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Abstract— Description Logics (DLs) are knowledge represen-
tation languages built on the basis of classical logic. DLs allow
the creation of knowledge bases and provide ways to reason on
the contents of these bases. Fuzzy Description Logics (FDLs)
are natural extensions of DLs for dealing with vague concepts,
commonly present in real applications. Following the ideas of
Hájek in [17] and García-Cerdaña et al. in [15] we develop a
family of FDLs whose underlying logic is the fuzzy logic of a
finite linearly ordered residuated lattice, that is, an n-graded
fuzzy logic defined by a divisible finite t-norm over a finite
chain. Moreover, the role of the constructor of implication in
the languages for FDLs is discussed, and a hierarchy of AL-
languages adapted to the behavior of the connectives in the
fuzzy logics underlying these description languages is proposed.
Finally, we deal with reasoning tasks within the framework of
finitely valued DLs.

I. INTRODUCTION

In the last ten years there has been a large and in-
creasing interest on the attempt to generalize the formalism
of Description Logics (DLs) to a multi-valued framework.
In the literature there exist several interesting and deep
papers on Fuzzy Description Logics (FDLs) dealing with
the expressiveness of the languages and reasoning algorithms
(see [21] for a survey) rather than with logical foundations.

In this paper, though, we take a metamathematical point
of view and we define FDLs on the basis of first order many-
valued fuzzy logics in an analogous way as DLs relate with
first order classical logic.1 As a result of the development of
Mathematical Fuzzy Logic, we have at our disposal a large
family of first order logical systems, the so-called predicate
t-norm based fuzzy logics. These systems, presented as well
defined Hilbert-style calculi, allow us to interpret the FDLs
in them and, therefore, to take advantage of the results
and metamathematical tools developed in Fuzzy Logic in
the last fifteen years (see http://www.mathfuzzlog.org for an
exhaustive list of works and researchers in this area).

This point of view for dealing with FDLs was proposed
firstly by Hájek (see [17], [18], [19]) and recently has
been also developed in [15] where some lines of research
in this direction are proposed. The main idea is to work
in a similar way as in classical DLs whose formulas are
interpreted into first order classical logic. Consequently, we
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define FDLs (having the constructors needed to have the
expressive capabilities we want to confer to the description
language) and we interpret the formulas in the corresponding
first order fuzzy logic. In order to go ahead with this agenda,
we need to know the fragments of the logics corresponding to
our FDLs, their properties, and their reasoning capabilities
including complexity and algorithms. The problem is that
first order fuzzy logics and their fragments are more complex
and less studied than the classical ones. For example, we
have that many first order fuzzy logics (like Łukasiewicz
or Product logics) are not standard complete while the
semantics needed for defining FDLs is the standard one (with
respect to a given structure of truth values). In particular,
standard tautologies are very complex (for instance, they
are not recursively enumerable in the case of Łukasiewicz
and not arithmetical in the case of Product). Even though
for Łukasiewicz (see [17]) and for Product (see [10]) it is
proved that the satisfiability problem for the fragment of
the corresponding first order fuzzy logic associated to the
ALC-like fuzzy description logic is decidable, many other
problems remain open.

In [15] a family of description languages is defined: one
language for each continuous t-norm (or divisible finite t-
norm) and each countable subalgebra of the corresponding
standard algebra on the real interval [0, 1] (or on a finite
chain Cn = {0 = r1 < r2 < · · · < rn−1 < rn = 1}).
These languages, denoted by ALC∗(S), include an involutive
negation and constants for representing truth degrees: one
for every element of the carrier S of the subalgebra. Taking
advantage of the expressive power provided by these truth
constants, in the cited paper a graded notion of satisfiability
(validity and subsumption) of concepts is defined by means
of the satisfiability (validity and subsumption) of certain
evaluated formulas of the associated first order fuzzy logic
denoted by L̃∗(S)∀.

In the current paper we restrict ourselves to the case that
∗ is a divisible finite t-norm, and we take as algebra of truth
values the finite standard algebra C∗n defined by ∗ in the set
Cn. Thus, in Section II, we introduce the logics L̃∗n(Cn)∀,
which are the logical framework for the n-graded FDLs
considered in the paper. These logics, presented by well
defined Hilbert-style calculi, are strong canonical complete,
that is, they are complete with respect to the so-called
canonical L̃∗n(Cn)-chain, which is the algebra C∗n expanded
with the truth function for the involutive negation and a truth
constant for every element in Cn.

In Section III we use the notion of instance of a description
in order to define the new family of n-graded FDLs as



fragments of the logics L̃∗n(Cn)∀. Therefore, as in the
classical case, our n-graded FDLs correspond to fragments
of the corresponding Hilbert-style predicate calculi. In the
same section we also discuss the role of the constructor
for implication in FDLs, and we define a hierarchy of
description languages from the less expressive AL-like to
the more expressive ALC-like adapted to the behavior of the
connectives in the fuzzy logics underlying these description
languages. Let us remark that the proposed hierarchy is also
valid for the infinitely valued FDLs since in this case the
relation between the connectives remains basically the same.

