
Preliminary Proceedings
of

COIN 2007 @ DURHAM
Coordination, Organization, Institutions and Norms

Editors: Pablo Noriega, Julian Padget

COIN–II

Acknowledgements

We gratefully acknowledge the invaluable assistance of the program committee in evaluting the submissions to
COIN2007@DURHAM.

Guido Boella (Universitá di Torino, IT)
Olivier Boissier (EMSE Saint-Etienne, France)
Cristiano Castelfranchi (ISTC, Italy)
Stephen Cranefield, (University of Otago, NZ)
Marina De Vos (University of Bath, UK)
Virginina Dignum (Utrecht University, The Netherlands)
Marc Esteva (University of Technology Sydney, AU)
Nicoletta Fornara (Universitá della Svizzera-Italiana Lugano, CH)
Carl Hewitt, (MIT, USA)
Christian Lemaitre (Universidad Autonónoma México, MX)
Victor Lesser (University of Massachussets, USA)
Gabriela Lindemann, (Universität Humboldt, DE)
Fabiola López (BUAP, MX)
Michael Luck (King’s College, University of London, UK)
Eric Matson (Wright State, USA)
Tim Norman (University of Aberdeen, UK)
Eugénio Oliveira (Universidade do Porto, PT)
Andrea Omicini (Universitá di Bologna, IT)
Sascha Ossowski (Universidad Rey Juan Carlos, Madrid, Spain)
Juan Antonio Rodrı́guez (IIA CSCI, Spain)
Marek Sergot (Imperial College, UK)
Carles Sierra (IIIA CSCI, Spain)
Mario Verdicchio (Universitá di Bergamo, IT)
Wamberto Vasconcelos (University of Aberdeen, UK)
Javier Vázquez-Salceda (Universitat Politècnia de Catalunya, ES)

Additional Reviewers

Holger Bilhards, Andrés Garcı́a-Camino, Jelle Herbrandy, Henrique Lopes Cardoso, Maite López-Sánchez,
Luca Tummolini.

COIN2007@DURHAM Organization

Program Chairs: Pablo Noriega (IIA CSCI, Spain)
Julian Padget (University of Bath, UK)

Local Organization: Rafael Bordini (University of Durham, UK)
Berndt Farwer University of Durham, UK
Tricia Shaw University of Durham, UK

COIN–III

COIN–IV

Table of Contents

Using Case-Based Reasoning in Autonomic Electronic Institutions . 1
Eva Bou (IIIA, Artificial Intelligence Research Institute Universitat de Barcelona), Maite
López-Sánchez (IIIA, Artificial Intelligence Research Institute Universitat de Barcelona), Joan-Antonı́
Rodrı́guez-Aguilar (IIIA, Artificial Intelligence Research Institute Universitat de Barcelona)

A Normative Multi-Agent Systems Approach to the Use of Conviviality for Digital Cities 15
Patrice Caire (University of Luxembourg, Computer Science Department)

Embedding Landmarks and Scenes in a Computational Model of Institutions . 27
Owen Cliffe (Department of Computer Science, University of Bath), Marina De Vos (Department of
Computer Science, University of Bath), Julian Padget (Department of Computer Science, University
of Bath)

Semantical Concepts for a Formal Structural Dynamics of Situated Multiagent Systems 41
António Carlos da Rocha Costa (PPGINF, Escola de Informática, Universidade Católica de Pelotas),
Graçaliz Pereira Dimuro (PPGINF, Escola de Informática, Universidade Católica de Pelotas)

On the Multimodal Logic of Normative Systems . 53
Pilar Dellunde (IIIA & UAB)

A Distributed Architecture for Norm Management in Multi-Agent Systems . 65
Andres Garcı́a-Camino (IIIA, Artificial Intelligence Research Institute), Joan-Antonı́ Rodrı́guez-
Aguilar (IIIA, Artificial Intelligence Research Institute), Wamberto Vasconcelos (Dept. of Computing
Science University of Aberdeen)

Dynamic Institutions for Teamwork . 77
Mario Gómez (Department of Computing Science, University of Aberdeen), Enric Plaza (IIIA -
Artificial Intelligence Research Institute)

Coordination and Sociability for Intelligent Virtual Agents . 89
Francisco Grimaldo (Computer Science Dept., University of Valencia), Miguel Lozano (Computer
Science Dept., University of Valencia), Fernando Barber (Computer Science Dept., University of
Valencia)

The Examination of an Information-Based Approach to Trust . 101
Maaike Harbers (University of Groningen), Rineke Verbrugge (University of Groningen), Carles
Sierra (Institute of Artificial Intelligence IIIA-CSIC), John Debenham (Faculty of Information
Technology, University of Technology, Sydney)

A Coherence Based Framework for Institutional Agents . 113
Sindhu Joseph (Artificial Intelligence Research Institute, IIIA Spanish National Research Council,
CSIC), Carles Sierra (Artificial Intelligence Research Institute, IIIA Spanish National Research
Council, CSIC), Marco Schorlemmer (Artificial Intelligence Research Institute, IIIA Spanish National
Research Council, CSIC)

Organisational Artifacts and Agents For Open Multi-Agent Organisations: ‘Giving the power back to
the agents’ . 127
Rosine Kitio (GIA/DSC/FURB, Brasil), Olivier Boissier (SMA/G2I/ENSM.SE), Jomi Fred Hubner
(GIA/DSC/FURB, Brasil), Alessandro Ricci (Universit di Bologna)

Knowledge Sharing Between Agents in a Transitioning Organization . 145
Eric Matson (Wright State University), Raj Bhatnagar (University of Cincinnati)

Distributed Norm Enforcement via Ostracism . 157
Adrian Perreau de Pinninck (IIIA - Artificial Intelligence Research Institute), Carles Sierra (IIIA -
Artificial Intelligence Research Institute), Marco Schorlemmer (IIIA - Artificial Intelligence Research
Institute)

A Dynamic Coordination Mechanism Using Adjustable Autonomy . 169
Bob van der Vecht (Department of Information and Computing Sciences, Universiteit Utrecht,
Utrecht), Frank Dignum (Department of Information and Computing Sciences, Universiteit Utrecht,
Utrecht), John-Jules Ch. Meyer (Department of Information and Computing Sciences, Universiteit
Utrecht, Utrecht), Martijn Neef (TNO Defence, Safety and Security, The Hague)

Model Checking Norms and Sanctions in Institutions . 181
Francesco Viganò (Universitá della Svizzera italiana, Lugano, Switzerland), Marco Colombetti
(Politecnico di Milano)

Author Index . 193

COIN–VI

Using Case-Based Reasoning in Autonomic
Electronic Institutions

Eva Bou1 and Maite López-Sánchez2 and J. A. Rodŕıguez-Aguilar1

1 IIIA, Artificial Intelligence Research Institute
CSIC, Spanish National Research Council, Campus UAB 08193 Bellaterra, Spain,

email: {ebm, jar}@iiia.csic.es
2 WAI, Volume Visualization and Artificial Intelligence, MAiA Dept., Universitat de

Barcelona, email: maite@maia.ub.es

Abstract. Electronic institutions (EIs) define the rules of the game in
agent societies by fixing what agents are permitted and forbidden to
do and under what circumstances. Autonomic Electronic Institutions
(AEIs) adapt their regulations to comply with their goals despite coping
with varying populations of self-interested external agents. This paper
presents a self-adaptation model based on Case-Based Reasoning (CBR)
that allows an AEI to yield a dynamical answer to changing circum-
stances.

1 Introduction

The growing complexity of advanced information systems in the recent years,
characterized by being distributed, open and dynamical, has given rise to inter-
est in the development of systems capable of self-management. Such systems are
known as self-* systems [1] , where the * sign indicates a variety of properties:
self-organization, self-configuration, self-diagnosis, self-repair, etc. A particular
approximation to the construction of self-* systems is represented by the vision
of autonomic computing [2], which constitutes an approximation to computing
systems with a minimal human interference. Some of the many characteristics
of an autonomic system are: it must configure and reconfigure itself automati-
cally under changing (and unpredictable) conditions; it must aim at optimizing
its inner workings, monitoring its components and adjusting its processing in
order to achieve its goals; it must be able to diagnose the causes of its eventual
malfunctions and repair itself; and it must act in accordance to and operate into
a heterogeneous and open environment.

Electronic Institutions (EIs) [3] have been proved to be valuable to regulate
open agent systems. EIs define the rules of the game by fixing what agents are
permitted and forbidden to do and under what circumstances. We have defined
Autonomic Electronic Institutions (AEIs) as an EI with autonomic capabilities
that allows it to adapt its regulations to comply with institutional goals despite
varying agent’s behaviours [4]. Thus, an AEI has to self-configure its regula-
tions to accomplish its institutional goals. In previous work [4] we have learned

COIN–1

those regulations that best accomplished the institutional goals for a collection
of simulated agent populations. This paper extends that work with a Case-Based
Reasoning (CBR) approach that allows an AEI to self-configure its regulations
for any agent population. Since our hypothesis is that populations that behave
similarly can be regulated in a similar manner, the CBR approach helps us iden-
tify populations that behave similarly and subsequently retrieve the ”control”
parameters for an AEI to regulate it.

The paper is organized as follows. In section 2 we describe the notion of
autonomic electronic institutions. Section 3 details the learning model that we
propose and how an AEI uses CBR. Section 4 describes the case study employed
as a scenario wherein we have tested our model. Section 5 provides some em-
pirical results. Finally, section 6 summarizes some conclusions and related work
and outlines paths to future research.

2 Autonomic Electronic Institutions

In general, an EI [3] involves different groups of agents playing different roles
within scenes in a performative structure. Each scene is composed of a coordi-
nation protocol along with the specification of the roles that can take part in
the scene.

According to [3] an EI is solely composed of: a dialogic framework (DF) es-
tablishing the common language and ontology to be employed by participating
agents; a performative structure (PS) defining its activities along with their rela-
tionships; and a set of norms (N) defining the consequences of agents’ actions. We
have extended the notion of EI to support self-configuration, in the sense of reg-
ulation adaptation. In this manner in [4] we incorporate notions of institutional
goals and regulation configuration to define an autonomic electronic institution
(AEI) as a tuple: 〈PS,N,DF,G, Pi, Pe, Pa, V, δ, γ〉. Next, we only provide an
intuitive idea about the elements of an AEI (further details can be found in [4]).

We assume that the main objective of an AEI is to accomplish its institutional
goals (G). For this purpose, an AEI will adapt. We assume that the institution
can observe the environment where agents interact (Pe), the institutional state
of the agents participating in the institution (Pa), and its own state (Pi) to assess
whether its goals are accomplished or not. Since an AEI has no access whatsoever
to the inner state of any participating agent, only the institutional (social) state
of an agent (Pa) can change. Therefore, each agent (ai) can be fully characterized
by his institutional state Pai = 〈ai1 , . . . , aim〉 where aij ∈ IR, 1 ≤ j ≤ m is an
observable value of agent ai. Taking the traffic as an example of an AEI, the
speed of a car could be an example of an observable value of an agent; the
number of lanes could be an example of an observable value of the environment;
and the number of polices the institution uses to control the cars could be an
example of an observable value of the state of the institution.

Formally, we define the goals of an AEI as a finite set of constraints G =
{c1, ..., cp} where each ci is defined as an expression gi(V) C [mi,Mi] where
mi,Mi ∈ IR, C stands for either ∈ or 6∈. Additionally, gi is a function over

COIN–2

the reference values V = 〈v1, . . . , vq〉, where each vj results from applying a
function hj upon the agents’ properties, the environmental properties and/or
the institutional properties; vj = hj(Pa, Pe, Pi), 1 ≤ j ≤ q. In this manner,
each goal is a constraint upon the reference values where each pair mi and
Mi defines an interval associated to the constraint. Continuing with the traffic
example, an example of an institutional goal could be to minimize the number
of accidents. Thus, the institution achieves its goals if all gi(V) values satisfy
their corresponding constraints of belonging (at least to a certain degree) to their
associated intervals. This is measured by means of a satisfaction function that
computes the goal satisfaction degree (see [4] for further details).

The AEI definition includes the mechanisms to support the adaptation with
the normative transition function (δ), and with the PS transition function (γ).
An AEI employs norms to constrain agents’ behaviors and to assess the conse-
quences of their actions within the scope of the institution. We focus on norms
describing prohibitions parametrically. So that each norm Ni ∈ N , i = 1, . . . , n,
has a set of parameters 〈pNi,1, . . . , pNi,mi〉 ∈ IRmi . In fact, this parameters cor-
respond to the variables in the norm transition function that will allow the
institution to adapt. Continuing with the same traffic example, an example of a
norm could be to stop always before to enter in an intersection and it norm can
be parametrized by an associated fine applied if a car does not fulfill it. Notice
that our AEI can not learn new norms, it only can adapt its norms by changing
their parameters. On the other hand, adapting a PS involves the definition of a
set of parameters whose values will be changed by the PS transition function. We
define each scene in the performative structure, Si ∈ PS, i = 1, . . . , t, as having
a set of parameters 〈pRi,1, ..., pRi,qi〉 ∈ INqi where pRi,j stands for the number of
agents playing role rj in scene Si. Thus, changing the values of these parameters
means changing the performative structure.

The AEI definition includes the mechanisms to support the adaptation with
the normative transition function (δ), and with the PS transition function (γ).
We propose to use learning methods to learnt the normative transition function
(δ), and the PS transition function (γ). Next section details the learning model
used to adapt the AEI by changing those parameters.

3 Learning Model

Our aim is that at run-time an AEI could adapt its regulations to any population.
We propose to learn the norm transition function (δ) and the PS transition
function (γ) in two different steps in an overall learning process. In previous work
[4] we have approached the first learning step, which corresponds to learn the
best parameters for a set of predefined populations. In this work we focus on the
second learning step: how to adapt the parameters to any population. As shown
in Figure 1, in an initial step our AEI learns by simulation the best parameters
for a collection of different agent populations. For each population of agents (A),
the algorithm explores the space of parameter values (I1, .., Ik) in search for the
ones that lead the AEI to best accomplish its goals (G) for this population of

COIN–3

Fig. 1. Learning Model in two steps.

agents. Afterwards, we propose to use a Case-Based Reasoning (CBR) approach
as a second step because it allows the AEI to solve situations that have been
learned previously. We assume that agent populations that behave in similar way
caused similar situations that may require similar solutions. Thus, at a second
step an AEI identifies, in run-time, those situations for which its goals are not
accomplished and uses CBR to retrieve a solution (regulation parameters) from
the most similar situation in the knowledge base.

3.1 Applying CBR

Case Based Reasoning (CBR) [5] is based on learning from experience. The idea
is to search in the experience (memory) of the system for similar situations,
called cases, and using the corresponding solution to solve the current problem.
In general, a new problem in a CBR system is solved by retrieving similar cases,
reusing the case solution, revising the reused solution, and retaining the new ex-
perience. In this work we focus our attention in the first step of the CBR cycle,
namely the retrieve process. Nevertheless, before addressing it, it is necessary to
choose a representation for cases.

Case Definition The representation of cases is central to any CBR system.
Cases must be represented based on the knowledge of the problem domain in
order to choose the main features that better describe the case and thus that
better help the processes involved in the CBR cycle. As to AEIs, we differentiate
the following main features to be considered to represent cases:

– AEI parameters’ values. They represent the parameters’ values of some
institution, namely the norm parameters’ values and the performative struc-
ture parameters’ values that an AEI uses for regulating agents.

– Runtime behaviour. They represent the global behaviour of the institution
at runtime for some agent population when the institution uses the AEI
parameters’ values.

COIN–4

– Best AEI parameters’ values. They represent the learned parameters’
values of the institution for the previous agent population. In other words:
the solution. Thus, they correspond to the parameters that the institution
must apply in order to accomplish its institutional goals given both previous
AEI parameters’ values and runtime behaviour.

More precisely, regarding AEIs, we propose the definition of a case as a tuple
(Np,PSp,V,pop,Np∗,PSp∗), where:

– (Np,PSp) stands for the AEI parameters’ values:
• Np stands for the current norm parameters’ values;
• PSp stands for the current performative structure parameters’ values;

– (V,pop) stands for the runtime behaviour:
• V stands for the current set of reference values;
• pop stands for statistic data that characterises the behaviour of the

agents’ population at runtime1;
– (Np∗,PSp∗) stands for the best AEI parameters’ values:
• Np∗: represents the best values for the norm parameters given the current

norm parameters values (Np) and the runtime behaviour (V,pop); and
• PSp∗: represents the best values for the performative structure param-

eters given the current performative structure parameters values (PSp)
and the runtime behaviour (V,pop).

Thus, a case represents how an AEI (using Np as norm values and PSp as perfor-
mative structure values) regulating a population of agents (showing the runtime
behaviour described by pop and V) should change its regulations (to the Np∗

and the PSp∗ values). Notice that each case is an entry of the normative transi-
tion function (δ) and the PS transition function (γ). That is, the set of all cases
approximate both transition functions.

Similarity function In order to compare two cases we must define an appropri-
ate similarity function based on our representation of cases. We use aggregated
distance function to compute the degree of similarity between a new case Ci and
a case Cj in the case base:

S(Ci, Cj) = w1 · s AEI(Ci, Cj) + w2 · s V (Ci, Cj) + w3 · s pop(Ci, Cj) (1)

where s AEI corresponds to the distance of the AEI parameters’ values (Np,
PSp), s V and s pop correspond to the distance of the runtime behaviour (V,pop),
and w1, w2, w3 ≤ 0 are weighting factors such that w1 +w2 +w3 = 1. The s AEI,
s V and s pop distance functions are computed as the distance average of their
attributes. To assess the distance between the values of an attribute we use:

sim(attri, attrj) =
|attri − attrj |

max(attr)−min(attr)
(2)

1 Notice that this data corresponds to reference values.

COIN–5

where min(attr) and max(attr) correspond to the limits of the interval of values
of the attribute considered in the domain.

The Retrieval process In order to retrieve the most similar case to the problem
case Ci without comparing all cases in the case base, we propose to perform this
process in two steps:

1. Compare the AEI parameters’ values, (Np,PSp), of the problem case Ci with
the collection of all the AEI parameters’ values in the case base using s AEI
and select the set of AEI parameters’ values that best match.

2. Access the set of examples in the case base with these AEI parameters’
values. Afterwards, we compare case Ci with these examples and select the
case that best matches it based on distance function S.2

We use the first step with the idea that the most similar case must have similar
AEI values because the runtime behaviour depends a lot of the AEI parameters’
values. In fact, this is our hypothesis since we want to change the AEI param-
eters’ values to change in some way the population behaviour and thus modify
the runtime behaviour in order to achieve the institutional goals. The first step
makes easy and fast the access to the most similar cases because we concentrate
on only comparing the cases with similar AEI parameters’ values. Thus, we do
not need to compare all the cases of the case base. Moreover, we only need to
compute once the distance function s AEI for all cases with the same values of
AEI parameters’ values.

4 Case Study: Traffic Control

In order to test our model, we have considered and implemented the Traffic
Regulation Authority as an Autonomic Electronic Institution, and cars moving
along the road network as external agents interacting inside a traffic scene. Get-
ting into more detail, we focus on a two-road junction where no traffic signals are
considered. Therefore, cars must only coordinate by following the traffic norms
imposed by the AEI. Our case study considers the performative structure to be
a single traffic scene with two agent roles: one institutional role played by police
agents; and one external role played by car agents.

We assume institutional agents to be in charge of detecting norm violations
so that we will refer to them as police agents. The performative structure is
parametrized by the number of agents playing the police role. Each police agent
is able to detect only a portion of the total number of norm violations that
car agents actually do. Norms within this normative environment are related to
actions performed by cars. We consider two priority norms: the ‘right hand-side
priority norm’, that prevents a car reaching the junction to move forward or
to turn left whenever there is another car on its right; and the ‘front priority
2 Notice that we use a distance function as similarity function where low values imply

high similarity.

COIN–6

norm’, that applies when two cars reaching the junction are located on opposite
lines, and one of them intends to turn left. Additionally, norms are parametrized
by the associated penalties that are imposed to those cars refusing or failing
to follow them. Cars do have a limited amount of points so that norm offenses
cause points reduction. The institution forbids external agents to drive without
points in their accounts.

In this work we focus on homogeneous populations where all agents in the
population share the same behaviour. We propose to model each population
based on three parameters (henceforth referred to as agent norm compliance
parameters): 〈fulfill prob, high punishment, inc prob〉; where fulfill prob ∈
[0, 1] stands for the probability of complying with norms that is initially as-
signed to each agent; high punishment ∈ IN stands for the fine threshold that
causes an agent to consider a fine to be high enough to reconsider the norm
compliance; and inc prob ∈ [0, 1] stands for the probability increment that is
added to fulfill prob when the fine norm is greater than the fine threshold
(high punishment). Car agents decide whether to comply with a norm based on
their norm compliance parameters along with the percentage (between 0 and 1)
of police agents that the traffic authority has deployed on the traffic environ-
ment. To summarise, agents decide whether they keep on moving –regardless
of violating norms– or they stop –in order to comply with norms– based on a
probability that is computed as:

prob =
{
police · fulfill prob fine ≤ high punishment
police · (fulfill prob+ inc prob) fine > high punishment

(3)

The institution can observe the external agents’ institutional properties (Pa)
along time. Considering our road junction case study, we identity different ref-
erence values, V = 〈col, off, crash, block, expel, police〉 where col indicates
total number of collisions for the last tw ticks (0 ≤ tw ≤ tnow), off indicates the
total number of offenses accumulated by all agents for the last tw ticks, crash
counts the number of cars involved in accidents for the last tw ticks, block de-
scribes how many cars have been blocked by other cars for the last tw ticks, expel
indicates the number of cars that have been expelled out of the environment due
to running out of points for the last tw ticks, and finally, police indicates the
percentage of police agents that the institution deploys in order to control the
traffic environment.

The institution tries to accomplish its institutional goals by specifying the
penalties of both priority norms and by specifying how many police agents should
be deployed in the traffic scene. In this work we focus on four institutional goals:
(i) minimize the number of collisions; (ii) minimize the number of offenses; (iii)
minimize the number of expelled cars; (iv) and minimize the percentage of police
agents to deploy to control the traffic environment. Notice, though, that these
offences do not refer to offences detected by police agents but to the real offences
that have been actually carried out by car agents.

COIN–7

5 Empirical Evaluation

As a proof of concept of our proposal in section 3, we extend the experimental
setting for the traffic case study employed in [4]. The environment is modeled as
a 2-lane road junction and populated with 10 homogeneous cars (endowed with
40 points each). Cars correspond to external agents without learning skills. They
just move based on their random trajectories and the probability of complying
with a norm (based on the function defined in (3)). During each discrete simu-
lation, the institution replaces those cars running out of points by new cars, so
that the cars’ population is kept constant.

The four institutional goals, related to the col, off , expel and police reference
values, are combined in a weighted addition, with weights 0.4, 0.4, 0.1 and 0.1
respectively. Thus, the first two goals are considered to be more important. The
goal satisfaction is measured by combining the degree of satisfaction of these
four institutional goals.

Table 1. Agent populations employed to generate the case base.

Populations Pop. 1 Pop. 2 Pop. 3 Pop. 4 Pop. 5 Pop. 6 Pop. 7

fulfill prob 0.5 0.5 0.5 0.5 0.5 0.5 0.5

high punishment 0 3 5 8 10 12 14

inc prob 0.4 0.4 0.4 0.4 0.4 0.4 0.4

fine∗right 2 5 8 11 13 14 15

fine∗front 1 4 6 9 12 13 15

police∗ 1 1 1 1 1 1 1

As mentioned in section 3, (during training period) an AEI generates an ini-
tial base of cases from simulations of a set of prototypical populations. Following
the tuple case definition introduced in section 3.1, (Np, PSp, V, pop,Np∗, PSp∗),
we define a case Ci in this scenario as follows:

– Np = (fineright, finefront) are the values of both norms’ parameters;
– PSp = (police) is the value of the performative structure parameter;
– V = (col, crash, off , block, expel) are the reference values;
– pop = (mean off , median off , mean frequency off , median frequen-
cy off) contains the mean number of offenses, the median number of of-
fenses, the mean of the frequency of offenses, and the median of the frequency
of offenses carried out by agents for the last tw ticks (0 ≤ tw ≤ tnow);

– Np∗ = (fine∗right, fine
∗
front) are the best values for both norms’ parameters;

– PSp∗ = (police∗) is the best value for the parameter of the performative
structure.

Table 1 shows the seven populations we have considered to generate the case
base. They are characterized by their norm compliance parameters, being fulfill-
prob = 0.5 and inc prob = 0.4 for all of them, whereas high punishment varies

COIN–8

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Population (by high_punishment)

S
im

ila
rit

y

Similarity function using an AEI=(12,6,1)

Population hp=0
Population hp=3
Population hp=5

(a) Three populations ful-
fill two norms with proba-
bility 0.9.

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Population (by high_punishment)

S
im

ila
rit

y

Similarity function using an AEI=(12,6,1)

Population hp=8
Population hp=10

(b) Two populations fulfill
the right norm with prob-
ability 0.9 and the front
norm with probability 0.5.

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Population (by high_punishment)

S
im

ila
rit

y

Similarity function using an AEI=(12,6,1)

Population hp=12
Population hp=14

(c) Two populations fulfill
two norms with probability
0.5.

Fig. 2. Distance between populations when the AEI uses the same parameters values
(fineright = 12, finefront = 6 and police = 1).

from 0 to 14. The fine∗right, fine
∗
front and police∗ values in Table 1 are taken

to be the best AEI parameters’ values (Np∗, PSp∗).

5.1 Similarity function

We use the aggregated distance function defined in (1) to compute the degree of
similarity between two cases. We have set the weights as follows: w1 = 0.1,
w2 = 0.5, and w3 = 0.4. Regarding the attributes of the AEI parameters’
values, the finefront and fineright values are in the interval [0, 15], and the
police values are in the interval [0, 1]. However, the attributes of the runtime
behaviour have not known limited values. We have established limits based
on the values of the initial generated cases. Thus, we have established that
the col values are in the interval [0, 300], crash ∈ [0, 400], off ∈ [0, 500],
block ∈ [0, 200], expel ∈ [0, 900], mean off ∈ [0, 30], median off ∈ [0, 30],
mean frequency off ∈ [0, 2], and median frequency off ∈ [0, 2]. Since the
values of these attributes can be out of the proposed interval, we force distance
to be 1 when |attri − attrj | > max(attr)−min(attr).

First of all, we have tested whether the distance function and the weights
selected are suitable for the traffic domain. For this purpose, we have generated
a little case base of only seven cases by simulating each population in Table 1. In
order to create this case base, all seven populations have been run with the same
AEI parameters: fineright = 12, finefront = 6 and police = 1. Afterwards, in
order to test the distance function, we have created seven new cases simulating
another time each population in Table 1 using the very same AEI parameters’
values and have compared each one with the seven cases in the case base. Notice
that two simulations of the same population using the very same AEI parameters’
values do not create the very same case, because the runtime behaviour in both
simulations may be similar but not exactly the same.

Figure 2 shows the results of testing similarities for the seven new cases with
the seven ones in the base case. These seven new cases could be grouped by the
population behaviour regarding the norm compliance. Since population of first

COIN–9

three cases have an high punishment lower than both norms’ fines, cars fulfill
both norms (with probability 0.9). However, populations with high punishment
8 and 10 fulfill the right norm with probability 0.9 and the front norm with
probability 0.5. Whereas, populations with high punishment 12 and 14 fulfill
both norms with probability 0.5. Figure 2 shows three charts corresponding to
cases grouping by this behaviour. Thus, chart 2(a) shows the distance for the
three first cases whose cars fulfill both norms with probability 0.9. We can see
how these three cases are similar when compared with the seven cases in the
case base, and also that the distance among them is less than with respect
to other cases. Chart 2(b) shows the distance for cases using populations with
high punishment 8 and 10 whose cars fulfill the right norm with probability
0.9 and the front norm with probability 0.5. Chart 2(c) shows distance for cases
using populations with high punishment 12 and 14 whose cars fulfill both norms
with probability 0.5. In the three charts we can see how distances are similar
among cases created with populations that have similar behaviour. This figure
also shows that if two different populations regulated by the very same norms
behave in very similar manner, an AEI cannot differentiate them. This effect is
because the AEI can only observe the external behaviour of populations. In any
case, these results allow us to conclude that the proposed distance function is
suitable. Next step is to test at run-time the proposed CBR approach.

5.2 Case Base

With the aim that at run-time the AEI could adapt its regulations to any popu-
lation, we create a case base using populations in Table 1 and the corresponding
best AEI parameters’ values. In order to create the case base we have con-
sidered as AEI parameters’ values fineright ∈ {0, 3, 6, 9, 12, 15}, finefront ∈
{0, 3, 6, 9, 12, 15}, and police ∈ {0.8, 0.9, 1}. Overall we have considered 108 dif-
ferent AEI parameters’ values, as the result of combining fineright, finefront,
and police values. To create cases for our case base, we have simulated each
population in Table 1 with all 108 AEI parameters’ values, so we have generated
a total of 756 cases for the seven agent populations. To create each case, we have
simulated the traffic model during 2000 ticks. Once finished the simulation, we
generate a case by saving the AEI parameters’ values (Np, PSp) used in this
simulation, the runtime behaviour for the 2000 ticks (V, pop), and the best AEI
parameters’ values (Np∗, PSp∗) corresponding to the population used in this
simulation.

5.3 Retrieving

We have designed an experiment to test the retrieval process and therefore our
approach. That is, we want to test if at run-time the AEI is able to self-configure
its parameters for different agent populations by using the proposed CBR ap-
proach. Since we are testing our approach and we are not interested in efficiency
issues, we employ the traffic simulator to recreate a run-time execution. We
launch simulations of 2000 ticks during 20 times, namely steps (overall 40000

COIN–10

ticks). At each step, once the simulation finishes, we check the goal satisfaction
degree and change the AEI parameters’ values using the CBR approach when
required. Although this allows us to change the population of agents at any step
we have run the experiments using the same population in 20 simulations. For
all experiments, the AEI starts with (0,0,0.8) parameters, that correspond to no
fine for both norms and a deployment of 80% of police agents. Thus, we expect
that the AEI starts with a low goal satisfaction degree (caused by the parameters
it is using) and it will be able to retrieve a similar case with whose parameters
that do increase the goal satisfaction degree.

At each step, we launch a simulation with a certain population of agents and
when the simulation finishes, the AEI decides, based on the goal satisfaction, if
it has to retrieve a case or not. If the goal satisfaction is greater than a thresh-
old the AEI continues with the same parameters for a new simulation in the
next step. Otherwise (when the goal satisfaction is lower than the threshold) we
launch the CBR engine to retrieve a case of the case base (see section 5.2) in
order to adapt the AEI parameters, namely to adapt the institution, its regula-
tion. The threshold is computed as a desired goal satisfaction value G∗ minus an
epsilon value ε. In our experiments, we have set ε = 0.03 and G∗ = 0.65, which
corresponds to the minimum of the best goal satisfaction degrees for our popu-
lations. The problem case is generated from the AEI parameters’ values used in
the last simulation and the runtime behaviour in the last 2000 ticks. The CBR
system retrieves the most similar case and uses the best AEI parameters’ values
of the retrieved case for next simulation. Thus, the goal satisfaction degree can
be computed again to check if it is necessary to define a new problem case.

