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ABSTRACT
AI research is being challenged with ensuring that autonomous
agents behave ethically, namely in alignment with moral values. A
common approach, founded on the exploitation of Reinforcement
Learning techniques, is to design environments that incentivise
agents to learn an ethical behaviour. However, to the best of our
knowledge, current approaches do not offer theoretical guarantees
that an agent will learn an ethical behaviour. Here, we advance
along this direction by proposing a novel way of designing envi-
ronments wherein it is formally guaranteed that an agent learns
to behave ethically while pursuing its individual objective. Our
theoretical results develop within the formal framework of Multi-
Objective Reinforcement Learning to ease the handling of an agent’s
individual and ethical objectives. As a further contribution, we
leverage on our theoretical results to introduce an algorithm that
automates the design of ethical environments.

KEYWORDS
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1 INTRODUCTION
As artificial agents become more intelligent and pervade our soci-
eties, it is key to guarantee that situated agents act value-aligned,
that is, in alignment with human values [23, 24]. Otherwise, we are
prone to potential ethical risk in critical areas as diverse as elder
caring [5], personal services [31], and automated driving [16]. As
a consequence, there has been a growing interest in the Machine
Ethics [22, 32] and AI Safety [2, 15] communities in the use of Re-
inforcement Learning (RL) [25] to deal with the urging problem of
value alignment.

Among these two communities, it is common to find proposals
to tackle the value alignment problem by designing an environment
that incentivises ethical behaviours (or penalises unethical ones) by
means of some exogenous reward function (e.g., [1, 4, 17–19, 30]).
We observe that this approach consists in a two-step process: first,
the ethical knowledge is encoded as rewards (reward specification);
and then, these rewards are incorporated into the agent’s learning
environment (ethical embedding).

The literature is populated with embedding solutions that use a
linear scalarisation function for weighting the agent’s individual
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reward with the ethical reward (e.g. [19, 30]). However, to the best
of our knowledge, there are no studies following the linear scalar-
isation approach that offer theoretical guarantees regarding the
learning of ethical behaviours. Furthermore, [27] point out some
shortages regarding the adoption of a linear ethical embedding: the
agent’s learnt behaviour will be heavily influenced by the relative
scale of the individual rewards. This issue is specially relevant when
the ethical objective must be wholly fulfilled (e.g., a robot in charge
of buying an object should never decide to steal it [3]). For those
cases, we argue that the embedding must be done in such a way that
ethical behaviour is prioritised, providing theoretical guarantees
for the learning of ethical policies.

Against this background, the objective of this work is twofold: (1)
to offer theoretical guarantees for the linear embedding approach so
that we can create an ethical environment, that is, an environment
wherein it is ensured that an agent learns to behave ethically while
pursuing its individual objective; and (2) to automate the design
of such ethical environment. We address such goals within our
view of ethical environment design process, as outlined in Figure
1. According to such view, a reward specification task combines
the individual and ethical objectives to yield a multi-objective en-
vironment. Thereafter, an ethical embedding task transforms the
multi-objective environment into an ethical environment, which
is the one wherein an agent learns. Within the framework of such
ethical environment design process, we address the goals above, fo-
cusing on the ethical embedding task, to make the following novel
contributions.

Firstly, we characterise the policies that we want an agent to
learn, the so-called ethical policies: those that prioritise ethical objec-
tives over individual objectives. Thereafter, we propose a particular
ethical embedding approach, and formally prove that the resulting
learning environment that it yields is ethical. This means that we
guarantee that an agent will always learn ethical policies when
interacting in such environment. Our theoretical results are based
on the formalisation of the ethical embedding process within the
framework ofMulti-Objective Reinforcement Learning (MORL)[20],
which provides Multi-objective MDPs (MOMDPs) to handle both
individual and ethical objectives. Thus, MOMDPs provide the model
for the multi-objective environment that results from reward speci-
fication (Figure 1).

Secondly, based on our theoretical results, we propose an algo-
rithm to implement our ethical embedding. This novel algorithm
tailors current developments in the MORL literature to build an ethi-
cal environment as a single-objective MDP from the multi-objective
MDP that stems from the reward specification process. Since the
resulting single-objective MDP encapsulates the ethical rewards,
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Figure 1: The process of designing an ethical environment is performed in two steps: a reward specification and an ethical
embedding. Our algorithm computes the latter. Rectangles stand for objects whereas rounded rectangles correspond to pro-
cesses.

the agent can thus apply a basic RL method to learn its optimal
policy there. Specifically, we ground ethical embedding algorithm
on the computation of convex hulls (as described in [6]) as the
means to find ethical policies.

To summarise, in this paper wemake headway in building ethical
environments by providing two main novel contributions: (i) the
theoretical means to design the learning environment so that an
agent’s ethical learning is guaranteed; and (ii) algorithmic tools for
automating the configuration of the learning environment.

In what follows, Section 2 presents some necessary background
on MORL. Then, Section 3 presents our formalisation of the ethical
embedding problem that we must solve to create an ethical envi-
ronment. Next, Section 4 studies how to guarantee the learning of
ethical policies in ethical environments, and Section 5 introduces
our algorithm to build ethical environments. Subsequently, Section
6 illustrates our proposal by means of a simple example, the public
civility game. Finally, Section 7 concludes and sets paths to future
work.

2 BACKGROUND
This section is devoted to present the necessary background and
related work in both single-objective reinforcement learning and
multi-objective reinforcement learning.

2.1 Single-objective reinforcement learning
In single-objective reinforcement learning (RL), the environment
is characterised as a Markov decision process (MDP) [7, 14, 25]. An
MDP characterises an environment in which an agent is capable of
repeatedly acting upon it to modify it, and immediately receive a
reward signal after each action. Formally:

Definition 1 (Markov Decision Process). A (finite single-
objective)1 Markov Decision Process (MDP) is defined as a tuple
⟨S,A, 𝑅,𝑇 ⟩ where S is a (finite) set of states, A(𝑠) is the set of
actions available at state 𝑠 , 𝑅(𝑠, 𝑎, 𝑠 ′) is a reward function specifying
the expected reward for each tuple of state 𝑠 , action 𝑎 and future state
𝑠 ′, and 𝑇 (𝑠, 𝑎, 𝑠 ′) is a transition function specifying the probability
that the next state is 𝑠 ′ if an action 𝑎 is performed upon the state 𝑠 .