The finitely valued FDLs could also be very interesting
for applications and a good test for a study of reasoning
algorithms and different satisfiability and subsumption def-
initions. Indeed, we could consider 1-satisfiability, positive
satisfiability, and n-graded notions of satisfiability and the
same for validity and subsumption. Thus in Section IV we
discuss about the reasoning tasks within the framework of
finitely valued logics: the different notions of satisfiability
and their relationship with the corresponding definitions of
validity and subsumption. Let us remark that, as a conse-
quence of a Hájek’s result about witnessed models in [17],
the satisfiability and validity problems for the n-graded FDLs
defined in this paper are decidable.

II. A LOGICAL FRAMEWORK FOR n-GRADED FUZZY
DESCRIPTION LOGICS

Finite t-norms are operations analogous to t-norms but
defined over finite chains. Given a finite chain of n elements

Cn = {0 = r1 < r2 < ... < rn−1 < rn = 1},

a finite t-norm ∗ is a binary operation defined on Cn which is
associative, commutative, non decreasing in both arguments
and having 1 as unit element. This operation has always a
residuum, denoted by→∗, since the supremum always exists
and it is a maximum. Moreover the negation associated to ∗ is
defined as ¬∗ x := x→∗ 0. Thus the operation ∗ defines the
following residuated structure over Cn, called the canonical
chain defined by ∗, that is,

C∗n = 〈Cn,max,min, ∗,→∗, 0, 1〉.

A finite t-norm ∗ is said to be divisible if and only if the
canonical chain C∗n is a BL-algebra, that is, if it satisfies
the divisibility condition x ∗ (x→∗ y) = min(x, y) (for the
notion of BL-algebra see [16]). It is also well known that any
finite BL-chain of n elements is either a finite Łukasiewicz
chain (denoted by Łn), or a finite Gödel chain (denoted by
Gn), or a finite ordinal sum of copies of finite Łukasiewicz
and Gödel chains (see [22], [23]).

A. The logics L∗n
The Basic fuzzy Logic (BL) was defined in [16] by means

of a Hilbert-style axiomatization, and has the following basic
connectives: multiplicative conjunction (&), implication (→),
and falsity (0̄). The only deduction rule of BL is, as in Classi-
cal Propositional Logic, Modus Ponens. Further connectives
are defined as follows:

ϕ ∧ ψ := ϕ&(ϕ→ ψ), ϕ↔ ψ := (ϕ→ ψ)&(ψ → ϕ),
ϕ ∨ ψ := ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ),

¬ϕ := ϕ→ 0̄, 1̄ := ¬0̄.

Given a divisible finite t-norm ∗, we denote by L∗n the
propositional multi-valued logic whose theorems coincide
with the tautologies with respect to interpretations on alge-
bras of the variety generated by C∗n. The logics L∗n, studied in
[1], [14], [12], have been proved to be finitely axiomatizable
as axiomatic extensions of BL, and hence they have only
Modus Ponens as inference rule.

Let us stress that one theorem of the logic L∗n is the
formula: (ϕ1 → ϕ2) ∨ (ϕ2 → ϕ3) ∨ ... ∨ (ϕn → ϕn+1).
Indeed, this formula is a tautology because, being n+ 1 the
number of formulas ϕi, and being n the number of elements
in Cn, for every evaluation e we must have, for some j,
e(ϕj) ≤ e(ϕj+1) and hence e(ϕj → ϕj+1) = 1. Notice that
this implies that this formula must be a tautology for any
chain of the variety generated by C∗n and so all these chains
have no more than n elements.

B. Adding an involutive negation: The logics L̃∗n
In the case that the negation associated to ∗ is not

involutive, that is, when C∗n 6= Łn, an interesting expansion
is the one obtained by adding an involutive negation as an
extra connective. This logic, which we will denote by L̃∗n, is
obtained from L∗n, as is done in the context of intuitionistic
logic (see [24]) or in the context of Gödel logic (cf. [13]),
by adding a new unary connective ∼ and the axioms:

(∼ 1) ∼∼ϕ↔ ϕ
(∼ 2) ∼(ϕ ∨ ψ)↔ (∼ϕ ∧ ∼ψ)
(∼ 3) ¬ϕ→ ∼ϕ

The truth function corresponding to this involutive nega-
tion over C∗n is the unique involutive negation N that is
possible to define over Cn, that is, N(ri) = rn−i+1. Thus
the canonical chain associated to this logic is

C̃∗n = 〈Cn,min,max, ∗,→∗, N, 0, 1〉.