We have used fifteen different populations to test our approach. Each popula-
tion is characterized by their norm compliance parameters, being fulfill prob =
0.5 and inc prob = 0.4 for all of them, whereas high punishment varies from 0
to 14. Notice that seven of them are the ones used for generating cases3 (when
high punishment ∈ {0, 3, 5, 8, 10, 12, 14}) whereas the AEI has no prior cases
about of the other eight populations (when high punishment ∈ {1, 2, 4, 6, 7, 9, 11,
13}). Figure 3 shows the results for fifteen populations, where each chart shows
five populations. Each population is run three times. Thus, overall we have per-
formed 45 experiments. For each experiment, the figure shows the goal satisfac-
tion every 2000 ticks during 20 steps. On chart 3(a) we can see that at initial
step the goal satisfaction is low (around 0.2) and how the AEI quickly rises it
up and maintains it constant during the rest of steps (between 0.6 and 0.7).
On chart 3(a) we can see how the goal satisfaction degree starts at 0.2 and
quickly rises up to 0.6 − 0.7 with the initial case retrievals. This effect repeats
on charts 3(b) and 3(c) on figure 3. That is, the AEI is able to adapt quickly
its parameters in all experiments. However, we observe that for some popula-
tions (when high punishment is 6, 10 and 12) the goal satisfaction does not
remain constant. In particular, the goal satisfaction for one of the populations
with high punishment = 6 goes down three times (steps 8, 10 and 11) to values

3 Notice that use the same population does not mean use the same case because the
runtime behaviour may be similar in both cases but not exactly the same.

COIN–11

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time by steps (each step=2000−tick−long)

G
oa

l s
at

is
fa

ct
io

n

Retrieving experiments with population hp=[0 1 2 3 4]

hp=0
hp=1
hp=2
hp=3
hp=4

(a)

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time by steps (each step=2000−tick−long)

G
oa

l s
at

is
fa

ct
io

n

Retrieving experiments with population hp=[5 6 7 8 9]

hp=5
hp=6
hp=7
hp=8
hp=9

(b)

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time by steps (each step=2000−tick−long)

G
oa

l s
at

is
fa

ct
io

n

Retrieving experiments with population hp=[10 11 12 13 14]

hp=10
hp=11
hp=12
hp=13
hp=14

(c)

Fig. 3. Goal satisfaction for fifteen populations. (a) Populations with
high punishment ∈ {0, 1, 2, 3, 4}; (b) Populations with high punishment ∈
{5, 6, 7, 8, 9}; and (c) Populations with high punishment ∈ {10, 11, 12, 13, 14}.

close to 0.2. These oscillations happen because given a population regulated by
the very same AEI parameters’ values there is a variability on the behaviour
in different simulations, that causes a variability in goal satisfaction. Thus, it
sometimes occurs that because of this variability the goal satisfaction drops be-
low the threshold and causes to restart the retrieval process. After this, the AEI
stabilizes quickly again the goal satisfaction degree.

In order to estimate the error caused by these oscillations we have computed
the percentage of simulations with a goal satisfaction greather than the thresh-
old (0.62). At first step all experiments have a goal satisfaction less than the
threshold. At second step a 52% of experiments (23 of 45) have a goal satisfac-
tion greather than it. The percentage goes up to 89% (40 of 45) at third step
and to 95% to the fourth. That is, in our experiments, the AEI needs four simu-
lations to adapt itself in a correct manner to a 95% of new cases. At the rest of
simulations (from simulation 5 to simulation 20) the average of the percentage of
experiments with a goal satisfaction greather than the threshold is around 98%.
That is, there is an error arround the 2% caused by the oscillations. In any case,
we can conclude that the AEI is able to adapt to the populations, that is with
the initial cases retrievals the AEI is able to adapt its parameters to accomplish
its goals for each population.

6 Discussion and Future work

Within the area of Multi-Agent Systems, adaptation has been usually envisioned
as an agent capability where agents learn how to reorganise themselves. Along
this direction, in [6] Gasser and Ishida present a general distributed problem-
solving model which can reorganize its architecture; and Horling et al. [7] propose
an approach where the members adapt their own organizational structures at
runtime. The fact that adaptation is carried out by the agents composing the
MAS is the most significant difference with the approach presented in this pa-
per. On the other hand, it has been long stated [8] that agents working in a
common society need norms to avoid and solve conflicts, make agreements, re-
duce complexity, or to achieve a social order. Most research in this area consider

COIN–12

norm configuration at design time [9] instead of at run-time as proposed in this
paper. Regarding the traffic domain, MAS has been previously applied to it.
For example, Camurri et al. [10] propose two field-based mechanisms to control
cars and traffic-lights in order to manage to avoid deadlocks and congestion.
Additionally, Case-Based Reasoning has been applied before in multi-agent sys-
tems where agents use different CBR approaches to individual learning and to
cooperative learning for distributed systems [11, 12].

This paper presents a Case-Base Reasoning approach as an extension of previ-
ous work which allows an AEI to self-configure its regulations. We have presented
the initial step towards a Case-Based Reasoning system, centering our work on
the retrieval and usage processes. We have propposed a case description and
the distance function to be used by a generic AEI. We have tested the retrieval
process of our approach in the traffic AEI case study, where the AEI learns two
traffic norms and the number of institutional agents in order to adapt the norms
and the performative structure to dynamical changes of agent populations.

Preliminary results in this paper are promising but they show some oscilla-
tions of the goal satisfaction degrees for some populations. Although, the com-
puted error is low (around 2%), currently we are tuning the function used to
compute the goal satisfaction and the threshold value in order to reduce the
error and do it less sensitive to the variability. Once solved this, we plan to
continue our experiments on the retrieval process by changing the populations
between simulations. We also plan to continue on finishing the learning by fo-
cusing our work in the other CBR processes. As future work, and since this
basically represents a centralized scenario, we plan to develop a more complex
traffic network, allowing us to propose a decentralized approach where different
areas (i.e., junctions) are regulated by a distributed institution.

Acknowledgments. This work was partially funded by the Spanish Education
and Science Ministry as part of the IEA (TIN2006-15662-C02-01) and the 2006-
5-0I-099 projects. The first author enjoys an FPI grant (BES-2004-4335) from
the Spanish Education and Science Ministry.

References

1. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agentlink Roadmap. Agen-
link.org (2005)

2. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer
36(1) (2003) 41–50

3. Esteva, M.: Electronic Institutions: from specification to development. IIIA PhD
Monography. Vol. 19 (2003)

4. Bou, E., López-Sánchez, M., Rodŕıguez-Aguilar, J.A.: Towards self-configuration
in autonomic electronic institutions. In: COIN 2006 Workshops. Number LNAI
4386, Springer (2007) 220–235

5. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI Commun. 7(1) (1994) 39–59

COIN–13

6. Gasser, L., Ishida, T.: A dynamic organizational architecture for adaptive problem
solving. In: Proc. of AAAI-91, Anaheim, CA (1991) 185–190

7. Horling, B., Benyo, B., Lesser, V.: Using Self-Diagnosis to Adapt Organiza-
tional Structures. Proceedings of the 5th International Conference on Autonomous
Agents (2001) 529–536

8. Conte, R., Falcone, R., Sartor, G.: Agents and norms: How to fill the gap? Artificial
Intelligence and Law (7) (1999) 1–15

9. Fitoussi, D., Tennenholtz, M.: Choosing social laws for multi-agent systems: Min-
imality and simplicity. Artificial Intelligence 119(1-2) (2000) 61–101

10. Camurri, M., Mamei, M., Zambonelli, F.: Urban traffic control with co-fields. In:
Proc. of E4MAS Workshop at AAMAS 2006. (2006) 11–25

11. Plaza, E., Ontañón, S.: Cooperative multiagent learning. Adaptative Agents and
Multi-Agent Systems LNAI 2636 (2003) 1–17

12. Ros, R., Veloso, M.: Executing Multi-Robot Cases through a Single Coordinator.
In: Proc. of Autonomous Agents and Multiagent Systems. (2007) 1264–1266

COIN–14

A Normative Multi-Agent Systems Approach

to the Use of Conviviality for Digital Cities

Patrice Caire

University of Luxembourg, Computer Science Department
L-1359, Luxembourg, 6, Rue Richard Coudenhove-Kalergi, Luxembourg

Abstract. Conviviality is a mechanism to reinforce social cohesion and
a tool to reduce mis-coordination between individuals, groups and in-
stitutions in web communities, for example in digital cities. We use a
two-fold definition of conviviality as a condition for social interactions
and an instrument for the internal regulation of social systems. In this
paper we discuss the use of normative multi-agent systems to analyze the
use of conviviality for digital cities, by contrasting norms for conviviality
with legal and institutional norms in digital cities. We show the role of
the distinction among various kinds of norms, the explicit representa-
tion of norms, the violability of norms and the dynamics of norms in the
context of conviviality for digital cities.

Keywords. Conviviality, multi-agent systems, normative systems, so-
cial computing, digital cities.

1 Introduction

The role of norms for conviviality is a condition for social interactions and an
instrument for the internal regulation of social systems [1]. For example, in digital
cities “government regulations extend laws with specific guidance to corporate
and public actions” [2].

In this paper we raise the following question: how can normative multi-agent
systems be used to model conviviality for digital cities? We approach this ques-
tion focusing on conviviality in digital cities, and by contrasting the use of nor-
mative multi-agent systems for conviviality with legal and institutional norms
in digital cities.

Our main question breaks down into the following research questions: What
are digital cities, what are normative multi-agent systems, what is conviviality
and finally, can normative multi-agent systems be applied to conviviality for
digital cities?

The layout of this paper follows these sub-questions. In section 2 we give a
brief overview on digital cities, in section 3 we explain norms in regards to the
legal and institutional aspects of digital cities, in section 4 we present a literature
survey on the notion of conviviality and in section 5 we examine the use of norms
for conviviality.

COIN–15

2 Brief Overview of Digital Cities

In their simplest form, digital cities are web portals using physical cities as a
metaphor for information spaces. Depending upon their goals, they combine
social, political and economic activities. Following are three examples showing
their diversity: The ecity of Luxembourg that provides to citizens and visitors,
information over the real city of Luxembourg as well as online forms and services,
while eLuxembourg provides similar facilities at country level and eEurope at
the European level. These types of digital cities are also called eAdministration
and eGovernments; MSN CitySearch and AOL Digital Cities that offer services,
shopping, entertainment and more generally, local easy to find and search infor-
mation, are also referred to as eCommerce portals. Finally, Second Life and the
Habbo Hotel are virtual worlds that provide infrastructures to users, primar-
ily to conduct social experiences through role playing while, at the same time,
attracting advertisers and businesses by the size of their massive multi-player
communities.

Observing that “Digital cities commonly provide both profit and non-profit
services and have a dilemma in balancing the two different types of services”,
Ishida [3] raises the question whether public digital cities can compete with
commercial ones. “Without profit services, digital cities become unattractive
and fail to become a portal to the city. Without nonprofit services, the city may
become too homogeneous like AOL digital cities as a result of pursuing economic
efficiency.”

2.1 The Goals of Digital Cities

Commercial digital cities as websites started as local portals run by private
companies, such as phone, web and airline companies, competing with each other.
Nowadays, global companies such as Yahoo! and AOL offer city guides with
services: Shopping, entertainment, local information and maps. Their business
goals are geared toward vertical markets and their revenues are generated by
advertising. Their general trend is to provide information, easy to find and search
for, good maintenance of systems and frequent updates. They are effective in
Asia, where they complement government agencies, but limited in scope by their
top-down controlled and selected content, lack of two-way interaction with users
and main advertising purpose.

Public digital cities started in the US with American community networks,
inspired by a tradition of community-centered, grass-roots engagements empha-
sizing freedom of speech and activism. Their original goal was to create virtual
information spaces, such as the WELL, Whole Earth’Lectronic Link and Blacks-
burg Electronic Village. US public digital cities main challenges are: Lack of
synergy between community networks, private companies and administrations
and competition between profit and non-profit organizations. Today they align
with eGovernments.

In Europe, public digital cities evolved through the European Community
leadership. Goals are to share ideas and technologies between all cities to strengthen

COIN–16

European partnerships, use information and communication technologies to re-
solve social, economic and regional development issues and improve the quality
of social services. Main challenge, shown by the relatively slow commercialization
of services and information, is the difficulty to integrate grass-roots communities
and commercial points of view.

2.2 The Organizations of Digital Cities

Commercial digital cities count on accumulating urban information; They are
well maintained, use proprietary software and rely on search engines, ranking in-
terest links by sponsors, for business opportunities. Early on, commercial digital
cities recognized the importance of usability and have done well to make their
services usable by many.

Public digital cities look toward open systems. The lack of funds and the
complexity of their partnerships caused many downfalls (Digital Amsterdam).
Public digital cities rely on high speed networks tightly coupled with physical
cities (Helsinki) and platforms for community networks (Bologna). They have
multilayer architectures: Information, interface and interaction layers (Digital
Kyoto).

Asian digital cities, called city informatization, emerged as government ini-
tiatives. Their goal is to develop their country through technological innovation.
There were attempts to integrate grass-roots activities and university driven
projects in 1999 with Digital Kyoto and Shanghai but the greatest challenge
still remains their top-down approach based on administration activity.

2.3 Summary

Commercial and public digital cities were originally very different but seem today
to have more overlapps.

However, as yet, no one model has been identified. In the US for-profit busi-
nesses and non-profit organizations co-exist and compete, in EU the attempts are
to coordinate administrations, companies and citizens while Asia pursues gov-
ernment directed growth. Governments’goals for digital cities consist in helping
close geographic and social digital divides, with access everywhere and for all,
in accelerating economic development, and making the governments of cities
more efficient and accessible. Pluralism and participation are combined with
multi-disciplinary approaches, synergy between administrations, companies and
citizens and, most importantly, a shared vision between all stakeholders.

The success factors of digital cities consist in achieving participation of insti-
tutions and communities, in balancing top-down direction, needed for technical
infrastructure, and grass-roots initiatives, necessary to insure citizens’ cohesion
and in finding an equilibrium between economic and civic motivations. Ulti-
mately, digital cities need to deal with the same complexity as real cities to
attract and retain usage, and to function as entities that augment their physical
counterparts.

COIN–17

3 Legal and Institutional Norms in Digital Cities

In their introduction to normative multi-agent systems, Boella et al. give the
following definition: “A normative multi-agent system is a multi-agent system
together with normative systems in which agents on the one hand can decide
whether to follow the explicitly represented norms, and on the other the norma-
tive systems specify how and in which extent the agents can modify the norms”
[4]. We first discuss the distinction among various kinds of norms, and then we
discuss three issues in this definition, illustrated by examples in digital cities.

3.1 The Different Kinds of norms

Several kinds of norms are usually distinguished in normative systems. Within
the structure of normative multi-agent systems [5] distinguish “between regu-
lative norms that describe obligations, prohibitions and permissions, and con-
stitutive norms that regulate the creation of institutional facts as well as the
modification of the normative system itself”. A third kind of norms, procedural
norms, can also be distinguished “procedural norms have long been considered
a major component of political systems, particularly democratic systems” states
Lawrence who further defines procedural norms as “rules governing the way in
which political decisions are made; they are not concerned with the content of
any decision except one which alters decision-making procedures” [6].

Constitutive norms: Boella et al. note several aspects to constitutive
norms, one is an intermediate concept exemplified by “X counts as a presid-
ing official in a wedding ceremony”, “this bit of paper counts as a five euro bill”
and “this piece of land counts as somebodys private property” [7]. As per Searle,
“the institutions of marriage, money, and promising are like the institutions of
baseball and chess in that they are systems of such constitutive rules or conven-
tions” [8]. In digital cities, an example of constitutive norm is voting in the sense
that going through the procedure counts as a vote.

Boella et al further believe that “the role of constitutive rules is not limited to
the creation of an activity and the construction of new abstract categories. Con-
stitutive norms specify both the behavior of a system and the evolution of the
system” [5]. The dynamics of normative systems is here emphasized as in norm
revision, certain actions count as adding new norms for instance amendments:
“The normative system must specify how the normative system itself can be
changed by introducing new regulative norms and new institutional categories,
and specify by whom the changes can be done” [5]. Today “US government agen-
cies are required to invite public comment on proposed rules” [2]. Citizens are
therefore encouraged to propose their changes through the digital cities interface.
All revisions are traced and searchable.

Two other aspects of constitutive norms are organizational and structural,
that is, how roles define power and responsibilities and how hierarchies struc-
ture groups and individuals. “Not only new norms are introduced by the agents
playing a legislative role, but also that ordinary agents create new obligations,
prohibitions and permissions concerning specific agents” [5].

COIN–18

Regulative Norms: “Legal systems are often modeled using regulative
norms, like obligations and permissions. However, a large part of the legal code
does not contain prohibitions and permissions, but definitions for classifying the
common sense world under legal categories, like contract, money, property, mar-
riage. Regulative norms can refer to this legal classification of reality” [7]. A
regulative norm expressed as obligation is for example that, to access the ad-
ministration documents on the Luxembourg digital city website, citizens must
use the file format PDF rather than Postscript. Regulative norms also express
permission, rights and powers, for example computer systems access rights and
voting rights: You are allowed to vote in Luxembourg if you are resident for more
than 5 years or were born in Luxembourg. “Regulative norms are not categorical,
but conditional: they specify all their applicability conditions” [5]. In NYC, for
instance, to renew online your Driver’s License the stipulation is: “You cannot
change your address during this transaction. You must have a completed form
MV-619 (Eye Test Report) for this transaction. Read the requirements before
you begin this transaction” [9].

Procedural norms: Lawrence distinguishes two kinds of procedural norms,
objective and subjective. “Objective procedural norms are rules which describe
how decisions are actually made in a political system [. . .] they specify who ac-
tually makes decisions, who can try to influence decision makers, what political
resources are legitimate and how resources may be used. Subjective procedu-
ral norms, on the other hand, are attitudes about the way in which decisions
should be made” [6]. Procedural norms are instrumental for individuals working
in a system, for example, back office procedures and processes in digital city
administrations.

3.2 Explicit versus Implicit Representation of Norms

The first property of norms in the definition of normative multi-agent systems is
that norms are explicitly represented; explicite meaning formalized and verbal-
ized by some authorities, implicite meaning tacitely agreed upon, not specialized
nor codified. Often, norms are given as requirements of computer systems but
only implicitly represented, for example, a form in which you would be asked
to state whether or not you keep a pet at home without mentioning to you the
purpose of the information: if your answer is affirmative, either you could be
requested to pay a license fee or the amount of the fee could directly be de-
ducted from your bank account. An example of explicit representation of a norm
is given by Paris digital city website with the stipulation that to create online
library accounts, one must be over 18 years old, otherwise an authorization of
the parents is required.

Implicit representations are opaque to users and prevent governments to fulfill
the democratic promise that transparency and explicit representations deliver.
As users’ need for explanation and understanding of rules and regulations grows,
representations have to become more explicit and personalized to their expecta-
tions. Similarly, governments’ interest also reside in the explicit representation

COIN–19

of norms that can be addressed through the development of mechanisms for
knowledge representation and reasoning.

Current efforts are somewhat in-between implicit and explicit representa-
tion with tools for text representation and retrieval with more advanced ontolo-
gies, semantic links and search capabilities. To this effect, the US government
launched in 2006 a business portal to help small businesses comply with Federal
regulations, a need that was not being met by any other Federal government
program [9].

3.3 The Violation of Norms

The second property in the definition of normative multiagent systems, that
norms can be violated, is also seen as a condition for the use of deontic logic in
computer science: “Importantly, the norms allow for the possibility that actual
behavior may at times deviate from the ideal, i.e. that violations of obligations,
or of agents rights, may occur” [10].

If norms cannot be violated then the norms are regimented. For example if,
in access control, a service can only be accessed with a certificate, then this
norm can be implemented in the system by ensuring that the service can only
be accessed when the certificate is presented. Regimented norms correspond to
preventative control, in the sense that norm violations are prevented. When norm
violations are possible there is only detective control, in the sense that behavior
must be monitored, and norm violations have to be detected and sanctioned.
“Social order requires social control, an incessant local (micro) activity of its
units, aimed at restoring the regularities prescribed by norms. Thus, the agents
attribute to the normative system, besides goals, also the ability to autonomously
enforce the conformity of the agents to the norms, because a dynamic social
order requires a continuous activity for ensuring that the normative systems
goals are achieved. To achieve the normative goal the normative system forms
the subgoals to consider as a violation the behavior not conform to it and to
sanction violations” [7].

Norms can be violated because they are soft constraints. In digital cities,
disincentives are often the mechanism used to prevent users from infringing the
norms. For example, the digital city of Issy clearly stipulates that malicious
intruders into the digital city will be prosecuted. When norm violations are pos-
sible, there are normative multiagent systems in which the violations can trigger
new obligations, the so-called contrary-to-duty obligations. With contrary-to-
duty obligations, there is not only a distinction between ideal and bad behavior,
but there is also a distinction between various degrees of sub-ideal behaviors.

3.4 Summary

In many electronic institutions the norms are fixed and cannot be changed within
the system, even though in many organizations there are roles defined within the
system. The question is whether digital cities are a collection of electronic in-
stitutions, whether manipulations and changes are allowed within the system.

COIN–20

The US Regulations’ office may be contributing to bring answers to this ques-
tions as it now provides on its site Regulations.gov a national forum for users
to comment on existing and pending federal rules, therefore encouraging a more
dynamic process for the modification and expliciteness of their rules and regu-
lations.

4 The Role of Conviviality

Looking at some definitions shows that the meaning of conviviality depends
on the context of use (table 1): In sociology, conviviality typically describes a
relation between individuals and emphasizes positive values such as equality and
community life, while in technology, it refers to being easy to use.

Table 1. Definitions of conviviality

Etymological and Domain Specific Definitions

15th century ”convivial”, from latin, convivere ”to live together with, to eat
together with”. (French Academy Dictionary)

Adj. Convivial: (of an atmosphere, society, relations or event) friendly and
lively, (of a person) cheerfully sociable. (English Oxford Dictionary)

Technology: Quality pertaining to a software or hardware easy and pleasant
to use and understand even for a beginner. User friendly, Usability. By
extension also reliable and efficient. (Grand Dictionnaire Terminologique)

Sociology: Set of positive relations between the people and the groups that
form a society, with an emphasis on community life and equality rather than
hierarchical functions. (Grand Dictionnaire Terminologique)

A less common view of conviviality emerges when it becomes an instrument
to exercise power and enforce one point of view over another [11]. Conviviality
is then experienced as a negative force by the loosing side. We summarized from
different sources, positive and negative roles of conviviality and present some
excerpts as examples (table 2): The emphasis for positive sides is on sharing
common grounds and on inclusiveness, whereas for negative sides, the emphasis
is on coercive behaviors and division.

4.1 From Individuals to Groups

First used in a scientific and philosophical context [12], in 1964, as synonymous
with empathy, conviviality allows individuals to identify with each other thereby
experiencing each other’s feelings, thoughts and attitudes. By extension, a com-
munity is convivial when it aims at sharing knowledge: Members trust each other,
share commitments and interests and make mutual efforts to build conviviality
and preserve it. A convivial learning experience is based on role swapping [13],
teacher role alternating with learner role, emphasizing the concept of reciprocity

COIN–21

Table 2. The different roles of conviviality

Positive aspects Grey aspects Negative aspects
(Enabler) (Ignorance) (Threat)

Share knowledge & skills Ignore cultural diversity Crush outsiders

Deal with conflict Hide conflict Fragmentation

Feeling of “togetherness” Promote homogenization Totalitarism

Equality Political correctness Reductionism

Trust Non-transparent system-
atic controls

Deception

as key component and creating concepts such as learning webs, skill exchange
networks and peer-matching communication, later expanded by Papert and the
Constructionists with concepts such as learning-by-making [14].

But conviviality is also a social form of human interaction, [15] a way to
reinforce group cohesion through the recognition of common values. “Thus the
sharing of a certain kind of food and/or drink can be seen as a way to create
and reinforce a societal group through a positive feeling of togetherness (be-
ing included in/or part of the group), on which the community’s awareness of
its identity is based.” Physical experiences of conviviality are transformed into
learning and knowledge sharing experiences: “To know is to understand in a
certain manner that can be shared by others who form with you a community
of understanding”.

However, the instrumentalization of conviviality occurs when one group is
favored at the expense of another, “truth realities about minorities are built from
the perspective of the majority via template token instances in which conflict is
highlighted and resolution is achieved through minority assimilation to majority
norms [. . .] Conviviality is achieved for the majority, but only through a process
by which non-conviviality is reinforced for the minority” [16].

4.2 From Groups to Institutions

Conviviality also means “individual freedom realized in personal interdepen-
dence” [17]; It is the foundation for a new society, one that gives its members
the means, referred to as tools, for achieving their personal goals: “A convivial
society would be the result of social arrangements that guarantee for each mem-
ber the most ample and free access to the tools of the community and limit
this freedom only in favor of another member’s equal freedom”. Conviviality is
then an enhancement to social capital and seen as a condition for a civil society,
one in which “communities are characterized by political equality, civic engage-
ment, solidarity, trust, tolerance and strong associative life” [18]. Conviviality
also describes both ”institutional structures that facilitate social relations and
technological processes that are easy to control and pleasurable to use” [19].
However, “Conviviality masks the power relationships and social structures that

COIN–22

govern communities”. The question is “whether it is possible for convivial insti-
tutions to exist, other than by simply creating another set of power relationships
and social orders that, during the moment of involvement, appear to allow free
rein to individual expression [. . .]. Community members may experience a sense
of conviviality which is deceptive and which disappears as soon as the members
return to the alienation of their fragmented lives” [11].

4.3 Summary

We summarize by first noting that conviviality is usually considered a positive
concept but that a darker side emerges when it becomes the instrument of power
relations. Then following our two-fold definition of conviviality as a condition for
social interaction and an instrument for the internal regulation of social systems,
we see the crucial uses for conviviality in digital cities as a mechanism to reinforce
social cohesion and as a tool to reduce mis-coordinations between individuals.

5 The Use of Norms for Conviviality

Intelligent agents, with their artificial intelligence capabilities can assist users,
act on their behalf, adapt and learn while performing non-repetitive tasks; with
spontaneous interactions and innovative approaches based on dynamic notions
such as conviviality, trust and behavior are required [20]. In this section we
reconsider the issues discussed in the context of legal and institutional norms for
digital cities, this time in the context of norms for conviviality.

5.1 The Different Kinds of Norms for Conviviality

Typically today, web communities use text-based multi-user synchronous and
asynchronous conferencing capabilities such as web forums and chat rooms. It
is considered bad practice to use offensive language in a public forum or a chat
room; Network etiquette and sometimes FAQ outline dynamic set of guidelines to
encourage behaviors conducive to pleasant, efficient and polite user interactions.
The constitutive norm for the use of offensive language in a chat room would,
in this example, be the definition of what constitutes offensive language for this
particular chat room; a regulative norm, the fact that using offensive language
is prohibited; and a procedural norm, the fact that if a member uses offensive
language, then other members should not use the chat room to retaliate and
send rebuffs.

5.2 Explicit vs. Implicit Representation of Conviviality

Norms for conviviality are social norms, and even though they can be communi-
cated, they are typically not explicit. Explicit norms for conviviality often refer
to cooperation among agents or between agents and humans. Embodied Con-
versational Agents, for example, are “autonomous agents with a human-like

COIN–23

appearance and communicative skills [. . .] To be able to engage the user in a
conversation and to maintain it, the agents ought to have capabilities such as
to perceive and generate verbal and nonverbal behaviors, to show emotional
states, to maintain social relationship” [21]. Conversational agents in [22] must
be endowed with conviviality: an agent is convivial if it is rational and cooper-
ative, conviviality being the essential and global characteristic of services that
“emerges from the intelligence of the system and not from a set of local char-
acteristics that vary depending upon the application context and the types of
users”. Consequently a list of criteria will by itself not suffice to express convivi-
ality, additional critical factors are: the relations that bind the criteria together
and the way these relations are perceived by individuals.

Intelligent tutoring systems provide further examples of intelligent agents
that must understand and express the implicite and explicite social norms. [23]
propose an eLearning recommendation system for student tutors, in which “con-
vivial social relationships are based on mutual acceptance through interaction”,
e.g. on reciprocity, students helping each other. Looking at interpersonal factors,
[24] propose emotionally intelligent tutor agents that try “to construct a model
of the mental state of the student and is knowledgeable of the potential effects
of tutoring acts on the mental state. These insights are used to determine the
appropriate action sequence and the manner of executing the actions”.

Reputation systems highlight the need for explicit social norms: Reputa-
tion is the “indispensable condition for the social conviviality in human societies”
state [25], because it encourages transparent information as in their system, all
agents’ actions are instantaneously propagated throughout the system. Critical
challenges raised by the development of such systems are ethical issues such as
preserving students’privacy and securing information gathered to create social
profiles and more generally, the need to develop guidelines to safeguard users.
Research examples addressing the issues are socially translucent systems charac-
terized by visibility, awareness and accountability [26], and study of place-based
presence and trust evaluation [27]. These research examplify the challenges of
formalizing implicite norms of conviviality with various degrees of expliciteness
and most importantly, the difference between social norms and norms for con-
viviality.

5.3 The Violation of Conviviality

It is always possible to violate social norms and therefore conviviality. Ignoring
cultural and social diversity is violating conviviality as it creates conviviality for
a group at the expense of others. In digital cities, being ignored when asking
advices to a city administrator represents a conviviality violation as it breaks
the bilateral form expected from these communication acts to only allow for
unilateral communication. The online Paris library assures members of a kind
and pleasant service and proposes a free mediator service in case of difficulties
dealing with city clerks, therefore providing a compensation mechanism.

COIN–24

5.4 Summary

By definition, conviviality is a regulative instrument for social systems; it re-
inforces the group’s common values and encourages the auto-regulation of the
group; Conviviality has a normative function. In table 3, we summarize the use
of norms for conviviality by Comparing legal norms with social norms.

Table 3. Legal norms versus social norms

Type Legal Norms Social Norms

Kinds of norms Consitutive, regulative,
procedural

Consitutive, regulative,
procedural: problematic

Norm representation Usually explicit Usually implicit

Norm violation Not possible for preven-
tive control systems

Always possible to vio-
late

Norm modification By regulators Emerging

6 Conclusion

In this paper we contrast norms for conviviality with legal and institutional
norms in digital cities. We consider the following issues. First, the kinds of norms
typically distinguished in legal systems can be distinguished for norms of con-
viviality too. Second, norms for conviviality are often implicit, and we believe it
is an important question when such norms should be made explicit. Third, the
issue of violation of conviviality and ways to deal with it is of central concern in
web communities like digital cities. Fourth, norms concerning conviviality should
be able to change over time. Fifth, norms for conviviality can come from a wide
variety of sources.