An agent’s behaviour in a MDP is characterised by means of
a policy 𝜋 which, for each state-action pair ⟨𝑠, 𝑎⟩, specifies the
probability of performing action 𝑎 upon state 𝑠 .

The classical method to evaluate a policy is to compute the
(expected) discounted sum of rewards that an agent obtains by
1Thorough the paper we refer to a finite single-objective MDP simply as an MDP.

following it. This operation is formalised by means the so-called
value function 𝑉 , defined as:

𝑉 𝜋 (𝑠) � E[
∞∑
𝑡=0

𝛾𝑘𝑟𝑡+𝑘+1 | 𝑆𝑡 = 𝑠, 𝜋] for every state 𝑠 ∈ S, (1)

where 𝛾 ∈ [0, 1) is referred to as the discount factor.
The solution of an MDP is a policy that maximises the value

function 𝜋∗ � argmax𝜋 𝑉 𝜋 . Such policy is the agent’s learning
goal in an MDP. We refer to 𝜋∗ as an optimal policy. We call the
value function 𝑉 𝜋∗ of an optimal policy 𝜋∗ simply as the optimal
value function 𝑉 ∗. While there might be several optimal policies in
an MDP, all of them share the same optimal value function [25].

Notice that these optimal policies and optimal value function
exist because there is a total order between policies. In other words,
we can always determinate whether 𝑉 𝜋 > 𝑉 𝜋 ′

or 𝑉 𝜋 < 𝑉 𝜋 ′
or

𝑉 𝜋 = 𝑉 𝜋 ′
for any pair of policies 𝜋, 𝜋 ′.

In the reinforcement learning literature, Q-learning is a classical
algorithm for learning an optimal policy [29].

2.2 Multi-objective reinforcement learning
Multi-objective reinforcement learning (MORL) formalises prob-
lems in which an agent has to ponder between several objectives,
each represented as an independent reward function [20]. Hence,
in MORL, the environment is characterised as a Multi-Objective
Markov Decision Process (MOMDP), an MDP composed of a vecto-
rial reward functions. Formally:

Definition 2. An 𝑛-objective Markov Decision Process (MOMDP)
is defined as a tuple ⟨S,A, ®𝑅,𝑇 ⟩ where S, A and T are the same
as in an MDP, and ®𝑅 = (𝑅1, . . . , 𝑅𝑛) is a vectorial reward function
with each 𝑅𝑖 as the associated scalar reward function to objective
𝑖 ∈ {1, . . . , 𝑛}.

Policies in an MOMDP are evaluated by means of a vectorial
value function ®𝑉 (or simply value vector), defined as:

®𝑉 𝜋 (𝑠) � E[
∞∑
𝑡=0

𝛾𝑘 ®𝑟𝑡+𝑘+1 | 𝑆𝑡 = 𝑠, 𝜋] for every state 𝑠 ∈ S. (2)

In an MOMDP, it is not straightforward to define its solution,
unlike in an MDP, because the value vector ®𝑉 only offers a partial
order between policies and not a total order. For example, a policy 𝜋
can be better than another policy 𝜋 ′ for some objective (𝑉 𝜋

𝑖
> 𝑉 𝜋 ′

𝑖
)

while at the same time being worse for another objective (𝑉 𝜋
𝑗

<

𝑉 𝜋
𝑗
).
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Thus, it is not possible to determine optimal policies in anMOMDP
without additional environment knowledge. If this additional knowl-
edge is specific enough, we can create an alternative definition of
optimality for the policies anMOMDP. Otherwise, wemight be only
capable of determining a subset of policies uncomparable between
them but better than the rest.

Therefore, depending on this additional knowledge, an MOMDP
can have two different kinds of solution: those for which the goal
is to learn a single policy, and those in which the goal is to learn
multiple policies [26]. Now we proceed to explain both problems.

2.2.1 Single-policy MORL. Most approaches in MORL assume the
existence of a scalarisation function 𝑓 capable of reducing the di-
mensionality of an MOMDP into a single one. Such scalarisation
function transforms the vectorial value function ®𝑉 into a scalar
value function 𝑓 ( ®𝑉 ). With 𝑓 , the agent’s goal becomes to learn a
policy that maximises 𝑓 ( ®𝑉 ), a single-objective problem.

It is specially notable the particular case in which 𝑓 is linear,
because in such case the scalarised problem can be solved with
single-objective reinforcement learning algorithms2. Any linear
scalarisation function 𝑓 is a weighted combination of rewards, and
henceforth we will refer to such function by the weight vector
®𝑤 ∈ R𝑛 that it employs. We refer to any policy that maximises
𝑓 ( ®𝑉 ) = ®𝑤 · ®𝑉 as ®𝑤-optimal. Any ®𝑤-optimal policy is thus optimal
in the associated MDP ⟨S,A, ®𝑤 · ®𝑅,𝑇 ⟩.

2.2.2 Multiple-policy MORL. If the scalarisation function is not
assumed to exist or to be even a priori known, it is not possible
to define an optimality criterion. In such cases, what we can do
is to compute the set of policies that could be optimal for some
hypothetical scalarisation function. We refer to such policies as
undominated policies.

In this paper, we are interested in the particular case were we
just consider linear scalarisation functions. In such case, the un-
dominated set is called the convex hull [21]:

Definition 3 (Convex hull). Given an MOMDPM, its convex
hull 𝐶𝐻 is the subset of policies 𝜋∗ and their associated value vectors
®𝑉 𝜋∗ that are maximal for some weight vector ®𝑤 :

𝐶𝐻 (M) � { ®𝑉 𝜋∗ | 𝜋∗ ∈ ΠM ∧ ∃ ®𝑤 ∈ R𝑛 : ®𝑤 · ®𝑉 𝜋∗ = max
𝜋 ∈ΠM

®𝑤 · ®𝑉 𝜋 },

(3)

where ΠM is the set of policies ofM, and 𝑛 is the number of objectives
ofM.

In the multi-objective reinforcement learning literature, Convex
Hull Value Iteration (CHVI) [6] is a classical algorithm for obtain-
ing the convex hull of an MOMDP. CHVI can be applied when
considering only the linear scalarisation functions 𝑓 of an MOMDP.