Notice that in these logics we can define a connective
of strong disjunction in this way: ϕ Y ψ =: ∼(∼ϕ&∼ψ).
Another interesting feature of the logics L̃∗n is the definability
of the connective ∆ (see [3]), whose associated truth function
is δ(x) = 0 if x 6= 1, and δ(1) = 1. In the logics L̃∗n, this
connective is definable as ∆ϕ := (¬∼ϕ)n−1, where ψm

means ψ& (m). . . &ψ. Observe that when C∗n = Łn, taking
∼ = ¬, we have ∆ϕ = ϕn−1; and when C∗n = Gn, we have
∆ϕ = ¬∼ϕ. As a consequence of [16, Theorem 2.4.14],
the logics L̃∗n enjoy the Delta Deduction Theorem (DT∆ for
short), i.e., ϕ ` ψ iff ` ∆ϕ→ ψ.

C. Adding truth constants: The logics L̃∗n(Cn)

In FDLs are often used the so-called graded formulas,
which demand, from the logical side, an explicit representa-
tion of the truth values in the underlying logic. The needed



logic is obtained by adding to L̃∗n a truth constant r̄ for each
r ∈ Cn and the following axioms and inference rule,2

(1) the Book-keeping axioms:
r � s↔ r̄ ◦ s̄, for ◦ being any binary connective and �
its corresponding truth function over Cn, and
N(r)↔ ∼ r̄;

(2) the Witnessing axiom,∨
i=1,...,n

(ϕ↔ r̄i);

(3) and the rule: r̄n−1 ∨ ϕ ` ϕ.
The resulting logic will be denoted as L̃∗n(Cn). The

canonical chain associated with this logic is

C̃∗n(Cn) = 〈Cn,min,max, ∗,→∗, N, r1, . . . , rn〉.

Remark 2.1: Observe that the algebraic counterpart of
each logic L̃∗n(Cn) would be a quasivariety and not a variety
due to the new inference rule (3), but we can prove that, in
fact, it is a variety. Indeed, the connective ∆ is definable in
the logics L̃∗n and, since they enjoy the DT∆, we have that
the rule (3) is equivalent to the axiom ∆(r̄n−1 ∨ ϕ) → ϕ.
Moreover, it is easy to see that the unique chain belonging
to each of these varieties is the canonical chain.

D. The predicate logics L̃∗n(Cn)∀

Now we define the first order versions of the propositional
fuzzy logics described above. For the basic notions and
results on first order fuzzy logics see [16], [20], [11].

Let us recall that a predicate language or first order
signature3 is a pair Σ = 〈C,P〉, where C = {c, d, . . . } is
a countable set of object constants, and P = {P,Q, . . . }
is a a countable set of predicate symbols, each one with
arity k ≥ 0. In order to build the set of predicate formulas,
the logical symbols are: a countable set of object variables
{x, y, . . . }, the connectives of a propositional language L,
and the quantifiers ∀ and ∃. Terms are object constants
and object variables. An atomic formula is an expression
of the form P , when P is a predicate symbol of arity 0; or
P (t1, . . . , tk), being t1, . . . , tk terms, when P is a predicate
symbol of arity k ≥ 1. The set of 〈Σ,L〉-formulas is built
as it is done in the propositional language L –but now
from atomic formulas instead from propositional letters– and
adding the rule stating that if ϕ is a formula, and x is a
variable, then (∀x)ϕ and (∃x)ϕ are formulas. The notions
of free variable, open formula (i.e., with free variables) and
closed formula or sentence (i.e., without free variables) are
defined in the usual way.

Given a divisible finite t-norm over a chain of n elements,
the first order logic L̃∗n(Cn)∀ is presented in the Hilbert-style
calculus defined as follows:

2For more information about t-norm based fuzzy logics with truth
constants see for instance [12].

3In this paper we restrict ourselves to signatures having only functional
symbols of arity 0, i.e., object constants.

- Axioms: the ones of the propositional logic L̃∗n(Cn), where
now the formulas are read as predicate formulas, plus the
following axioms on quantifiers (see [16]):

(∀1) (∀x)ϕ(x)→ ϕ(t) (t substitutable for x in ϕ(x)),
(∃1) ϕ(t)→ (∃x)ϕ(x) (t substitutable for x in ϕ(x)),
(∀2) (∀x)(ϕ→ ψ)→ (ϕ→ (∀x)ψ) (x not free in ϕ),
(∃2) (∀x)(ϕ→ ψ)→ ((∃x)ϕ→ ψ) (x not free in ψ),
(∀3) (∀x)(ϕ ∨ ψ)→ (∀x)ϕ ∨ ψ (x not free in ψ).

- Deduction rules: Modus Ponens and Generalization.
Now let us recall the definitions corresponding to the

canonical semantics, i.e., the one defined from valuations
over the canonical chain, for the language of the logics
L̃∗n(Cn)∀ (cf. [15] and references therein).

Definition 2.2 (∗-Interpretation): Given a divisible finite
t-norm, an interpretation over the canonical chain C̃∗n(Cn),
or ∗-interpretation, for the predicate language Σ = 〈C,P〉 is
a tuple M = 〈M, {aM : a ∈ C}, {PM : P ∈ P} 〉, where
1) M is a non-empty set; 2) for each object constant a ∈ C,
aM is an element of M ; and 3) for each k-ary predicate
symbol P with k ≥ 1, PM is an n-graded k-ary relation
defined on M , that is, a function PM : Mk → Cn. For each
0-ary predicate symbol P , PM is an element of Cn.

