition of all individual cost functions evaluated on tX . If a
complete tuple’s cost is lower than the user-specified threshold, it is a solution.
A minimum cost solution is optimal.

The projection tS [T] of a tuple tS to T ⊆ S is a new tuple tT , which only
includes the values assigned to the variables in T . The combination of two cost

100

functions fS and fT , written fS �� fT , is a new cost function fU defined over
their joint domain U = S ∪ T , s.t.:

∀tU (fS �� fT)(tU) = fS(tU [S]) + fT (tU [T])

Combination is an associative and commutative operation.
Let F = {fT1 , . . . , fTm} be a set of functions, the combination of F , �� F , is

the function resulting from the joint combination of every function in F ,

�� F = fT1 �� . . . �� fTm .

Therefore, solving a DCOP means finding the tuple tX that minimizes (�� C)(tX).

Lower bounds to the cost of extensions of tuples

Let V ⊆ X be a subset of the variables of the problem and tV a tuple that
assigns values to each of the variables in V . An extension of tV to X is a tuple
that keeps the assignments of tV and assigns new values to the variables in X\V .
If the cost of each possible extension of tV is larger than or equal to LB, we say
that LB is a lower bound of the cost of the best extension of tuple tV .

Likewise, a function fT is a lower bound of function fS , noted fT ≤ fS , iff
T ⊆ S, and

∀tS fT (tS [T]) ≤ fS(tS).

A function gV is a lower bound of a set of functions F if it is a lower bound of
its combination �� F . In particular, a function gV is a lower bound of a problem
if it is a lower bound of the combination of its set of cost functions C. Namely,
if for each tuple tV , gV (tV) is a lower bound of the cost of the best extension of
tV to the complete problem.

The tightest lower bound is provided by the min-marginal. The min-marginal
fS [T] of a cost function fS over T ⊂ S is a new cost function fT , which assigns
to each tuple tT the minimum cost among all the extensions of tT to S. Formally,

∀tT fT (tT) = min
tS extension of tT

fS(tS [T]).

Similarly, the min-marginal of F over V is the min-marginal of the combination
of all the functions in F , that is (�� F)[V].

Given a set of functions F , the time to compute the min-marginal of F over
V is bounded by O(d|T |

T), where T =
�m

i=1 Ti, and dT is the maximum domain
among the variables in T . In some scenarios, this can be overdemanding. For
that reason we introduce a less costly way of computing a lower bound of a set
of functions. Specifically, we define

V
�� F , the combination of F under V as the

result of combining the min-marginals of each of its functions over V . That is,

V
�� F = fT1 [T1 ∩ V] �� . . . �� fTm [Tm ∩ V].

V
�� F is a lower bound of F and can be assessed in O(max (maxm

i=1 d|Ti|
Ti

, d|V |
V))

time, which can be way smaller than O(d|T |
T).

101

3 GDL

Several algorithms can optimally solve DCOPs. In particular, we consider the
GDL algorithm [1], following the Action-GDL description [13]. GDL works over
a special structure named junction tree (JT), also known as joint tree or cluster
tree. Action-GDL runs two phases: (1) costs are sent from the leaves up to the
root; (2) optimal assignments are decided and communicated down the tree.

j -subproblem
i-subproblem

j
i

Vj

ViCi

Cj

Fig. 1: Subproblems in a junction tree.

In Action-GDL, each node in the JT is controlled by an agent and has a set
of variables Vi and a subset of the cost functions of the problem Ci (representing
its own stake at the problem). We define the neighbors of i, neigh(i), as the set
of nodes linked to i in the JT. Figure 1 shows agent i and j linked by an edge in
a JT. Observe that removing the edge connecting i and j splits the JT into two
different connected components, which we call subproblems. Formally, we say
that the i-subproblem involves every cost function in the component containing
i after the edge is removed. Subproblems i and j are coupled by a set of variables
they share and must agree upon, namely their separator Sij = Vi ∩ Vj .

Action-GDL determines the optimal solution using the following scheme.
First, each leaf node starts by sending a lower bound of the costs of its subprob-
lem to its parent. When a node has received the messages from all its children, it
combines them to produce the lower bound of its own subproblem, and sends it
to its parent. Once the root has received messages from all its children, it decides
the best assignment (minimum cost tuple) for its variables. Then, it broadcasts
this assignment to its children, who assess their best assignments and send them
down the tree.