3 FORMALISING THE ETHICAL EMBEDDING
PROBLEM

In this section we propose a formalisation of the ethical embedding
of value alignment problems in which an ethical objective must

2Because the linear scalarisation function for ®𝑉 also induces a scalarisation function
for ®𝑅, by setting ®𝑤 · ®𝑉 = ®𝑤 · E[∑∞

𝑡=0 𝛾
𝑘 ®𝑟𝑡+𝑘+1 ] = E[

∑∞
𝑡=0 𝛾

𝑘 ®𝑤 · ®𝑟𝑡+𝑘+1 ], which is
usually not true in the non-linear case.

be fulfilled and an individual objective is pursued. Our main goal
is to guarantee that an agent will learn to behave ethically, that
is, to behave in alignment with a moral value. In the Ethics litera-
ture, moral values (also called ethical principles) express the moral
objectives worth striving for [28].

As mentioned above, the value alignment problem can be divided
in two steps: the reward specification (to transform ethical knowl-
edge into ethical rewards) and the ethical embedding (to ensure that
these rewards incentivise the agent to be ethical). Although both
are critical problems in the Machine Ethics and AI Safety commu-
nity, in this paper we focus on the ethical embedding problem, and
likewise we assume that we already have a reward specification in
the form of a Multi-Objective Markov Decision Processes (MOMDP)
[20]. This way we can handle an ethical objective and an agent’s
individual objective within the same learning framework. Precisely,
MOMDPs formalise sequential decision making problems in which
we need to ponder several objectives.

Thus, we define an ethical MOMDP as an MOMDP encoding the
reward specification of a value alignment problem in which the
agent must consider both its individual objective and an ethical ob-
jective. The first component in the corresponding vectorial reward
function characterises the individual agent’s objective (as usually
done in RL), whereas the subsequent components represent the
ethical objective [13]. Following the Ethics literature [8, 11, 12, 28],
we define an ethical objective through two equally-important di-
mensions: (i) a normative dimension, which punishes the violation
of normative requirements; and (ii) an evaluative dimension, which
rewards morally praiseworthy actions. Formally:

Definition 4 (Ethical MOMDP). Given a MOMDP

M = ⟨S,A, (𝑅0, 𝑅N + 𝑅𝐸 ),𝑇 ⟩, (4)

where 𝑅0 corresponds to the reward associated to the individual ob-
jective, we say thatM is an ethical MOMDP if and only if:

• 𝑅N : S ×A → R− is a normative reward function penalising
the violation of normative requirements; and

• 𝑅𝐸 : S × A → R+ is an evaluative reward function that
(positively) rewards the performance of actions evaluated as
praiseworthy.

Dividing the ethical reward function in two parts allows us to
avoid the ethical problem of an agent learning to maximise its
accumulation of praiseworthy actions while disregarding some of
its normative requirements.

In the ethical embedding, we transform an ethical MOMDP into
a single-objective MDP (in which the agent will learn its policy) by
means of scalarisation function 𝑓𝑒 , which we call the embedding
function. In the particular case that 𝑓𝑒 is linear, we say that we are
applying a linear embedding or a weighting.

Ethical MOMDPs pave the way to characterise our notion of
ethical policy: an ethical policy is a policy that abides to all the
norms while also behaving as praiseworthy as possible. In other
words, it is a policy that adheres to the specification of the ethical
objective. We capture this notion by means of the normative and
evaluative components of the value function in an ethical MOMDP:

Definition 5 (Ethical policy). LetM be an ethical MOMDP.
We say that a policy 𝜋∗ is an ethical policy in M if and only if its

3



value vector ®𝑉 𝜋∗ = (𝑉 𝜋∗
0 ,𝑉

𝜋∗
N ,𝑉

𝜋∗
𝐸

) is optimal for its ethical objective
(i.e., both its normative 𝑉N and evaluative 𝑉𝐸 components):

𝑉
𝜋∗
N = max

𝜋
𝑉 𝜋
N ,

𝑉
𝜋∗
𝐸

= max
𝜋

𝑉 𝜋
𝐸
.

For the sake of simplicity, we refer to a policy that is not ethical
in the sense of Definition 5 as an unethical policy.

With ethical policies, we can now define formally ethical-optimal
policies: the policies that we want an agent to learn. Ethical-optimal
policies correspond to those policies in which the individual ob-
jective is pursued subject to the ethical objective being fulfilled.
Specifically, we say that a policy is ethical-optimal if and only if it
is ethical and it also maximises the individual objective 𝑉0 (i.e., the
accumulation of rewards 𝑅0). Formally:

Definition 6 (Ethical-optimal policy). Given an MOMDP
M = ⟨S,A, (𝑅0, 𝑅N + 𝑅𝐸 ),𝑇 ⟩, a policy 𝜋∗ is ethical-optimal in M if
and only if it is maximal among the set Π𝑒 of ethical policies:

𝑉
𝜋∗
0 = max

𝜋 ∈Π𝑒

𝑉 𝜋
0 .

Notice that while there can be several ethical-optimal policies
in an ethical MOMDP, all of them will share the same value vector.
We refer to such value vector as the ethical-optimal value vector
®𝑉 ∗.
Given an MOMDP encoding individual and ethical rewards, our

aim is to find an embedding function that guarantees that it is
only possible for an agent to learn ethical-optimal policies over
the scalarised MOMDP (as a single-objective MDP). Thus, we must
design an embedding function that scalarises the rewards received
by the agent in such a way that ensures that ethical-optimal policies
are optimal for the agent. In its simplest form, this embedding
function will have the form of a linear combination of individual
and ethical objectives

𝑓 ( ®𝑉 𝜋 ) = ®𝑤 · ®𝑉 𝜋 = 𝑤0𝑉
𝜋
0 +𝑤𝑒 (𝑉 𝜋

N +𝑉 𝜋
𝐸
) (5)

where ®𝑤 = (𝑤0,𝑤𝑒 ) is a weight vector with weights 𝑤0,𝑤𝑒 > 0
to guarantee that the agent is taking into account all rewards (i.e.,
both objectives). We will be referring thus to𝑤0 as the individual
weight and𝑤𝑒 as the ethical weight. Without loss of generality, we
fix the individual weight to𝑤0 = 1.