References

1. Caire, P.: A critical discussion on the use of the notion of conviviality for digital
cities. In: Proceedings of Web Communities 2007. (2007) 193–200

2. Lau, G.T., Law, K.H., Wiederhold, G.: Analyzing government regulations using
structural and domain information. IEEE Computer 38 (2005) 70–76

3. Ishida, T.: Understanding digital cities. In: Digital Cities. (2000) 7–17
4. Boella, G., van der Torre, L., Verhagen, H.: Introduction to normative multiagent

systems. Computational & Mathematical Organization Theory 12 (2006) 71–79
5. Boella, G., van der Torre, L.W.N.: Regulative and constitutive norms in normative

multiagent systems. In Dubois, D., Welty, C.A., Williams, M.A., eds.: Knowledge
Representation, AAAI Press (2004) 255–266

6. Lawrence, D.G.: Procedural norms and tolerance: A reassessment. The American
Political Science Review (1976)

COIN–25

7. Boella, G., van der Torre, L.W.N.: Constitutive norms in the design of normative
multiagent systems. In Toni, F., Torroni, P., eds.: CLIMA VI. Volume 3900 of
Lecture Notes in Computer Science., Springer (2005) 303–319

8. Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge
University Press (1970)

9. Caire, P.: A normative multi-agent systems approach to the use of conviviality for
digital cities. In Boella, G., van der Torre, L., Verhagen, H., eds.: Normative Multi-
agent Systems. Number 07122 in Dagstuhl Seminar Proceedings, Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Germany (2007)

10. Jones, A., Carmo, J. Handbook of Philosophical Logic. In: Deontic logic and
contrary-to-duties. Kluwer Academic Publishers (2002) 265–344

11. Taylor, M.: Oh no it isn’t: Audience participation and community identity. Trans,
Internet journal for cultural sciences 1 (2004)

12. Polanyi, M.: Personal Knowledge : Towards a Post-Critical Philosophy. University
Of Chicago Press (1974)

13. Illich, I.: Deschooling Society. Marion Boyars Publishers, Ltd. (1971)
14. Papert, S., Harel, I.: 1. In: Constructionism. Cambridge, MA: MIT Press. (1991)
15. Schechter, M.: Conviviality, gender and love stories: Plato’s symposium and isak

dinesen’s babette’s feast. Trans, Internet journal for cultural sciences 1 (2004)
16. Ashby, W.: Unmasking narrative: A semiotic perspective on the conviviality/non-

conviviality dichotomy in storytelling about the german other. Trans, Internet
journal for cultural sciences 1 (2004)

17. Illich, I.: Tools for Conviviality. Marion Boyars Publishers (1974)
18. Putnam, R.D.: Bowling alone: the collapse and revival of american community. In:

Computer Supported Cooperative Work. (2000) 357
19. Lamizet, B.: Culture - commonness of the common? Trans, Internet journal for

cultural sciences 1 (2004)
20. Caire, P.: Conviviality for ambient intelligence. In: Proceedings of Artificial Soci-

eties for Ambient Intelligence, Artificial Intelligence and Simulation of Behaviour
(AISB’07). (2007) 14–19

21. Pelachaud, C.: Multimodal expressive embodied conversational agents. In Zhang,
H., Chua, T.S., Steinmetz, R., Kankanhalli, M.S., Wilcox, L., eds.: ACM Multi-
media, ACM (2005) 683–689

22. Sadek, M.D., Bretier, P., Panaget, E.: ARTIMIS: Natural dialogue meets rational
agency. In: International Joint Conferences on Artificial Intelligence (2). (1997)
1030–1035

23. Gomes, E.R., Boff, E., Vicari, R.M.: Social, affective and pedagogical agents for
the recommendation of student tutors. In: Proceedings of Intelligent Tutoring
Systems. (2004)

24. Heylen, D., Nijholt, A., op den Akker, R., Vissers, M.: Socially intelligent tutor
agents. In Rist, T., Aylett, R., Ballin, D., Rickel, J., eds.: IVA. Volume 2792 of
Lecture Notes in Computer Science., Springer (2003) 341–347

25. Casare, S., Sichman, J.: Towards a functional ontology of reputation. In: AAMAS
’05: Proceedings of the fourth international joint conference on Autonomous agents
and multiagent systems, New York, NY, USA, ACM Press (2005) 505–511

26. Erickson, T., Kellogg, W.A.: Social translucence: an approach to designing systems
that support social processes. ACM Trans. Comput.-Hum. Interact. 7 (2000) 59–83

27. ter Hofte, G.H., Mulder, I., Verwijs, C.: Close encounters of the virtual kind: a
study on place-based presence. AI Soc. 20 (2006) 151–168

COIN–26

Embedding Landmarks and Scenes in a Computational
Model of Institutions

Owen Cliffe, Marina De Vos, and Julian Padget

Department of Computer Science
University of Bath, BATH BA2 7AY, UK
{occ,mdv,jap}@cs.bath.ac.uk

Abstract. Over the last decade, institutions have demonstrated that they are a
powerful mechanism to make agent interactions more effective, structured, coor-
dinated and efficient. Different authors have tackled the problem of designing and
verifying institutions from different angles. In this paper we propose a formalism
that is capable of unifying and extending some of these approaches, as well as
providing the necessary tools to assist in the design and verification processes.
We demonstrate our approach with a non-trivial case-study.

1 Introduction

The concept of landmarks appears in [18] where they are used to identify a set of se-
mantic properties relating to the state of a conversation, and which may furthermore be
organized into sequences or patterns, while transition between landmarks is made by an
appropriate sequence of one or more speech acts. A more detailed discussion follows in
[12], where they are presented as propositions that are true in the state represented by
the landmark (sic). The value of landmarks, and more specifically, their partial ordering
into landmark patterns, is how they permit the identification of phases in a conversation
protocol corresponding to the achievement of goals (and subgoals). Additionally, they
form an integral part of realizing joint intention theory [7] as participants in a conversa-
tion interact with one another, via speech acts, to follow a common protocol and satisfy
common goals. The utility of landmarks, from the electronic institution designer’s per-
spective is their potential role in building a bridge [9, 1] between the rigidity of the
protocols that feature in bottom-up design and the (relative) flexibility of norms that
characterize top-down design.

The formal model put forward in [5] and its corresponding operationalization through
Answer Set Programming (ASP) [3] aims to support the top-down design of electronic
institutions through the provision of a domain-specific action language [17], called In-
stAL, tailored to the specification of institutions. Tools have been developed to translate
InstAL into the SMODELS [14] syntax for processing by the answer set solver and fur-
thermore the soundness and completeness of the institutional programs with respect to
the formal model have been proven [4]. In this paper we explore the consequences of
the correspondence between landmarks, as described in the literature, and the institu-
tional states of our (executable) model, argue that the stronger logical framework of our
formalism is advantageous and demonstrate the expressiveness of the InstAL language
through a non-trivial case-study.

COIN–27

2 The Institutional Framework

In this section we provide a brief description of our framework, starting with the formal
model and following with the semantics. We then turn our attention to ASP as the
underlying computational mechanism and the mapping from action language to ASP.

The Formal Model: Our model of an institution is a quintuple, I := 〈E ,F , C,G,∆〉,
comprising three disjoint sets:

– events E , which can be either institutional (generated within the institution) or ex-
ogenous (caused by events outside of the scope of the institution) . In particular,
we define a subset of the exogenous events as creation events, E+, which contain
events which account for the creation of an institution and a subset of the institu-
tional events as dissolution events, E×.

– fluents F , being the four distinguished sets of fluents — powers W , permissions
P , obligations O, domain-specific fluents D — that constitute the state of the insti-
tution and hence the basis for reasoning about the institution.

– and an initial state ∆ comprising the initial set of fluents in the institution
and two relations C and G over X × E , where X = 2(F∪¬F) and φ ∈ X represents a
set of conditions which must be met in a given state in order for either relation to have
an effect.

– C defines under which circumstances fluents are initiated and terminated.
– G implements the count-as operation and defines under which conditions in the

institutional state the occurence of a given event will result in the generation of one
or more new events.

Semantics: The semantics of this framework are defined by traces of exogenous events.
Each trace induces a sequence of institutional states, called a model. Starting from the
initial state, the first exogenous event will, using the G, generate a set of events. Each of
these events will possibly affect the next state by means of the C relation. The combined
effect results in the next state of the model. This process continues until all exogenous
events in the trace have taken place.

ASP: In answer set programming ([3]) a logic program is used to describe the require-
ments that must be fulfilled by the solutions of a certain problem. The answer sets of
the program, usually defined through (a variant/extension of) the stable model seman-
tics [10], then correspond to the solutions of the problem. The programs consist of a set
clauses with negation-as-failure in the body. Assumptions are verified by eliminating
negation from the program using the Gelfond-Lifschitz reduction and to check if this
new positive program sustains the assumptions made. Tools for obtaining answers sets
are called answer set solvers. For our system we use the SMODELS [14] solver.

The Mapping: The mapping of each actual institution I into an answer set program
consists of two parts: (i) Pbase which is identical for each institution and handles the
occurrence of observed events, the semantics of obligations and rules to maintain the
commonsense inertia of fluents , and (ii) P ∗

I which is specific to the institution being

COIN–28

modelled and represents the translation of it rules (norms and action semantics). To-
gether they form the answer set program PI . In order to be able to use this program to
reason about the institution, it is then combined with two other ASP programs: a trace
program, containing a contraint on the length of traces of events being considered, and
a query program expressing some constraint over the answer sets that shall be generated
— the property or properties of the model that we wish to investigate.

InstAL : Our primary objective in this work is to be able to specify the behaviour
of an institution in terms of its norms, and then to be able to test properties of the
model of the institution thus defined. Consequently, we need a machine-processable
representation. The engine for the verification is an answer set solver, so one approach
would be to require the specification to be written in the input syntax for such a system,
such as SMODELS, as outlined in [5]. However, while it may be useful for the designer to
examine the code given to the answer set solver occasionally, it also necessarily contains
low level support details that are less relevant to the task of institutional design. For this
reason and because of the event-oriented nature of the specification, a domain-specific
event language seems an appropriate medium, hence InstAL .

We define the language InstAL in order to simplify the process of specifying institu-
tions. Individual institution specifications and multi-institution specifications are writ-
ten as single InstAL programs in a human-readable text format. These files can then be
translated automatically into answer set programs that directly represent the semantics
of the institutions specified in the original descriptions.

The language supports a simple set-based type system and syntax for the declara-
tion of fluents, events, and institutions (bearing in mind the model also supports multi-
institutional models as discussed in [6]). Normative fluents are pre-defined for power,
permission and obligation. The designer may also specify static properties of an insti-
tution, that are initiated when the institution is created and never change. This provides
a straightforward way to associate roles with institutions. Rather than give a formal
syntax specification, for which there is not room here, we put forward and extended ex-
ample in section 4 to illustrate the language features in a use-case. A detailed discussion
of the InstAL language can be found in [6, 4].
An InstAL reasoning problem consists of the following:
1. One or more InstAL institution descriptions each of which describes a single insti-

tution or a multi-institution.
2. A domain definition that grounds aspects of the descriptions. This provides the

domains for types and any static properties referenced in the institution and multi-
institution definitions.

3. A trace program which defines the set traces of exogenous events to investigate.
4. A query program which describes the desired property to validate with the InstAL reasoning

tool.
The reasoning process can be summarised as follows:
1. The InstAL to ASP translator takes one or more single or multi-institution descrip-

tions (in the InstAL syntax described below), and domain definition files (described
below) as input. Using these files, the translator generates a set of answer set pro-
grams which describe the semantics of the input institutions.

COIN–29

2. The translated institution programs along with a trace program and query program
are then grounded by the LPARSE program (part of the SMODELS toolkit).

3. This grounded program description is then given as input to the SMODELS answer
set solver. This produces zero or more answer sets. Each answer set corresponds
to a possible model of the input institution for a given trace described by the trace
program that matches the given query.

4. These answer sets may then be visualised and interpreted by the designer.

3 Landmarks and Scenes

As already discussed in the introduction, the essence of a landmark is a condition on a
state in order for an action in some protocol to have effect. The relative sophistication
of a landmark specification can be affected by the logic that is used to define the con-
dition, but in many respects this is a technicality. For example [18] use first order logic
augmented with modal operators for propositional attitudes and event sequences, [12]
use dynamic propositional logic with modal operators from the previous work, while
[9] (p.126) has atoms, implying the conjunction of positive values, within a Kripke
model and [1] uses linear-time temporal logic. More important is the actual purpose of
landmarks, as [12] states:

Besides contributing to formal analyses of protocol families, the landmark-based rep-
resentation facilitates techniques similar to partial order planning [13] for dynamically
choosing the most appropriate action to use next in a conversation, allows compact han-
dling of protocol exceptions, and in some cases, even allows short circuiting a protocol
by opportunistically skipping some intermediate landmarks.

This highlights the relationship between agent actions and conventional AI plan-
ning and leads to the observation of the correspondence between landmarks and scenes
(also mentioned in [9]). By scenes, we refer to the components of performative struc-
ture identified by Noriega [15] that are essentially sub-protocols of the larger institution
or viewed bottom-up, an institution may be seen as the composition of numerous pro-
tocols that help agents achieve various sub-goals. What it is important to observe about
Noriega’s (and later in [16]) definition of the performative structure is how various con-
ditions are imposed on the transitions from one scene to another, typically constraining
the number and role of the agents that may move. A scene essentially encapsulates a
self-contained protocol whose purpose is to achieve some sub-goal of the institution
contributing to the objective of using the institution in the first place.

From this perspective, we can now turn to the relationship between our formalism
and both landmarks and scenes, having established that both concepts serve to identify
some (final) state in which a condition (capturing some institutional sub-goal) has been
satisfied. Returning to the relations that drive our formalism (see section 2), the event
generation function serves to create institutional facts, while the consequence relation
focuses attention on the initiation and termination of fluents. The function is expressed
as C : X × E → 2F × 2F . Where the first set in the range of the function describes
which fluents are initiated by the given event and the second set represents those fluents
terminated by the event. We use the notation C↑(φ, e) to denote the fluents that are

COIN–30

initiated by the event e in a state matching φ and the notation C↓(φ, e) to denote those
terminated by event e in a state matching φ.

From the description of event generation and the consequence relation, it can be
seen that fluents are initiated and terminated in respect of an event and some conditions
on the state of the institution. This corresponds exactly with the notion of landmark,
in that an event takes the institution into a new state but this is predicated on the cur-
rent state — that is, a condition. Thus landmarks arise naturally from our formalization
and furthermore, the condition language would appear to be richer than in some earlier
work because the condition may contain both positive and negative information, includ-
ing the use of negation as failure and hence non-monotonic reasoning, since these are
basic properties of answer set semantics. Our conclusion therefore is that our formal-
ism provides landmarks for free and, thanks to ASP semantics, enriches the landmark
description language over earlier examples.

In the literature cited above, landmarks appear to be restricted to speech acts, that
is messages from participating agents. Our model goes further, as we also consider
exogenous events that do not originate from participating agents or from institutional
events. This makes our approach a convenient tool for reasoning with scenes, where the
transition between the various scenes does not necessarily depend on agents’ actions.
Instead the transition markers could be linked to exogenous events which are taken
into account when the institution reaches a certain state. At this point the consequence
relation could be used to set the powers and permissions (and so the behaviour) of the
participating agents. The Dutch auction protocol detailed in the next section uses this
technique to distinguish between the various phases/scenes of the protocol.

4 The Dutch Auction Protocol

Informal Description of Dutch Auction: In this protocol a single agent is assigned to
the role of auctioneer, and one or more agents play the role of bidders. The purpose of
the protocol as a whole is either to determine a winning bidder and a valuation for a
particular item on sale, or to establish that no bidders wish to purchase the item. The
protocol is summarised as follows:
1. Round starts: The auctioneer selects a starting price for the item and informs each

of the bidders present of this price. The auctioneer then waits for a given period of
time for bidders to respond.

2. Upon receipt of the starting price, each bidder has the choice as to whether to send
a message indicating their desire to bid on the item at that price, or to send no
message indicating that they do not wish to bid on the item.

3. At the end of the prescribed period of time, if the auctioneer has received a sin-
gle bid from a given agent, then the auctioneer is obliged to inform each of the
participating agents that this agent has won the auction.

4. If no bids are received at the end of the prescribed period of time, the auctioneer
must inform each of the participants that the item has not been sold.

5. If more than one bid was received then the auctioneer must inform each agent that
a conflict has occurred.

6. In the case where the item is sold the protocol is finished.

COIN–31

7. In the case that no bids are received then the auctioneer may either start a new round
of bidding at a lower price, or withdraw the item from sale.

8. In the case where a conflict occurs then the auctioneer must re-open the bidding at
a higher price and start the round again in order to resolve the conflict.
We focus on the protocol for the round itself (items 1-6). In our description below

we omit from the messages a definition of the item in question and the starting price.
While the inclusion of these aspects in the protocol is possible, their inclusion does not
change the structure of the protocol round so we leave them out for simplicity.

In the following paragraphs we go through the InstAL code step by step. The full
listing can be found in Figures 1 and 2. Each line of InstAL code is labelled with DAR-
FigureNr-LineNr for ease of reference.

The first lines indicate the name of the institution (DAR-1-1) and the types of agents,
Bidder (DAR-1-2) and Auctioneer (DAR-1-3) that may participate in the institution.
These types are used as placeholders in the InstAL rules for the agents participating in
a particular instance of the institution, then when instantiated all rules are grounded
appropriately. The institution is created by one creation event createdar as specified
by rule DAR-1-4.

Based on the protocol description above, the following agent messages are defined
(DAR-1-8 – DAR-1-12): the auctioneer announces a price to a given bidder (annprice),
the bidder bids on the current item (annbid), the auctioneer announces a conflict to a
given bidder (annconf) and the auctioneer announces that the item is sold (annsold)
or not sold (annunsold) respectively. Each exogenous action has a corresponding in-
stitutional event (DAR-1-16 – DAR-1-20 which accounts for a valid execution of the
physical action performed. In all cases the two events are linked by an unconditional
generates statement in the description (DAR-2-29,DAR-2-32,DAR-2-37,DAR-2-38,DAR-
2-39).

In addition to the agent actions we also include a number of time-outs indicating
the three external events (which are independent of agents’ actions) that affect the pro-
tocol. For each time-out we define a corresponding institutional event suffixed by dl

indicating a deadline in the protocol:
priceto, pricedl: A time-out indicating the deadline by which the auctioneer must

have announced the initial price of the item on sale to all bidders. (DAR-1-5 and
DAR-1-13)

bidto, biddl: A time-out indicating the expiration of the waiting period for the auc-
tioneer to receive bids for the item (DAR-1-6 and DAR-1-14).

desto, desdl: A time-out indicating the deadline by which the auctioneer must have
announced the decision about the auction to all bidders (DAR-1-7 and DAR-1-15).
We assume that the time-outs will occur in the order specified (that is, due to their

durations it is impossible for this to be otherwise). We use the corresponding institution
events in the protocol description and constrain the order in which they are empowered
in the institution to ensure that while the exogenous events may occur in any order,
the institution event may only occur once in each iteration and in the order specified
(DAR-2-52 to DAR-2-59).

We define a single additional institution event alerted(Bidder) (DAR-1-23) that
represents the event of a bidder being validly notified of the result of the auction. We

COIN–32

institution dutch; (DAR-1-1)

type Bidder; (DAR-1-2)

type Auct; (DAR-1-3)

create event createdar; (DAR-1-4)

exogenous event priceto; (DAR-1-5)

exogenous event bidto; (DAR-1-6)

exogenous event desto; (DAR-1-7)

exogenous event annprice(Auct,Bidder); (DAR-1-8)

exogenous event annbid(Bidder,Auct); (DAR-1-9)

exogenous event annconf(Auct,Bidder); (DAR-1-10)

exogenous event annsold(Auct,Bidder); (DAR-1-11)

exogenous event annunsold(Auct,Bidder); (DAR-1-12)

inst event pricedl; (DAR-1-13)

inst event biddl; (DAR-1-14)

inst event desdl; (DAR-1-15)

inst event price(Auct,Bidder); (DAR-1-16)

inst event bid(Bidder,Auct); (DAR-1-17)

inst event conf(Auct,Bidder); (DAR-1-18)

inst event sold(Auct,Bidder); (DAR-1-19)

inst event unsold(Auct,Bidder); (DAR-1-20)

dest event badgov; (DAR-1-21)

dest event finished; (DAR-1-22)

inst event alerted(Bidder); (DAR-1-23)

fluent onlybidder(Bidder); (DAR-1-24)

fluent havebid; (DAR-1-25)

fluent conflict; (DAR-1-26)

initially pow(price(A,B)), perm(price(A,B)),

perm(annprice(A,B)),

perm(badgov),pow(badgov),

perm(pricedl),pow(pricedl),

perm(priceto),

perm(biddl),

perm(bidto),

perm(desto); (DAR-1-27)

Fig. 1. InstAL for the Dutch Auction Round Institution Part 1

additionally specify a dissolution event finished (DAR-1-22) that indicates the end of
the protocol.

For the sake of simplicity, we do not focus in detail on the effects of the auctioneer
violating the protocol. Instead we define a dissolution institutional event badgov (DAR-
1-21) that accounts for aany instances in which the auctioneer has violated the protocol.
Once an auctioneer has violated the protocol, we choose to treat the remainder of the
protocol as invalid and dissolve the institution.

COIN–33

initially obl(price(A,B),pricedl,badgov); (DAR-2-28)

annprice(A,B) generates price(A,B); (DAR-2-29)

price(A,B) terminates pow(price(A,B)); (DAR-2-30)

price(A,B) initiates pow(bid(B,A)),perm(bid(B,A)),perm(annbid(B,A)); (DAR-2-31)

annbid(A,B) generates bid(A,B); (DAR-2-32)

bid(B,A) terminates pow(bid(B,A)),perm(bid(B,A)),perm(annbid(B,A)); (DAR-2-33)

bid(B,A) initiates havebid,onlybidder(B) if not havebid; (DAR-2-34)

bid(B,A) terminates onlybidder() if havebid; (DAR-2-35)

bid(B,A) initiates conflict if havebid; (DAR-2-36)

annsold(A,B) generates sold(A,B); (DAR-2-37)

annunsold(A,B) generates unsold(A,B); (DAR-2-38)

annconf(A,B) generates conf(A,B); (DAR-2-39)

biddl terminates pow(bid(B,A)); (DAR-2-40)

biddl initiates pow(sold(A,B)),pow(unsold(A,B)),

pow(conf(A,B)), pow(alerted(B)),perm(alerted(B)); (DAR-2-41)

biddl initiates perm(annunsold(A,B)),perm(unsold(A,B)),

obl(unsold(A,B),desdl,badgov) if not havebid; (DAR-2-42)

biddl initiates perm(annsold(A,B)),perm(sold(A,B)),

obl(sold(A,B), desdl, badgov) if havebid, not conflict; (DAR-2-43)

biddl initiates perm(annconf(A,B)),perm(conf(A,B)),

obl(conf(A,B), desdl, badgov) if havebid, conflict; (DAR-2-44)

unsold(A,B) generates alerted(B); (DAR-2-45)

sold(A,B) generates alerted(B); (DAR-2-46)

conf(A,B) generates alerted(B); (DAR-2-47)

alerted(B) terminates pow(unsold(A,B)), perm(unsold(A,B)),

pow(sold(A,B)), pow(conf(A,B)), pow(alerted(B)),

perm(sold(A,B)), perm(conf(A,B)), perm(alerted(B)),

perm(annconf(A,B)),perm(annsold(A,B)),perm(annunsold(A,B)); (DAR-2-48)

desdl generates finished if not conflict; (DAR-2-49)

desdl terminates havebid,conflict,perm(annconf(A,B)); (DAR-2-50)

desdl initiates pow(price(A,B)), perm(price(A,B)),

perm(annprice(A,B)), perm(pricedl),pow(pricedl),

obl(price(A,B),pricedl,badgov) if conflict; (DAR-2-51)

priceto generates pricedl; (DAR-2-52)

pricedl terminates pow(pricedl); (DAR-2-53)

pricedl initiates pow(biddl); (DAR-2-54)

bidto generates biddl; (DAR-2-55)

biddl terminates pow(biddl); (DAR-2-56)

biddl initiates pow(desdl); (DAR-2-57)

desto generates desdl; (DAR-2-58)

desdl terminates pow(desdl); (DAR-2-59)

Fig. 2. InstAL for the Dutch Auction Round Institution Part 2

Once the institution has been created, the auctioneer will receive power and per-
mission to announce prices. We also provide empowerment and permission for the
dissolution event badgov. Furthermore all deadlines are permitted but only pricing is
empowered. This is specified by DAR-1-27.

The rules of the institution are driven by the occurrence of the time-outs described
above and hence may be broken down in to three phases as follows:

COIN–34

1. In the first phase of the protocol the auctioneer must issue price statements to each
of the bidders. We represent this in the protocol by defining an initial obligation on
the auctioneer to issue a price to each bidder before the price deadline (DAR-2-28).
Once this has taken place, the auctioneer is no longer permitted to issue a price
(DAR-2-30).
Once a price has been sent to the bidder, the bidder is empowered and permitted
to bid in the round (note that we permit both the action of validly bidding itself,
bid(B,A), as well as the action of sending the message which may count as bid-
ding, annbid(B,A) (DAR-2-31).

2. In the second phase of the protocol, bidders may choose to submit bids. These
must be sent before the bid time-out event. In order to account for the final phase
of the protocol, we must capture the cases when one bid, no bids or multiple
bids (a conflict) occur. In addition, in a given round, we must also take into ac-
count that bids may be received asynchronously from different agents over a period
of time. In order to capture which outcome of the protocol has occurred we use
three domain fluents (DAR-1-24 – DAR-1-26) to record the state of the bidding:
onlybidder(Bidder), havebid, conflict.
The first of these fluents denotes the case where a single bid has been received and
no others (and records the bidder which made this bid), the second fluent records
cases where one or more bids have been received and the third records cases where
more than one bid has been received.
These fluents are determined in the second phase of the protocol using DAR-2-34,
DAR-2-35 and DAR-2-36. The first rule accounts for the first bid that is received,
and is only triggered if no previous bids have been made. The second rule accounts
for any further bids and terminates the onlybidder fluent when a second bid is
received. The final rule records a conflict if a bid is received and a previous bid has
occurred.
Once a bid has been submitted we do not wish to permit an agent to submit further
bids, or for those further bids to be valid. In order to account for this we have line
DAR-2-33.

3. In the third and final phase of the protocol the auctioneer must notify the bidding
agents of the outcome of the auction. This phase is brought about by the occurrence
of the biddl event which denotes the close of bidding. In order to account for this,
we terminate each agents’ capacity to bid further in the auction (DAR-2-40) and
correspondingly initiate the auctioneer’s power to bring about a resolution to the
auction (DAR-2-41). To do so, we create an obligation upon the auctioneer to issue
the right kind of response (sold, unsold, conflict) depending on outcome
of the previous phase (havebid,conflict) before the next deadline (desdl) is
announced. This is encoded by DAR-2-42 – refdar:obl2. For each outcome, the auc-
tioneer is obliged and permitted to issue the appropriate response to every bidding
agent before the decision deadline. If an auctioneer fails to issue the correct out-
come to any agent before the final deadline then a violation will occur. The protocol
follows these notifications using DAR-2-45 – DAR-2-46.
Once an agent has been notified we wish to prohibit the auctioneer from notifying
that agent again. We do this by introducing a rule which terminates the auctioneer’s

COIN–35

live(dutch_auction_round)

desto
[desdl]
[finished]

live(dutch_auction_round)
obl(unsold(a,b),desdl,badgov)

annunsold(a,b)
[notified(b)]
[unsold(a,b)]

desto
[badgov]
[desdl]
[finished]

live(dutch_auction_round)
obl(unsold(a,b),desdl,badgov)

annsold(a,b)
[notified(b)]
[sold(a,b)]
[viol(annsold(a,b))]
[viol(sold(a,b))]

annconf(a,b)
[conf(a,b)]
[notified(b)]
[viol(annconf(a,b))]
[viol(conf(a,b))]

live(dutch_auction_round)
obl(price(a,b),pricedl,badgov)

createdar

havebid
live(dutch_auction_round)

onlybidder(b)

havebid
live(dutch_auction_round)
obl(sold(a,b),desdl,badgov)

onlybidder(b)

bidto
[biddl]

priceto
[badgov]
[pricedl]

live(dutch_auction_round)

annprice(a,b)
[price(a,b)]

havebid
live(dutch_auction_round)

onlybidder(b)

annbid(b,a)
[bid(b,a)]

live(dutch_auction_round)

priceto
[pricedl]

havebid
live(dutch_auction_round)

onlybidder(b)

desto
[desdl]
[finished]

desto
[badgov]
[desdl]
[finished]

priceto
[pricedl]

havebid
live(dutch_auction_round)
obl(sold(a,b),desdl,badgov)

onlybidder(b)

desto
[badgov]
[desdl]
[finished]

desto
[badgov]
[desdl]
[finished]

annsold(a,b)
[notified(b)]
[sold(a,b)]

annconf(a,b)
[conf(a,b)]
[notified(b)]
[viol(annconf(a,b))]
[viol(conf(a,b))]

annunsold(a,b)
[notified(b)]
[unsold(a,b)]
[viol(annunsold(a,b))]
[viol(unsold(a,b))]

bidto
[biddl]

annbid(b,a)
[bid(b,a)]

Fig. 3. States of the auction round for a single bidder

power and permission to issue more than one notification to any one agent (DAR-
2-48).
Finally, when the deadline expires (the exogenous event desto triggers desdl)
and either the protocol ends or the bidders have created a conflict. In the former
case, DAR-2-49 ensures dissolution of the institution. In the conflict case, the auc-
tioneer must re-open the bidding using a new round. We represent this by adding
two lines. The first terminates the intermediate fluents which were used to repre-
sent the outcome of the protocol (havebid and conflict). This is established by
DAR-2-50
. The second (DAR-2-51), initiates the obligation for the auctioneer to re-open the
round by issuing a price to the bidders and all associated powers and permissions.

Verification: Once we have the InstAL description of our institution, we can obtain an
ASP program as described in Section 2. This program may then be combined with a
trace program and query, allowing us to query properties and determine possible out-
comes of this protocol.

COIN–36

The simplest type of verification procedure is to execute the program with no query.
In this case all possible traces of the protocol will be provided as answer sets of the
translated program.

Each answer set represents all possible sequences of states which may occur in the
model and these may in turn be used to visualise all reachable states of the protocol (for
a given number of agents). In order to execute the protocol we need to ground it with
an auctioneer a and a bidder b. We could execute the translated program as is, how-
ever the answer sets of the program would include all traces of the protocol, including
those containing actions which have no effect. Transitions of this kind may be of inter-
est in some cases (we may be interested in the occurrence of associated violations for
instance) however in this case we choose to omit them in order to reduce the number
of answer sets to analyse. This can be achieved by specifying a query program which
limits answer sets only to those containing traces in which a change of state occurs. For
the technical details on this query program, see [4].

Solving the translated program with the associated query program yields a total of
60 answer sets corresponding to each possible trace where an effect occurs in each
transition. By extracting the states from the answer set we may generate a graphical
representation of the transition system which the protocol creates.

In order to include all possible states of the protocol we must select a large enough
upper bound for the length of traces such that all possible states are reached. In general
the selection of this upper bound depends on the program and query in question and it
should be noted that the answer sets of the program represent only those solutions to
the query which can be found in the given trace length.

In the case of the auction protocol examined here we had to establish this upper
bound by the somewhat unsatisfactory process of iterating the solver process and deter-
mining the number states until no more states were found. For the example above, with
only two agents, the longest traces which yield new states are of length 7, resulting in
33 answer sets.