Given a ∗-interpretation M, a map v assigning an element
v(x) ∈ M to each variable x is called an assignation of
the variables in M (an M-assignation). Given M and v, the
value of a term t in M, denoted by ‖t‖M,v , is defined as v(x)
when t is a variable x, and as aM when t is a constant a.
In order to emphasize that a formula α has its free variables
in {x1, . . . , xn}, we will denote it by α(x1, . . . , xn). Let
v be an M-assignation such that v(x1) = b1, . . . , v(xn) =
bn. Taking L as the propositional language of L̃∗n(Cn), the
truth value in M over the canonical chain C̃∗n(Cn) of the
〈Σ,L〉-formula ϕ(x1, . . . , xn) for the assignation v, denoted
by ‖ϕ‖∗M,v or by ‖ϕ(b1, . . . , bn)‖∗M, is a value in Cn defined
inductively as follows:

PM(‖t1‖M,v, . . . , ‖tk‖M,v), if ϕ = P (t1, . . . , tk);
0, if ϕ = 0̄;
1, if ϕ = 1̄;
r, if ϕ = r̄;
N(‖α‖∗M,v), if ϕ = ∼α;
‖α‖∗M,v ∗ ‖β‖

∗
M,v , if ϕ = α&β;

‖α‖∗M,v →∗ ‖β‖
∗
M,v , if ϕ = α→ β;

inf{‖α(a, b1, . . . , bn)‖∗M : a ∈M},
if ϕ = (∀x)α(x, x1, . . . , xn);

sup{‖α(a, b1, . . . , bn)‖∗M : a ∈M},
if ϕ = (∃x)α(x, x1, . . . , xn).

The truth value of a formula containing a definable con-
nective is calculated straightforwardly. A ∗-interpretation M
is a ∗-model of a set of formulas Γ if, for each ϕ ∈ Γ, and
each M-assignation v, ‖ϕ‖∗M,v = 1. If Γ = {ϕ}, we say
that M is a ∗-model of ϕ. We will say that a formula ϕ is
∗-satisfiable iff there is a ∗-model of ϕ. We will say that ϕ
is ∗-valid iff every ∗-interpretation is a ∗-model of ϕ.

We have the following result about strong canonical com-
pleteness for the logics of the family L̃∗n(Cn)∀.



Theorem 2.3: Given a divisible finite t-norm ∗, the logic
L̃∗n(Cn)∀ is strongly complete with respect to interpretations
over its corresponding canonical chain, that is, for every set
of formulas Γ and every formula ϕ, the following conditions
are equivalent:

1) Γ `L̃∗
n(Cn)∀ ϕ

2) Every ∗-model of Γ is also a ∗-model of ϕ.
Notice that, being the set Cn of truth values finite, the

infimum and supremum used to define the truth values
for quantified formulas are in fact minimum and maxi-
mum, respectively. This implies that all ∗-interpretations
are witnessed (cf. [17]), which means that all quantified
formulas are witnessed in M in the sense that for every
formula (∀x)ϕ(x, y1, . . . , yn) (resp. (∃x)ϕ(x, y1, . . . , yn))
and any choice b1, . . . , bn ∈ M of values of y1, . . . , yn,
there exists a ∈ M such that ‖(∀x)ϕ(x, b1, . . . , bn)‖∗M =
‖ϕ(a, b1, . . . , bn)‖∗M (resp. ‖(∃x)ϕ(x, b1, . . . , bn)‖∗M =
‖ϕ(a, b1, . . . , bn)‖∗M). Therefore, the previous strong canon-
ical completeness theorem expresses in fact completeness
with respect to witnessed ∗-interpretations.

Finally we recall a notion which will be used in Section IV-
A. Given r ∈ Cn, an evaluated formula of a logic L̃∗n(Cn)∀
is a formula of one of the forms r̄ → ϕ, ϕ→ r̄, or r̄ ↔ ϕ,
where ϕ does not contain any occurrence of truth constants
other than 0̄ or 1̄. Notice that the last formula above is, in
fact, the conjunction of the other two.

III. DESCRIPTION LOGIC LANGUAGES IN THE n-GRADED
AND FUZZY FRAMEWORKS

The attempts to generalize the formalism of DLs to a
multi-valued framework have been focussed on generalizing
the semantic interpretations of concept constructors in order
to make them work with fuzzy concepts and sets, and have
been based on the tacit supposition that the same concept
constructors (and, with them, the same formal languages)
could be maintained in a multi-valued framework. This
supposition worked indeed well when, at the beginning of
the research on fuzzy DLs, the logic adopted as underlying
formalism was the so called Zadeh’s logic (see [28]), whose
propositional connectives are a direct generalization of the
classical ones. However, due to the absence of a residuated
implication, this logic is too weak and it can lead to counter-
intuitive consequences (for a discussion see [17], [6]). For
this reason, in more recent papers, researchers on FDLs
adopted, as underlying logic, a logic between those that
provide a residuated implication. However, adopting a multi-
valued framework and maintaining the same languages as in
the classical case, could produce a slight confusion. This is
due to several reasons that are related to differences, arising
directly from the underlying logical formalisms, between the
classical and the multi-valued framework. Commonly, such
differences include the following items:

1) implication is not definable within the language,
2) a residuated negation is definable from (residuated)

implication and bottom, but (except for the logic of
Łn) it is not involutive, which implies:

a) the quantifiers are not interdefinable,
b) strong union is not definable from residuated

negation and strong intersection.
All these items must be taken into account both when

choosing the constructors of our description languages and
when building the hierarchy of fuzzy description languages
in next sections. As an example remind that, in classical DLs,
ALE is strictly contained in ALC, while within many fuzzy
DLs, by item 2a) above, this is not the case.

A. Concept constructors in FDLs

In the tradition of Description Logics, the language ALC
(cf. [2]) is presented using: a) the symbols in {t,u,¬,⊥,>}
which, from the first order logic point of view, can be un-
derstood as the propositional connectives in {∨,∧,¬, 0̄, 1̄};
and b) the symbols ∀ and ∃ used in the denotation of the
constructors of concepts ∀R.C and ∃R.C (universal and
existential quantification respectively) which can also be read
as particular kinds of quantified first order formulas (cf. [26]).

In Fuzzy Description Logics we need a set of constructors
that corresponds to the logical connectives and quantifiers
existing in our first order setting. We will keep the symbols
t, u, ¬, ⊥, and > to denote the constructors of weak
union, weak intersection, weak complementation, empty and
universal description, respectively. Moreover, we propose the
following symbols for the new propositional constructors:
• � for strong union,
• � for strong intersection,
• A for residuated implication,
• ∼ for strong complementation,
• r̄ for constant description.
A description signature can be defined as a tuple D =

〈NI , NT , NA, NR〉, where NI = {a, b, . . . } is a countable
set of individual names; NT = {r̄, s̄, . . . } is a count-
able set of truth-constant names; NA = {A,B, . . . }, is
a countable set of atomic concepts or concept names; and
NR = {R,S, . . . } is a countable set of atomic roles or role
names. The logical symbols are: a subset of the propositional
constructors considered above, the quantifiers ∀,∃, and the
point . as an auxiliary symbol. Given r̄ ∈ NT , A ∈ NA,
and R ∈ NR, a description formula is inductively defined
in accordance with the following syntactic rules (we use
the symbols C,C1, C2 as metavariables for descriptions of
concepts):

C,C1, C2  
⊥ | (empty description)
> | (universal description)
r̄ | (constant description)
A | (atomic concept)
∼C | (strong complementary concept) (C)
∼A | (restricted strong compl. concept)
¬C | (weak complementary concept)
C1 � C2 | (concept strong union) (U)
C1 � C2 | (concept strong intersection)



C1 t C2 | (concept weak union)
C1 u C2 | (concept weak intersection)
C1 A C2 | (concept implication) (I)
∀R.C | (universal quantification)
∃R.C | (existential quantification) (E)
∃R.> | (restricted existential quantif.)
R | (atomic role)

Given a description signature D = 〈NI , NT , NA, NR〉,
we define the first order signature ΣD = 〈CD,PD〉, being
CD = NI and PD = NT ∪NA ∪NR, and where we read

• each individual name in NI as an object constant,
• each truth constant in NT as a nullary predicate symbol,
• each atomic concept in NA as a unary predicate symbol,
• each atomic role in NR as a binary predicate symbol.

Let L be the propositional language of a logic L̃∗n(Cn).
The notion of instance of a description allows us to read
description formulas of a given description signature D as
〈L,ΣD〉-formulas as it is done in the following definition.

Definition 3.1 (Instance of a description): The instance
of a truth constant is defined as 0̄ for ⊥; 1̄ for >; and r̄ for
r̄. Given a term t and a concept D, the instance D(t) of D
is defined as

A(t) if D is an atomic concept A,
∼C(t) if D = ∼C,
¬C(t) if D = ¬C,
C1(t) Y C2(t) if D = C1 � C2,
C1(t)&C2(t) if D = C1 � C2,
C1(t) ∨ C2(t) if D = C1 t C2,
C1(t) ∧ C2(t) if D = C1 u C2,
C1(t)→ C2(t) if D = C1 A C2,
(∀y)(R(t, y)→ C(y)) if D = ∀R.C,
(∃y)(R(t, y)&C(y)) if D = ∃R.C,
(∃y)R(t, y) if D = ∃R.>,

where y is a variable not occurring in C(t). Finally, an
instance of an atomic role R is any atomic first order
formula R(t1, t2), where t1 and t2 are terms.