Therefore, we can formalise the ethical embedding problem as
that of computing a weight vector ®𝑤 that incentivises an agent to be-
have ethically while still pursuing its individual objective.Formally:

Problem 1 (Ethical embedding). Let M = ⟨S,A, (𝑅0, 𝑅N +
𝑅𝐸 ),𝑇 ⟩ be an ethical MOMDP. Compute the weight vector ®𝑤 with
positive weights such that all optimal policies in the MDP M ′ =

⟨S,A,𝑤0𝑅0 + 𝑤𝑒 (𝑅N + 𝑅𝐸 ),𝑇 ⟩ are also ethical-optimal in M (as
defined in Def. 6).

A weight vector ®𝑤 with positive weights that guarantees that
all optimal policies (with respect to ®𝑤 ) are also ethical-optimal is a
solution of Problem 1. Moreover, we aim at finding solutions ®𝑤 that
are as little intrusive with the agent’s learning process as possible
(i.e., the ®𝑤 that guarantees the learning of an ethical policy with
the minimal ethical weight𝑤𝑒 ). The next section proves that there

always exist a solution to the ethical embedding problem for any
ethical MOMDP.

4 SOLVABILITY OF THE ETHICAL
EMBEDDING PROBLEM

This section is devoted to describe the minimal conditions under
which there always exists a solution to Problem 1, and to prove
that such solution actually exists. This solution (a weight vector)
will allow us to apply the ethical embedding process to produce
an ethical environment (a single-objective MDP) wherein an agent
learns to behave ethically (i.e., an ethical-optimal policy).

For all the following theoretical results, we assume the following
condition for any ethical MOMDP: if we want the agent to behave
ethically, it must be actually possible for it to behave ethically3.
Formally:

Condition 1 (Ethical policy existence). Given an ethical
MOMDP, there is at least one ethical policy (as defined by Def. 5).

If Condition 1 holds, next Theorem guarantees that Problem 1
is always solvable, or in other words, that it is always possible to
guarantee that the learnt behaviour of an agent will be ethical if
we give a reward incentive that is large enough.

Theorem 1 (Solution existence). Given an ethical MOMDP
M = ⟨S,A, (𝑅0, 𝑅N + 𝑅𝐸 ),𝑇 ⟩ for which Condition 1 is satisfied,
there exists a weight vector ®𝑤 = (1,𝑤𝑒 ) with𝑤𝑒 > 0 for which every
optimal policy in the MDP M ′ = ⟨S,A,𝑤0𝑅0 +𝑤𝑒 (𝑅N + 𝑅𝐸 ),𝑇 ⟩ is
also ethical-optimal inM.

Proof. Without loss of generality we only consider determinis-
tic policies, by the Policy Improvement Theorem (see [25] for more
details).

Consider a weight vector ®𝑤 = (1,𝑤𝑒 ) with𝑤𝑒 ≥ 0. Suppose that
for that weight vector, the only deterministic ®𝑤-optimal policies
are ethical policies. Then we have finished.

Suppose that it is not the case, and there is some ®𝑤-optimal
policy 𝜌 that is not ethical. This implies that for some state 𝑠 ′:

𝑉
𝜌

N (𝑠 ′) +𝑉 𝜌

𝐸
(𝑠 ′) < 𝑉 ∗

N (𝑠 ′) +𝑉 ∗
𝐸 (𝑠

′).
For an 𝜖 > 0 large enough and for the weight vector ®𝑤 ′ =

(1,𝑤𝑒 + 𝜖), any ethical policy 𝜋 will have a better value vector at
that state 𝑠 ′ than 𝜌 :

®𝑤 ′ · ®𝑉 𝜌 (𝑠 ′) < ®𝑤 ′ · ®𝑉 𝜋 (𝑠 ′) .
Therefore, 𝜌 will not be an ®𝑤 ′-optimal policy. Notice that 𝜌 will

remain being ®𝑤 ′-suboptimal even if we increase again the value of
𝑤𝑒 by defining ®𝑤 ′′ = (1,𝑤𝑒 + 𝜖 + 𝛿) with 𝛿 > 0 as large as we wish.

It follows that if we choose 𝜌 to be the unethical policy that
requires the maximum increase of 𝜖 (we know that this maximum
exists since there is a finite number of deterministic policies in a
finite MOMDP), after increasing𝑤𝑒 so it is not an optimal policy,
then no unethical policy can be ®𝑤-optimal for the new𝑤𝑒 . There-
fore, by elimination every ®𝑤-optimal policy is also ethical for this
new weight vector.

To finish, notice now that if ethical policies 𝜋 exist (due to Condi-
tion 1), so does at least one ethical-optimal policy 𝜋∗ that maximises
3In the Ethics literature this condition is summarised with the expression Ought implies
can [10].
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𝑉0 among them. And for anyweight vector ®𝑤 = (1,𝑤𝑒 ) with𝑤𝑒 > 0,
the scalarised value of 𝜋∗ will be greater or equal than the one of
any other ethical policy 𝜋 . Therefore, only the ethical-optimal poli-
cies 𝜋∗ (among the ethical policies) will be ®𝑤-optimal policies and
thus optimal policies inM ′. □

In particular, we aim at knowing the minimal 𝑤𝑒 for which
(1,𝑤𝑒 ) is a solution of Problem 1. In other words, the minimal
ethical weight𝑤𝑒 for which ®𝑉 ∗ is the only optimal policy for (1,𝑤𝑒 ).
Every time we refer to the minimal ethical weight we do it in such
sense.

5 SOLVING THE ETHICAL EMBEDDING
PROBLEM

This section explains how to compute a solution weight vector ®𝑤
for the ethical embedding problem (Problem 1). Such weight vector
®𝑤 allows us to combine individual and ethical rewards into a single
reward to create an ethical environment in which the agent learns
an ethical behaviour, that is, an ethical-optimal policy. For that,
next we detail an algorithm to solve the ethical embedding problem,
the so-called Ethical Embedding algorithm.