Figure 3 illustrates all possible states for a single round of the protocol with one bid-
der (for a larger number of bidders, the state space will be considerably larger, growing
exponentially with their number). Note that as there is only one bidder participating in
the protocol conflicts cannot occur. For the sake of clarity we omit fluents relating to
powers and permissions from the figure.

Further verification: In the above protocol we stated that when there was a conflict in
the bidding for the protocol (that is, when two or more bidders issue valid bids) that the
bidding should re-open. In order to ensure that this new round continues as before we
must ensure that the institutional state at the beginning of a re-opened round is the same
as the institutional state when the original round opened.

This property may be specified as a query program in our framework, as we now
describe. In this case we are only interested in traces where a conflict has occurred. We
specify this by adding the following constraints to the query program:

hadconflict ← holdsat(conflict, I), instant(I).
⊥ ← not hadconflict.

COIN–37

The first rule states that if there is any state where the conflict fluent occurs, then the
literal hadconflict should be included in the answer set. The second rule states that
we should not include any answer sets where the literal hadconflict is not included.

We are also only interested in traces where the protocol is re-started and bidding is
re-opened. We add this constraint in a similar way, using two rules as follows:

restarted ← occurred(desdl, I),
holdsat(conflict, I), instant(I).

⊥ ← not restarted.

The first of these rules state that if the desdl event has occurred at any time we include
the literal restarted in our answer set and the second rule states that we should only
include answer sets where this literal is included.

In order to determine the fluents (if any) which differ between a state following the
creation of the institution and a state following a protocol re-start, we mark these fluents
using the literals startstate(F) indicating that fluent F is true in the start state of this
trace, and restartstate(F) indicating that the fluent F was true in a state following a
protocol re-start.

Literals of the form startstate(F) are defined using the following rule:

startstate(F) ← holdsat(F, I1),
occurred(createdar, I0),
next(I0, I1), ifluent(F).

Which states that F is a fluent in the start state, if F holds at time instant I1 and creation
event createdar occurred at instant I0 and that instant I1 immediately follows instant
I0.

We similarly define the fluents that hold in the re-start state with the rule:

restartstate(F) ← holdsat(F, I1), occurred(desdl, I0),
holdsat(conflict, I0), next(I0, I1), ifluent(F).

which states that F holds in the restart state, if it held in the state I1 which immediately
followed the occurrence of the decision deadline desdl when a conflict held in that
state.

We then define the following rules which indicate the differences between the start
state and the re-start state:

missing(F) ← startstate(F), notrestartstate(F), ifluent(F).
added(F) ← restartstate(F), notstartstate(F), ifluent(F).

These rules indicate that a fluent is present in the start state, but missing from the restart
state (indicated by missing(F)), or missing in the start state, but present in the restart
state (indicated by added(F)) respectively.

Finally we define the query constraint, in this case we are only interested in traces
where a difference occurs between the start state and the restart state. We add these
constraints using following rules:

invalid ← missing(F), ifluent(F).
invalid ← added(F), ifluent(F).

⊥ ← not invalid.

COIN–38

BiddingPricing
pricedl biddl

desdlConcluding

Scene 3Scene 2Scene 1

Fig. 4. Landmarks in the Dutch Auction round

The first two rules state that if a fluent F is either missing or added, then the literal
invalid is true. The third rule constrains answer sets of the program to only those
containing the literal invalid.

These rules, when combined with the translated program of the institution allow us
to determine which fluents have changed between the start state and end state of the
protocol.

Given the translated program and the query program described above, we obtain no
answer sets for the protocol as defined, indicating that it is indeed the case that there are
no fluents which differ in the state following a protocol restart and the state following
the creation of the institution. This result is consistent with the original description of
the protocol and will permit subsequent rounds following a conflict to continue in the
same way as the original round. The same query holds true for auctions including three
or four bidders.

The Scene Perspective: Although the InstAL language does not explicitly allow for
the definition of scenes (i.e. no special constructs are available), it is straightforward
to achieve this with the available language constructs. The auction protocol discussed
above, can be seen as composed of three scenes each marked by the occurrence of a
deadline (except for the start of the protocol). Figure 4 provides the scene transition
diagram. Each of these deadlines is the result of an exogenous event generated by the
environment (e.g. DAR-2-52). The occurrence of such a deadline, changes the empow-
erment and permissions of the agents involved in the protocol (e.g. DAR-2-50). Rules
are provided to assure the correct transition through the scenes (e.g. DAR-2-53).

5 Conclusions

Due to page restrictions, we are unable to include a separate overview of related work.
Instead we have added pointers to related work wherever possible throughout the pre-
sentation. An extensive discussion of the relation between our framework and other
normative systems, such as [2, 8, 11, 17, 19] to name but a few, can be found in [5, 4].

In this article we have demonstrated that the formal system described in [5] can
easily deal with non-trivial institutions. Furthermore, we have shown that our charac-
terisation can deal directly with landmarks and scenes, thus linking it more clearly with
earlier work on institutional specification.

References

[1] H. Aldewereld. Autonomy vs. Conformity: an Institutional Perspective on Norms and Pro-
tocols. PhD thesis, Utrecht, 2007.

COIN–39

[2] Alexander Artikis. Executable Specification of Open Norm-Governed Computational Sys-
tems. PhD thesis, Department of Electrical & Electronic Engineering, Imperial College
London, Sept. 2003.

[3] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge Press, 2003.

[4] O. Cliffe. Specifying and Analysing Institutions in Multi-Agent Systems Using Answer Set
Programming. PhD thesis, Dept. Computer Science, University of Bath, June 2007.

[5] O. Cliffe, M. De Vos, and J. A. Padget. Answer set programming for representing and
reasoning about virtual institutions. In K. Inoue, K. Satoh, and F. Toni, editors, CLIMA VII,
volume 4371 of Lecture Notes in Computer Science, pages 60–79. Springer, 2006.

[6] O. Cliffe, M. De Vos, and J. A. Padget. Specifying and reasoning about multiple institu-
tions. In J. Vazquez-Salceda and P. Noriega, editors, COIN 2006, volume 4386 of Lecture
Notes in Computer Science, pages 63–81. Springer, 2007.

[7] P. R. Cohen and H. Levesque. Intention is choice with commitment. Artificial Intelligence,
42:213–261, 1990.

[8] M. Colombetti, N. Fornara, and M. Verdicchio. The role of institutions in multiagent sys-
tems. In Proceedings of the Workshop on Knowledge based and reasoning agents, VIII
Convegno AI*IA 2002, Siena, Italy, 2002.

[9] V. Dignum. A Model for Organizational Interaction. PhD thesis, Utrecht, 2004.
[10] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc.

of fifth logic programming symposium, pages 1070–1080. MIT PRESS, 1988.
[11] L. Kamara, A. Artikis, B. Neville, and J. Pitt. Simulating computational societies. In

P. Petta, R. Tolksdorf, and F. Zambonelli, editors, Proceedings of workshop on engineering
societies in the agents world (esaw), LNCS 2577, pages 53–67. Springer, 2003.

[12] S. Kumar, M. J. Huber, P. R. Cohen, and D. R. McGee. Toward a formalism for conversation
protocols using joint intention theory. Computational Intelligence, 18(2):174–228, 2002.
doi:10.1111/1467-8640.00187.

[13] S. Minton, J. Bresina, and M. Drummond. Total order and partial order planning: A com-
parative analysis. Journal of Artificial Intelligence Research, 2:227–262, 1994.

[14] I. Niemelä and P. Simons. Smodels: An implementation of the stable model and well-
founded semantics for normal LP. In J. Dix, U. Furbach, and A. Nerode, editors, Proceed-
ings of the 4th International Conference on Logic Programing and Nonmonotonic Reason-
ing, volume 1265 of LNAI, pages 420–429, Berlin, July 28–31 1997. Springer.

[15] Pablo Noriega. Agent mediated auctions: The Fishmarket Metaphor. PhD thesis, Univer-
sitat Autonoma de Barcelona, 1997.

[16] J. A. Rodrı́guez-Aguilar. On the Design and Construction of Agent-mediated Institutions.
PhD thesis, Universitat Autonoma de Barcelona, 2001.

[17] M. Sergot. (C+)++: An Action Language For Representing Norms and Institutions. Tech-
nical report, Imperial College, London, Aug. 2004.

[18] I. Smith, P. Cohen, J. Bradshaw, M. Greaves, and H. Holmback. Designing conversation
policies using joint intention theory. In Proceedings of International Conference on Multi
Agent Systems, pages 269–276, 1998. doi:10.1109/ICMAS.1998.699064.

[19] P. Yolum and M. P. Singh. Flexible protocol specification and execution: applying event
calculus planning using commitments. In AAMAS ’02: Proceedings of the first interna-
tional joint conference on Autonomous agents and multiagent systems, pages 527–534.
ACM Press, 2002.

COIN–40

Semantical Concepts for a Formal Structural Dynamics
of Situated Multiagent Systems

Antônio Carlos da Rocha Costa and Graçaliz Pereira Dimuro

Escola de Informática – PPGINF, Universidade Católica de Pelotas
96.010-000 Pelotas, RS, Brazil, {rocha,liz}@atlas.ucpel.tche.br

Abstract. This paper introduces semantical concepts to support a formal struc-
tural dynamics of situated multiagent systems. Multiagent systems are seen from
the perspective of the Population-Organization model, a minimal semantical model
where the performance of organizational roles by agents, and the realization of or-
ganizational links by social exchanges between agents, are the key mechanisms
for the implementation of an organization structure by a population structure.
The structural dynamics of a multiagent system may then be modelled as a set
of transformations on the system’s overall population-organization structure. We
illustrate the proposed approach to structural dynamics by introducing a small
set of operational rules for an exchange value-based dynamics of organizational
links. The paper sets the stage for further work on structural dynamics where
other structural elements, besides organizational links, are taken into account.

1 Introduction

PopOrg, a minimal population-organization based model, was introduced in [1] in order
to support the study of the structural dynamics of multiagent systems (MAS). Both
time-invariant and time-variant versions of the model were introduced, but no specific
mechanism was presented to account for any possible structural dynamism.

In this paper, we improve the above mentioned work by refining that model with
the notion that social interactions are exchanges performed between agents. Also, we
present an exchange value-based mechanism able to account for some aspects of the
structural dynamics of multiagent systems. We combine the two ideas to define a simple
set of operational rules for an exchange value-based dynamics of organizational links.

The work sets the stage for further studies on the structural dynamics of multiagent
systems by establishing the basis of a mechanism where further aspects of the structural
dynamics of such systems can be considered, besides the dynamics of links.

We remark that the paper is based on a distinction between the notions of intensional
and extensional descriptions of systems: intensional descriptions deal with subjective
aspects pertaining to the internal functioning of the agents that operate in a system
(like norms, values, etc.), while extensional descriptions deal with objective aspects
pertaining to the external functioning of those agents (like actions performed, objects
exchanged, etc.). The main concerns of the paper are, thus, an extensional description
of the structural dynamics of multiagent systems organizations, and a possible way to
articulate such extensional dynamics with the intensional aspect of the exchange values
involved in the interactions between the agents that participate in the organizations.

COIN–41

On the other hand, we note that the process model that underlies the structural dy-
namics of the population-organizational model [1] is similar to the general signal-based
denotational model that underlies some declarative languages devised to specify real-
time reactive systems [2]. This encourages the view that the PopOrg model may suitably
be construed as an adequate model for multiagent systems situated in environments pre-
senting real-time constraints. In fact, it is only natural to expect that it is precisely in
the case of situated multiagent systems that the issues of structural dynamics arise cru-
cially (because of the pressures for the adaptation of the system to the variations in the
environment – this point is further explored in Sect. 5, on related works).

The paper is organized as follows. In Sec. 2, we revisit the Population-Organization
model, refining its notion of interaction through a general notion of social exchange. In
Sec. 3, we summarize the particular exchange values approach to social interactions [3]
that we adopt, reviewing its notion of exchange value and its model of social exchange.
Section 4 illustrates the general purpose of the paper by joining the revisited Population-
Organization model with the adopted system of social exchanges, allowing for a simple
mechanism able to support a preliminary model of exchange value-based dynamics of
organizational links. Section 5 concludes the paper by summarizing related work and
exploring further aspects of the proposal.

A technical remark: we use the following coordinate-wise notation, when dealing
with vectors (n-tuples) of sets (taking expr0 ⇔ expr1 ∧ . . . ∧ exprn) :

(X1, . . . , Xn) ⊆ (Y1, . . . , Yn) ≡def Xi ⊆ Yi, i = 1, . . . n. (1)⋃
{(X1, . . . , Xn) | expr0} ≡def (∪{X1 | expr1}, . . . ,∪{Xn | exprn}) (2)

2 The Population-Organization Model

The Population-Organization model of multiagent systems, introduced in [1], empha-
sizes the modelling of systems composed of a small group of agents, adopting an inter-
actionist point of view [3, 4]. In such model, the organizational structures of the system
are implemented by the system’s population of agents through two main mechanisms:
the assignment of organizational roles to agents, and the realization of organizational
links between roles by the social exchanges that are established between the agents that
perform those roles. Of course, in such model, the central components of the structural
dynamics of the systems are the operations of creation and deletion of elements like
organizational roles, organizational links, agents and exchange processes.

2.1 The Time-Invariant Population-Organization Model

The time-invariant Population-Organization model, PopOrg = (Pop,Org, imp), is
construed as a pair of structures, the population structure Pop and the organization
structure Org, together with an implementation relation imp.

The Time-Invariant Population Structure The population of a multiagent system
consists of the set of agents that inhabit it. The population structure of a multiagent
system is its population set together with the set of all behaviors that the agents are able

COIN–42

to perform, and the set of all exchange processes that they can establish between them
(for simplicity, we consider only pairwise exchanges).

Let T be a discrete sequence of time instants. The population structure of a time-
invariant multiagent system is a tuple

Pop = (Ag,Act,Bh, Ep, bc, ec) (3)
where:
– Ag is a finite non-empty set of agents, called the population of the system;
– Act is the finite set of all actions (communication actions and actions on concrete

objects of the environment) that may be performed by the agents of the system;
– Bh ⊆ [T → ℘(Act)] is the set containing all possible agent behaviors, modeled

as functions that specify, for each time t ∈ T , a set of actions X ∈ ℘(Act) that
an agent may perform at that time, each behavior determining a sequence of sets of
actions available for the agents to perform in the system;

– Ep ⊆ [T → ℘(Act)×℘(Act)] is the set containing all possible exchange processes
that two agents may perform in the system, each process given by a function that
specifies, for each t ∈ T , a pair of set of actions (X1, X2) ∈ ℘(Act) × ℘(Act),
determining a sequence of exchanges available for any two agents to perform, by
executing together or interleaving appropriately their corresponding actions;

– bc : Ag → ℘(Bh) is the behavioral capability function, such that for each agent
a ∈ Ag, the set of all behaviors that a is able to perform in the system is bc(a);

– ec : Ag × Ag → ℘(Ep) is the exchange capability function, such that for each
pair of agents a1, a2 ∈ Ag, the set of all exchange processes that a1 and a2 may
perform between them is ec(a1, a2);

– ∀a1, a2 ∈ Ag ∀e ∈ ec(a1, a2) ∀t ∈ T :
Prj1(e(t)) ⊆

⋃
{b(t) | b ∈ bc(a1)} ∧ Prj2(e(t)) ⊆

⋃
{b(t) | b ∈ bc(a2)},

where Prj1, P rj2 are projection functions, so that the agents’ exchange capabili-
ties are constrained by their joint behavioral capabilities.
Given t ∈ T and a ∈ Ag, we note that bc(a)(t) = {act | act ∈ b(t), b ∈ bc(a)}

is the set of all possible actions that agent a may perform at time t, given its behavioral
capability bc(a). We also note that, in general, the exchange capability ec(a1, a2) of
a pair of agents a1, a2 ∈ Ag should be deducible from their respective behavioral
capabilities bc(a1) and bc(a2), and from any kind of restriction that may limit their
set of possible exchanges (e.g., social norms, inherited habits, etc.), but since we are
presenting an extensional model where such intensional, subjective restrictions take no
part, it is sensible to include ec explicitly in the description of the population structure.

By the same token, the behavioral capability bc(a) of an agent a ∈ Ag should be
deducible from any internal description of a where its set of behaviors is constructively
defined, but since we are taking an external (observational) point of view of the agents,
we include bc explicitly in the model.

Finally, we note that the definition of Pop is given in time-invariant terms. However,
in general, any of the sets Ag,Act,Bh, Ep of the population structure, and both the
behavioral and exchange capabilities, bc and ec, are time-variant (see Sect. 2.2).

The Time-Invariant Organization Structure The time-invariant organization struc-
ture of a time-invariant population structure Pop = (Ag,Act,Bh, Ep, bc, ec) is a struc-
ture Org = (Ro,Li, lc), where

COIN–43

– Ro ⊆ ℘(Bh) is the set of roles existing in the organization, a role being given by a
set of behaviors that an agent playing the role may have to perform;

– Li ⊆ Ro×Ro× Ep is the set of links that exist in the organization between pairs
of roles, each link specifying an exchange process that the agents performing the
linked roles may have to perform;

– lc : Ro× Ro → ℘(Li) is the link capability of the pairs of roles, that is, the set of
links that the pairs of roles may establish between them;

– ∀l ∈ Li ∃r1, r2 ∈ Ro : l ∈ lc(r1, r2), that is, every link has to be in the link
capability of the two roles that it links.
Clearly, the PopOrg model adopts a process-based view of organizations.

The Time-Invariant Implementation Relation Population and organization struc-
tures are formally defined in a quite independent way. A population structure induces
no more than a loose restriction on the set of organization structures that may be im-
posed on it: the behavioral capability function bc constrains the set of possible roles
that an agent may have in any possible organization and, indirectly, the set of possible
exchange processes in which it may participate, thus, also the set of possible organiza-
tional links that it may have with any other agent in that system.

The fact that a given organization structure is operating over a population structure,
influencing the set of possible exchanges that the agents may have between them, is
represented by an implementation relation imp ⊆ (Ro×Ag) ∪ (Li× Ep), where

– Ro× Ag is the set of all possible role supports, i.e., the set of all possible ways of
assigning roles to agents, so that if (r, a) ∈ imp, then the social role r is supported
by agent a, so that a is said to play role r (possibly in a shared, non-exclusive way)
in the given organization;

– Li × Ep is the set of all possible link supports, i.e., the set of all possible ways of
supporting links, so that if (l, e) ∈ imp, link l is said to be supported (in a possibly
shared, non-exclusive way) by the exchange process e, and so indirectly supported
by the agents that participate in e and that play the roles linked by l.
We note that an organization implementation relation imp does not need to be one-

to-one: many roles may be assigned to the same agent, many agents may support a
given role, many links may be supported by a given exchange process, many exchange
processes may support a given link. Moreover, this relation may be partial: some roles
may be assigned to no agent, some agents may be have no roles assigned to them, some
links may be unsupported, some exchange processes may be supporting no link at all.
The agents that have at least one role assigned to them are said to constitute the support
of the organization in the population. 1

This flexibility is important when defining the structural dynamics of MAS, because
it allows for the definition of “improper” structural states, i.e., structural states where
the system’s organization is not properly implemented by the sytem’s population, which
is relevant for the end goal of dealing with the concept of organizational integrity [1].

A proper implementation relation is an implementation relation that respects or-
ganizational roles and organizational links by correctly translating them in terms of

1 Note that agents that do not belong to an organization’s support may interfere with the func-
tioning of that organization by influencing the behaviors of the supporting agents.

COIN–44

agents, behaviors and exchange processes. Given an implementation relation imp ⊆
(Ro× Ag) ∪ (Li× Ep), a social role r ∈ Ro is said to be properly implemented by a
subset A ⊆ Ag of agents whenever the following conditions hold:
(i) ∀a ∈ A : (r, a) ∈ imp, i.e., all agents in A participate in the implementation of r;
(ii) ∀t ∈ T :

⋃
{b(t) | b ∈ r} ⊆

⋃
{b′(t) | b′ ∈ bc(a), a ∈ A}, i.e., the set of

behaviors required by r may be performed by the agents of A (in a possibly shared,
non-exclusive way).
A link l = (r1, r2, e) ∈ Li is properly implemented by a subset E ⊆ ec(a1, a2)

of the exchange processes determined by the exchange capability of two agents a1, a2,
whenever the following conditions hold:
(i) ∀e ∈ E : (l, e) ∈ imp, i.e., every exchange process in E helps to support the link;
(ii) r1 e r2 are properly implemented by the agents a1 and a2, respectively; and
(iii) ∀t ∈ T : e(t) ⊆

⋃
{e′(t) | e′ ∈ E}, i.e., the exchange process required by l may

be performed by the ones of E (in a possibly shared, non-exclusive way).
A time-invariant population-organization structure PopOrg = (Pop,Org, imp) is

properly implemented if and only imp is a proper implementation relation.

2.2 The Time-Variant Population-Organization Model

Time-Variant Population Structures Time-variant structures change as time goes by.
There are three main kinds of possible changes in the momentary population structure
Pop = (Ag,Act,Bh, Ep, bc, ec) of a multiagent system: (p1) a change in the behav-
ioral capability bc(a) of an agent a ∈ Ag; (p2) a change in the exchange capability
ec(a1, a2) of a pair of agents (a1, a2) ∈ Ag ×Ag; (p3) a change in the population Ag.

Changes of the kind (p1) may be due either to internal changes in the agent or to
changes in the set of passive objects (e.g., tools) with which the agent operates. Changes
of the kind (p2) may be due either to changes in the behavioral capability of one of the
agents, to changes in the exchange medium (e.g., communication channel) used by the
agents, or to changes in some social norm that regulates the exchanges. Changes of the
kind (p3) are due to agents entering or leaving the system.

Let T be the time structure, Ag and Act be universes of agents and actions, respec-
tively, and Bh and Ep universes of behaviors and exchange processes defined over Ag
and Act, in a way similar to that in Sect. 2.1(3). A time-variant population structure is
a structure POP = (AG, ACT, BH, EP, Bc, Ec) where, for all t ∈ T :

– AGt ∈ ℘(Ag) is the system’s population, at time t;
– ACT t ∈ ℘(Act) is the set of possible agent actions, at time t;
– BHt ∈ ℘(Bh) is the set of possible agent behaviors, at time t;
– EP t ∈ ℘(Ep) is the set of possible exchange processes between agents, at time t;
– Bct : AGt → ℘(BHt) is the behavioral capability function of agents, at time t;
– Ect : AGt ×AGt → ℘(EP t) is the exchange capability function, at time t.

The state at time t of a time-variant population structure, denoted by POP t =
(AGt, ACT t, BHt, EP t, Bct, Ect), fixes the population of the system, the set of pos-
sible behaviors of each agent and the set of possible exchange processes between each
pair of agents, but not the behaviors and exchange processes themselves, which at each
time will be chosen from among those possibilities according to the particular internal
states of the agents, and the particular states of the (social and physical) environment.
Note, however, that the intensional, subjective reasons for such choices are not modelled
in the extensional PopOrg model.

COIN–45

Time-Variant Organization Structures There are five main kinds of possible changes
in a momentary organization structure Org = (Ro,Li, lc): (o1) a change in a role
r ∈ Ro; (o2) a change in a link l ∈ Li; (o3) a change in the set of roles Ro; (o4) a
change in the set of links Li; (o5) a change in the link capability lc of the pairs of roles.

A change of kind (o1) may be due, e.g., to a change in the behavior of one of more
agents performing the role. A change of the kind (o2) may be due, e.g., to a change in an
exchange process that supports the link. Changes of the kind (o3) are either the appear-
ance or the disappearance of roles in the system. Changes of the kind (o4) are either to
the appearance or to the disappearance of organizational links in the system. A change
of kind (o5) may be due, e.g., to a redistribution of the set of links between organization
roles. All such changes may be due to the so-called “reorganization operations” of mul-
tiagent systems [5]. The reasons for such operations are essentially of an intensional
nature and, thus, are not explicitly represented in the extensional PopOrg model (but
their realizations as behavioral processes, and their possible extensional effects, may
be explicitly modelled). We note that Sect. 4 of this paper is mainly concerned with
changes of kind (o4), that is, changes in the set of links of an organization structure.

Let T be the time structure, and Ro ⊆ ℘(Bh) and Li ⊆ ℘(Ep) be the universes of
roles and links, respectively. The time-variant organization structure of a time-variant
population structure POP = (AG, ACT, BH, EP, Bc, Ec) is a structure ORG =
(RO,LI, Lc), where for all t ∈ T :

– ROt ∈ ℘(Ro) and LIt ∈ ℘(Li) are, respectively, the set of possible roles and the
set of possible links at time t;

– Lct : ROt ×ROt → ℘(LIt) is the link capability function at time t.
For each t ∈ T , the organization state ORGt = (ROt, LIt, Lct) fixes the sets

of possible roles ROt, links LIt and link capability function Lct that the system may
have at that time. Note that a time-invariant organization structure may be modelled as
a constant time-variant organization structure.

Time-Variant Implementation Relations As a consequence of any change (p1)-(p3)
or (o1)-(o5), the implementation relation imp may be changed either (r1) in the way
it relates roles and agents or (r2) in the way it relates links and exchange processes.
Besides being changed in its mapping, imp may be changed also in its properness.

Let POP = (AG, ACT,BH,EP,Bc, Ec) be a time-variant population structure
and ORG = (RO,LI, Lc) its time-variant organization structure. A time-variant im-
plementation relation for ORG over POP is a time-indexed set of implementation
relations IMP , with IMP t ⊆ (ROt×AGt)∪(LIt×EP t). A time-variant population-
organization structure is a structure POPORG = (POP ,ORG , IMP), where

– POP = (AG, ACT, BH, EP, Bc, Ec), ORG = (RO,LI, Lc) and IMP are,
respectively, a time-variant population structure, a time-variant organization struc-
ture, and a time-variant implementation relation, as defined above;

– at each t ∈ T , the state of POPORG is given by POPORGt = (POP t,ORGt,
IMP t), where POP t = (AGt, ACT t, BHt, EP t, BCt, ECt) and ORGt =
(ROt, LIt, Lct) are such that IMP t ⊆ (ROt ×AGt) ∪ (LIt × EP t).

We note that this definition does not guarantee that the relation IMP is proper at each
time. That is, we assume that time-variant population-organization structures may pass
through structural states where the population improperly implements the organization.

COIN–46

Multiagent Systems with Structural Dynamics The structural dynamics of a mul-
tiagent system [1] is the dynamics that deals with the way the structure of the system
varies in time, thus, it is the dynamics of the system’s population and organization.

Let PopOrg = (Pop,Org, imp) be the universe of all possible population-
organization structures, with Pop = (Ag,Act,Bh,Ep,bc, ec), Org = (Ro,Li, lc)
and imp ⊆ (Ro×Ag)∪(Li×Ep) are the universes of all possible time-invariant pop-
ulation structures, organization structures and implementation relations, respectively.

A multiagent system with dynamic structure is a structure MAS = (PopOrg, D)
where, for each t ∈ T , Dt ⊆ PopOrg × PopOrg is the system’s overall structural
dynamics, such that for any structural state PopOrg ∈ PopOrg, at time t ∈ T , there
is a set of possible next structural states, denoted by Dt(PopOrg) ⊆ PopOrg.

Given a particular initial population-organization structure PopOrgt0 , the dynamics
of its structure is a time-variant population-organization structure POPORG , where
it holds that POPORGt+1 ∈ Dt(POPORGt), for any t ∈ T . The choice of the
particular next structural state POPORGt+1 that will be assumed by the MAS at time
t+1 is made, at time t ∈ T , on the basis of various intensional, subjective factors extant
in the system, like, e.g., preferences of agents, social norms, political powers, etc.

In particular cases, it may happen that the system’s overall structural dynamics may
be separated into three coordinated sub-structural dynamics Dt = Dt

P × Dt
O × Dt

I :
the population dynamics Dt

P ⊆ Pop × Pop, the organizational dynamics Dt
O ⊆

Org×Org, and the implementation dynamics Dt
I ⊆ imp×imp. In such special cases,

the coordination between the system’s overall dynamics and the three sub-structural
dynamics may be given compositionally by:

(Pop′, Org′, imp′) ∈ Dt((Pop,Org, imp)) ⇔
Pop′ ∈ Dt

P (Pop) ∧ Org′ ∈ Dt
O(Org) ∧ imp′ ∈ Dt

I (imp)

3 Systems of Exchange Values

In this section, we introduce one of the possible intensional, subjective factor that may
influence the evolution of the dynamical structure of a multiagent system, namely, the
system of exchange values with which the agents may assess the quality of the ex-
changes they are having in the system. We adopt here one particular model of system
of exchange values [3], which we have used in previous works (e.g., [6]).

This exchange value-based approach to social interactions (cf. also [4]) considers
that every social interaction is an exchange of services between the agents involved in it.
Exchange values are, then, the values with which agents evaluate the social exchanges
they have with each other.

A service is any action or behavior that an agent may perform, which influences
positively (respect., negatively) the behavior of another agent, favoring (respect., disfa-
voring) the effort of the latter to achieve a goal. The evaluation of a service involves not
only affective and emotional reactions, but also comparisons to social standards. Typ-
ical evaluations are expressed using qualitative values such as: good, very good, bad,
very bad, etc. So, they are of a neatly subjective, qualitative, intensional character.

COIN–47

With those evaluations, a qualitative economy of exchange values arises in the social
system. Such qualitative economy requires various rules for its regulation. Most of those
rules are either of a moral or of a juridical character [3].

Exchange behaviors between two agents α and β can be defined as sequences of
exchange steps performed between them. Two kinds of exchange steps are identified [3],
called Iαβ and IIαβ . Steps of the kind Iαβ are steps in which agent α takes the initiative
to perform a service for agent β, with qualitative cost (investment) rIαβ . Subsequently,
β receives the service, and gets a benefice (satisfaction) of qualitative value sIβα.

If β was to pay back α a return service immediately, he would probably try to
“calibrate” his service so that it would have cost r equal to sIβα, so that α would get
a return benefice with value s equal to rIαβ , in order for the exchange to be fair (if the
two agents were prone to be fair in their exchanges). The definition of exchange steps
assumes, however, that the return service will not be performed immediately, so that a
kind of bookkeeping is necessary, in order for the involved values not to be forgotten.

That is the purpose of the two other values involved in the exchange step: tIβα is the
debt that β assumes with α for having received the service and not having payed it back
yet; , vIαβ is the credit that α gets on β for having performed the service and not having
being payed yet. A fair exchange step ([3] calls it an equilibrated exchange step) is one
where all the involved values are qualitatively equal: rIαβ ≈ sIβα ≈ tβα ≈ vIαβ .

To take account of differences between qualitative exchange values, such values are
assumed to be comparable with respect to their relative qualitative magnitudes. That is,
if EV is the set of qualitative exchange values, it is assumed that values in V can be
compared by an order relation�, so that (EV,�) is a (partially) ordered set. Thus, e.g.,
if it happened that sIβα � rIαβ , then agent α made an investment, during his service,
that was greater than the benefice that agent β got from it.