A main drawback of Action-GDL is the exponential size of the cost functions
exchanged. To reduce communication, these messages can be approximated by
means of lower arity functions [5], at the expense of losing optimality. The quality
of the solution is expected to grow as the arity increases. We can take advantage
of that to build an algorithm that successively finds better solutions by increas-
ing the arity of approximations. As introduced in [9] there are two different
schemes to approximate the functions exchanged in a junction tree: top-down
and bottom-up. Top-down schemes compute the whole function to approximate,

102

and subsequently split it into smaller arity functions. Conversely, bottom-up
schemes avoid computing the function to approximate, directly assessing smaller
arity functions by combining subsets of functions. Since our interest lies in com-
putationally intensive scenarios, the cost of assessing the function to approximate
can be prohibitive, and hence in the following we restrict to bottom-up schemes.

3.1 GDL with function filtering

In this section we detail how function filtering can be applied to cope with
the exponential growth of cost functions in GDL. Function filtering [12] is a
technique that reduces the size of cost functions by filtering out those tuples
that are found unfeasible to be extended into an optimal solution. In order to do
that, each agent i intending to send a cost function fU to agent j needs: (1) a
lower bound lbU (tU) on the value of each tuple tU ; and (2) an upper bound UB
on the value of the optimal solution. Provided that, we say that the agent filters
fU with lbU and UB when it removes those tuples tU such that lbU (tU) > UB
(i.e. the ones that cannot be extended into an optimal solution), and sends the
remaining ones. Obviously, the amount of filtered tuples will strongly depend on
the quality of bounds lbU and UB. The tighter the bounds, the larger the size
reduction of cost functions.

Agents are unable to build a reasonably tight lower bound with the infor-
mation they have in Action-GDL. Nevertheless, computing the lower bound of
the best-cost extension of a tuple has been studied for the centralized case in
MCTE(r) [4], where r is the highest arity of functions that can be computed. Its
extension to the distributed setting is DMCTE(r) [3], where functions of arity
greater than r cannot be exchanged. DMCTE(r) works on a JT in three phases.
The first one, cost propagation, builds a summary of each subproblem of the JT.
The second one, solution propagation, computes a candidate solution. The third
one, bound propagation, assesses the cost of the candidate solution.

During the cost propagation phase of DMCTE(r) agents exchange approxi-
mate cost functions (one or several functions of arity up to r), first bottom-up
and then top-down the JT. After this, each agent i has: (1) a set of functions Ci,
containing its stake at the problem; and (2) for each neighbor j a set of functions
Gj→i. Gj→i stands for a summary of the j-subproblem, namely a lower bound
on the cost of each tuple in that subproblem. Observe that agent i can assess
the cost of an assignment by adding its own costs and the costs of its neighbors’
subproblems. Likewise, the agent can assess a lower bound for the costs of a
tuple in the complete problem by combining its own cost functions with those
received from its neighbors. Formally,

lbVi(tVi) = (�� F)(tVi) (1)

where F = Ci ∪
�

j∈neigh(i) Gj→i. However, the lower bound assessed in Equa-

tion (1) requires O(d|Vi|
Vi

) time, where Vi are the agent’s variables. Hence, it
cannot be computed in computationally demanding scenarios.

103

As an alternative, [3] proposes that each agent i willing to send function gU ,
where U � Vi, assesses a lower bound lbU (tU) by adding: (1) a lower bound on
the cost of the best extension of tuple tU in the j-subproblem to (2) the cost
that gU assigns to tU . Formally,

lbU (tU) = (gj→i
U �� gU)(tU), (2)

where gj→i
U =

U
�� Gj→i. Henceforth we shall refer to this lower bound as one-sided

lower bound. Since, in this case, the complexity of combining under U is O(d|U |
U),

this turns out to be much cheaper than using Equation (1).
The solution propagation phase of DMCTE(r) works as Action-GDL’s. How-

ever, the solution obtained after this phase is not necessarily optimal. This
is because DMCTE(r) operates with approximate cost functions. Thereafter,
DMCTE(r) introduces a third phase to assess the cost of the candidate solution.
Such cost is aggregated from the leaves to the root and then communicated down
the tree. Observe that the cost of the candidate solution is an upper bound on
the cost of the optimal solution.