Given a description signature D, let M be a ∗-
interpretation of the first order signature ΣD = 〈CD,PD〉,
that is,

M = 〈M, {aM : a ∈ NI}, {PM : P ∈ NT ∪NA ∪NR} 〉,

where, according to Definition 2.2, M is a non-empty set,
for each a ∈ NI , aM is an element of M and, for every
P ∈ P , PM is

• an element of Cn, when P ∈ NT ;
• a function M → Cn, i.e., an n-graded set on M , when
P ∈ NA; and

• a function M × M → Cn, i.e., an n-graded binary
relation on M , when P ∈ NR.

So, in order to calculate the truth value of an instance
of a description, we proceed according with the definitions
given in Section II-D. Thus, for instance, given two atomic
concepts A1 and A2, the truth value of the instance D(x)
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Fig. 1. Hierarchy of languages

of the concept D = ∀R.(A1 � A2) for an M-assignation v
such that v(x) = a is calculated as follows:

‖D(x)‖∗M,v = ‖(∀y)(R(x, y)→ (A1(y) YA2(y)))‖∗M,v =
= infb∈M{RM(a, b)→∗ (AM

1 (b)⊕AM
2 (b))},

where ⊕ is the truth function for the connective Y, i.e., the
t-conorm defined by x ⊕ y := N(N(x) ∗ N(y)), being N
the involutive negation.

B. The family of fuzzy attributive languages

Before moving to basic languages like those already
existing in classical DLs, we find worth discussing the case
of implication. In classical DL, no language has an explicit
concept constructor for implication (even if implication is
often implicitly used), because the implication is definable
from conjunction and negation. Nevertheless, in the logic
BL and many of its extensions, implication is in general
not definable from other connectives and, moreover, from
implication it is possible to define some other connectives,
including residuated negation (see Section II). It is not the
first time that a concept constructor for the implication is
included in the definition of the language as a primitive
connective (see [17], [8]). This allows, on the one hand, to
utilize, in a finitely valued framework, a concept constructor
that is not otherwise definable, even if quite necessary and,
on the other hand, to define other concept constructors like
those for weak intersection (whose semantics and symbol
are the minimum and u respectively), weak union (whose
semantics and symbol are the maximum and t respectively)
and weak complementation (whose definition is C A ⊥). So,
we introduce the symbol A to denote concept implication and
the letter I (for implicative) before the name of the language
to extend, in order to denote its presence in this language.4

4We have choosen I to denote the presence in the language of the
constructor concept implication because the calligraphic I is extensively
used in the literature of DLs to denote the constructor for inverse roles.



In accordance with classical DLs tradition, the constructors
present in our basic fuzzy description language AL are empty
concept, universal concept, restricted strong complementary
concept, concept strong intersection, universal quantification
and restricted existential quantification. Adding the construc-
tor for implication we obtain the language IAL. On the other
side, allowing the unrestricted existential quantification, we
obtain the language ALE . As a third possibility we can add
the concept constructor for the concept strong union and
obtain the language ALU . When we add an unrestricted
strong negation to AL (so, obtaining ALC) the landscape
is slightly different than in classical DL: in our framework
the languages ALE and IAL are not strictly contained in
ALC. Since here we do not have the same possibility of
reducing languages between each other as in the classical
case, the hierarchy of basic languages obtained is more
cumbersome. Figure 1 shows the inclusion lattice of the
languages obtained by successively adding a basic operator
or another. As we can see, since strong union is definable
from strong intersection and strong negation (see Section II),
ALU is strictly contained in ALC.

As we have remarked in Section II, the constructors in
{t,u,¬} are definable from implication, strong intersection
and bottom. Hence, these operators are implicitly present
as definable constructors in IALC and in every language
extending it. Notice that the language S (obtained in the
classical case from ALC by adding role transitivity) will be
in our framework an extension of IALCE .

Let X be a language from the hierarchy of Fig. 1. Fixed
a divisible finite t-norm ∗ over a chain of n elements,
following a similar notation as in [15], we denote by X ∗(Cn)
the language obtained by adding a truth constant for each
element of the carrier Cn of the corresponding canonical
chain. In our framework we are considering languages with
constants, but this does not modify the hierarchy in Fig. 1.

Definition 3.2 (The description logics X ∗(Cn)): Let Γ ∪
{ϕ} be a finite set of instances of X ∗(Cn)-descriptions. We
define the X ∗(Cn)-logic in the following way:
Γ �X∗(Cn) ϕ iff every ∗-model of Γ is also a ∗-model of ϕ.

Notice that by Theorem 2.3 (canonical completeness), we
have the following result.

Corollary 3.3: Let X be a language of the hierarchy of
Fig. 1. For every language X ∗(Cn), and every set Γ ∪ {ϕ}
of instances of X ∗(Cn)-descriptions,

Γ �X∗(Cn) ϕ iff Γ `L̃∗
n(Cn)∀ ϕ.

Therefore, every X ∗(Cn)-logic coincides with a fragment
of the Hilbert-style calculus defining the logic L̃∗n(Cn)∀.