Before delving into details, we outline and illustrate, with the
aid of the Figure 2, the steps involved in computing a solution for
the embedding problem. First step focuses on obtaining a partic-
ular subset 𝑃 of the convex hull 𝐶𝐻 of the ethical MOMDP. This
subset 𝑃 must contain the ethical-optimal value vector ®𝑉 ∗. Figure 2
(Left) shows an example of 𝑃 ⊆ 𝐶𝐻 where black-rounded points
constitute the partial convex hull (𝑃 ) while grey points are values
of policies never maximal for any weight.

Figure 2 (Centre) highlights in green ®𝑉 ∗, which accumulates the
greatest ethical value (Y axis). This ethical-optimal value vector ®𝑉 ∗

will serve as a reference value vector to find the minimal weight
vector ®𝑤 = (1,𝑤𝑒 ) that solves Problem 1. For such weight vector,
®𝑤 · ®𝑉 ∗ is maximal (and the only maximal one) among all value
vectors of 𝑃 .

Figure 2 (Right) plots how the scalarised values of the points
in the partial convex hull 𝑃 (Figure 2 (Left)) change as the ethical
weight increases. Notice that the ethical-optimal value vector be-
comes the only maximal value vector for any𝑤𝑒 > 0.7, indicated
by the green vertical line.

Computing the minimal ethical weight does not require to con-
sider all value vectors on the partial convex hull. In fact, it suffices
to consider the so-called second-best value vector (highlighted in
yellow in Figure 2 (Centre)) to compute it. The second-best value
vector accumulates the greatest amount of ethical value after the
ethical-optimal one. As shown in Figure 2 (Right): immediately after
the line representing the ethical-optimal value vector ®𝑉 ∗ intersects
the second-best value vector, ®𝑉 ∗ becomes maximal. Such intersec-
tion point is the value of the minimal ethical weight 𝑤𝑒 (see the
green vertical line in Figure 2 (Right)).

To summarise, our algorithm computes the ethical embedding
function ®𝑤 = (1,𝑤𝐸 ) with the minimal ethical weight 𝑤𝐸 in the
following three steps :

(1) Computation of the partial convex hull (Figure 2 (Left)).
(2) Extraction of the two value vectors with the greatest ethical

values (Figure 2 (Centre)).

(3) Computation of the ethical embedding function (1,𝑤𝐸 ) with
minimal𝑤𝐸 (Figure 2 (Right)).

Subsequent subsections provide the theoretical grounds for com-
puting each step of our algorithm. Then, Subsection 5.4 presents
the algorithm as a whole.

5.1 Computation of the partial convex hull
Importantly, in order to obtain the embedding function ®𝑤 = (1,𝑤𝑒 )
that solves our problem, we do not need to compute the whole
convex hull 𝐶𝐻 . We know that 𝐶𝐻 contains the ethical-optimal
value vector ®𝑉 ∗, necessary for obtaining ®𝑤 . However, since the
ethical-optimal value vector ®𝑉 ∗ is the same for all ethical-optimal
policies, any subset of the convex hull, 𝑃 ⊆ 𝐶𝐻 , containing at least
one ethical-optimal policy will suffice. Theorem 2 below naturally
characterises the minimal subset 𝑃 of the convex hull that we must
compute to find the ethical-optimal value vector. Formally:

Theorem 2. Given an ethical MOMDP M = ⟨S,A, (𝑅0, 𝑅N +
𝑅𝐸 ),𝑇 ⟩ in which Condition 1 is satisfied, let 𝑃 ⊆ 𝐶𝐻 (M) be the
subset of the convex hull ofM limited to weight vectors of the form
®𝑤 = (1,𝑤𝑒 ) with𝑤𝑒 > 0. Then, there is a policy 𝜋∗ ∈ 𝑃 such that its
value is the ethical-optimal value vector (𝑉 𝜋∗ = 𝑉 ∗).

Proof. From Theorem 1, we know that at least one ethical-
optimal policy is optimal for a weight vector ®𝑤 of the form ®𝑤 =

(1,𝑤𝑒 ) with 𝑤𝑒 > 0, and thus such policy belongs to this partial
region 𝑃 of the convex hull𝐶𝐻 (M). Therefore, its associated value
vector, ®𝑉 ∗, also belongs to 𝑃 . □

Henceforth, when referring to the partial convex hull, we are
referring to this particular subset 𝑃 defined in Theorem 2. We
compute this subset of the convex hull by adapting the Convex
Hull Value Iteration algorithm in [6] to constrain its search space
of weight vectors to be of the form ®𝑤 = (1,𝑤𝑒 ) with𝑤𝑒 > 0 (thus
reducing its computational cost).

5.2 Extraction of two value vectors
In order to know which value vector in 𝑃 corresponds to an ethical-
optimal policy, we have to find the one that maximises the ethical
reward function (𝑉N + 𝑉𝐸 ) of the ethical MOMDP. Formally, to
obtain the ethical-optimal value vector within 𝑃 , we must compute:

®𝑉 ∗ (𝑠) = argmax
(𝑉0,𝑉N+𝑉𝐸 ) ∈𝑃

[𝑉N (𝑠) +𝑉𝐸 (𝑠)] for every state 𝑠 . (6)

The ethical-optimal value vector ®𝑉 ∗ is the only maximal one in
𝑃 . By maximal, we mean that its scalarised value is strictly greater
than any other scalarised value vector of 𝑃 . In particular, in this
subsection we will see that ®𝑉 ∗ is the only maximal value vector
when its scalarised value is strictly greater than the second most
ethical value vector ®𝑉 ′∗ ∈ 𝑃 . We refer to ®𝑉 ′∗ as the second-best
value vector, which we define as follows:

®𝑉 ′∗ � argmax
(𝑉0,𝑉N+𝑉𝐸 ) ∈𝑃\{𝑉 ∗ }

[𝑉N (𝑠) +𝑉𝐸 (𝑠)] for every state 𝑠 . (7)

Thus, the second-best value vector accumulates the greatest
amount of ethical rewards in 𝑃 if we disregard ®𝑉 ∗ (i.e., when con-
sidering 𝑃 \{𝑉 ∗}).
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Figure 2: Left: Example of partial convex hull 𝑃 , represented in objective space. Centre: Identification of the points of 𝑃 corre-
sponding with the ethical-optimal value vector ®𝑉 ∗ and the second-best value vector ®𝑉 ′∗. Right: Representation in weight space
of 𝑃 . The minimal weight value𝑤𝑒 for which ®𝑉 ∗ is optimal is identified with a green vertical line.