Computing lower and upper bounds allows us to apply function filtering.
Note that, when DMCTE(r) runs with increasing r, the cost of the best solution
found so far constitutes an upper bound UB. Furthermore, at each iteration,
each agent i willing to send a set of cost functions to agent j can filter each
one of them separately. Thus, for each function: first, it uses Equation (2) to
assess a lower bound from the last message received from j; and then, it filters
the function with the lower bound and UB. The resulting algorithm is known
as DIMCTEf [3].

4 Two-sided filtering

Next, we aim at tightening the one-sided lower bound described above. Consider
that agent i has already received Gj→i from agent j. After that, it intends
to send a set of functions Gi→j , summarising the cost information in the i-
subproblem, to agent j. Since no cost function appears in both the i-subproblem
and the j-subproblem, we can assess a lower bound for the complete problem by
adding a lower bound of each of them. Notice that the one-sided lower bound
in Equation (2) already assesses the summary of the costs of the j-subproblem
from Gj→i. Likewise, we can assess the summary of the costs of the i-subproblem
from Gi→j . Therefore, we can employ the cost summaries of both subproblems
to obtain a tighter bound.

Formally, when sending cost function gU ∈ Gi→j , we compute the lower
bound of tuple tU as:

lbU (tU) = (gj→i
U �� gi→j

U)(tU) (3)

where

– gi→j
U =

U
�� Gi→j is a lower bound on the contribution of the i-subproblem.

104

– gj→i
U =

U
�� Gj→i is a lower bound on the contribution of the j-subproblem.

Observe that there is no double counting of costs because no cost function ap-
pears in both the i-subproblem and the j-subproblem. Henceforth, we will refer
to the lower bound in Equation (3) as two-sided lower bound. The name stems
from the symmetrical use of both subproblems. Hereafter, two-sided filtering
refers to filtering employing the two-sided lower bound.

Given

x y gj→i
xy

a a 3

a b 4

b a 3

b b 3

,

x y fxy

a a 5

a b 2

b a 8

b b 6

,

x z fxz

a a 4

a b 3

b a 5

b b 2

, and UB=10

One-sided Two-sided

x y fxy �� fxz[x] = gi→j
xy fxy �� gj→i

xy gi→j
xy �� gj→i

xy

a a 5 3 8 5 + 3 8 + 3 ✗
a b 2 3 5 2 + 4 5 + 4

b a 8 2 10 8 + 3 ✗ 10 + 3 ✗
b b 6 2 8 6 + 3 8 + 3 ✗

Fig. 2: Example of one-sided vs. two-sided filtering. Tuples ticked off (✗) are
the ones being filtered out.

For instance, consider that agent i has received a set of functions Gj→i,
which combined under {x, y} produces the function gj→i

xy shown in Figure 2.
Furthermore, agent i knows that the cost of the optimal solution is smaller than
or equal to 10 (UB = 10). Now, it wants to send functions Gi→j = {fxy, fxz}

(in Figure 2) to agent j. Consider that it starts by sending function fxy. Agent
i can calculate the one-sided lower bound using Equation (2), filtering out tuple
(x=b, y=a) as shown in Figure 2. Alternatively, the agent can compute the two-
sided lower bound using Equation (3), by assessing the lower bound on the
contribution of its own subproblem, namely gi→j

xy =
xy
�� Gi→j = fxy �� fxz[x].

Figure 2 shows that two-sided filtering performs better, keeping only the tuple
(x=a, y=b) as feasible.

4.1 Empirical evaluation

In this section we empirically compare the performance of DIMCTEf when using
one-sided filtering and two-sided filtering. For each experiment, we track the
amount of communication used by the algorithm (i.e., the total number of bytes)
along with the total amount of serial computation (i.e., the number of non-
concurrent constraint checks). Moreover, we performed signed rank tests [14] on
all results to ensure that differences between methods are statistically significant
(α = 0.01).

105

(a) Increasing treewidth, constant do-

main 8 and 100 variables.