An exchange step of kind IIαβ is performed in a different way. In it, agent α charges
agent β for a credit with qualitative value vIIαβ , which he has on β. Subsequently, β
acknowledges a debt with value tIIβα with α, and performs a return service with value
rIIβα. In consequence, α gets a return satisfaction with value sIIαβ . Fairness for IIαβ

steps is defined similarly as for Iαβ steps.
It is assumed that exchange values can be qualitatively added and subtracted from

each other, so that balances of temporal sequences of exchange steps can be calculated.
Besides the above mentioned conditions, one further condition is required in order that
a sequence of exchange steps be fair:

∑
vIIαβ ≈

∑
vIαβ , that is, α should charge a

sum of credits which is exactly the total credit he has on β, no more, no less.
In summary, [3] introduces a qualitative algebra with which one can model and

analyze social exchanges between agents, determining in a qualitative way the degree
of fairness of those exchanges. Note that such algebra operates on 8-tuples of the form

(rIαβ
, sIβα

, tIβα
, vIαβ

, vIIαβ
, tIIβα

, rIIβα
, sIIαβ

). (4)

4 Exchange Value-based Dynamics of Social Links

This section illustrates one of the possible uses of our extensional model for the struc-
tural dynamics of organizations of MAS by showing how it can support the intensional
rules of an elementary exchange value-based dynamics of organizational links.

COIN–48

4.1 An Elementary Exchange Value-based Dynamics of Social Links

Other things being equal, the fact that a sequence of exchange steps between two agents
is fair, or not, may be a determinant factor in the attitude of those agents toward the
possibility of the continuation of the interaction. That is, given enough chances, self-
interested agents will tend to establish continued exchanges only with agents from
whom they may establish exchanges that are at least fair, if not beneficial, for them [4].
Particular personality traits and various social factors (power, prestige, etc.), however,
may interfere with self-interests and lead the agents to seek social exchanges that hap-
pen to be far from equilibrium ([6] illustrates this in the context of multiagent systems).

To simplify the issues, we assume that a MAS of self-interested agents adheres to
the following rationales concerning the dynamics of organizational links:

– exchange value-based rationale for the creation of an organizational link: a new or-
ganizational link in the MAS is created as soon as an exchange process is positively
assessed by the agents playing the roles that will be linked by the link (the exchange
process is said to be officially incorporated as a link into the organization);

– exchange value-based rationale for the destruction of an organizational link: a link
stops to exist in the multiagent system as soon as the balance of exchange values
involved in the exchange processes that implement the link stops to be beneficial to
any of the agents performing the roles linked by link (the exchange process is said
to be officially excluded from the organization of the multiagent system).
We leave open for the agents to apply subjective criteria to determine if any of

the conditions mentioned in the above rationales “really” occurred or not. If the social
organization has a central control, able to discover at each moment which are the links
that the agents would like to establish next between them, then it is up to that central
control to determine if enough has been observed in order to create or destroy a link in
the organization. If the agents are autonomous, then it is up to them to determine that.

If the agents are autonomous, they may thus disagree on which links should be
created or destroyed. In this case, the dynamics of links is open to argumentation and
negotiation between them. Then, for organizations based on autonomous agents, no
general method can be given for the determination of how the dynamics of inks should
evolve. Such dynamics is tightly coupled to the personality traits and social biases that
the agents may show with respect to the evaluation of their exchanges.

On the other hand, for organizations where the definitions of the roles prescribe not
only the behaviors that the agents playing such roles must have, but also the criteria with
which they should evaluate the interactions in which they get involved, it is possible to
derive the dynamics of links from the evaluation rules embedded in the roles.

The former case characterizes organizations where the dynamics of links can only
be established (at best) a posteriori, i.e., after knowing which agent is playing which
role in the organization. The latter case characterizes more manageable organizations,
where the dynamics of links can be established by an a priori analysis of the roles.

4.2 The Rules of the Elementary Exchange Value-based Dynamics of Links

We introduce, now, a minimal set of intensional rules for the exchange value-based
dynamics of organizational links in multiagent systems, formalizing the rationales for
self-interested agents exposed above.

COIN–49

For simplicity, we consider the case where the organization structure is time-variant,
the population structure is time-invariant, each role is implemented by just one single
agent, and each link implemented by just one single exchange process.

Let Pop = (Ag,Act,Beh,Ep, bc, ec) be a time-invariant population structure,
ORG = (EP,RO, LI) be a time-variant organization structure implemented by Pop,
and let IMP be the time-variant implementation relation. They constitute a time-variant
population-organization structure PopORG = (Pop,ORG , IMP), which is assumed
here to vary just in the set of organizational links, and in their implementations.

There may happen two kinds of changes in the set of links LIt, at the time t+1 ∈ T :
(1) either a new link l is created, so that LIt+1 = LIt ∪ {l}; or (2) a link l is removed
from LIt, so that LIt+1 = LIt − {l}.

The problem we face here is that of the formalization of the conditions under which,
at a moment t + 1, a link l is added to (or removed from) the set of links LIt.

Let EV = (EV,�) be the scale of exchange values used by agents a1, a2 ∈ Ag to
evaluate their exchanges, and BEV = EV 8 be the set of 8-tuples of exchange values
that represent balances of exchange values, defined in Sect. 3(4). Let bal : Ag × Ag ×
Ep × T → BEV be so that bal(a1, a2, e, t) is the balance of exchange values that
agents a1 and a2 have accumulated, at time t, along the exchanges they performed
through the exchange process e ∈ Ep.

We assume that each agent of the agents a1, a2 ∈ Ag is able to perform an analysis
of every possible balance bal(a1, a2, e, t) of exchange values that may arise between
them, and judge if that balance is beneficial, fair, or harmful for himself. That is, we
assume that there exists a (subjective) judgement function jdgt(a, bal(a1, a2, e, t)) ∈
{+1, 0,−1}, which we may write as a |=t bal(a1, a2, e, t) ≈ v, for v ∈ {+1, 0,−1}
and a ∈ {a1, a2}.

Then, the dynamics of organizational links in the Population-Organization model
of multiagent systems with self-interested agents is determined by a set of operational
rules containing at least the rules introduced below.

Let [τ, τ ′], [τ, τ ′) ⊆ T respectively be a closed and a right end-open interval of time,
with τ < τ ′. Let a1, a2 ∈ Ag be agents respectively playing roles r1, r2 ∈ Ro during
the interval [τ, τ ′], that is, (r1, a1), (r2, a2) ∈ IMP t, for all t ∈ [τ, τ ′].

Consider a link l ∈ Li between roles r1, r2 ∈ Ro such that l 6∈ LI t, for t ∈ [τ, τ ′),
and an exchange process e ∈ Ep that may possibly support l during the interval [τ, τ ′].
Let IMP t and LI t be fixed, for all t ∈ [τ, τ ′). Assume also that l ∈ Lct(r1, r2), for all
t ∈ [τ, τ ′].

Let jdgt(a, bal(a1, a2, e, [τ, τ ′])) denote the judgement, at t ∈ T , of the balance of
values accumulated in the interval [τ, τ ′] ⊆ T , and let jdgt(a, bal(a1, a2, e, [τ, τ ′])) �
0 mean jdgt(a, bal(a1, a2, e, [τ, τ ′])) ≈ 0 ∨ jdgt(a, bal(a1, a2, e, [τ, τ ′])) ≈ +1. In
this context, the following rule, controlling the introduction of l in LIτ ′

, is compatible
with an exchange value-based account of the link dynamics of the considered system:

a1 |=τ ′
bal(a1, a2, e, [τ, τ ′]) � 0 a2 |=τ ′

bal(a1, a2, e, [τ, τ ′]) � 0
LI intro(l)

LI τ ′
= LI τ ∪ {l} ∧ IMPτ ′

= IMPτ ∪ {(l, e)}

Analogously, consider an exchange process e ∈ Ep that supported a link l ∈ LIt

between roles r1, r2 ∈ ROt during the interval [τ, τ ′), and that IMP t and LI t are fixed,

COIN–50

for all t ∈ [τ, τ ′). Assume that l ∈ Lct(r1, r2), for all t ∈ [τ, τ ′]. In this context, for a ∈
{a1, a2}, the following rule, controlling the elimination of l from LIτ , is compatible
with an exchange value-based account of the link dynamics of the considered system:

a |=τ ′
bal(a1, a2, e, [τ, τ ′]) ≈ −1

LI elim(l,a)
LI τ ′

= LI τ − {l} ∧ IMPτ ′
= IMPτ − {(l, e)}

Note, on the other hand, that the two rules should to be subject to the proviso that
the interval [τ, τ ′] is large enough to allow the agents to make sound judgements, the
notion of “large enough” depending on intensional factors outside de PopOrg model. 2

5 Related Works and Conclusion

We have presented a temporal extensional model to support a formal dynamics of multi-
agent systems, by revisiting the PopOrg model and refining it with the notion that social
interactions are exchanges. We strived to clearly separate the extensional, structural as-
pects of the problem, from the intentional, subjective ones. The former deal with the set
of possible ways the structure of a multiagent system evolves in time, while the latter
deal with the possible causes of the particularities of such evolution.

To illustrate the way the intensional and the extensional aspects of the structural dy-
namics of a multiagent system may be combined, we made use of an exchange value-
based mechanism for the modeling of the subjective assessment of social exchanges,
allowing the agents to decide on the start, continuation and termination of an organiza-
tional link, thus showing that an intensional mechanism may operate as a causal element
in the extensional structural dynamics of the system.

The analysis of organizations from the deontic point of view [7] places itself in
the intensional perspective, concerning the expression of regulations (essentially con-
straints) about the structure and functioning of a multiagent system.

The notion of structural dynamics considered in this paper is closely related to the
notion of reorganization of a multiagent system as analyzed, e.g., in [5] and references
cited therein. There, the concern is not only with the intensional regulatory mechanism
of the structural evolution of the system, but also with the determination of the ex-
tensional set of possibilities that such structural evolution presents to the agents that
operate in the system.

The denotational and operational semantics of real-time and reactive systems [2]
defined models for such systems which are formally keen to most models of multiagent

2 As an aside, we claim that {LI intro(l),LI elim(l,a)} is the minimal set of rules upon which
should lie any exchange value-based dynamics of organizational links, in the PopOrg model,
when self-interested agents are considered. Of course, more realistic examples of link dynam-
ics would require additional rules to take care of more complex situations, e.g., rules to deal
with links implemented by two or more exchange processes. On the other hand, issues such as
the protection of the organization against malicious agents (e.g., agents that provoke the elim-
ination of links by providing a negative evaluation to every exchange), are issues that concern
intensional norms related to the security of the organization, which should be reflected in the
extensional rules describing the dynamics of the organization, but which should not be dealt
with initially at this extensional level.

COIN–51

systems. The similarity comes not from chance, for the agent-based systems were orig-
inally developed as models of reactive real-time systems [8]. One readily recognizes,
for instance, that reactive programs in state-based specification languages for reactive
systems [2] are similar in spirit to the so called procedural knowledge representation
that was originally used to specify the behavior of BDI agents [8]: both are means for
representing “reactive plans”.

Since a signal [2] is essentially a temporal sequence of values of a certain type, sig-
nals are similar to the temporal sequences used in the PopOrg model [1]. The similarity
is not weakened by our using structural objects as values of the temporal sequences,
while the declarative languages designed for the specification of reactive real-time sys-
tems use simple data values in signals. Such differences and similarities only stress
the need to develop the study of multiagent systems in the perspective of a situated
approach, where the system is placed to operate in connection to a real environment.

The PopOrg model was introduced as a minimal model able to deal with the struc-
tural dynamical aspects of the functioning of multiagent systems. So, the two compo-
nents that one would like to add to it in a future work, to allow for the tackling of two
essential aspects of such systems, are: first, a mechanism for constituting organizational
groups of agents within the system; and, second, the notion of an external environment,
the latter being the essential component for construing the system as a situated one.

Thus, it seems to us that the work we presented here produced the core elements for
an adequate consideration of the structural dynamics of multiagent systems. They seem
to become specially useful when considering systems situated in real environments,
whose structural and functional variations press the systems to keep their structures
continuously adapted to the demands of those environments.
Acknowledgements. This work was partially supported by FAPERGS and CNPq. We would like
to thank the referees for their very valuable comments, many of which could not be incorporated
in this version of the paper due to the lack of time and space.

References
1. Demazeau, Y., Costa, A.C.R.: Populations and organizations in open multi-agent systems. In:

1st National Symposium on Parallel and Distributed AI (PDAI’96), Hyderabad, India (1996)
2. Benveniste, A., Berry, G.: The synchronous approach to reactive and real-time systems. Proc.

of the IEEE 79 (1991) 1270–1282
3. Piaget, J.: Sociological Studies. Routlege, London (1995)
4. Homans, G.: Social Behavior – Its Elementary Forms. Harcourt, Brace & World, N. Y. (1961)
5. Hübner, J.F., Boissier, O., Sichman, J.S.: Programming MAS reorganisation with moise+. In

Meyer, J., Dastani, M., Bordini, R., eds.: Foundations and Practice of Programming Multi-
Agent Systems. Number 06261 in Dagstuhl Seminars, IFBI (2006)

6. Dimuro, G.P., Costa, A.C.R., Gonçalves, L.V., Hübner, A.: Centralized regulation of social
exchanges between personality-based agents. In Noriega, P., Vázquez-Salceda, J., Boella,
G., Boissier, O., Dignum, V., Formara, N., Matson, E., eds.: Coordination, Organizations,
Institutions and Norms in MAS II. Number 4386 in LNAI, Springer (2007) 16–23

7. Boella, G., van der Torre, L., Verhagen, H.: Introduction to normative multiagent systems.
In Boella, G., van der Torre, L., Verhagen, H., eds.: Normative Multi-agent Systems. Number
07122 in Dagstuhl Seminar Proceedings, IBFI (2007)

8. Georgeff, M., Lansky, A.: Procedural knowledge. Proc. of the IEEE 74 (1986) 1383–1398

COIN–52

On the Multimodal Logic
of Normative Systems

Pilar Dellunde

IIIA - CSIC and Universitat Autonoma de Barcelona
pilar@iiia.csic.es

Abstract. We introduce Multimodal Logics of Normative Systems as a contribu-
tion to the development of a general logical framework for reasoning about nor-
mative systems over logics for Multi-Agent Systems. Given a multimodal logic L,
for every modality 2i and normative system η, we expand the language adding a
new modality 2

η
i with the intended meaning of 2

η
i φ being ”φ is obligatory in the

context of the normative system η over the logic L”. In this expanded language
we define the Multimodal Logic of Normative Systems over L, for any given set
of normative systems N , and we give a sound and complete axiomatisation for
this logic, proving transfer and model checking results. The special case when L
and N are axiomatised by sets of Sahlqvist or shallow modal formulas is studied.

Keywords: Fusions of Logics, Multimodal Logics, Normative Systems, Multi-Agent
Systems, Model Theory, Sahlqvist Formulas

1 Introduction

Recent research on the logical foundations of Multi-Agent Systems (MAS) has cen-
tered its attention in the study of normative systems. The notion of electronic institution
is a natural extension of human institutions by permitting not only humans but also au-
tonomous agents to interact with one another. Institutions are used to regulate interac-
tions where participants establish commitments and to facilitate that these commitments
are upheld, the institutional conventions are devised so that those commitments can be
established and fulfilled (see [1] for a general reference of the role of electronic institu-
tions to regulate agents interactions in MAS). Over the past decade, normative systems
have been promoted for the coordination of MAS and the engineering of societies of
self-interested autonomous software agents. In this context there is an increasing need
to find a general logical framework for the study of normative systems over the logics
for MAS.

Given a set of states S and a binary accessibility relation R on S, a normative
system η on the structure (S, R) could be understood as a set of constraints η ⊆ R on
the transitions between states, the intended meaning of (x, y) ∈ η being “the transition
from state x to state y is not legal according to normative system η”. Several formalisms
have been introduced for reasoning about normative systems over specific logics, two
examples are worth noting: Normative ATL (NATL), proposed in [2] and Temporal

COIN–53

Logic of Normative Systems (NTL) in [3]. NATL is an extension to the Alternating-
Time Temporal Logic and contains cooperation modalities of the form << η : C >> φ
with the intended interpretation that “C has the ability to achieve φ within the context of
the normative system η”. NTL is a conservative generalization of the Branching-Time
Temporal Logic CTL. In NTL, the path quantifiers A (“on all paths...”) and E (“on
some path...”) are replaced by the indexed deontic operators Oη (“it is obligatory in the
context of the normative system η that..”) and Pη (“it is permissible in the context of
the normative system η that...”).

The Multimodal Logic of Normative Systems introduced in this article is a contribu-
tion to define a general logical framework for reasoning about normative systems over
logics for MAS, for this purpose we generalize to arbitrary logics the approaches taken
in [2] and [3]. At the moment, we are far from obtaining a unique formalism which
addresses all the features of MAS at the same time, but the emerging field of combining
logics is a very active area and has proved to be successful in obtaining formalisms
which combine good properties of the existing logics. In our approach, we regard the
Logic of Normative Systems over a given logic L, as being the fusion of logics obtained
from L and a set of normative systems over L, this model-theoretical construction will
help us to understand better which properties are preserved under combinations of log-
ics over which we have imposed some restrictions and to apply known transfer results
(for a general account on the combination of logics, we refer to [4] and [5], and as
a general reference on multimodal logic, to [6]). There are some advantages of using
these logics for reasoning about MAS: it is possible to compare whether a normative
system is more restrictive than the other, check if a certain property holds in a model
of a logic once a normative system has restricted its accessibility relation, model the
dynamics of normative systems in institutional settings, define a hierarchy of normative
systems (and, by extension, a classification of the institutions) or present a logical-based
reasoning model for the agents to negotiate over norms.

This paper is structured as follows. In Section 2 we present an example in order
to motivate the introduction of the general framework. In Section 3 we give a sound
and complete axiomatisation for the Multimodal Logic of Normative Systems, proving
transfer results and we address a complexity issue for model checking. In Section 4 we
restrict our attention to logics with normative systems that define elementary classes
of modal frames, we have called them Elementary Normative Systems (ENS) and we
prove completeness and canonicity results for them. Elementary classes include a wide
range of formalisms used in describing MAS, modelling different aspects of agenthood,
some temporal logics, logics of knowledge and belief, logics of communication, etc.
Finally, in Section 5 we come back to our first example in Section 2, showing how our
framework can be applied to multiprocess temporal structures, Section 6 is devoted to
future work.

2 Multiprocess Temporal Frames and Normative Systems

In a multi-agent institutional environment, in order to allow agents to successfully in-
teract with other agents, they share the dialogic framework. The expressions of the
communication language in a dialogic framework are constructed as formulas of the

COIN–54

type ι(αi : ρi, αj : ρj , φ, τ), where ι is an illocutionary particle, αi and αj are agent
terms, ρi and ρj are role terms and τ is a time term. An scene is specified by a graph
where the nodes of the graph represent the different states of the conversation and the
arcs connecting the nodes are labelled with illocution schemes.

Several formalisms for modelling interscene exchanges between agents have been
introduced using multimodal logics. For instance, in [7] the authors provide an alter-
nating offers protocol to specify commitments that agents make to each other when
engaging in persuasive negotiations using rewards. Specifically, the protocol details,
how commitments arise or get retracted as a result of agents promising rewards or mak-
ing offers. The protocol also standardises what an agent is allowed to say or what it can
expect to receive from its opponent. The multimodal logic presented in [7] introduces
modalities 2φ for expressions φ of the communication language.

More formally, given a finite set of propositional atomic formulas, we could define
the set of formulas of such a multimodal communication language in the following way:

φ ::= p |> |⊥ | ¬α | α ∧ α | 2φ1α | . . . | 2φk
α

where p is an atomic propositional formula, α is a propositional formula and φ1, . . . , φk

are formulas of the communication language.
The standard Kripke semantics of these logics can be given by means of multipro-

cess temporal frames. We say that Ξ = (S, Rφ0 , . . . , Rφk
) is a multiprocess temporal

frame if and only if S is a set of states and for every i ≤ k, Rφi is a binary relation on S
such that R =

⋃
i≤k Rφi is a serial relation (that is, for every s ∈ S there is t ∈ S such

that (s, t) ∈ R). A multiprocess temporal model is a Kripke model with a multiprocess
temporal frame.

Let M be a multiprocess temporal model and w ∈ M , the satisfiability relation for
the modalities 2φi is defined as usual:

M,w |= 2φiα iff for all w′ ∈ M such that wRφiw
′

M,w′ |= α

Some examples of the protocols introduced in [7] can be formalised by
formulas of the following form: 2φ1 . . .2φl

⊥. For instance, with the formula
2Offer(i,x)2Offer(i,y)⊥, with x 6= y, we can express that it is not allowed to agent i
to do two different offers one immediately after the other. Let us see now how formulas
like 2φ1 . . .2φl

⊥ can be understood as sets of constraints on the transitions between
states. Given a multiprocess temporal frame Ξ = (S, Rφ0 , . . . , Rφk

), consider the fol-
lowing set of finite sequences of elements of S:

∆Ξ = {(a0, . . . , am) : ∀j < m, ∃i ≤ k such that ajRφiaj+1}

Then, a normative system η on the frame Ξ could be defined as a subset of ∆Ξ . Intu-
itively speaking, a sequence (a0, . . . , am) ∈ η if and only if this sequence of transitions
is not legal according to normative system η. In our previous example, given a frame,
the formula 2Offer(i,x)2Offer(i,y)⊥, can be regarded as the following normative sys-
tem (that is, the following set of finite sequences of the frame):

COIN–55

{
(a0, a1, a2) : such that a0ROffer(i,x)a1 and a1ROffer(i,x)a2

}
Thus, any model satisfying the protocol introduced by 2Offer(i,x)2Offer(i,y)⊥ can
not include such sequences.

When defining an scene in an electronic institution we could be interested in com-
paring different protocols in order to show which of them satisfy some desired proper-
ties. In order to do so we could extend our multimodal language with additional modal-
ities 2

η
φi

, one for each normative system we want to consider. Next section is devoted
to the study of the logical properties of these languages and later on, we will come back
to our example applying this general framework.

3 Multimodal Logics of Normative Systems

We introduce first some notation and basic facts about multimodal languages. A finite
modal similarity type τ = 〈F, ρ〉 consists of a finite set F of modal operators and a
map ρ : F → ω assigning to each f ∈ F a finite arity ρ(f) ∈ ω. Finite propositional
modal languages of type τ are defined in the usual way by using finitely many propo-
sitional variables, the operators in F and the boolean connectives ∧,∨,¬,→,↔,>,⊥.
For monadic modalities we use the usual notation 2f .

A modal finitary structural consequence relation ` of similarity type τ is a relation
between sets of formulas and formulas of the finite propositional modal language of
type τ satisfying:

– φ ∈ Γ ⇒ Γ ` φ
– If Γ ⊆ ∆ and Γ ` φ, then ∆ ` φ
– If Γ ` ∆ and ∆ ` φ, then Γ ` φ
– Γ ` φ ⇒ sΓ ` sφ, for all substitutions s
– If Γ ` φ, then there exist a finite subset Γ0 of Γ with Γ0 ` φ
– ` φ, for every classical tautology φ
– p, p → q ` q
– For every f ∈ F ,

p0 ↔ q0, . . . , pρ(f) ↔ qρ(f) ` f(p0, . . . , pρ(f)) ↔ f(q0, . . . , qρ(f))

And we say that a subset Λ of modal formulas is a classical modal logic of similarity
type τ iff there exists a modal finitary structural consequence relation ` of similarity
type τ such that Λ = Λ(`), where Λ(`) = {φ : ∅ ` φ}. It is said that that Λ is consistent
if ⊥ /∈ Λ.

Given a type τ = 〈F, ρ〉, a Kripke frame of type τ is an structure (S, Rf)f∈F ,
where S is nonempty and for every f ∈ F , Rf is a binary relation on S.

Definition 1 A normative system over a Kripke frame (S, Rf)f∈F is a subset of the
following set of finite sequences of S:

{(a0, . . . , am) : ∀j < m, ∃f ∈ F such that ajRfaj+1}

COIN–56

Observe that Definition 1 extends to the multimodal setting the definition of normative
system introduced in Section 2 of [3]. Examples of classical modal logics with seman-
tics based on Kripke frames are Propositional Dynamic Logic (PDL), Alternating-Time
Temporal Logic (ATL) and Computational Tree Logic (CTL), but CTL*, the Full Com-
putational Tree Logic is not a classical modal logic because it is not closed under uni-
form substitution.

Now we introduce in the language a new finite set of symbols N to denote normative
systems. Given a finite propositional modal language of type τ = 〈F, ρ〉, for every
normative system η ∈ N , let τη be the type whose modalities are {fη : f ∈ F} and
τN =

⋃
η∈N τη. For every set of formulas Γ , let us denote by Γ η the set of formulas of

type τη obtained from Γ by substituting every occurrence of the modality f by fη. The
monadic operators 3f are defined in the usual way as abbreviations 3fφ ≡ ¬2f¬φ
and we have also the corresponding 3

η
f .

Given a classical modal logic L with semantics based on Kripke frames, we define
the Multimodal Logic of Normative Systems over L, denoted by LN , as being the
smallest classical modal logic in the expanded language τN which contains L and Lη,
for every η ∈ N .

Theorem 2 Let L be a consistent classical modal logic axiomatised by a set Γ of for-
mulas. Then,

1. ΓN = Γ ∪
⋃
{Γ η : η ∈ N} is an axiomatisation of LN .

2. LN is a conservative extension of L.
3. If L is a decidable logic, then LN is decidable.

Proof: Since we have introduced a finite set of disjoint similarity types {τη : η ∈ N},
we can define the fusion

⊕
< Lη : η ∈ N > of disjoint copies of the logic L. Observe

that, so defined, LN =
⊕

< Lη : η ∈ N > and ΓN is an axiomatisation of LN . Then,
by an early result of Thomason [8], LN is a conservative extension of L. Finally we can
apply Theorem 6.11 of [9], to obtain the corresponding transfer result. 2

In [10] a weak notion of normality is introduced to prove some additional transfer
results for the fusion of logics. Let us assume that our classical modal logics satisfy the
two conditions of Definition 2.5 of [10]:

1. For every f ∈ F , the semantics of f(p0, . . . , pρ(f)) is a monadic first-order for-
mula.

2. For each Rf , there is a derived connective 2f such that the formula 2fp expresses
∀x(yRfx → Px) and is closed under the necessitation rule: If φ ∈ Λ, then 2fφ ∈
Λ.

This second condition corresponds to the notion of normality, but it is weaker than the
usual normality requirement. Observe that the operators U and S (until and since) of
Temporal Logic are only normal in the first position and not in the second. However,
they satisfy conditions 1. and 2., the binary ordering < can be associated with U and the
binary ordering > can be associated with S, thus condition 1. is satisfied. The monadic
modalities H and G are derivable connectives, that satisfy the requirement of condition
2.

COIN–57

Following the lines of the proof of Theorem 2, by using Theorems 3.6 and 3.10 of
[10], we can obtain the following transfer theorem:

Theorem 3 Let L be a consistent classical modal logic axiomatised by a set Γ of for-
mulas and such that satisfies conditions 1. and 2. above. Then, If L is complete and
sound over the class of frames C, then LN is also complete and sound over the class of
frames

⊕
< Cη : η ∈ N >.

As an application of Theorems 2 and 3 we obtain that the Multimodal Logic of
Normative Systems over the logics CTL and PDL, has a sound and complete axioma-
tisation, is decidable and has the Finite Model Property, because CTL and PDL are
decidable and complete over the class of finite frames.

We end this section by introducing a model checking result. Given a frame
Ξ = (S, Rf)f∈F , we say that a subset of S is connected if for every s, t ∈ S,

(s, t) ∈ (
⋃ {

(Rf ∪R−1
f : f ∈ F

}
)∗, where for any relation R, R∗ denotes the transi-

tive closure of R. We say that the frame Ξ is connected if its domain S is a connected
set. Observe that, for every classical modal logic L that satisfies conditions 1. and 2.
stated above and it is complete with respect to a class of connected frames, by Theorem
3, the Multimodal Logic of Normative Systems over L is also complete with respect to
a class of connected frames.

Theorem 4 Let L be a classical modal logic in a finite similarity type τ = 〈F, ρ〉 and
let (S, Rη

f)f∈F,η∈N be a finite model of the Multimodal Logic of Normative Systems
over L such that the restriction of the model (S, Rη

f)f∈F,η∈N to the similarity type τη

is connected. Then, the complexity of model checking a formula φ of type τN is

O(
∑

η∈N mη + n · k) +
∑

η∈N ((O(k) + O(n)) · CL(mη, n, k))

where mη =
∑

f∈F

∣∣∣Rη
f

∣∣∣, n = |S|, k is the length of the formula φ and CL(mη, n, k)
is the complexity of model checking for logic L as a function of mη, n and k.

Proof: By Theorem 2, LN is a conservative extension of L and for every η ∈ N the
restriction of the model (S, Rη

f)f∈F,η∈N to the similarity type τη is a model of L and is
connected by assumption. This fact allows us to generalize the result on temporal logics
of Theorem 5.2 of [11]. We can express the complexity of a combined model checker
for LN in terms of a model checker for L. 2

For example, in the case of the Multimodal Logic of Normative Systems over CTL,
the overall cost of the model checker for this logic is linear in the size of the model and
in the length of the formula.

4 Elementary Normative Systems

There are some advantages of using Multimodal Logics of Normative Systems for rea-
soning about MAS: it is possible to compare whether a normative system is more re-
strictive than the other, check if a certain property holds in a model of a logic once a

COIN–58

normative system has restricted its accessibility relation, model the dynamics of norma-
tive systems in institutional settings, define a hierarchy of normative systems (and, by
extension, a classification of the institutions) or present a logical-based reasoning model
for the agents to negotiate over norms. Up to this moment we have introduced an exten-
sional definition of normative system (see Definition 1), in this section we present our
first attempt to classify normative systems, we restrict our attention to normative sys-
tems defined by certain sets of first-order formulas, but only over some class of normal
multimodal logics with standard Kripke semantics.

The choice of Sahlqvist formulas in this section is due, on the one hand, to the fact
that a wide range of formalisms for MAS can be axiomatised by a set of such formulas
(see next section). On the other hand, for the good logical properties of these logics
(canonicity, transfer results, etc.). In Section 3 we have presented a general setting for
dealing with any classical modal logic. Now, we focus only on some particular kind
of logics. We want to study the specific properties of their normative systems that can
be proved by using only the fact that these logics are axiomatised by sets of Sahlqvist
formulas.

Given a set of modal formulas Σ, the frame class defined by Σ is the class of all
frames on which each formula in Σ is valid. A frame class is modally definable if there
is a set of modal formulas that defines it, and it is said that the frame class is elementary
if it is defined by a first-order sentence of the frame correspondence language (the first-
order language with equality and one binary relation symbol for each modality). An
Elementary Normative System (ENS) is a propositional modal formula that defines an
elementary class of frames and a normative system in any frame.

Throughout this and next section we assume that our modal languages have standard
Kripke semantics and their modal similarity types have only a finite set of monadic
modalities {2f : f ∈ F} and a finite set of propositional variables. Given a classical
modal logic L and a set of Elementary Normative Systems N over L, for every η ∈ N
we generalize the notion introduced in Section 3 by defining the Multimodal Logic
of Normative Systems over L and N , denoted by LN , as being the smallest normal
logic in the expanded language which contains L, N and every Lη. We now present a
sound and complete axiomatisation and prove some transfer results in the case that L
is axiomatised by a set of Sahlqvist formulas and N is a set of Sahlqvist formulas. We
denote by L(η) the smallest normal logic of similarity type τη which includes Lη∪{η}.