The following Theorem 3 proves that, indeed, we only need to
compare ®𝑉 ∗ and ®𝑉 ′∗, and hence disregard the rest of value vectors
in the convex hull, in order to find the minimal ethical weight𝑤𝑒

for which ®𝑉 ∗ is the only maximal value vector:
Theorem 3. Given an ethical MOMDP M = ⟨S,A, (𝑅0, 𝑅N +

𝑅𝐸 ),𝑇 ⟩ in which Condition 1 is satisfied, let 𝑃 ⊆ 𝐶𝐻 (M) be the
subset of the convex hull of M, limited to weight vectors of the form
®𝑤 = (1,𝑤𝑒 ) with 𝑤𝑒 > 0. Consider ®𝑉 ∗ the ethical-optimal policy,
and ®𝑉 ′∗ the second-best value vector. If for a given weight vector
®𝑤 = (1,𝑤𝑒 ) we have that ®𝑤 · ®𝑉 ∗ > ®𝑤 · ®𝑉 ′∗, then ®𝑉 ∗ is ®𝑤-optimal,
and the only ®𝑤-optimal policy of 𝑃 .

Proof. If ®𝑤 · ®𝑉 ∗ > ®𝑤 · ®𝑉 ′∗, then ®𝑉 ′∗ is not maximal for ®𝑤 within
P, which implies that some other value vector ®𝑉 ∈ 𝑃 is. This value
vector ®𝑉 needs to have more accumulation of ethical rewards than
®𝑉 ′∗, so the only possible candidate is the ethical-optimal policy ®𝑉 ∗.
Hence, ®𝑉 ∗ is the only ®𝑤-optimal policy of 𝑃 . □

Thus, these two value vectors ®𝑉 ∗ and ®𝑉 ′∗ are all we need to
compute the embedding function ®𝑤 = (1,𝑤𝑒 ) with minimal ethical
weight𝑤𝑒 . Notice that the two value vectors can be found simulta-
neously while sorting the value vectors of 𝑃 . Furthermore, ®𝑉N and
®𝑉𝐸 are already available for these two value vectors because they
are both part of the partial convex hull 𝑃 , which we computed in
Subsection 5.1 through our adapted CHVI.

5.3 Computation of the embedding function
with minimal ethical weight

In the last step of our algorithm, the computation of the embedding
function (the weight vector), we use the two extracted value vectors
®𝑉 ∗ and ®𝑉 ′∗ to find the minimal solution weight vector ®𝑤 = (1,𝑤𝑒 )
that guarantees that optimal policies are ethical-optimal. In other
words, such weight vector ®𝑤 will create an ethical environment
(a single-objective MDP) in which the agent will learn an ethical-
optimal policy. As anticipated by Theorem 3, we need to find the
minimal value for𝑤𝑒 ∈ ®𝑤 such that:

𝑉 ∗
0 (𝑠) +𝑤𝑒 [𝑉 ∗

N (𝑠) +𝑉 ∗
𝐸 (𝑠)] > 𝑉 ′

0 (𝑠) +𝑤𝑒 [𝑉 ′
N (𝑠) +𝑉 ′

𝐸 (𝑠)], (8)

for every state 𝑠 ∈ S, where ®𝑉 ∗ = (𝑉 ∗
0 ,𝑉

∗
𝑁
+𝑉 ∗

𝐸
) and ®𝑉 ′∗ = (𝑉 ′

0 ,𝑉
′
𝑁
+

𝑉 ′
𝐸
) . This process is illustrated in Figure 2 (Right).

Notice that in Eq. 8 the only unknown variable is 𝑤𝑒 . This
amounts to solving a system of |S0 | linear inequalities (hereS0 ⊆ S
is the set of initial states) with a single unknown variable.

5.4 An algorithm for designing ethical
environments

At this point we now count on all the tools for solving Problem
1, and hence build an ethical environment where the learning of
ethical policies is guaranteed. Algorithm 1 implements the ethical
embedding outlined in Figure 1. The algorithm starts in line 2 by
computing the partial convex hull 𝑃 ⊆ 𝐶𝐻 (M) of the input ethical
MOMDPM (see Subsection 5.1); and then in line 3 it obtains the
ethical-optimal value vector ®𝑉 ∗ and the second-best value vector
®𝑉 ′∗ out of those in the partial convex hull 𝑃 (see Subsection 5.2).
Thereafter, in line 4 our weighting process searches, comparing
®𝑉 ∗ and ®𝑉 ′∗, for an ethical weight𝑤𝑒 that satisfies Equation 8 (see
Subsection 5.3). For the obtained weight vector ®𝑤 = (1,𝑤𝑒 ), all
optimal policies of the single-objective MDPM ′ = ⟨S,A,𝑤0𝑅0 +
𝑤𝑒 (𝑅N +𝑅𝐸 ),𝑇 ⟩ will be ethical. In other words, such weight vector
will solve the ethical embedding problem (Problem 1). Finally, the
algorithm returns the MDPM ′ in line 5.

Algorithm 1 Ethical Embedding

1: function Embedding( Ethical MOMDPM = ⟨S,A, (𝑅0, 𝑅N +
𝑅𝐸 ),𝑇 ⟩)

2: Compute 𝑃 ⊆ 𝐶𝐻 (M) the partial convex hull of M for
weight vectors ®𝑤 = (1,𝑤𝑒 ) with𝑤𝑒 > 0.

3: Find ®𝑉 ∗ the ethical-optimal value vector, and ®𝑉 ′∗ the
second-best value vector, within 𝑃 by solving Eq. 6.