(b) Increasing domain size, constant

treewidth 9 and 100 variables.

(c) Additional problems solved by two-

sided filtering when agents have limited

memory.

Fig. 3: Experimental results of one-sided filtering against two-sided filtering.

It is well-known that a JT’s treewidth is the most important indicator of
problem hardness for GDL-based algorithms. Hence, we segmented our exper-
iments according to this parameter, and ensured that all algorithms use the
very same JT when solving the same problem instance. As mentioned before,
we are specifically interested in hard problems. Thus, our first experiment used
the hardest dataset in the DCOP repository, namely the meeting scheduling
dataset [6]. We obtained very similar results for both one-sided and two-sided
filtering, with very small gains for two-sided filtering.

As a consequence, we decided to design new datasets harder than those typ-
ically used in the DCOP literature. We characterized each scenario by three
parameters: number of variables, variables’ domain size, and treewidth. For each
scenario, we generated 100 problems by: (1) randomly drawing problem struc-
tures following an Erdös-Rényi G(n, p) model [2]; (2) selecting those structures
having the treewidth requested for the scenario; and (3) randomly drawing costs
from a N (0, 1) distribution.

106

First, we ran an experiment to evaluate the savings as the treewidth increases.
We generated scenarios with 100 variables of domain 8, and treewidths ranging
from 6 to 9. Figure 3a shows that two-sided filtering reduces, with respect to one-
sided filtering, the amount of communication required by a median of 26% for
the easier problems (treewidth 6). It achieves even better results for the harder
problems (52% for the set with treewidth 9).

Next, we designed an experiment to measure the trend of both filtering styles
as the variables’ domain sizes increase. Thus, we generated scenarios with 100
variables, treewidth 9 and domain sizes ranging from 2 to 8. Once again, two-
sided filtering achieves significant communication savings for all the experiment’s
problems. Further, as the domain increases, so do the savings with respect to
one-sided filtering: starting with a narrow 8% reduction for the binary variables
set, and reaching a 52% reduction for the toughest scenario (domain size 8).

Furthermore, note that in all but the easiest experiments (the ones with
variables’ domains 2 to 4), two-sided filtering performs up to 15% less non-
concurrent constraint checks. Because function size is the main limiting factor of
GDL-based algorithms, this suggests that two-sided filtering can solve problems
that are too hard for one-sided filtering. Therefore, we re-ran the hardest set of
problems (domain size 8, treewidth 9), but now limiting the maximum amount
of memory available for each agent. Figure 3c shows that, indeed, two-sided
filtering solves as much as 67% more problems than one-sided filtering.

5 Improving upper bounds

As mentioned above, the tighter the bounds, the larger the size reduction of cost
functions. Previous work has focused on trying to improve the lower bounds sent
during the cost propagation phase [11, 9]. In contrast, there is no work address-
ing the improvement of upper bounds (UB), despite also playing an important
role in function filtering. Recall that the cost of any candidate solution is an
upper bound on the cost of the optimal solution. Therefore, exploring multiple
candidate solutions at the same time, instead of a single one, is expected to lead
to better bounds. In this section, we present different approaches to propagate
multiple candidate solutions. Then, we experimentally show that the benefits of
providing the filtering process with better upper bounds can outweigh the cost
of calculating them.

5.1 Centralized exploration

The simplest approach to propagating multiple assignments is to perform the
very same procedure as DMCTE(r) does, but with multiple assignments instead.
This is, the root node begins by choosing the best m assignments for its variables,
and subsequently sends them to its children. Thereafter, each child extends each
assignment by choosing its best cost extension (according to its knowledge), and
relays them to its own children. The solution propagation phase terminates once
each leaf node has received (and extended) its assignments.

107

Then, agents need to calculate the cost of each solution. With this aim, there
is a third phase where: (1) the cost of each assignment is aggregated up the tree;
and (2) the best assignment and its cost (the new global UB) are sent down
the tree. Firstly, each leaf node i evaluates the cost of each assignment in its
problem’s stake Ci, and sends the resulting costs to its parent. Subsequently,
once a parent node j receives the costs of each assignment from its children, it
aggregates them with the costs in its own problem stake Cj . Thereafter, it sends
the resulting costs up the tree. After the root has received and aggregated the
costs from all its children, it decides the best assignment. Finally, the root sends
the best assignment along with its cost down the tree.