Definition 5 (Sahlqvist formulas) A modal formula is positive (negative) if every oc-
currence of a proposition letter is under the scope of an even (odd) number of negation
signs. A Sahlqvist antecedent is a formula built up from >,⊥, boxed atoms of the form
2i1 . . .2il

p, for ij ∈ I and negative formulas, using conjunction, disjunction and dia-
monds. A Sahlqvist implication is a formula of the form φ → ϕ, when φ is a Sahlqvist
antecedent and ϕ is positive. A Sahlqvist formula is a formula that is obtained from
Sahlqvist implications by applying boxes and conjunction, and by applying disjunctions
between formulas that do not share any propositional letters.

Observe that ⊥ and > are both Sahlqvist and ENS formulas. Intuitively speaking,
⊥ is the trivial normative system, in⊥ every transition is forbidden in every state and in
> every action is legal. In the sequel we assume that for every set N of ENS, > ∈ N .

COIN–59

Theorem 6 Let L be a classical normal modal logic axiomatised by a set Γ of Sahlqvist
formulas and N a set of ENS Sahlqvist formulas, then:

1. ΓN = Γ ∪N ∪
⋃
{Γ η : η ∈ N} is an axiomatisation of LN .

2. LN is complete for the class of Kripke frames defined by ΓN .
3. LN is canonical.
4. If L and Lη are consistent, for every η ∈ N , and P is one of the following proper-

ties:
– Compactness
– Interpolation Property
– Halldén-completeness
– Decidability
– Finite Model Property1

then LN has P iff L and L(η) have P, for every η ∈ N .

Proof: 1 − 3 follows directly from the Sahlqvist’s Theorem. The main basic idea of
the proof of 4 is to apply the Sahlqvist’s Theorem to show first that for every η ∈ N ,
the smallest normal logic of similarity type τη which includes Γ η ∪ {η} is L(η), is a
complete logic for the class of Kripke frames defined by Γ η ∪{η} and is canonical (ob-
serve that this logic is axiomatised by a set of Sahlqvist formulas). Now, since for every
Elementary Normative System η ∈ N we have introduced a disjoint modal similarity
type τη, we can define the fusion of the logics

⊕
< L(η) : η ∈ N >. It is enough

to check that LN =
⊕

< L(η) : η ∈ N > (remark that L> = L) and using trans-
fer results for fusions of consistent logics (see for instance [12] and [10]) we obtain
that LN is a conservative extension and that decidability, compactness, interpolation,
Hállden-completeness and the Finite Model Property are preserved. 2

We study now the relationships between normative systems. It is interesting to see
how the structure of the set of all the ENS over a logic L (we denote it by N(L)) inherits
its properties from the set of first-order counterparts. A natural relationship could be
defined between ENS, the relationship of being one less restrictive than another, let us
denote it by �. Given η, η′, it is said that η � η′ iff the first-order formula φη′ → φη is
valid (when for every η ∈ N , φη is the translation of η). The relation � defines a partial
order on N(L) and the pair (N(L),�) forms a complete lattice with least upper bound
⊥ and greatest lower bound > and the operations ∧ and ∨.

Now we present an extension of the Logic of Elementary Normative Systems over a
logic L with some inclusion axioms and we prove completeness and canonicity results.
Given a set N of ENS, let IN+

be the following set of formulas:{
2i1 . . .2il

p → 2
η
i1

. . .2η
il
p : ij ∈ I, η ∈ N

}
and IN∗

the set:{
2

η′

i1
. . .2η′

il
p → 2

η
i1

. . .2η
il
p : ij ∈ I, η � η′, η, η′ ∈ N

}
1 For the transfer of the Finite Model Property it is required that there is a number n such that

each L(η) has a model of size at most n.

COIN–60

Corollary 7 Let L be a normal modal logic axiomatised by a set Γ of Sahlqvist formu-
las and N a set of ENS Sahlqvist formulas, then:

1. ΓN+
= ΓN ∪ IN+

is an axiomatisation of the smallest normal logic with contains
LN and the axioms IN+

, is complete for the class of the Kripke frames defined by
ΓN+

and is canonical. We denote this logic by LN+
.

2. ΓN∗
= ΓN ∪ IN∗ ∪ IN+

is an axiomatisation of the smallest normal logic with
contains LN and the axioms IN∗ ∪ IN+

, is complete for the class of the Kripke
frames defined by ΓN∗

and is canonical. We denote this logic by LN∗
.

3. If LN is consistent, both LN+
and LN∗

are consistent.

Proof: Since for every ij ∈ I every η, η′ ∈ N , the formulas 2i1 . . .2il
p →

2
η
i1

. . .2η
il
p and 2

η′

i1
. . .2η′

il
p → 2

η
i1

. . .2η
il
p are Sahlqvist, we can apply Theorem 6.

In the case that LN is consistent, consistency is guaranteed by the restriction to pairs
η � η′ and for the fact that η and η′ are ENS. 2

Observe that for every frame (S, Rf , Rη
f)f∈F,η∈N of the logic LN∗

,

Rη
i1
◦ . . . ◦Rη

il
⊆ Ri0 ◦ . . . ◦Ril

,

and for η � η′, Rη
i1
◦ . . . ◦Rη

il
⊆ Rη′

i1
◦ . . . ◦Rη′

i1
, where ◦ is the composition relation.

We end this section introducing a new class of modal formulas defining elementary
classes of frames, the shallow formulas (for a recent account of the model theory of
elementary classes and shallow formulas we refer the reader to [13]).

Definition 8 A modal formula is shallow if every occurrence of a proposition letter is
in the scope of at most one modal operator.

It is easy to see that every closed formula is shallow and that the class of Sahlqvist
and shallow formulas don’t coincide: 21(p∨ q) → 32(p∧ q) is an example of shallow
formula that is not Sahlqvist. Analogous results to Theorem 6 and Corollary 7 hold
for shallow formulas, and using the fact that every frame class defined by a finite set
of shallow formulas admits polynomial filtration, by Theorem 2.6.8 of [13], if L is a
normal modal logic axiomatised by a finite set Γ of shallow formulas and N is a finite
set of ENS shallow formulas, then the frame class defined by ΓN has the Finite Model
Property and has a satisfiability problem that can be solved in NEXPTIME.

5 Some examples

Different formalisms have been introduced in the last twenty years in order to model
particular aspects of agenthood (temporal Logics, logics of knowledge and belief, log-
ics of communication, etc). We show in this section that several logics proposed for de-
scribing Multi-Agents Systems are axiomatised by a set of Sahlqvist or shallow formu-
las and therefore we could apply our results to the study of their normative systems. Let
us come back to our previous example of Section 2, the multiprocess temporal frames.
We have introduced first this basic temporal logic of transition systems, not because it is

COIN–61

specially interesting in itself, but because is the logic upon which other temporal logics
are built and because it is a clear and simple example of how our framework can work.

Remember that Ξ = (S, R0, . . . , Rk) is a multiprocess temporal frame if and only
if S is a set of states, for every i ≤ k, Ri is a binary relation on S such that R =

⋃
i≤k Ri

is a serial relation (that is, for every s ∈ S there is t ∈ S such that (s, t) ∈ R). It is
easy to see that Ξ = (S, R0, . . . , Rk) is a multiprocess temporal frame if and only if
the formula of the corresponding multimodal language

30> ∨ . . . ∨3k> (MPT)

is valid in Ξ . Let us denote by MPTL the smallest normal logic containing axiom
(MPT). For every nonempty tuple (i1, . . . , il) such that for every j ≤ l, ij ≤ k, consider
the formula 2i1 . . .2il

⊥. Observe that every formula of this form is shallow and ENS.
We state now without proof a result on the consistency of this kind of normative systems
over MPTL that will allow us to use the logical framework introduced in the previous
section.

Proposition 9 Let N be a finite set of normative systems such that for every η ∈ N ,
there is a finite set X of formulas of the form 2i1 . . .2il

⊥ such that η is the conjunction
of all the formulas in X , ⊥ /∈ X and the following property holds:

If 2i1 . . .2il
⊥ /∈ X , there is j ≤ k such that 2i1 . . .2il

2j⊥ /∈ X .

Then, the logic MPTLN is consistent, complete, canonical, has the Finite Model Prop-
erty and has a satisfiability problem that can be solved in NEXPTIME.

In general, a normal multimodal logic can be characterized by axioms that are added
to the system Km, the class of Basic Serial Multimodal Logics is characterized by
subsets of axioms of the following form, requiring that AD(i) holds for every i,

– 2ip → 3ip AD(i)
– 2ip → p AT(i)
– 2ip → 2jp AI(i)
– p → 2i3jp AB(i,j)
– 2ip → 2j2kp A4(i,j,k)
– 3ip → 2j3kp A5(i,j,k)

An example of a Kripke frame of MPTL in which none of the previous axioms
is valid is Ξ = ({0, 1, 2} , {(0, 1), (2, 0)} , {(1, 2)}). In particular, our example shows
that the Multimodal Serial Logic axiomatised by {AD(i) : i ≤ k}, is a proper exten-
sion of MPTL. Observe that any logic in the class BSML is axiomatised by a set of
Sahlqvist formulas, therefore we could apply the framework introduced before to com-
pare elementary normative systems on these logics.

Another type of logics axiomatised by Sahlqvist formulas are many Multimodal
Epistemic Logics. Properties such as positive or negative introspection can be expressed
by 2ip → 2i2kp and ¬2ip → 2i¬2ip respectively. And formulas like 2ip → 2jp
allow us to reason about multi-degree belief.

COIN–62

The Minimal Temporal Logic Kt is axiomatised by the axioms p → HFp and
p → GPp which are also Sahlqvist formulas. Some important axioms such as linear-
ity Ap → GHp ∧ HGp, or density GGp → Gp, are Sahlqvist formulas, and we can
express the property that the time has a beginning with an ENS. By adding the next-
time modality, X , we have an ENS which expresses that every instant has at most one
immediate successor.

6 Future work

Along this work, in Sections 4 and 5, we have dealt only with multimodal languages
with monadic modalities, but by using the results of Goranko and Vakarelov in [14] on
the extension of the class of Sahlqvist formulas in arbitrary polyadic modal languages to
the class of inductive formulas, it would be possible to generalize our results to polyadic
languages.

We will proceed to apply our results to different extended modal languages, such as
reversive languages with nominals (in [14], the elementary canonical formulas in these
languages are characterized) or Hybrid Logic (in [13], Hybrid Sahlqvist formulas are
proved to define elementary classes of frames). Future work should go beyond Elemen-
tary Normative Systems and consider the study of sets of normative systems expressed
by other formal systems.

Acknowledgements The author wishes to express her thanks to Carles Sierra, Pablo
Noriega and the reviewers of this paper for their helpful comments. The author was
partially supported by Project TIN2006-15662-C02-01.

References

1. P. NORIEGA. Fencing the Open Fields: Empirical Concerns on Electronic Institutions, in
O. BOISSIER, V. DIGNUM, G. LINDEMANN, E. MATSON, S. OSSOWSKI, J. PADGET, J.
S. SICHMAN AND J. VÁZQUEZ-SALCEDA (ed.) Coordination, Organizations, Institutions,
and Norms in Multi-Agent Systems, Springer LNCS 3913 (2006) 82–98.

2. W. VAN DER HOEK AND M. WOOLDRIDGE. On obligations and normative ability: towards
a logical analysis of the social contract, Journal of Applied Logic, 3 (2005) 396–420.

3. T. ÅGOTNES, W. VAN DER HOEK, J.A. RODRÍGUEZ-AGUILAR, C. SIERRA AND M.
WOOLDRIDGE. On the Logic of Normative Systems, Twentieth International Joint Con-
ference on AI, IJCAI07, AAAI Press (2007) 1175–1180.

4. D. M. GABBAY Fibring Logics, Oxford Logic Guides, 38 (1999).
5. A. KURUCZ. Combining Modal Logics, in P. BLACKBURN, J. VAN BENTHEM AND F.

WOLTER (ed.) Handbook of Modal Logic Chapter 15, Elsevier (2007) 869–928.
6. P. BLACKBURN, J. VAN BENTHEM AND F. WOLTER (ed.) Handbook of Modal Logic Chap-

ter 15, Elsevier (2007).
7. S. D. RAMCHURN, C.SIERRA, LL. GODO, N. R. AND JENNINGS, N. R. 2006. NEGO-

TIATING USING REWARDS. In Proceedings of the Fifth international Joint Conference on
Autonomous Agents and Multiagent Systems (Hakodate, Japan, May 08 - 12, 2006). AA-
MAS ’06. ACM Press, New York, NY, 400–407.

COIN–63

8. S. K. THOMASON. Independent Propositional Modal Logics, Studia Logica, 39 (1980) 143–
144.

9. F. BAADER, S. GHILARDI AND C. TINELLI. A new combination procedure for the word
problem that generalizes fusion decidability results in modal logics, Information and Com-
putation, 204 (2006) 1413–1452.

10. M. FINGER, M. A. WEISS. The Unrestricted Combination of Temporal Logic Systems,
Logic Journal of the IGPL, 10 (2002) 165–189.

11. M. FRANCESCHET, A. MONTANARI AND M. DE RIJKE. Model Checking for Combined
Logics with an Application to Mobile Systems Automated Software Engineering, 11 (2004)
289–321.

12. F. WOLTER. Fusions of modal logics revisited, in M. KRACHT, M. DE RIJKE, H. WANSING

AND M. ZAKHARYASHEV (eds.) Advances in Modal Logic CSLI, Stanford, CA. (1998).
13. B. D. T. CATE. Model Theory for extended modal languages, Ph.D Thesis, Institute for

Logic, Language and Computation, Universiteit van Amsterdam, ILLC Dissertation Series
DS-2005-01 (2005).

14. V. GORANKO AND D. VAKARELOV. Elementary Canonical Formulae: extending
Sahlqvist’s Theorem, Annals of Pure and Applied Logic, 141 (2006) 180–217.

COIN–64

A Distributed Architecture for Norm
Management in Multi-Agent Systems

A. Garćıa-Camino1, J. A. Rodŕıguez-Aguilar1, and W. Vasconcelos2

1IIIA, Artificial Intelligence Research Institute 2Dept. of Computing Science
CSIC, Spanish Research Council University of Aberdeen

Campus UAB, 08193 Bellaterra, Spain Aberdeen AB24 3UE, UK
{andres,jar}@iiia.csic.es wvasconcelos@acm.org

Abstract. Norms, that is, obligations, prohibitions and permissions,
are useful abstractions to facilitate coordination in open, heterogeneous
multi-agent systems. We observe a lack of distributed architectures and
non-centralised computational models for norms. We propose a model,
viz., normative structures, to regulate the behaviour of autonomous agents
taking part in simultaneous and possibly related activities within a multi-
agent system. This artifact allows the propagation of normative positions
(that is, the obligations, prohibitions and permissions associated to indi-
vidual agents) as a consequence of agents’ actions. Within a normative
structure, conflicts may arise – one same action can be simultaneousely
forbidden and obliged/permitted. This is due to the concurrent and
dynamic nature of agents’ interactions in a multi-agent system. How-
ever, ensuring conflict freedom of normative structures at design time
is computationally intractable, and thus real-time conflict resolution is
required: our architecture support the distributed management of nor-
mative positions, including conflict detection and resolution.

1 Introduction

An essential characteristic of open, heterogeneous multi-agent systems (MASs)
is that agents’ interactions are regulated to comply with the conventions of the
system. Norms, that is, obligations, prohibitions and permissions, can be used
to represent such conventions and hence as a means to regulate the observable
behaviour of agents [3,18]. There are many contributions on the subject of norms
from sociologists, philosophers and logicians (e.g., [10,18]). Recently, proposals
for computational realisations of normative models have been presented. Some
of them operate in a centralised manner (e.g. [5,9,13]) which creates bottlenecks
and single points-of-failure. Others (e.g. [3,12]), although distributed, aim at
the regulation of communication between agents without taking into account
that some of the normative positions (i.e., their permissions, prohibitions and
obligations) generated as a result of agent interaction may also affect other agents
not involved in the communication.

The class of MASs we envisage consists of multiple, simultaneous and pos-
sibly related agent interactions, or activities. Each agent may simultaneously
participate in several activities, and may change from one activity to another.

COIN–65

An agent’s actions within one activity may have consequences – These are cap-
tured as normative positions that define, influence or constrain the agent’s future
behaviour. For instance, a buyer agent who ran out of credit may be forbidden
from making further offers, or a seller agent is obliged to deliver the goods after
closing a deal. Within a MAS normative conflicts may arise due to the dynamic
nature of the MAS and simultaneous agents’ actions. A normative conflict arises,
for instance, when an action is simultaneously prohibited and obliged. Such con-
flicts ought to be identified and resolved. This analysis of conflicts can be carried
out in each activity. However, ensuring conflict-freedom on a network of agent
conversations (or activities) at design time is computationally intractable as
shown in [7].

We propose means to handle conflicting normative positions in open and
regulated MASs in a distributed manner. In realistic settings run-time conflict
detection and resolution is required. Hence, we require a tractable algorithm for
conflict resolution along the lines of the one presented in [7]. The only modifi-
cation required for that algorithm is that it should return a list of updates (or
normative commands), that is, the norms to be added and removed, instead of
the resulting set of norms obtained from the updates.

We need an architecture to incorporate the previously mentioned algorithm.
Among other features, we require our architecture to be distributed, regulated,
open, and heterogeneous. These features are included in other architectures such
as AMELI [3]. However, the propagation of normative positions to several agents
or to an agent not directly involved in the interaction and the resolution of
normative conflicts has not yet been addressed.

We thus propose an extension of the architecture presented in [3] fulfilling
these features. We extend AMELI by including a new type of agent, viz., the nor-
mative managers, also adding interaction protocols with this new type of agent,
allowing for a novel conceptual differentiation of administrative (or “internal”)
agents. Thus, the main contribution of the paper is a distributed architecture to
regulate the behaviour of autonomous agents and manage normative aspects of a
MAS, including the propagation of normative positions to different conversations
and the resolution of normative conflicts.

This paper is organised as follows. In Section 2 we present a scenario to
illustrate and motivate our approach. Normative structures are introduced in
Section 3. Section 4 presents our distributed architecture and, in Section 5, we
comment on related work. Finally, we draw conclusions and report on future
work in Section 6.

2 Scenario

We make use of a contract scenario in which companies come together at an
online marketplace to negotiate and sign contracts in order to get certain tasks
done. The overall transaction procedure may be organised as five distributed
activities, represented as nodes in the diagram in Figure 1. The activities involve
different participants whose behaviour is coordinated through protocols.

COIN–66

After registering at the marketplace, clients and suppliers get together in
an activity where they negotiate the terms of their contract, i.e. actions to
be performed, prices, deadlines and other details. The client will then partici-
pate in a payment activ-
ity, verifying his credit-
worthiness and instruct-
ing his bank to transfer
the correct amount of money.
The supplier in the mean-
time will delegate to spe-
cialised employees the ac-
tions to be performed in

Exit
Registration

Payment

Work

Negotiation

Coordination Level

Fig. 1: Activity Structure of the Scenario

the work activity. Finally, agents can leave the marketplace conforming to a
predetermined exit protocol. The marketplace accountant participates in most
of the activities as a trusted provider of auditing tools.

3 Normative Structure

We address a class of MASs in which interactions are carried out via illocution-
ary speech acts [14] exchanged among participating agents, along the lines of
agent communication languages such as FIPA-ACL [6]. In these MASs, agents
interact according to protocols which are naturally distributed. We observe that
in some realistic scenarios, speech acts in a protocol may have an effect on other
protocols. Certain actions bring about changes in the normative positions of
agents – their “social burden”: what each agent is permitted, obliged and for-
bidden to do. We use the term normative command to refer to the addition or
removal of a normative position. Henceforth we shall refer to the application of
a normative command as the addition or removal of a given normative position.
Occurrences of normative positions in one protocol may also have consequences
for other protocols.

We propose to extend the notion of MAS, regulated by protocols, with an
extra layer called normative structure (NS). This layer consists of normative
scenes, which represent the normative state, i.e. the set of illocutions uttered
and normative positions, of the agents participating in a given activity, and
normative transitions, which specifies by means of a rule the conditions under
which some normative positions are to be generated or removed in the given
normative scenes. The formal definition of normative structure is presented in
[7], and here we informally discuss it.

Fig. 2 shows an example of how a normative structure relates with the coor-
dination level. A normative transition is specified between the negotiation and
payment activities denoting that there is a rule that may be activated with the
state of negotiation activity and that may modify the state of the payment ac-
tivity. In our example, the rule would be that whenever a client accepts an offer
of a supplier, an obligation on the former to pay the latter is created in the
payment activity. The rule connecting the payment and the work activity would

COIN–67

specify that whenever a client fulfils its payment obligation, an obligation on the
worker to complete the contracted task is generated in the work activity.

We are concerned with the propagation and distribution of normative po-
sitions within a network of distributed, normative scenes as a consequence of
agents’ actions. In [7] the
formal semantics of NSs
was defined via a map-
ping to Coloured Petri Nets.
Conflicts may arise after
the addition of new for-
mulae. Hence, if a new
norm does not generate
any conflict then it can be
directly added. If a con-
flict arises, the algorithm
presented in [11] is used
to decide whether to ig-
nore the new normative
position or to remove the

Payment

Work
Normative Level

Exit
Registration

Payment

Work

Negotiation

Coordination Level

nt

Negotiation

Fig. 2: Normative Structure and Coordination Level

conflicting ones.

4 Proposed Distributed Architecture

We propose an architecture to address the regulation of the behaviour of au-
tonomous agents and the management of the normative state(s) of the MASs,
including the propagation of normative positions and the resolution of normative
conflicts. We assume the existence of a set of agents that interact in order to
pursue their goals – we do not have control on these agents’ internal functioning,
nor can we anticipate it. We require the following features of our architecture:

Regulated The main goal of our architecture is to restrict the effects of agent
behaviour in the specified conditions without hindering the autonomy of
external agents.

Open Instead of reprogramming the MAS for each set of external agents, we ad-
vocate persistent, longer-lasting MASs where agents can join and leave them.
However, agents’ movements may be restricted in certain circumstances.

Heterogeneous We leave to each agent programmer the decision of which agent
architecture include in each external agent. We make no assumption concern-
ing how agents are implemented.

Mediatory As we do not control external agents internal functioning, in order
to avoid undesired or unanticipated interactions, our architecture should
work as a “filter” of messages between agents.

Distributed To provide the means for implementing large regulated MAS, we
require our architecture to be distributed in a network and therefore spread-
ing and alleviating the workload and the message traffic.

COIN–68

Norm propagative Although being distributed, agent interactions are not iso-
lated and agent behaviour may have effects, in the form of addition or re-
moval of normative positions, in later interactions possibly involving different
agents.

Conflict Resolutive Some conflicts may arise due to normative positions being
generated as result of agent’s behaviour. Since ensuring a conflict-free MAS
at design time is computationally intractable, we require that resolution of
normative conflicts would be applied by the MAS. This approach promotes
consistency since there is a unique, valid normative state established by the
system instead of a lot of different state versions due to a conflict resolution
at agent’s level.

To accomplish these requirements, we extend AMELI, the architecture pre-
sented in [3]. That architecture is divided in three layers:

Autonomous agent layer It is formed by the set of external agents taking
part in the MAS.

Social layer An infrastructure that mediates and facilitates agents’ interac-
tions while enforcing MAS rules.

Communication layer In charge of providing a reliable and orderly transport
service.

External agents intending to communicate with other external agents need to
redirect their messages through the social layer which is in charge of forwarding
the messages (attempts of communication) to the communication layer. In spec-
ified conditions, erroneous or il-
licit messages may be ignored by
the social layer in order to pre-
vent them from arriving at their
addressees.
The social layer presented in [3]
is a multi-agent system itself
and the agents belonging to it
are called internal agents. We
propose to extend this architec-
ture by including a new type of
agent , the normative manager
(NM1 to NMp in fig. 3), and
by adding protocols to accom-
modate this kind of agent. We

Autonomous
Agents
Layer

Communication Layer

. . .

. . .

.

.

Distributed,
Social
Layer

Pr
iv
at
e

Pu
bl
ic

A1 Ai An

G1 Gi Gn

SM1 SMm

NM1 NMp

Fig. 3: AMELI+architecture

call AMELI+ the resulting architecture.
In AMELI+, internal (administrative) agents are of one of the following types:

Governor (G) Internal agent representing an external agent, that is, maintain-
ing and informing about its social state, deciding or forwarding whether an
attempt from its external agent is valid. One per external agent.

COIN–69

Scene Manager (SM) Internal agent maintaining the state of the activity1,
deciding whether an attempt to communicate is valid, notifying any changes
to normative managers and resolving conflicts.

Normative Manager (NM) This new type of internal agent receives norma-
tive commands and may fire one or more normative transition rules.

In principle, only one NM is needed if it manages all the normative transition
rules. However, in order to build large MAS and avoid bottlenecks, we propose
the distribution of rules into several NMs.

To choose the granularity of the normative layer, i.e. to choose from one
single NM to one NM per normative transition, is an important design de-
cision that we leave for
the MAS designers. Af-
ter choosing the granu-
larity, the NMs are as-
signed to handle a pos-
sibly unary set of nor-
mative transitions. Recall
that each normative tran-
sition includes a rule. The
SMs involved in the firing
of the rules are given a
reference to the NM that
manages the rule, i.e. its

NMi

Fig. 4: Channels involved in the activation of a rule

address or identifier depending on the communication layer. External agents
may join and leave activities, always following the conventions of the activities.
In these cases, its governor registers (or deregisters) with the SM of that scene.

4.1 Social Layer Protocols

Fig. 4 shows the communication within the social layer – it only occurs along
the following types of channels:

Agent / Governor This type of channel is used by the external agents sending
messages to their respective governors to request information or to request
a message to be delivered to another external agent (following the norms of
the MAS). Governors use this type of channel to inform their agents about
new normative positions generated.

Governor / Scene Manager Governors use this type of channel to propagate
unresolved attempts to communicate or normative commands generated as
a result of such attempts. SMs use this type of channel to inform governors
in their scenes about new normative commands generated as a result of
attempts to communicate or conflict resolution.

1 Hereafter, activities are also referred to as scenes following the nomenclature of
AMELI.

COIN–70

Scene Manager / Normative Manager This type of channel is used by SMs
to propagate normative commands that NMs may need to receive and the
ones resulting from conflict resolution. NMs use this channel to send norma-
tive commands generated by the application of normative transition rules.

Fig. 5 shows an enactment of a MAS in our architecture. Agents send
attempts to governors (messages 1, 4 and 7) who, after finding out the
normative commands
attempts generate, prop-
agate the new norma-
tive commands to SMs1

and SMs2 (messages
2, 5 and 8) who, in
turn, propagate them
to the NM (messages
3, 6 and 9). As a nor-
mative transition rule
is fired in the NM, a

NMjNMi

SMs1 SMs2

GAnne GAnneGBill GBill

Anne AnneBill Bill

SMs3

Gpainter1 Gpaintern

painternpainter1

Fig. 5: Enactment of a normative transition rule

normative command is sent to SMs3 (message 10). After resolving any conflicts,
SMs3 sends the new normative commands to all the involved governors (mes-
sages 11 and 11′) who, in turn, send them to their represented agents (messages
12 and 12′).

As the figure of the previous example shows, our architecture propagates
attempts to communicate (and their effects) from agents (shown on the bottom
of Fig 5) to the NMs (shown at the top of the figure). NMs receive events from
several SMs whose managed state may be arbitrarily large. Since NMs only need
the normative commands that may cause any of its rules to fire, NMs subscribe
only to the type of normative commands they are supposed to monitor. For
instance, if a rule needs to check whether there exists a prohibition to paint in
a scene work1 and whether there exists the obligation of informing about the
completion of the painting job, then the NM will subscribe to all the normative
commands adding or removing prohibitions to paint in scene work1 as well as
all normative commands managing obligations to inform about the completion
of the painting job.

In the following algorithms, ∆ refers to essential information for the execution
of the MAS, i.e. a portion of the state of affairs of the MAS that each internal
agent is managing. As introduced above, depending on the type of the internal
agent, it manages a different portion of the state of affairs of the MAS, e.g. a
governor keeps the social state of the agent, and a scene manager keeps the state
of a given scene. These algorithms define the behaviour of internal agents and
are applied whenever a message msg is sent by an agent (agi), a governor (gi),
a SM (smi) or a NM (nmi) respectively.

When an external agent sends to its governor an attempt to communicate
(messages 1, 4 and 7 in Fig. 5), the governor follows the algorithm of Fig. 6(a).
This algorithm checks whether the attempt to communicate generates normative

COIN–71

algorithm G process att(agi,msg)
input agi,msg
output ∅
begin
01 new cmmds := get norm cmmds(msg,∆)
02 foreach c ∈ new cmmds do
03 ∆ := apply(c,∆)
04 sm := scene manager(c)
05 send(c, agi)
06 send(c, sm)
07 endforeach
08 if new cmmds = ∅ then
09 sm := scene manager(msg)
10 send(msg, sm)
11 endif
end

(a) G response to an agent attempt

algorithm NM process cmmd(smi,msg)
input smi,msg
output ∅
begin
01 foreach cmmd ∈ msg do
02 ∆ := apply(cmmd,∆)
03 ncs := get RHS from fired rules(∆)
04 foreach c ∈ ncs do
05 sm := scene manager(c)
06 send(c, sm)
07 endforeach
08 foreach
end

(b) NM response to a command

algorithm SM process att(gi,msg)
input gi,msg
output ∅
begin
01 new cmmds := get norm cmmds(msg,∆)
02 foreach c ∈ new cmmds do
03 ∆ := apply(c,∆)
04 send(c, gi)
05 foreach 〈nm, ev〉 ∈ subscriptions do
06 if unify(c, ev, σ) then
07 send(c, nm)
08 endif
09 endforeach
10 endforeach
11 if new cmmds = ∅ then
12 s := scene(msg)
13 c := content(msg)
14 send(rejected(s, c), gi)
15 endif
end

(c) SM response to a forwarded attempt

algorithm SM process cmmd(nmi,msg)
input nmi,msg
output ∅
begin
01 ∆′ := apply(msg,∆)
02 if inconsistent(∆′) then
03 msg := resolve conflicts(∆,msg)
04 endif
05 foreach cmmd ∈ msg do
06 ∆ := apply(cmmd,∆)
07 foreach 〈nm, ev〉 ∈ subscriptions do
08 if unify(c, ev, σ) then
09 send(c, nm)
10 endif
11 endforeach
12 foreach g ∈ governors(cmmd) do
13 send(cmmd, g)
14 endforeach
15 endforeach
end

(d) SM response to a command

Fig. 6. Internal Agents Algorithms

commands (line 1), i.e. it is accepted2. This check may vary depending on the
type of specification and implementation of the scenes: e.g. using Finite State
Machines (FSM), as in [3], or executing a set of rules, as in [9].

If the attempt generates normative commands (line 2), they are applied to
the portion of the state of affairs the governor is currently managing creating a
new partial state (line 3). These normative commands are sent to the external
agent (line 5) and to the scene manager (messages 2, 5 and 8 in Fig. 5) in charge
of the scene where the normative command should be applied (line 6). Otherwise,
the attempt is forwarded to the SM of the scene the attempt was generated in
(line 10).