4: Find the minimal value for𝑤𝑒 that satisfies Eq. 8.
5: Return MDPM ′ = ⟨S,A, 𝑅0 +𝑤𝑒 (𝑅N + 𝑅𝐸 ),𝑇 ⟩.
6: end function

The computational cost of the algorithm mainly resides in com-
puting the partial convex hull of an MOMDP. The Convex Hull
Value Iteration algorithm requires𝑂 (𝑛 · 𝑙𝑜𝑔 𝑛) times what its single-
objective Value Iteration counterpart [6, 9] requires, where 𝑛 is the
number of policies in the convex hull. In our case this number will
be 𝑛′ ≤ 𝑛 since we are just allowing a particular form of weights,

6



as explained in previous subsections. Notice that after computing
𝑃 ⫅ 𝐶𝐻 , solving Eq. 6 is a sorting operation because we already
have calculated ®𝑉 for every ®𝑉 ∈ 𝑃 . Similarly, solving Eq. 8 requires
to solve |S0 | inequalities and then sort them to find the ethical
weight𝑤𝑒 .

6 EXAMPLE: THE PUBLIC CIVILITY GAME
This section illustrates our process of designing an ethical environ-
ment (Algorithm 1) with an example. We use a single-agent version
of the Public Civility Game [19], a value alignment problem where
an agent learns to behave according to the moral value of civility.
Far from being realistic, the example at hand is simple enough to
serve our illustrative purposes. Furthermore, it can be seen as an
ethical adaptation of the irreversible side effects environment [15].

Figure 3 (Left) depicts the environment, wherein two agents (L
and R) move from their initial positions to their respective goal
destinations (GL and GR). Since the L agent finds garbage (small
red square) blocking its way, it needs to learn how to handle the
garbage civically while moving towards its goal GL. The civic (ethi-
cal) behaviour we expect agent L to learn is to push the garbage to
any wastebasket (WL and WR) without throwing it to agent R. The
R agent is endowed with a fixed behaviour for reaching its goal: R
always moves forward except for the first time-step, when it may
not advance with a 50% chance to induce some randomness.

6.1 Reward specification
The Public Civility Game represents an ethical embedding problem
where civility is the moral value to embed in the environment. As
such, we encode it as an ethical MOMDP M = ⟨S,A, (𝑅0, 𝑅N +
𝑅𝐸 ),𝑇 ⟩. Next, we describe the states and actions of the environment
together with its reward functions.

The environment is represented as a grid of cells as Figure
3 (Left) shows. Thus, a state 𝑠 ∈ 𝑆 is defined as a tuple 𝑠 =

⟨𝑐𝑒𝑙𝑙𝐿, 𝑐𝑒𝑙𝑙𝑅, 𝑐𝑒𝑙𝑙𝐺 ⟩ where 𝑐𝑒𝑙𝑙𝐿 and 𝑐𝑒𝑙𝑙𝑅 correspond to the po-
sition (cell) of agents L and R respectively, and 𝑐𝑒𝑙𝑙𝐺 corresponds
to the position of the garbage obstacle. The initial state 𝑠0 of the
MOMDP is illustrated in Figure 3 (Left): both agents are in adjacent
cells at the bottom, and the garbage is located immediately in front
of the left agent.

The set of actions is A = {𝑚𝐹,𝑚𝑅,𝑚𝐿, 𝑝𝐹, 𝑝𝑅, 𝑝𝐿}, where m
stands formovement, p for push, 𝐹=Forward, 𝑅=Right, and 𝐿=Left.
Actions𝑚∗ (𝑚𝐹 ,𝑚𝑅, and𝑚𝐿) change the agent’s position accord-
ingly, and actions 𝑝∗ (𝑝𝐹 , 𝑝𝑅, and 𝑝𝐿) change the garbage’s position
(𝑠 .𝑐𝑒𝑙𝑙𝐺 ) whenever the garbage is in front of the agent.

The agent’s individual objective and the ethical objective have
been specified as follows.

On the one hand, the agent’s individual objective is to reach
its destination (GL) as fast as possible, thus

𝑅0 (𝑠, 𝑎, 𝑠 ′) �
{
20 if 𝑠 ′.𝑐𝑒𝑙𝑙𝐿 ∈ GL,
−1 otherwise.

(9)

where 𝑠, 𝑠 ′ ∈S and 𝑎 ∈A. In this manner, 𝑅0 encourages the agent
to never stop until it reaches GL.

On the other hand, the ethical objective is to promote civility
by means of:

Policy 𝜋 Value ®𝑉 𝜋 (𝑠0) 𝑤𝑒 ranges
Unethical (4.67, -5+0) [0.0, 0.52]
Regimented (1.43, 0+1.2) [.52, 0.7]

Ethical (0.59, 0+2.4) [0.7, ∞)
Table 1: Policies 𝜋 within the partial convex hull of the Pub-
lic Civility Game and their associated values ®𝑉 𝜋 = (𝑉 𝜋

0 ,𝑉 𝜋
N +

𝑉 𝜋
𝐸
). Weight𝑤𝑒 ranges indicate the values of ethical weights

for which each policy is optimal.

• An evaluative reward function𝑅𝐸 that rewards the agent pos-
itively when performing the praiseworthy action of pushing
the garbage inside the wastebasket. Thus,

𝑅𝐸 (𝑠, 𝑎, 𝑠 ′) �
{
10 if 𝑠 ′.𝑐𝑒𝑙𝑙𝐺 ∈ {WL,WR} and 𝑎 ∈ 𝑝∗,
0 otherwise.

(10)

• A normative reward function 𝑅N that punishes the agent
for not complying with the moral requirement of being re-
spectful with other agents. Thus, agent L will be punished
with a negative reward if it throws the garbage to agent R:

𝑅N (𝑠, 𝑎, 𝑠 ′) �
{
−10 if 𝑠 ′.𝑐𝑒𝑙𝑙𝐺 = 𝑠 ′.𝑐𝑒𝑙𝑙𝑅 and 𝑎 ∈ 𝑝∗,
0 otherwise.

(11)

6.2 Ethical embedding
We now apply Algorithm 1 to design an ethical environment for the
Public Civility Game. In what follows, we detail the three processes
involved in obtaining this new environment.

Partial convexhull computation:Considering the ethicalMOMDP
M, we compute its partial convex hull 𝑃 ⊆ 𝐶𝐻 (M). Figure 3 (cen-
tre) depicts the resulting 𝑃 for the initial state 𝑠0. It is composed of
3 different policies named after the behaviour they encapsulate:

(1) An Unethical (uncivil) policy, in which the agent moves to-
wards the goal and throws away the garbage without caring
about any ethical implication.