The main advantage of this method lays in its simplicity. However, its main
drawback is that it offers limited exploration capabilities because: (1) it can-
not propagate more than k candidate solutions, where k stands for all possible
assignments for the root’s variables; and (2) when a node finds several good ex-
tensions for a candidate solution, it is enforced to choose only one of them. For
instance, say that an agent receives assignment (x=a) from its parent, and has to
choose a value for variable y. According to its knowledge, extension (x=a, y=a)
costs 1, and so does extension (x=a, y=b). Because centralized exploration forces
the agent to extend each received assignment exactly once, extension (x=a, y=b)
must be discarded. This restriction implies that the root is the only node able
to explore new candidate solutions, whereas other nodes simply exploit them.

5.2 Distributed exploration

To overcome the limited exploration capabilities of centralized exploration, we
need mechanisms allowing any node to explore new assignments.

First, we assume that the number of assignments considered by each agent
is bounded by m. Then, we enforce nodes to extend each received assignment
at least once. However, we allow each agent to extend any assignment multiple
times. Provided a node receives a set of assignments A, it needs to decide the
number of new assignments to explore ne, which cannot exceed nmax = m −

|A|. With this aim, we propose that an agent employs one out of the following
strategies:

Greedy. An agent extends as many assignments as possible, namely ne = nmax.
Stochastic. An agent chooses the number of assignments to extend ne from

a binomial distribution B(nmax, p), where p is the ratio of assignments to
extend. Intuitively, higher p values will favor exploitation, whereas lower p
values will favor exploration.

It might happen that the number of extensions requested ne is larger than the
number of possible extensions. In that case the agent will communicate every
possible extension. The process to calculate the cost of each solution is analogous
to the one described for centralized exploration. The difference lies in the ag-
gregation of costs up the tree. Since an agent may extend a parent’s assignment
multiple times, it will send up the best cost out of the different extensions.

108

(a) Increasing treewidth, constant

domain 8 and 100 variables.

(b) Increasing domain size, con-

stant treewidth 9 and 100 variables.

(c) Additional problems solved

when agents have limited memory

(w.r.t. one-sided filtering).

Fig. 4: Experimental results when tightening the upper bound.

5.3 Empirical evaluation

To assess the performance of GDL with two-sided function filtering and the
tighter upper bounds obtained by propagating multiple solutions, we ran exper-
iments in the same scenarios we used in Section 4.1. Specifically, we assessed
the communication and computation savings obtained by: (1) centralized ex-
ploration; (2) greedy distributed exploration; and (3) stochastic distributed ex-
ploration. Regarding the stochastic case, we empirically observed that different
exploration ratios (different values for p), do not lead to very significant dif-
ferences when filtering. Here we set p=0.1 because it provided slightly better
results.

Note that, the harder the problem, the cheaper to propagate multiple solu-
tions with respect to the cost propagation phase. Hence, we ran our experiments
with different numbers of propagated solutions, and found that propagating 1024
solutions yielded the best results overall. This is, propagating less than 1024 solu-

109

tions slightly decreased the computation and communication used when solving
the easier problems, but significantly increased when solving the harder ones.
Likewise, propagating more solutions led to no additional savings on harder
problems, while increasing costs on easier ones.

Figure 4a shows the evolution of the median results as the treewidth in-
creases. On the one hand, centralized exploration achieves between 1 and 4%
extra communication savings on top of two-sided filtering. On the other hand,
both greedy and stochastic exploration outperform centralized exploration, con-
sistently saving a median 20% communication cost, for a grand total of up to
72% savings when compared to the state-of-the-art one-sided filtering. Figure 4b
displays very similar trends as variables’ domain grows. Centralized exploration
provides a low reduction in communication, whereas greedy and stochastic ex-
ploration strategies obtain up to 24% extra savings with respect to two-sided
filtering.

Finally, it is important to note that both greedy and stochastic exploration
further reduce the number of non-concurrent constraint checks by as much as
24%. Furthermore, the reduction of computational effort goes up to 32% once
multiple solutions propagation strategies are combined with two-sided filtering.
Figure 4c reveals the effect of this reduction on the number of problems that
can be solved when nodes have limited memory. Specifically, using two-sided
filtering with distributed exploration helps solve up to 75% more problems than
one-sided filtering.