If the governor accepts the attempt (after the check of line 1), it sends the
SM a notification.The SM then applies the normative command received and
forwards it to the NMs subscribed to that event (messages 3, 6 and 9 in Fig. 5).

However, if the governor does not take a decision, i.e. normative commands
are not generated, the governor sends the attempt to the SM who should decide
whether it is valid or not by following the algorithm of Fig. 6(c). This algorithm,

2 In our approach, an ignored attempt would not generate any normative command.

COIN–72

like the one in Fig. 6(a), checks whether the received attempt generates norma-
tive commands in the current scene state, i.e. the portion of the state of affairs
referring to that scene (line 1). If this is the case (line 2), they are applied to the
current state of the scene (line 3) and forwarded to the governor that sent the
attempt (line 4) and to the NMs subscribed to that normative commands (line
7). Otherwise (line 11), a message informing that the attempt has been rejected
is sent to the governor mentioned (line 14).

In both cases, if the attempt is accepted then the normative manager is noti-
fied and it follows the algorithm of Fig. 6(b) in order to decide if it is necessary
to send new normative commands to other scene managers. This algorithm pro-
cesses each normative command received (line 1) by applying it to the state of
the NM (line 2) and checking which normative transition rules are fired and
obtaining the normative commands generated (line 3). Each of them are prop-
agated to the SM of the scene appearing in the normative command (line 6,
message 10 in Fig. 5).

If normative commands are generated, SMs receive them from the normative
manager in order to resolve possible conflicts and propagate them to the appro-
priate governors. In this case, the SMs execute the algorithm of Fig. 6(d). This
algorithm applies the normative command received on the scene state creating a
temporary state for conflict checking (line 1), then checks if the new normative
command would raise an inconsistency (line 2). If this is the case, it applies
the conflict resolution algorithm presented in [7], returning the set of norma-
tive commands needed to resolve the conflict (line 3). Each normative command
caused by the message sent by the NM or by conflict resolution, is applied to
the scene state (line 6) and it is sent to the subscribed NMs (lines 7-11) and
to the governors (messages 11 and 11’ in Fig. 5) of the agents appearing in the
normative command (lines 12-14).

NMs are notified about the resolution of possible conflicts in order to check
if the new normative commands fire normative transition rules. If NMs receive
this notification, they follow again the algorithm of Fig. 6(b) as explained above.
When governors are notified by a SM about new normative commands, they
apply the normative command received to the normative state of the agent and
notify to its agent about the new normative command (messages 12 and 12’ in
Fig. 5).

In our approach, conflict resolution is applied at the SM level requiring all
normative commands generated by a NM to pass through a SM who resolves
conflicts and routes them. This feature is justified because SMs are the only
agents who have a full representation of a scene and know the agents are partici-
pating in it and which role they are enacting. For example, if a prohibition for all
painters to paint arrives at the work activity, a SM will forward this prohibition
to the governors of the agents participating in that activity with the painter role
and to the governors of all the new painters that join that activity while the
prohibition is active. An alternative approach is to apply conflict resolution at
the level of governor agents, curtailing some of the normative positions of its as-
sociated external agent. However, this type of conflict resolution is more limited

COIN–73

since a governor only maintains the normative state of an agent. For example,
a case that cannot be resolved with this approach is when all agents enacting a
role are simultaneously prohibited and obliged to do something, i.e. when more
than one agent is involved in the conflict.

Another approach would be if governors became the only managers of norma-
tive positions; in this case they would need to be aware of all normative positions
that may affect its agent in the future, i.e. they would have to maintain all the
normative positions affecting any of the roles that its agent may enact in every
existing scene. For instance, a governor of an agent that is not yet enacting a
painter role would also need to receive the normative positions that now applies
to that role even if the agent is not in that scene or is enacting that role yet. This
approach does not help with scalability since a large MAS with various scenes
may generate a very large quantity of normative positions affecting agents in the
future by the mere fact of their entering the MAS.

5 Related Work

The subject of norms has been studied widely in the literature (e.g., [18,16,15]),
and, more recently, much attention is being paid to more pragmatic and imple-
mentational aspects of norms, that is, how norms can be given a computational
interpretation and how norms can be factored in the design and execution of
MASs (e.g. [1,2,5,9,8]).

However, not much work has addressed the management of norms and rea-
soning about them in a distributed manner. Despite the fact that in [4,12] two
languages are presented for the distributed enforcement of norms in MAS, in
both works each agent has a local message interface that forwards legal mes-
sages according to a set of norms. Since these interfaces are local to each agent,
norms can only be expressed in terms of actions of that agent. This is a serious
disadvantage, e.g. when one needs to activate an obligation to one agent due to
a certain message of another agent.

In [17] the authors propose a multi-agent architecture for policy monitoring,
compliance checking and enforcement in virtual organisations (VOs). Their ap-
proach also uses a notion of hierarchical enforcement, i.e. the parent assimilates
summarised event streams from multiple agents and may initiate further ac-
tion on the subordinate agents. Depending on its policies, a parent can override
the functioning of its children by changing their policies. Instead of consider-
ing any notion similar to our scene (multi-agent protocol where the number of
participants may vary) and assigning an agent exclusively dedicated to the man-
agement of one scene, they assign another participant in the VO as parent of a
set of agents. Although the parent would receive only the events it needs to mon-
itor, it may receive them from all the interactions their children are engaging in.
This can be a disadvantage when the number of interactions is large converting
the parents in bottlenecks. Although they mention that conflict resolution may
be accomplished with their architecture, they leave this feature to the VO agent
thus centralising the conflict resolution in each VO. This can also be a disadvan-

COIN–74

tage when the number of interactions is large since the VO agent has to resolve
all the possible conflicts. This would require either all the events flowing through
the VO agent or the VO agent monitoring the state of the whole VO in order to
detect and resolve conflicts. The main theoretical restriction in their approach is
that all the agents involved in a change in a policy must share a common parent
in the hierarchy of the VO. In an e-commerce example, when a buyer accepts a
deal an obligation to supply the purchased item should be added to the seller.
However, as they are different parties, their only common parent is the VO agent
converting the latter in a bottleneck in large e-commerce scenarios.

6 Conclusions and Future Work

We base the architecture presented in this paper in our proposal of normative
structure and conflict resolution of [7]. The notion of normative structure is
useful because it allows the separation of normative and procedural concerns.
We notice that the algorithm presented in that paper is also amenable to the
resolution of normative conflicts in a distributed manner.

The main contribution of this paper is an architecture for the management
of norms in a distributed manner. As a result of the partial enactment of pro-
tocols in diverse scenes, normative positions generated in different scenes can
be used to regulate the behaviour of agents not directly involved in previous
interactions. Furthermore, conflict resolution is applied at a scene level meaning
that resolution criteria involving more than one agent are now possible.

We want to extend normative structures [7], as we use them in our archi-
tecture, along several directions: (1) to handle constraints as part of the norm
language, in particular constraints related with the notion of time; (2) to capture
in the conflict resolution algorithm different semantics relating the deontic no-
tions by supporting different axiomations (e.g., relative strength of prohibition
versus obligation, default deontic notions, deontic inconsistencies, etc.).

We also intend to use analysis techniques for Coloured Petri-Nets (CPNs)
in order to characterise classes of CPNs (e.g., acyclic, symmetric, etc.) corre-
sponding to families of Normative Structures that are susceptible to tractable
off-line conflict detection. The combination of these techniques along with our
online conflict resolution mechanisms is intended to endow MAS designers with
the ability to incorporate norms into their systems in a principled way.

Acknowledgements – This work was partially funded by the Spanish Edu-
cation and Science Ministry as part of the projects TIN2006-15662-C02-01 and
2006-5-0I-099. Garćıa-Camino enjoys an I3P grant from the Spanish National
Research Council (CSIC).

References

1. A. Artikis, L. Kamara, J. Pitt, and M. Sergot. A Protocol for Resource Shar-
ing in Norm-Governed Ad Hoc Networks. In Declarative Agent Languages and
Technologies II, volume 3476 (LNCS). Springer-Verlag, 2005.

COIN–75

2. S. Cranefield. A Rule Language for Modelling and Monitoring Social Expectations
in Multi-Agent Systems. Technical Report 2005/01, University of Otago, 2005.

3. M. Esteva, B. Rosell, J. A. Rodŕıguez-Aguilar, and J. L. Arcos. AMELI: An
agent-based middleware for electronic institutions. In Procs of 3rd Int’l Conf on
Autonomous Agents and Multiagent Systems (AAMAS’04), pages 236–243, 2004.

4. M. Esteva, W. Vasconcelos, C. Sierra, and J. A. Rodŕıguez-Aguilar. Norm consis-
tency in electronic institutions. In XVII Brazilian Symposium on Artificial Intel-
ligence - SBIA’04, volume 3171 (LNAI), pages 494–505. Springer-Verlag, 2004.

5. N. Fornara, F. Viganò, and M. Colombetti. An Event Driven Approach to Norms
in Artificial Institutions. In AAMAS05 Workshop: Agents, Norms and Institutions
for Regulated Multiagent Systems (ANI@REM), Utrecht, 2005.

6. Foundation for Intelligent Physical Agents (FIPA). FIPA-ACL: Message Structure
Specification, December 2002.

7. D. Gaertner, A. Garćıa-Camino, P. Noriega, J. A. Rodŕıguez-Aguilar, and W. Vas-
concelos. Distributed Norm Management in Regulated Multi-agent Systems. In
Procs of 6th Int’l Conf on Autonomous Agents and Multiagent Systems (AA-
MAS’07), pages 624–631, Hawai’i, May 2007.

8. A. Garćıa-Camino, P. Noriega, and J. A. Rodŕıguez-Aguilar. Implementing Norms
in Electronic Institutions. In Procs of 4th Int’l Conf on Autonomous Agents and
Multiagent Systems (AAMAS’05), pages 667–673, Utrecht, July 2005.

9. A. Garćıa-Camino, J.-A. Rodŕıguez-Aguilar, C. Sierra, and W. Vasconcelos. A Dis-
tributed Architecture for Norm-Aware Agent Societies. In Decl. Agent Languages
and Technologies III, volume 3904 (LNAI), pages 89–105. Springer, 2006.

10. J. Habermas. The Theory of Communication Action, Volume One, Reason and
the Rationalization of Society. Beacon Press, 1984.

11. M. J. Kollingbaum, W. W. Vasconcelos, A. Garćıa-Camino, and T. J. Norman.
Conflict resolution in norm-regulated environments via uni cation and constraints.
In Fifth International Workshop on Declarative Agent Languages and Technologies
(DALT 2007), Hawai’i, May 2007.

12. N. Minsky. Law Governed Interaction (LGI): A Distributed Coordination and
Control Mechanism (An Introduction, and a Reference Manual). Technical report,
Rutgers University, 2005.

13. A. Ricci and M. Viroli. Coordination Artifacts: A Unifying Abstraction for En-
gineering Environment-Mediated Coordination in MAS. Informatica, 29:433–443,
2005.

14. J. Searle. Speech Acts, An Essay in the Philosophy of Language. Cambridge Uni-
versity Press, 1969.

15. M. Sergot. A Computational Theory of Normative Positions. ACM Trans. Comput.
Logic, 2(4):581–622, 2001.

16. Y. Shoham and M. Tennenholtz. On Social Laws for Artificial Agent Societies:
Off-line Design. Artificial Intelligence, 73(1-2):231–252, 1995.

17. Y. B. Udupi and M. P. Singh. Multiagent policy architecture for virtual bussiness
organizations. In Proceedings of the IEEE International Conference on Services
Computing (SCC), September 2006.

18. G. H. von Wright. Norm and Action: A Logical Inquiry. Routledge and Kegan
Paul, London, 1963.

COIN–76

Dynamic Institutions for Teamwork

Mario Gómez and Enric Plaza
mgomez@csd.abdn.ac.uk, enric@iiia.csic.es

1 Department of Computing Science, University of Aberdeen
2 Artificial Intelligence Research Institute, Spanish National Research Council

Abstract. We present a dynamic electronic institutions approach for
teamwork. In this model, agent teams are designed and deployed on-the-
fly so as to met the requirements of the task at hand. The result is a new
form of electronic institution that is created dynamically out of existing
components. We also introduce a case-based learning mechanism to form
new agent teams by reusing complete or partial team-designs used in the
past for similar problems.

1 Introduction

Cooperative problem solving (CPS) is a form of social interaction in which a
group of agents work together to achieve a common goal. Several models have
been proposed to account for this form of interaction from different perspectives:
distributed artificial intelligence, economics, philosophy, organization science and
social sciences. From the artificial intelligence perspective there are two main ap-
proaches to cooperation: a micro-level –agent-centered– view, which is focused
on the internal architecture or the decision-making model of individual agents,
and a macro-level –social– view, which is focused on the societal and organiza-
tional aspects of cooperation. Most of the models and theories of cooperation
proposed for MAS have adopted the agent-centered view, typically based on
some refinement of the beliefs, desires and intentions (BDI) paradigm, such as
the Joint Intentions model [12] and the SharedPlans theory [9].

Some of the most challenging issues faced by the MAS community are re-
lated to the creation of open MAS [11]. Closed systems are typically designed
by one team for one homogeneous environment, while in open MAS the partici-
pants (both human and software agents) are unknown beforehand, may change
over time and may be developed by different parties. Therefore, those infrastruc-
tures that adopt a social view on cooperation seem more appropriate that those
adopting a micro-level view, for the former do not enforce a particular agent
architecture.

In addition, some aspects of complex system development become more diffi-
cult by adopting an agent-centered approach: since agents are autonomous, the
patterns and the effects of their interactions are uncertain, and it is extremely
difficult to predict the behavior of the overall system based on its constituent
components, because of the strong possibility of emergent behavior [10]. These
problems can be circumvented by restraining interactions and imposing preset

COIN–77

organizational structures, which are characteristic of the social view. The Civil
Agent Societies framework [2] and the electronic institutions formalism [13, 15,
5] are good examples of this approach; many others can be found in the COIN
international workshop series on coordination, organizations, institutions, and
norms [1].

An electronic institution (or e-Institution) refers to a sort of “virtual place”
that is designed to support and facilitate certain goals to the human and software
agents concurring to that place by establishing explicit conventions. Since these
goals are achieved by means of the interaction of agents, an e-institution provides
the social mediation layer required by agents to achieve a successful interaction:
interaction protocols, shared ontologies, communication languages and social
behavior rules.

All in all, a main issue arises when trying to use preset organizational struc-
tures to operationalize CPS: the need for different team structures to deal with
different problem types. The e-institutions formalism was originally conceived to
formalize and implement static organizations of agents; therefore, at first glance
it seems inadequate to use such a formalism for flexible teamwork. In this paper
we introduce a proposal that uses the e-institution formalism in a novel way: dy-
namic institutions for teamwork. These institutions are created on-the-fly out of
existing components that capture the communication and coordination aspects
of teamwork.

The paper is structured as follows: Section §2 puts our institutional model
of teamwork in context by introducing the framework this model is part of, §3
describes our proposal to model teamwork using the e-Institutions formalism [4],
§4 describes a technique to improve team design by using case-based reasoning,
and finally, §5 summarizes our contributions.

2 The ORCAS framework

In this paper we present an institutional approach to CPS that is part of the
ORCAS framework for developing and deploying cooperative MAS [6]. The main
contributions of this framework are:

– An agent capability description language (ACDL) that supports all the ac-
tivities required to cooperate in open environments, from the discovery and
invocation of capabilities, to their composition and coordination.

– A model of CPS that is driven by the specification of requirements for every
instance of a problem to be solved

– An agent platform for developing and deploying cooperative MAS in open
environments

Figure 1 depicts the main components of the ORCAS ACDL, and the activ-
ities enabled by each component. An agent provides one or more capabilities.
There are two types of capability: skill and task-decomposer. Skills are primitive,
non decomposable capabilities, while task-decomposers decompose a problem (a
task) into more elementary problems (subtasks), so as to solve complex problems

COIN–78

that primitive capabilities cannot accomplish alone. The knowledge-level descrip-
tion of a capability specifies features such as the input, output, preconditions,
and postconditions, which can be used by middle agents to discover and compose
capabilities. However, in order to interact with the provider of a given capability
(to invoke the capability, pass input data and get the results back), the requester
agent must use an interaction protocol that is compatible with the capability
of interest and is supported by its provider. In ORCAS this interaction protocol
is referred to as the communication of a capability (take note that the same
capability could be invoked using different protocols). Finally, the information
required to coordinate multiple agents that are cooperating to solve a problem
together is specified by the operational description of a task decomposer, which
describes the control flow among subtasks (sequencing, parallelism, choices, etc.)
in terms of agent roles.

Capability

CommunicationCommunication

OperationalOperational
DescriptionDescription

supports
described-by

How it works

How to interact with it

provides

agent

compatible-with

Skill
Task

decomposer

Knowledge-levelKnowledge-level
descriptiondescription

What it does
is-a

DiscoveringDiscovering
InvocationInvocation

CoordinationCoordination

CompositionComposition

is-a

1*

1*

1

1

1*

Fig. 1. Overview of the ORCAS ACDL

The ORCAS platform provides all the infrastructure required by agents to
successfully cooperate according to the ORCAS model for CPS, which is depicted
in Figure 2. The problem specification process produces a specification of problem
requirements to be met by a team, including a description of the application
domain (a collection of domain models) and the problem data to be used during
teamwork. The team design process uses the problem requirements to build a
task-configuration, which is a knowledge-level specification of: (1) the tasks to
solve, (2) the capabilities to apply, and (3) the domain knowledge required by
a team of agents in order to solve a given problem according to its specific
requirements. The resulting task-configuration is used during team formation to
allocate tasks and subtasks to agents, and to instruct agents on how solve the
problem cooperatively. Finally, during teamwork, team members try to solve the
problem together by following the instructions received during team formation,
thus complying with the specific requirements of the problem at hand. To note
that the ORCAS model for CPS should not be understood as a fixed sequence of

COIN–79

steps, instead, we have implemented strategies that interleave team design and
team formation with teamwork. These strategies enable the reconfiguration of
agent teams dynamically so as to react to agent failure and other changes in the
environment.

Problem
Specification

Team
Design

Team
Formation

Task
Configuration

Problem
Requirements

MAS
Configuration

Teamwork
Team
Roles

Problem
data

Reconfiguration

Fig. 2. The ORCAS model for the cooperative problem solving process.

It should be remarked that, within the ORCAS framework, the e-institutions
formalism is used in two ways: on the one hand, we use concepts adapted from
the ISLANDER e-institutions formalism [4, 3] for specifying some elements of
the ORCAS ACDL (the communication and the operational description); on the
other hand, the ORCAS agent platform is itself an e-institution that provides me-
diation services for both providers and requesters of problem solving capabilities
to successfully cooperate.

The knowledge-level description of a capability and the mechanisms used
in ORCAS to discover and compose capabilities (which are part of the team
design process) have been described elsewhere [7]. The ORCAS agent platform
is described in [8]. In this paper we focus on those aspects of the ORCAS ACDL
that are based on the e-institutions formalism, namely the communication and
the operational description, and how are these elements used to represent the
interaction and coordination requirements of teamwork. These are the subjects
of the following section.

3 Dynamic institutions for hierarchical teamwork

The ORCAS ACDL specifies the communication and operational description of
capabilities using elements from the ISLANDER formalism in a novel way, so it
seems appropriate to briefly review the main concepts of this formalism before
describing their use in ORCAS:

1. Agent roles: agents are the players in an e-institution, interacting by the
exchange of speech acts, whereas roles are standardized patterns of behavior
required by agents playing part in given functional relationships.

COIN–80

2. Dialogic framework: determines the valid illocutions that can be exchanged
among agents, including the vocabulary (ontology) and the agent communi-
cation language.

3. Scenes: a scene defines an interaction protocol among a set of agent roles,
using the illocutions allowed by a given dialogic framework.

4. Performative structure: a network of connected scenes that captures the
relationships among scenes; a performative structure constrains the paths
agents can traverse to move from one scene to another, depending on the
roles they are playing.

In ORCAS the specification of capabilities at the knowledge level enables
the automated discovery and composition of capabilities, without taking into
account neither the communication aspects required to invoke a capability, nor
the operational aspects required to coordinate the behavior of several agents.
These features are specified in the ORCAS ACDL adapting concepts from IS-
LANDER, as follows:

Communication: specifies one or several interaction protocols that can be used
to interact with agent to invoke a given capability and get back the result
of applying it. This feature is specified using the notion of scene taken from
the e-institutions formalism.

Operational Description: specifies the control flow among the subtasks in-
troduced by a task-decomposer, using a modified version of the performative
structure concept from the e-institutions formalism.

A team in ORCAS is designed to solve a problem represented by a knowledge-
level structure referred to as a task-configuration (the reader is referred to [7] for
a more detailed description). Figure 3 shows an example of a task-configuration
for a task called Information-Search. This task is decomposed into four tasks by
the Meta-search task-decomposer: Elaborate-query, Customize-query, Retrieve
and Aggregate, which is further decomposed by the Aggregation capability into
two subtasks: Elaborate-items and Aggregate-items. The example includes some
skills requiring domain knowledge: the Query-expansion-with-thesaurus requires
a thesaurus (e.g. MeSH, a medical thesaurus), and the Retrieval and Query-
customization skills require a description of information sources.

Any ORCAS team follows the hierarchical structure of a task-configuration,
with one team-role per task. In particular, each team role includes the following
elements: a team-role identifier (the same task could appear multiple times in
the same task-configuration, so a unique team-role identifier is required), the
identifier of a task to be solved, the identifier of a capability to apply, the domain
knowledge to be used by the selected capability (if needed), and optionally, if the
capability is a task decomposer, the information required to delegate subtasks
to other team-members, which includes, for each subtask: the team member
selected to play the task (or several agents in the case of tasks to be performed
multiple times in parallel), a collection of reserve agents to use in case that the
selected team member fails, and a communication protocol that is compatible
with the selected capability and shared by both the agent assigned to the parent

COIN–81

Information search

Elaborate
Query

Customize
Query

Retrieve Aggregate

Query-expansion-
with-thesaurus

Query-
Customization

Retrieval

Metasearch

Aggregation

Items-Elaboration Arithmetic-Mean

Aggregate-
Items

Elaborate-
Items

MeSH
(Thesaurus)

Task

Task-decomposer

Skill

Domain model

Source
Descritpions

Fig. 3. Task-configuration example

task, and the agent or agents assigned to the subtask. Next subsections address,
respectively, the specification of the communication and operational description
of a capability in ORCAS.

3.1 Communication

Agent capabilities should be specified independently of other agents in order to
maximize their reuse and facilitate their specification by third party agent devel-
opers. In the general case, agent developers do not know a priori the tasks that
could be achieved by a particular capability, neither the domains they could be
applied to. As a consequence, the team roles an agent could play using a capabil-
ity are not known in advance, thus the scenes used to specify the communication
requirements of an agent over certain capability cannot be specified in terms of
specific team-roles, but in terms of abstract, generic problem solving roles. Since
ORCAS teams are designed in terms of a hierarchical decomposition of tasks into
subtasks, teamwork is organized as a hierarchy of team-roles.

w1 w2 w3

w4 w5

w0

1. request (?x Coordinator) (?y Operator) (perform ?team-role ?input)
2. agree !y !x (!team-role !Input)
3. inform !y !x (?team-role ?output)
4. refuse !y !x (!team-role !Input)
5. error !y !x! (team-role !Input)

Fig. 4. Example of a communication scene

COIN–82

Some positions within a team (team-roles) are bound to a task-decomposer,
thus the agents playing those team-roles are responsible of delegating subtasks to
other agents, receiving the results, and performing intermediate data processing
between subtasks. In such an scenario, we establish an abstract communication
model with two basic roles: coordinator, which is adopted by an agent willing
to decompose a task into subtasks, and operator, which is adopted by the agent
having to perform a task on demand, using the data provided by another agent
that acts as coordinator of a top-level task

Figure 4 shows a scene depicting the communication requirements of an agent
over a capability by using a typical request-inform protocol in terms of our two
generic roles: Coordinator and Operator. Symbol ? denotes a new bind for a
variable, while ! denotes a variable that has been already bound to a value.

3.2 Operational description

The operational description of a task decomposer is used to specify the coordi-
nation among agents in terms of the role-flow policy and the control flow among
subtasks. Figure 5 depicts some of the control flow constructions allowed by a
performative structure: (a) tasks performed consecutively, in sequence; (b) choice
between alternative courses of action; (c) tasks performed in parallel; and (d)
tasks that can be executed multiple times.

Task A Task B

Task A

Task B

Task A

Task B

Task ATask A

a) Sequence

c) Parallelism d) Multiple instances

b) ChoiceAND
transition

OR
 transition

Fig. 5. Control flow among subtasks used in operational descriptions

In ORCAS the operational description of a task-decomposer is based on per-
formative structures, with some distinctive features: as in the e-institutions for-
malism, each ORCAS scene within a performative structure must be instantiated
by a communication protocol (except the Start and End scenes). However, in
ORCAS the scenes within a performative structure are not instantiated before-
hand; that is to say, they are not bound to a specific communication protocol.
Instead, the scenes of an operational description are instantiated during team

COIN–83

formation, using as a source the set of communication protocols shared by the
agents having to interact.

After instantiation, each scene in an operational description corresponds to
the communication required to solve a subtask, which implies an agent act-
ing as coordinator invoking the capability provided by another agent acting as
operator (or several operators in the case of multiple-instantiated tasks). The
coordinator and the operators must use the same communication protocol in
order to successfully communicate. Consequently, the instantiation of the scenes
in an operational description is done using only those communication protocols
shared by the agents involved in a scene. To note that team members are selected
during team formation, and thus the set of shared communication protocols is
not known until the team members are decided.

Aggregate
Items

Start

End

Elaborate
Items

Aggregate
Items

x

y

x, y

x, zx, y, z

z: Operator

x: Coordinator
y: Operator

x,z

Fig. 6. Example of an operational description

Figure 6 shows an example of an operational description for a task-decomposer
called Aggregation. This task-decomposer introduces two subtasks: Elaborate-
items (EI) and Aggregate-items (AI). Thus, the operational description has two
main scenes, one for each subtask, and three role variables: x is a coordinator
role, to be played by the agent applying the task-decomposer; y and z are both
operator roles; y participates in EI, and z participates AI. Notice that the coor-
dinator (x) is the same in both scenes; it enters EI first and moves to AI only
after EI ends.

Since each task-decomposer has an operational description, and the ORCAS
organization of a team follows the hierarchical decomposition of tasks into sub-
tasks that results of applying task-decomposers, we can model the operational
description of a complete team as nested structure of operational descriptions.

Figure 7 depicts the operational description of a team. The top team-role,
associated to the Information Search task, is bound to a task-decomposer (Meta-
Serach) that introduces three subtasks: Customize Query, Retrieve and Aggregate.
Therefore, the top team-role will follow an operational description that contains
three scenes, one for each subtask. In addition, the last of these subtasks is
bound to another task-decomposer, Aggregation, which in turn introduces a new

COIN–84

Start

Elaborate
items

Aggregate
items

Finish

Start

Finish

Customize-query Retrieve

Aggregate

Information search

Customize
Query

Retrieve Aggregate

Metasearch

Aggregate-
Items

Elaborate-
Items

Aggregation

Fig. 7. Teamwork as a nested structure of operational descriptions

operational description. The new operational description is nested to the team
leader’s operational description, and has scenes, one for every subtask: Elaborate-
Items and Aggregate-Items.

Teamwork follows the control flow and the communication scenes estab-
lished by the nested structure of operational descriptions associated to task-
decomposers (already instantiated during team formation). Each scene within
an operational description refers to a communication protocol to be played by
two agents, one applying a task-decomposer and playing the coordinator role,
and one assigned to the corresponding subtask playing the operator role. When
an agent playing an operator role has to apply itself a task-decomposer, it will
follow the associated operational description playing itself the coordinator role.
The execution of an operational description does not finish until all the nested
operational descriptions are executed.

Each time a new team is formed according to a task-configuration, a new
structure of nested operational descriptions is composed and their scenes instan-
tiated. We regard this structure as a dynamic institution, since it is configured
on-the-fly, out of the communication protocols and the operational descriptions
supported by the selected team members.

4 Learning Team Designs

The ORCAS description of team designs allows that reasoning and learning pro-
cesses may be applied to them by an agent capable of convening a team. For this
purpose, an agent-oriented case-based reasoning (CBR) technique called CoopCA
has been developed based on the notion of compositional cases [14]. In team de-
sign, a case is a pair (P, S), where the problem P is the specification of the task
a team should be able to achieve and the solution S is the task-configuration of
the team; a case is a compositional case when the solution is a configuration of

COIN–85

components —as the ORCAS ACDL components in team design. Notice that a
task basically specifies two conditions: the assumptions (those properties that
are assumed to be true in the world) and goals (those properties that are to be
achieved by the team).

Learning in CBR allows agents to solve much faster routine and easy tasks.
An agent using CoopCA will store in its case base those team designs the agent
has convened in the past. Since in a real environment regularities are common,
an agent will encounter both routine tasks and novel tasks. When a new task
that needs a team to be convened is equal or similar to tasks the agent has
solved in the past using specific team designs, case-based reasoning will reuse
the solutions of the past to fit the current situation: a previous team design will
be used, possibly with a few alterations to adapt the new team to the differences
(in assumptions and/or goals) between the old task and the current task.

When a new task is novel, in the sense that it is rather different from any
other task previously solved by the agent, CoopCA is capable of achieving a new
team design from scratch. However, CoopCA derives a new task-configuration
in a search process that is guided by the past cases, and is able to find, for
instance, that a specific subtask was solved in the past by a particular team,
and will incorporate it as a subteam for that subtask in the overall team design.
Thus, the agent playing the role of convener can learn from experience about the
particular team institutions that achieve certain tasks. Notice that this learning
is developed at the institutional level: the agent learns that a specific team insti-
tution is able to achieve a certain task — does not learn about the performance
of a specific team with concrete agents performing the institution’s roles.

Finally, CBR is used for dynamic reconfiguration when some event precludes
the usability of the current team institution. For instance, imagine that and agent
that was supposed to perform team-role Rj goes offline or refuses to satisfy its
previous commitment; and imagine there is no other available agent capable of
satisfying the requirements of that role: under this conditions the task associated
to Rj could not be achieved and the task-configuration that shaped the current
team is no longer viable. The CBR process however can continue its search
process to find another task-configuration (if it exists) that achieves the same
overall task. There is no need to stick to a fixed design when several possible
solutions are available.

5 Conclusions

In this paper, we have presented a novel approach to teamwork specification
using concepts adapted from the e-Institutions formalism. In this approach the
communication and coordination aspects required for teamwork are reusable
components that are used by agents to specify their problem solving capabilities.
By doing so, middle agents such as brokers and matchmakers can reason about
the communication and coordination aspects of individual agents to dynamically
build an e-Institution that supports flexible teamwork.

COIN–86

We adapt the electronic formalism to handle the dynamics of teamwork.
While e-institutions are supposed to be static structures characterized by a pre-
defined network of scenes (a performative structure), we conceive teamwork as
a dynamic institution that is build on the fly out of existing components: oper-
ational descriptions and communication protocols. The operational description
of a task-decomposer describes the control flow among subtasks using a spe-
cific kind of performative structure in which the communication scenes are not
instantiated beforehand. The instantiation of those scenes is done at runtime
by selecting communication protocols that are shared by the agents involved
in a given scene. The result is a hierarchical model of teamwork represented
by nested performative structures instantiated and composed on-the-fly during
team formation.