(2) A Regimented policy, in which the agent complies with the
norm of not throwing the garbage to the other agent.

(3) An Ethical policy, in which the agent behaves civically as
desired.

Table 1 provides the specific vectorial value ®𝑉 𝜋 = (𝑉 𝜋
0 ,𝑉 𝜋

N +𝑉 𝜋
𝐸
)

of each policy 𝜋 and the range of values of the ethical weight𝑤𝑒

for which each policy is optimal.

Extraction of the two value vectors with the greatest ethical
value: In our case, the Ethical policy 𝜋𝑒 has associated the ethical-
optimal value vector since it is the policy with greatest ethical value
within the partial convex hull 𝑃 . Indeed, 𝜋𝑒 is the only policy that
maximises both the normative and the evaluative components (𝑉N
and 𝑉𝐸 respectively). Thus, the ethical-optimal value vector is its
value vector ®𝑉 𝜋𝑒 . Last row in Table 1 shows the value of 𝜋𝑒 for
the initial state 𝑠0: ®𝑉 𝜋𝑒 (𝑠0) = (𝑉 𝜋𝑒

0 ,𝑉
𝜋𝑒
N + 𝑉

𝜋𝑒
𝐸

) = (0.59, 0 + 2.4) .
Similarly, the second most ethical value vector in 𝑃 corresponds
to the value of the Regimented policy 𝜋𝑅 , which has the value
®𝑉 𝜋𝑅 (𝑠0) = (𝑉 𝜋𝑅

0 ,𝑉
𝜋𝑅
N +𝑉 𝜋𝑅

𝐸
) = (1.43, 0 + 1.2) for the initial state 𝑠0.
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Figure 3: Left: Initial state of the public civility game. The agent on the left has to deal with the garbage obstacle, which has
been located in front of it. Centre: Visualisation in Objective Space of the partial convex hull of M composed by 3 policies:
E (Ethical), R (Regimented) and U (Unethical). Right: Visualisation in Weight Space of the partial convex hull of M. Painted
areas indicate which policy is optimal for the varying values of the ethical weight𝑤𝑒 .

Computation of the embedding function: Line 4 in Algorithm
1 computes the weight𝑤𝑒 in ®𝑤 = (1,𝑤𝑒 ) for which 𝜋𝑒 is the only
optimal policy of 𝑃 , by solving Eq. 8. This amounts to solve:

𝑉
𝜋𝑒
0 (𝑠0) +𝑤𝑒 [𝑉 𝜋𝑒

N (𝑠0) +𝑉 𝜋𝑒
𝐸

(𝑠0)] > 𝑉
𝜋𝑅
0 (𝑠0) +𝑤𝑒 [𝑉 𝜋𝑅

N (𝑠0) +𝑉 𝜋𝑅
𝐸

(𝑠0)] .

By solving it, we find that if 𝑤𝑒 > 0.7, then the Ethical policy
becomes the only optimal one. We can check it (set 𝜖 > 0):

0.59 + (0.7 + 𝜖) · (0 + 2.4) = 2.27 + 2.4𝜖 > 1.43 + 0.7 · (0 + 1.2) .

Figure 3 (right) illustrates the scalarised value of the 3 policies for
varying values of𝑤𝑒 in [0,1] (for𝑤𝑒>1 tendencies do not change).
Painted areas in the plot help to identify the optimal policies for
specific intervals of𝑤𝑒 . Focusing on the green area, we can observe
that the Ethical policy becomes the only optimal one for𝑤𝑒 > 0.7.

Therefore, the last step in our algorithm returns an MDP M ′

whose reward comes from scalarising the MOMDP by ®𝑤 = (1,𝑤𝑒 ),
being 𝑤𝑒 strictly greater than 0.7. Thus, adding any 𝜖 > 0 will
suffice. If, for instance, we set 𝜖 = 0.01 then, the weight vector
(1, 0.7 + 0.01) = (1, 0.71) solves the Public Civility Game. More
specifically, an MDP created from an embedding function with
such ethical weight𝑤𝑒 incentivises the agent to learn the Ethical
(civic) policy.

6.3 Learning
After creating our ethical environmentM ′ = ⟨S,A, 𝑅0 +𝑤𝑒 (𝑅N +
𝑅𝐸 ),𝑇 ⟩ (in our case with𝑤𝑒 = 0.71) we can confirm our theoretical
results by letting the agent learn an optimal policy inM ′.

We provide the L agent with Q-learning [29] as its learning
algorithm. In Q-learning, we need to specify two hyperparameters:
the learning rate 𝛼 and the discount factor 𝛾 . In our case, we set
them to 𝛼 = 0.8 and 𝛾 = 0.7. Furthermore, we set the learning
policy to be 𝜖-greedy [25].

After letting the agent learn for 5000 iterations it actually learns
to bring the garbage to the wastebasket while moving towards its
goal, as it could not be otherwise. Figure 4 shows how the agent’s
value vector ®𝑉 (𝑠0) stabilises, with less than 1500 episodes, at 0.59
(𝑉0 line) and 2.4 (𝑉N +𝑉𝐸 line), which is precisely the value of the
Ethical policy.

Figure 4: Evolution of the accumulated rewards per episode
that the agent obtains in the ethical environment.

7 CONCLUSIONS AND FUTUREWORK
Designing ethical environments for learning agents is a challenging
problem. We make headway in tackling this problem by providing
novel formal and algorithmic tools that build upon Multi-Objective
Reinforcement Learning. In particular, our problem consists in
ensuring that the agent wholly fulfils its ethical objective while
pursuing its individual objective.

MORL is a valuable framework to handle multiple objectives. In
order to ensure ethical learning (value-alignment), we formalise
–within the MORL framework– ethical-optimal policies as those
that prioritise their ethical objective. Overall, we design an ethical
environment by considering a two-step process that first specifies
rewards and second performs an ethical embedding. We formalise
this last step as the ethical embedding problem and theoretically
prove that it is always solvable. Our findings lead to an algorithm for
automating the design of an ethical environment. Our algorithm
ensures that, in this ethical environment, it will be in the best
interest of the agent to behave ethically while still pursuing its
individual objectives. We illustrate it with a simple example that
embeds the moral value of civility.

As to future work, we would like to further examine empirically
our algorithm in more complex environments.
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