Remark 3.4: Notice that the general hierarchy in Fig. 1
can be simplified when we deal with a concrete standard
algebra C∗n. For instance, when n = 2 (the classical case)
or when C∗n = Łn, the fact that the residuated negation is
involutive implies that E and U are definable by duality
from the universal quantifier and the strong intersection,
respectively. Thus, in these cases, the logics ALCE , IALC,
IALCE coincide with ALC.

IV. REASONING WITH n-GRADED DLS

In this section we define the notions concerning knowledge
bases for n-graded DLs. In particular, since we are interested
in reasoning on partial truth of formulas, we will restrict
ourselves to using evaluated formulas for representing the
knowledge contained in knowledge bases. With truth con-
stants in the language we can handle graded inclusion axioms
in addition to graded assertional axioms (see [15]), as usually
done in FDLs (see [28], [29]).

A. Knowledge bases for n-graded DLs

Let C,D be concepts without occurrences of any truth
constant other than ⊥ or >, R be an atomic role and a, b
be constant objects. Finally let r ∈ Cn. A graded concept
inclusion formula is an expression of one of the forms:

〈C v D,< r̄〉, 〈C v D,4 r̄〉, 〈C v D,≈ r̄〉,

whose corresponding evaluated first order sentences are
• r̄ → (∀x)(C(x)→ D(x))
• (∀x)(C(x)→ D(x))→ r̄
• r̄ ↔ (∀x)(C(x)→ D(x))

A graded concept assertion formula is an expression of one
of the forms:

〈C(a),< r̄〉, 〈C(a),4 r̄〉, 〈C(a),≈ r̄〉,

whose corresponding evaluated first order sentences are

r̄ → C(a), C(a)→ r̄, r̄ ↔ C(a).

A graded role assertion formula is an expression of the
form 〈R(a, b),< r̄〉. Its corresponding evaluated first order
sentence is r̄ → R(a, b).

As in the classical case, a KB for the languages that fall
within the scope of this paper has two components: TBox
and ABox. A TBox for a graded DL language is a finite set
of graded concept inclusion formulas. An ABox is a finite
set of graded concept and role assertion formulas. A KB is
a pair K = 〈T ,A〉, where the first component is a TBox
and the second one is an ABox. The formulas in the ABox
are called assertion axioms and the formulas in the TBox
are called concept inclusion axioms. Notice that the graded
notation of these evaluated formulas is similar to the notation
used in some papers on FDLs (see for instance [28], [29]);
however, in our framework these expressions correspond to
sentences of our first order fuzzy logics. Therefore, the fact
that an interpretation satisfies an axiom of a knowledge base
is equivalent to saying that the associated ∗-interpretation
satisfies the corresponding first order sentence.

Remark 4.1 (Two observations about the fuzzy axioms):
1) Notice that we do not allow sentences of the form
〈R(a, b),4 r̄〉 in the ABox. This choice is made in order
to define the fuzzy KB associated to an n-graded DL
language as a generalization of the KB associated to the
corresponding classic DL language. Allowing sentences
such as 〈R(a, b),4 r̄〉 implies the possibility of allowing
negation of atomic roles in the ABox, which is not allowed



in classical ALC. But the negation is allowed for concepts
(formulas of type 〈C(a),4 0̄〉) as in the classical case.
2) The presence in the TBox of graded inclusion axioms of
the form 〈C v D,4 r̄〉 can be surprising from a practical
standpoint. However, this kind of axioms can express inclu-
sions between concepts in a range of values. For example,
given s < r, it can be useful to say that C is included in D
to a degree greater or equal than s but less or equal than r.
We can express this fact including the axioms 〈C v D,4 r̄〉
and 〈C v D,< s̄〉 in the TBox.

B. Reasoning tasks

Reasoning in n-graded DLs involves the same kind of
tasks as in the classical case but their results depend on the
chosen divisible finite t-norm. As it has been proposed in
[15], in what follows we will consider graded notions of
reasoning tasks. Given concepts C and D, a divisible finite
t-norm ∗, the corresponding canonical algebra C∗n, and a
truth value r ∈ Cn,

1) C is ∗-satisfiable to a degree greater (resp. lower) or
equal than r iff the first order sentence r̄ → C(x)
(resp. C(x)→ r̄) is ∗-satisfiable.

2) C is ∗-valid to a degree greater (resp. lower) or equal
than r iff the first order sentence r̄ → (∀x)C(x) (resp.
(∀x)C(x)→ r̄) is ∗-valid.

3) C is ∗-subsumed by D to a degree greater (resp.
lower) or equal than r iff the first order sentence r̄ →
(∀x)(C(x) → D(x)) (resp. (∀x)(C(x) → D(x)) →
r̄) is ∗-valid.