6 Conclusions

Function filtering [12] is a technique that reduces the size of cost functions by
filtering out tuples that are found unfeasible to be extended into an optimal
solution. Function filtering can be readily applied to GDL, as detailed in [3]. This
paper improves the effectiveness of state-of-the-art function filtering by providing
techniques to assess tighter lower and upper bounds. Such improvements lead
to significant reductions in the amount of resources required to optimally solve
DCOPs. Thus, we can reduce up to 72% on communication costs and up to
32% on computational costs. Furthermore, we also obtain a significant memory
reduction, allowing agents to solve up to 75% more problem instances given the
same constraints. To summarize, we increased the range of problems that can
be solved optimally by algorithms employing function filtering.

References

1. Srinivas M. Aji and Robert J. McEliece. The generalized distributive law. IEEE
Transactions on Information Theory, 46(2):325–343, 2000.

2. B. Bollobas. Random Graphs. Cambridge University Press, 2001.

3. Ismel Brito and Pedro Meseguer. Cluster tree elimination for distributed constraint

optimization with quality guarantees. Fund. Informaticae, 102:263–286, 2010.

110

4. Rina Dechter, Kalev Kask, and Javier Larrosa. A general scheme for multiple

lower bound computation in constraint optimization. In Principles and Practice
of Constraint Program., pages 346–360, 2001.

5. Rina Dechter and Irina Rish. Mini-buckets: A general scheme for bounded infer-

ence. J. ACM, 50:107–153, March 2003.

6. Rajiv T. Maheswaran, Milind Tambe, Emma Bowring, Jonathan P. Pearce, and

Pradeep Varakantham. Taking dcop to the real world: Efficient complete solutions

for distributed multi-event scheduling. In AAMAS, pages 310–317, 2004.

7. Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. Adopt:

asynchronous distributed constraint optimization with quality guarantees. Artifi-
cial Intelligence, 161(1-2):149–180, 2005.

8. Adrian Petcu and Boi Faltings. A scalable method for multiagent constraint opti-

mization. In IJCAI, pages 266–271, 2005.

9. Marc Pujol-Gonzalez, Jesus Cerquides, Pedro Meseguer, and Juan A. Rodriguez-

Aguilar. Communication-constrained dcops: Message approximation in gdl with

function filtering. In AAMAS, 2011.

10. A. Rogers, A. Farinelli, R. Stranders, and N.R. Jennings. Bounded approximate de-

centralised coordination via the max-sum algorithm. Art. Intelligence, 175(2):730–

759, 2011.

11. Emma Rollon and Rina Dechter. New mini-bucket partitioning heuristics for

bounding the probability of evidence. In AAAI, pages 1199–1204, 2010.

12. Mart́ı Sánchez, Javier Larrosa, and Pedro Meseguer. Improving tree decomposition

methods with function filtering. In IJCAI, pages 1537–1538, 2005.

13. Meritxell Vinyals, Juan A. Rodŕıguez-Aguilar, and Jesús Cerquides. Constructing

a unifying theory of dynamic programming dcop algorithms via the generalized

distributive law. JAAMAS, pages 1–26, 2010.

14. F. Wilcoxon. Individual comparisons by ranking methods. Biometrics, 1:80–83,

1945.

15. Weixiong Zhang, Guandong Wang, Zhao Xing, and Lars Wittenburg. Distributed

stochastic search and distributed breakout: properties, comparison and applica-

tions to constraint optimization problems in sensor networks. Artificial Intelligence,
161(1-2):55–87, 2005.

111

	front-cover
	blanco
	preface
	Binder2
	1-dcr2011_submission_7
	2-dcr2011_submission_2
	Agile Asynchronous Backtracking for Distributed Constraint Satisfaction Problems

	3-dcr2011_submission_8
	4-dcr2011_submission_6
	5-dcr2011_submission_9
	6-dcr2011_submission_4
	7-dcr2011_submission_5
	8-dcr2011_submission_3
	9-dcr2011_submission_1
	DisChoco 2: A Platform for Distributed Constraint Reasoning