Notice that the usual notions of 1-satisfiability and positive
satisfiability are reducible to the above notion (1). Indeed a
concept C is 1-satisfiable iff it is ∗-satisfiable to a degree
greater or equal to 1, and it is positively satisfiable iff it is
satisfiable to a degree greater or equal to r2, where r2 is
the least positive truth value in Cn. Since we have defined
satisfiability (validity, subsumption) to a degree both greater
and lower or equal than a certain value, it is also possible to
define the notions of satisfiability (validity, subsumption) to
a degree belonging to an interval of truth values r, s ∈ Cn,
being r ≤ s. For instance, a concept C is ∗-satisfiable to a
degree in the interval [r, s] iff (r̄ → C(x)) & (C(x)→ s̄) is
∗-satisfiable. In particular, when r = s we will say that C is
satisfiable to a degree equal to r.

Next we show that the problems of ∗-validity and ∗-
subsumption can be related with ∗-satisfiability.

Proposition 4.2 (Reduction to Satisfiability): Let C and
D be concepts and rm ∈ Cn, with m > 1. Then, the
following statements hold:

1) C is ∗-valid to a degree greater or equal than rm if
and only if C is not ∗-satisfiable to a degree lower or
equal than rm−1,

2) C is ∗-subsumed by D to a degree greater or equal
than rm if and only if the concept C A D is not ∗-
satisfiable to a degree lower or equal than rm−1.

All these reasoning tasks are decidable. Being the chains
C∗n finite, all ∗-models are witnessed. Thus Hájek’s algorithm

in [17], that he has also proved to be applicable when
adding truth constants (see Section 4 of [18]), also applies
to this case with the obvious changes. As a consequence, the
satisfiability (resp. validity) problem in the ALC description
language over our logics can be equivalently transformed in a
satisfiability (resp. deduction) problem in the corresponding
propositional logic that is a decidable problem.

Now we move to reasoning with respect to a know-
ledge base K = 〈T ,A〉. We can also define the notions
of ∗-satisfiability, ∗-validity and ∗-subsumption (and their
corresponding versions with degrees) with respect to K. The
definitions are the obvious generalizations of the previous
ones when restricting to models that satisfy K. Moreover we
define:

1) A knowledge base K is ∗-consistent iff there exists an
interpretation which ∗-satisfies each axiom in K.

2) a graded assertion formula (resp. a graded concept
inclusion formula) is ∗-entailed by a knowledge base
K if every ∗-model M of K is also a ∗-model of the
formula.

In our n-graded FDLs, the notion of ∗-entailement defined
above can be reduced to a ∗-validity problem. First, a
knowledge base K corresponds to a finite set of first order
sentences and thus equivalent to a unique formula ϕk, which
is the conjunction of all formulas in K. Second, our logics
satisfy the DT∆ (see Section II-B). Therefore, we have that
the ∗-entailment of a formula α from K can be reduced to
the problem of validity of the sentence ∆ϕk → α. Is easy
to see that the considered reasoning tasks are also decidable
problems with respect to an ABox since they are reducible
to ∗-satisfiability of concepts. However, the same problem
with respect to a general TBox remains open.

Finally, within the n-graded framework it is also possible
to define, as in papers on FDLs as [28], [29], the following
reasoning tasks, not used in classical DLs. Given a con-
cept C, a divisible finite t-norm ∗, and the corresponding
canonical algebra, the greatest lower bound of C, denoted
by glb(C), is the maximum degree r ∈ Cn, such that C is ∗-
satisfiable to a degree greater or equal than r. In a similar way
we define the least upper bound of C, denoted by lub(C).
Then,

glb(C) := max{r ∈ Cn : r̄ → C(x) is ∗ -satisfiable},
lub(C) := min{r ∈ Cn : C(x)→ r̄ is ∗ -satisfiable}.

V. CONCLUSIONS

In this paper we have given an account of the logical
results on finitely valued t-norm based logics that we need
in order to provide a well-established logical framework
to finitely valued FDLs. Subsequently, we have defined n-
graded FDLs as the description logics associated to the logics
of a finite BL-chain. Taking into account the relationships
between the logical connectives and quantifiers in our logical
setting, we have provided a new hierarchy of the associated
basic description languages. Moreover, we have dealt with
the relationships between the reasoning tasks in our frame-



work, and we have shown their decidability by adapting the
Hájek’s methods presented in [17], [18].

As future work we plan: a) to develop examples of
conceptualization of real domains using our FDLs in order
to explore their capabilities; b) to investigate the adaptability
to our finitely valued framework of some satisfiability algo-
rithms and results existing for infinitely graded FDLs (for
instance, those in [6], [7], [27], [29]); and c) to extend the
present approach to more expressive languages.

Finally, there are two related topics that could be interes-
ting to explore:

On the one hand, a finite and complete system of natural
deduction for the first order many-valued logic of any finite
residuated chain defined by truth value functions is given in
[5]. Moreover, an automated method to build a finite and
complete Gentzen System for these logics, called MUltlog,
is provided in [4]. It seems interesting to explore the appli-
cability of these results to our framework.

On the other hand, results on modal many-valued logics,
specially results of [9] dealing with modal logics evaluated
over a finite residuated lattice, could be interesting in order to
study the translation of FDLs to modal systems, in a similar
way as it is done in the classical DLs (see [26] and references
therein).
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