By adapting the e-Institutions formalism for teamwork, we expect to bring
in some of the benefits of the social-approach in general, and the e-institutions
approach in particular: promoting the development of agents by third parties
by avoiding the imposition of a specific agent architecture (favors openness);
increasing the degree of control over the global system behavior; and making the
system more predictable, which in turn fosters trustiness.

Finally, by introducing a case-based reasoning approach to team design we
have enabled a learning process that speeds up the configuration of new teams
by reusing previous team designs for solving new problems

Acknowledgements

This research was sponsored by the Spanish Council for Scientific Research under
the MID-CBR (TIN 2006-15140-C03-01) project.

References

1. O. Boissier, J. Padget, V. Dignum, G. Lindemann, E. Matson, S. Ossowski, J. Sich-
man, and J. Vaźquez-Salceda, editors. Coordination, Organizations, Institutions,
and Norms in Multi-Agent Systems, volume 3913 of Lecture Notes in Artificial
Intelligence. Springer, December 2006.

2. C. Dellarocas. Contractual Agent Societies. negotiated shared connote and social
control in open multi-agent systems. In Proceedings of the Workshop on Norms
and Institutions in Multi-Agent Systems, ICMAS’02, 2000.

3. M. Esteva. Electronic Institutions: From Specification to Development, volume 14
of Monografies de l’Institut d’Investigació en Intel.ligència Artificial. Spanish Na-
tional Research Council, 2003.

4. M. Esteva, J. Padget, and C. Sierra. Formalizing a language for institutions and
norms. In Intelligent Agents VIII: Lecture Notes in Artificial Intelligence, volume
2333 of Lecture Notes in Artificial Intelligence, pages 348–366. Springer-Verlag,
2002.

5. M. Esteva, J. A. Rodriguez, C. Sierra, P. Garcia, and J. L. Arcos. On the formal
specifications of electronic institutions. In Agent-mediated Electronic commerce.
The European AgentLink Perspective, volume 1991 of Lecture Notes in Artificial
Intelligence, pages 126–147, 2001.

COIN–87

6. M. Gómez. Open, Reusable and Configurable Multi-Agent Systems: A Knowledge-
Modelling Approach, volume 23 of Monografies de l’Institut d’Investigació en In-
tel.ligència Artificial. Spanish National Research Council, 2004.

7. M. Gómez and E. Plaza. Extending matchmaking to maximize capability reuse.
In Proceedings of the Third International Joint Conference on Autonomous Agents
and Multi Agent Systems, volume 1, 2004.

8. M. Gómez and E. Plaza. The ORCAS e-Institution: a Platform to Develop Open,
Reusable and Configurable Multi-Agent Systems. International Journal on Intel-
ligent Control and Systems. Special Issue on Distributed Intelligent Systems, juny
2007.

9. B. J. Grosz and S. Kraus. Collaborative plans for complex group action. Artificial
Intelligence, 86(2):269–357, 1996.

10. N. R. Jennings. On-agent-based software engineering. Artificial Intelligence,
117:227–296, 2000.

11. M. Klein. The Challenge: Enabling Robust Open Multi-Agent Systems, 2000.
12. H. J. Levesque. On acting together. In Proceedings of the Eighth National Confer-

ence on Artificial Intelligence, pages 94–99, 1990.
13. P. Noriega. Agent-Mediated Auctions: The Fish-Market Metaphor. PhD thesis,

Universitat Autònoma de Barcelona, 1997.
14. E. Plaza. Cooperative reuse for compositional cases in multi-agent systems. Lecture

Notes in Computer Science, 3620:382–396, 2005.
15. J. A. Rodŕıguez-Aguilar. On the Design and Construction of Agent-mediated Elec-

tronic Institutions. PhD thesis, Universitat Autnoma de Barcelona, 1997.

COIN–88

Coordination and sociability for intelligent virtual
agents

Francisco Grimaldo, Miguel Lozano, Fernando Barber

Computer Science Dept., University of Valencia
Dr. Moliner 50, 46100 Burjassot (Valencia)

{francisco.grimaldo, miguel.lozano, fernando.barber}@uv.es

Abstract. This paper presents a multi-agent framework designed to simulate
synthetic humans that properly balance task oriented and social behaviors. The
work presented in this paper focuses on the social library integrated in BDI
agents to provide socially acceptable decisions. We propose the use of ontolo-
gies to define the social relations within an artificial society and the use of a
market based mechanism to reach sociability by means of task exchanges. The
social model balances rationality, to control the global coordination of the
group, and sociability, to simulate relations (e.g. friendliness) and reciprocity
among agents. The multi-agent framework has been tested successfully in dy-
namic environments while simulating a virtual bar, where groups of waiters and
customers can interact and finally display complex social behaviors (e.g. task
passing, reciprocity, planned meetings).

1 Introduction

Multi-agent systems are sometimes referred to as societies of agents and provide an
elegant and formal framework to animate synthetic humans. When designing such
agents, the main concern has normally been with the decision-making mechanism, as
it is the responsible for the actions that will be finally animated. Virtual actors nor-
mally operate in dynamic resource bounded contexts; thus, multi-agent simulations
require group coordination, as self-interested agents easily come into conflicts due to
the competition for the use of shared resources (i.e. objects in a virtual environment).
These obstructions produce low quality animations where characters do not act realis-
tically. Moreover, virtual humans represent roles in the scenario (e.g. a virtual guide,
waiter, customer, etc.) and the social network formed by the relations among the
members of the society should also be considered when animating their behaviors.

This paper presents a multi-agent simulation framework to produce good quality
animations where the behavior of socially intelligent agents better imitates that of real
humans. We aim at incorporating human style social reasoning in virtual characters.
Therefore, we have developed a market based social model [15] which coordinates
the activities of groups of virtual characters and incorporates social actions in the
agent decision-making. Our approach is inspired in reciprocal task exchanges between
agents [17] and uses ontologies to define the social relations within an artificial soci-

COIN–89

ety. According with the main parameter of the model, that is sociability, the agents
can balance their task-oriented behaviors (e.g. a virtual waiter should serve custom-
ers) and their social skills (e.g. negotiate with other waiters to gain access to a re-
source, assume external actions/favors, or simple chats).

The structure of the paper is as follows: in section 2 we describe briefly some pre-
vious literature on the field. In section 3 we present the multi-agent simulation frame-
work and the main components of the social model. Section 4 describes an illustrative
example modeled to test our framework. Lastly, section 5 summarizes the first results
extracted and analyzes them.

2 Related work

Many interactive games and virtual communities put human users together with syn-
thetic characters. In this context, some research has been done on the believability is-
sues of virtual actors, usually centred on the interactions either between a human user
and a single character [1] or among the synthetic characters themselves [21]. These
interactive scenarios often present tasks to the participants that must be solved col-
laboratively [18]. Therefore, behavioral animation has broadly been tackled from the
field of coordinated multi-agent systems (e.g. Generalized Partial Global Planning
(GPGP) [8], the TAEMS framework [7] or the RETSINA system [10]). Moreover,
task coordination has been applied to HSP-based (Heuristic Search Planning) virtual
humans in [4] and [12] to adapt better to the dynamism of shared environments.

Social reasoning has also been extensively studied in multi-agent systems in order
to incorporate social actions to cognitive agents [6]. As a result of these works, agent
interaction models have evolved to social networks that try to imitate the social struc-
tures found in reality [14]. Social dependence networks in [20] allow agents to coop-
erate or to perform social exchanges attending to their dependence relations (i.e. so-
cial dependence and social power). Trust networks in [9] are used to define better
delegation strategies by means of a contract net protocol and fuzzy cognitive repre-
sentations of the other agents as well as of the dynamic environment. In preference
networks, such as the one presented in this paper, agents express their preferences us-
ing utility functions and their attitude towards another agent is represented by the dif-
ferential utilitarian importance they place on that agent’s utility.

Semantic information can be of great value to the agents inhabiting a virtual world.
As demonstrated in [13], the use of semantics associated to objects can enhance the
interaction of virtual humans in complex environments. Environment-based ap-
proaches are also emerging to provide semantic interoperability among intelligent
agents through the use of coordination artifacts [22]. Furthermore, ontologies are
very useful to model the social relations between the agents involved in graphical and
interactive simulations [16]. In MOISE+ [11], ontological concepts join roles with
plans in a coherent organizational specification. Another example can be found in [5]
where a functional ontology for reputation is proposed.

Although the results obtained by the previous approaches show realistic simula-
tions for many task-oriented behaviors, synthetic characters should also display pure
social behaviors (e.g. interchanging information with their partners or grouping and

COIN–90

chatting with their friends). MAS-SOC [2] aims at creating a platform for multi-agent
based social simulations with BDI agents, which is also our purpose. In this context,
work is ongoing in order to incorporate social-reasoning mechanisms based on ex-
change values [19]. The multi-agent framework presented here is oriented to simulate
socially intelligent agents able to balance their rationality and sociability, a key point
to finally display high quality behavioral animations.

3 Multi-agent simulation framework

The multi-agent simulation framework presented in figure 1 has been developed over
Jason [3], which allows the definition of BDI agents using an extended version of
AgentSpeak(L). The animation system (virtual characters, motion tables, etc) is lo-
cated at the 3D engine, which can run separately. The environment is handled by the
Semantic Layer, which acts as an interface between the agent and the world. It is in
charge of perceiving the state of the world and executing the actions requested by the
agents, while ensuring the consistency of the World Model. Ontologies define the
world knowledge base using two levels of representation: the SVE Core Ontology is a
unique base ontology suitable for all virtual environments and it is extended by differ-
ent Domain Specific Ontologies in order to model application-specific knowledge.1

Fig. 1. Multi-agent simulation framework.

The agent decision-making is defined in the Agent Specification File. This file con-
tains the initial beliefs as well as the set of plans that make up the agent's finite state
machine. The Task Library contains the set of plans that sequence the actions needed
to animate a task. For instance, a virtual waiter serving a coffee will go to the coffee
machine to get the coffee and will give it to the customer afterwards. Here, modular-
ity is guaranteed since the Task library can be changed depending on the environment
and the roles being simulated. As stated above, only rational behaviors are not enough
to simulate agent societies. Therefore, we have extended the ontologies to define the
possible social relations among the agents of a society and we have included a Social

1 See [13] for details on ontologies and their use to enhance agent-object interaction.

COIN–91

library to manage different types of situations. This library is based on an auction
model and uses social welfare concepts to avoid conflicts and allow the agents to be-
have in a coordinated way. The Social library also incorporates a reciprocity mecha-
nism to promote egalitarian social interactions. Finally, the Conversational library
contains the set of plans that handle the animation of the interactions between charac-
ters (e.g. ask someone a favor, planned meetings, chats between friends...).

3.1 Social Ontology

The set of possible social relations among the agents within an artificial society can
be ontologically represented in the form of interrelations between classes of agents.
Figure 2 shows the extensions made to the object ontology previously presented in
[13] in order to hold agent relations. We distinguish two basic levels of social rela-
tions: the level of individuals (i.e. agentSocialRelations) and the institutional level
(i.e. groupSocialRelations). When one agent is related with another single agent, an
agentSocialRelation will link them. Different application domains can need specific
relations; thus, Domain Specific Ontologies are used to inherit particular relations
from the core ontology. For instance, the property workFriend is used by the waiters
in the virtual bar presented in section 4 to model the characteristic of being a friend of
a workmate. Other examples of individual relations are familiy relations such as to be
parent of or to be married with another agent. In this case, there is not only semantic
but also structural difference, since parent is a unidirectional relation whereas mar-
riedWith is bidirectional.

Fig. 2. Social ontology.

On the other hand, groupSocialRelations can be used to represent an agent belong-

ing to a group. The social network created by this type of relation can be explored to
get the rest of the agents of the same group, thus modeling a one-to-many relation.
The Group class is an abstraction of any kind of aggregation. Therefore, we can

COIN–92

model from physical groups such as the players of a football team to more sophisti-
cated mental aggregations such as individuals of a certain social class or people of the
same religious ideology. Although not considered in this paper, many-to-many rela-
tions between groups could also be created using this ontological approach. The dy-
namics of how these relations are created, modified and terminated falls out of the
scope of this paper. Thus, at the moment relations are set off-line and do not change
during the simulation.

3.2 Social library

The simulation of worlds inhabited by interactive virtual actors normally involves fac-
ing a set of problems related to the use of shared limited resources and the need to
animate pure social behaviors. Both types of problems are managed by the Social li-
brary by using a Multi-agent Resource Allocation approach [15]. This library allows
the auctioning of tasks by any agent in order to reallocate them so that the global so-
cial welfare can be increased. Tasks are exchanged between agents using a first-price
sealed-bid (FPSB) auction model where the agents express their preferences using
performance and social utility functions.

The performance utility function U iperf(<i←t>) of a bidder agent i reflects the effi-
ciency achieved when he performs the task t. There can be many reasons for an agent
to be more efficient: he might perform the task faster than others because of his know-
how or it might be using a resource that allows several tasks to be performed simulta-
neously (e.g. a coffee machine in a virtual bar can be used by a waiter to make more
than one coffee at the same time). The utility function has to favor the performance of
the agents, but high performances can also be unrealistic for the animation of artificial
human societies. For example, if all agents work as much as they can, they will dis-
play unethical or robotic behaviors. Furthermore, agents should also show pure social
behaviors to animate the normal relations between the members of a society.

Whereas the performance utility function modeled the interest of an agent to ex-
change a task from an efficiency point of view, we introduce two additional social
utilities to represent the social interest in exchanging a task. The aim of social utilities
is to promote task allocations that lead the agents to perform social interactions with
other agents (e.g. planned meetings with their friends). Therefore, these functions take
into account the social relations established between the agents and defined in the on-
tology to compute a value that expresses their social preferences. Negotiation of long
sequences of actions is not very interesting for interactive characters, as plans will
probably be broken due to the dynamism of the environment and to other unpredict-
able events. Thus, we define the following social utility functions:

• Internal social utility (U i
int(<i←t, j←tnext>)): is the utility that a bidder agent i as-

signs to a situation where i commits to do the auctioned task t so that the auctioneer
agent j can execute his next task tnext.

• External social utility (U iext(<j←t>)): is the utility that a bidder agent i assigns to a
situation where the auctioneer agent j executes the auctioned task t while i contin-
ues his current action.
The winner determination problem has two possible candidates coming from per-

formance and sociability. In equation 1 the welfare of a society is related to perform-

COIN–93

ance, hence, the winner of an auction will be the agent that bid the maximum per-
formance utility. On the other hand, equation 2 defines the social winner based on the
maximum social utility received to pass the task to a bidder (see U*

int(t) in equation 3)
and the maximum social utility given by all bidders to the situation where the task is
not exchanged but performed by the auctioneer j (see U*

ext(t) in equation 4). To bal-
ance task exchange, social utilities are weighted with a reciprocity matrix. Equation 5
defines the reciprocity factor wij for two agents i and j, as the ratio between the num-
ber of favors (i.e. tasks) that j has made to i.

{ }

 >←<=∈=

∈
)(max)(|)(tiUtUAgentsktwinner i

perf
Agentsi

k
perfperf

(1)

=<
>=

=
)()(and)()(

)()()(*
intint

*
int

*

*
int

*

tUtUtUtUi
tUtUjtwinner i

ext

ext
soc

(2)

{ }jinext
i

Agentsi
wtjtiUtU *),(max)(int

*
int >←←<=

∈
 (3)

{ }ij
i
ext

Agentsi
ext wtjUtU *)(max)(* >←<=

∈
 (4)

ijjiij FavorsFavorsw = (5)

At this point, agents can decide whether to adopt this kind of social allocations or

to be only rational as explained previously. They choose between them in accordance
with their Sociability factor, which is the probability to select the social winner in-
stead of the rational winner. Sociability can be adjusted in the range [0,1] to model in-
termediate behaviors between efficiency and total reciprocity. This can provide great
flexibility when animating characters, since Sociability can be dynamically changed
thus producing different behaviors depending on the world state.

4 Application example

In order to test the presented social multi-agent framework, we have created a virtual
university bar where waiters take orders placed by customers (see figure 3a). The
typical locations in a bar (e.g. a juice machine) behave like resources that have an as-
sociated time of use to supply their products (e.g. 2 minutes to make an orange juice)
and they can only be occupied by one agent at a time. Agents can be socially linked
using the concepts defined in the Social Ontology. According to them, all waiters are
related through a groupSocialRelation to Waiters, a group representing their role (see
figure 3b). Moreover, they can be individually related with other waiters through
workFriend. This relation semantically means that the agents are friends at work and,

COIN–94

in this application, it has been modeled as bidirectional but not transitive. For exam-
ple, in figure 3b, Albert is friend of Dough and John but these later ones are not
friends of each other. Moreover, we have also specified three possible groups of cus-
tomers: teachers, undergraduates and graduates. The social network specified by them
is used to promote social meetings among customers in the university bar.

Fig. 3. (a) Virtual university bar environment (b) Social relations between agents.

The waiters are governed by the finite state machine2 shown in figure 4a, where or-
ders are served basically in two steps: first, using the corresponding resource (e.g. the
grill to produce a sandwich) and second, giving the product to the customer. Tasks are
always auctioned before their execution in order to find good social allocations. Equa-
tions 6 and 7 define the utility values returned by the performance utility function for
these tasks. This function aims at maximizing the number of parallel tasks being per-
formed and represents the waiters’ willingness to serve orders as fast as possible. So-
cial behaviors defined for a waiter are oriented to animate chats between his friends at
work. Therefore, waiters implement the internal and external social utility functions
detailed in equations 8 and 9, where Near computes the distance between the agents
while they are executing a pair of tasks. These functions evaluate social interest as the
chance to meet a workFriend in the near future (i.e. a planned meeting).

 =

=←
Otherwise0

rce)]lete(Resounot(IsComp and Resource),[IsUsing(i
or source)](IsFree(Re and)Auctioneer [(i if

1)''(UseiU i
perf .

(6)

<=
==

=←
Otherwise0

2)]usynot(handsB and Give''sk[currentTa
or NULL)] n (nextActio and)Auctioneer [(i if

1)''(GiveiU i
perf .

(7)

2 Specified by means of plans in Jason’s extended version of AgentSpeak(L)

COIN–95

Fig. 4. (a) Waiter specification, (b) Customer specification.

>=>←←<
Otherwise0

k)(currenTasRemainTime)ExecTime(t
 and) tNear(t, and j)nd(i,IsWorkFrie if

1),(next

next

int next
i tjtiU . (8)

=←
Otherwise0

 t)ntTask,Near(curre and j)nd(i,IsWorkFrie if1
)(tjU i

ext . (9)

On the other hand, customers place orders and consume them when served. Now,

we are not interested in improving customer performance but in animating interac-
tions between the members of a social group (i.e. teachers, undergraduates and gradu-
ates). The finite state machine in figure 4b governs the actuation of customers that use
auctions to solve the problem of where to sit. Depending on his or her sociability fac-
tor, a customer can randomly choose a chair or start an auction to decide where to sit
and consume. This auction is received by all customers in the bar, which use the ex-
ternal social utility function defined in equation 10 to promote social meetings. This
function uses the groupSocialRelations to determine if two individuals belong to the
same group. We define the performance and the internal social utility functions as 0
since task passing is not possible in this case (i.e. no-one can sit instead of another
customer). Finally, when a social meeting emerges, both waiters and customers use
the plans in the Conversational Library to sequence the speech-acts needed to ani-
mate commitments, greetings or simple conversations.

=←
Otherwise0

able)auctionedTg(i,IsConsumin and j)p(i,IsSameGrou if1
)''(SitjU i

ext . (10)

COIN–96

5 Results

To illustrate the effects of the social techniques previously defined we have animated
the virtual bar example with up to 10 waiters serving 100 customers, both with differ-
ent sociability configurations. We estimate the social welfare of our society using two
metrics explained along this section: Throughput and Animation. Throughput is an in-
dicator in the range [0,1] that estimates how close a simulation is to the ideal situation
in which the workload can be distributed among the agents and no collisions arise.
Thus, equation 11 defines Throughput as the ratio between this ideal simulation time
(T*

sim) and the real simulation time (Tsim), where Ntasks and Nagents are the number of
tasks and agents respectively and taskT is the mean time to execute a task.

sim

agentstasktasks

sim

sim

T
NTN

T
TThroughput

**
== . (11)

Figure 5a shows the Throughput obtained by different types of waiters versus self-

interested agents (i.e. agents with no social mechanisms included). In this first social
configuration, all waiters are friends and customers are automatically assigned a
group (teacher, undergraduate or graduate) when they come into the scenario. Self-
interested agents collide as they compete for the use of the shared resources and these
collisions produce high waiting times as the number of agents grows. We can enhance
this low performance with elitist agents (Sociability = 0) which coordinately exchange
tasks with others that can carry them out in parallel thus reducing the waiting times
for resources. Nevertheless, they produce unrealistic outcomes since they are continu-
ously working if they have the chance, leaving aside their social relationships (e.g.
chats between friends). The Sociability factor can be used to balance rationality and
sociability. Therefore, the Throughput for the sort of animations we are pursuing
should be placed somewhere in between elitist and fully reciprocal social agents (So-
ciability=1). On the other hand, figure 5b demonstrates that the higher the Sociability
factor is, the larger the number of social meetings that will be performed by the cus-
tomers when they sit at a table.

Fig. 5. (a) Waiter Throughput, (b) Customer social meetings.

COIN–97

Throughput is an estimator for the behavioral performance but, despite being a ba-
sic requirement when simulating groups of virtual characters, it is not the only crite-
rion to evaluate when we try to create high quality simulations. Therefore, we have
defined another estimator that takes into account the amount of time that the designer
of the simulation wants to be spent in social interactions. According to this, we define
the following simulation estimator:

sim

socialsim

T
TT

Animation
+

=
*

. (12)

, where Tsocial represents the time devoted to chat and to animate social agreements

between friends. In our virtual bar we have chosen Tsocial as the 35% of T*
sim. Figure 6

shows the animation values for 10 reciprocal social waiters with 4 degrees of friend-
ship: all friends, 75% of the agents are friends, half of the agents are friends and only
25% of the agents are friends. As we have already mentioned, low values of Sociabil-
ity produce low quality simulations since the values obtained for the animation func-
tion are greater than the reference value (Animation=1). On the other hand, high val-
ues of Sociability also lead to low quality simulations, especially when the degree of
friendship is high. In these cases, the number of social conversations being animated
is too high to be realistic and animation is far from the reference value. The animation
function can be used to extract the adequate range of values for the Sociability factor,
depending on the situation being simulated. For example, in our virtual bar we con-
sider as good quality simulations those which fall inside ±10% of the reference value
(see shared zone in figure 6). Hence, when all the waiters are friends, good simula-
tions emerge when Sociability ∈ [0.1,0.3].

Fig. 6. Animation results obtained for waiters.

Finally, table 1 compares the amount of time devoted to execute each type of task
in executions with 10 elitist waiters (Sociability=0) and 10 fully reciprocal social
waiters (Sociability=1). The irregular values in the columns Tuse and Tgive on the left
side of the table demonstrate how some agents have specialized in certain tasks. For
instance, agents 2, 5, 9 and 10 spend most of their time giving products to the cus-

COIN–98

tomers while agents 3 and 7 are mainly devoted to using the resources of the bar (e.g.
coffee machine, etc). Although specialization is a desirable outcome in many multi-
agent systems, egalitarian human societies need also to balance the workload assigned
to each agent. On the right side of the table, fully reciprocal social waiters achieve
equilibrium between the time they are giving products and the time they are using the
resources of the environment (see columns Tuse and Tgive). Furthermore, the reciprocity
factor balances the number of favors exchanged among the agents (compare Balance
columns). A collateral effect of this equilibrium is the increase in the waiting times,
since social agents will sometimes prefer to meet his friends in a resource than to real-
locate the task (compare columns Twait).

Table 1. Time distribution for 10 waiters in the bar (time values are in seconds).

 Sociability = 0 Sociability = 1
Agent waitT useT giveT Balance waitT useT giveT Balance

1 0 32 19 -6 16 69 34 -2
2 3 4 26 -3 18 58 24 -2
3 14 52 1 28 41 45 16 0
4 3 16 28 -3 48 60 27 3
5 0 7 30 -16 34 58 12 -1
6 3 37 17 -1 48 64 14 -2
7 0 67 4 21 18 48 24 1
8 0 45 17 1 33 45 24 4
9 7 5 23 -11 46 36 21 0

10 1 6 41 -10 27 56 20 -1

6. Conclusions and Future Work

The animation of groups of intelligent characters is a current research topic with a
great number of behavioral problems to be tackled. We aim at incorporating human
style social reasoning in character animation. Therefore, this paper presents a tech-
nique to properly balance social with task-oriented plans in order to produce realistic
social animations. We propose the use of ontologies to define the social relations
within an artificial society and the use of a market based mechanism to reach sociabil-
ity by means of task exchanges. The multi-agent animation framework presented al-
lows for the definition of different types of social agents: from elitist agents (that only
use their interactions to increase the global performance of the group) to fully recipro-
cal agents. These latter agents extend the theory of social welfare with a reciprocity
model that allows the agents to control the emergence of social interactions among the
members of a society. Work is ongoing to provide the agents with mechanisms to
self-regulate their Sociability factor depending on their social relations and on their
previous intervention. Thus, agents will be able to dynamically adjust to the situation
in order to stay within the boundaries of good quality animations at all times.

Acknowledgments. This work has been jointly supported by the Spanish MEC and
European Commission FEDER funds under grants Consolider Ingenio-2010
CSD2006-00046 and TIN2006-15516-C04-04.

COIN–99

References

1. T. Bickmore and J. Cassell. Relational agents: A model and implementation of building
user trust. In Proceedings of the Conference on Human Factors in Computing Systems -
CHI’2001, Seattle, USA, 2001. ACM Press.

2. R.H. Bordini, A.C. da Rocha, J.F. Hübner, A.F. Moreira, F.Y. Okuyama and R. Vieira. A
Social Simulation Platform Based on Agent-Oriented Programming. JASSS, vol.8, 2005.

3. R.H. Bordini and J.F. Hübner. Jason. Available at http://jason.sourceforge.net/ March 2007
4. J. Ciger. Collaboration with agents in VR environments. PhD Thesis 2005.
5. S. Casare and J. Sichman. Towards a Functional Ontology of Reputation. In In AAMAS’05:

Autonomous Agents and Multi-agent Systems. ACM, 2005.
6. R. Conte and C. Castelfranchi. Cognitive and Social Action. UCL Press, London, 1995.
7. K.S. Decker. Environment Centered Analysis And Design of Coordination Mechanisms.

PhD thesis. University of Massachusetts Amherst, May 1995.
8. K.S. Decker and V.R. Lesser. Designing a family of coordination algorithms. Readings in

Agents. Huhns and Singh editors, 1997.
9. R. Falcone, G. Pezzulo, C. Castelfranchi and G. Calvi. Why a cognitive trustier performs

better: Simulating trust-based Contract Nets. In AAMAS'04: Autonomous Agents and Multi-
agent Systems. ACM, 1392-1393, 2004.

10. J. A. Giampapa and K. Sycara. Team-Oriented Agent Coordination in the RETSINA Multi-
Agent System. On Tech. Report CMU-RI-TR-02-34, Robotics Institute-Carnegie Mellon
University, 2002.

11. G.A. Giménez-Lugo, J.S. Sichman and J.F. Hübner. "Addressing the social components of
knowledge to foster communitary exchanges". In International Journal on Web Based
Communities, 1(2), pages 176-194, 2005.

12. F.Grimaldo, M.Lozano and F.Barber. Integrating social skills in task-oriented 3D IVA. In
IVA'05: International Conference on Intelligent Virtual Agents. Springer, 2005.

13. F.Grimaldo, F.Barber and M. Lozano. An ontology-based approach for IVE+VA. In IVEVA
International Conference. 2006.

14. H. Hexmoor. From Inter-Agents to Groups. In ISAI’01: International Symposium on Artifi-
cial Intelligence. 2001

15. L.M. Hogg and N.Jennings. Socially intelligent reasoning for autonomous agents. IEEE
Transactions on System Man and Cybernetics, 31(5), 2001.

16. E. C-C. Kao, P. H-M. Chang, Y-H. Chien and V-W. Soo. Using Ontology to Establish So-
cial Context and Support Social Reasoning. In IVA’05: International Conference on Intel-
ligent Virtual Agents. Springer, 2005.

17. J. Piaget. Sociological Studies. Routlege, London, 1995.
18. R. Prada, and A. Paiva. Believable groups of Synthetic Characters. In AAMAS’05: Autono-

mous Agents and Multi-agent Systems. ACM, 2005.
19. M.Ribeiro, A.C. da Rocha and R.H. Bordini. A System of Exchange Values to Support So-

cial Interactions in Artificial Societies. In AAMAS'03: Autonomous Agents and Multi-agent
Systems. ACM, 2003.

20. J.S. Sichman and Y. Demazeau. On Social Reasoning in Multi-Agent Systems. Revista Ibe-
ro-Americana de Inteligencia Artificial, 13, 68-84. AEPIA, 2001.

21. B. Tomlinson and B. Blumberg. Social synthetic characters. Computer Graphics, 26(2),
May 2002.

22. M. Viroli, A. Ricci and A. Omicini. Operating instructions for intelligent agent coordina-
tion. The Knowledge Engeneering Review. Vol. 21:1, 49-69. 2006.

COIN–100

The examination of an information-based approach to
trust

Maaike Harbers1, Rineke Verbrugge2, Carles Sierra3, and John Debenham4

1 Institute of Information and Computing Sciences, Utrecht University, P.O.Box 80.089,
3508 TB Utrecht, The Netherlands

maaike@cs.uu.nl
2 Institute of Artificial Intelligence, University of Groningen, Grote Kruisstraat 2/1,

9712 TS Groningen, The Netherlands
rineke@ai.rug.nl

3 IIIA-CSIC, Campus UAB, 08193 Cerdanyola, Catalonia, Spain
sierra@iiia.csic.es

4 Faculty of Information Technology, University of Technology, Sydney, PO Box 123,
Broadway, NSW 2007, Australia
debenham@it.uts.edu.au

Abstract. This article presents the results of experiments performed with agents
based on an operalization of an information-theoretic model for trust. Experi-
ments have been performed with the ART test-bed, a test domain for trust and
reputation aiming to provide transparent and recognizable standards. An agent
architecture based on information theory is described in the paper. According to
a set of experimental results, information theory is shown to be appropriate for
the modelling of trust in multi-agent systems.

1 Introduction
In negotiation, one tries to obtain a profitable outcome. But what is a profitable out-
come: to pay little money for many goods of high quality? Although this seems to be
a good deal, it might not always provide the most profitable outcome in the long run.
If negotiation partners meet again in the future, it could be more rational to focus on
the relationship with the other agents, to make them trust you and to build up a good
reputation.

In computer science and especially in distributed artificial intelligence, many mod-
els of trust and reputation have been developed over the last years. This relatively young
field of research is still rapidly growing and gaining popularity. The aim of trust and
reputation models in multi-agent systems is to support decision making in uncertain sit-
uations. A computational model derives trust or reputation values from the agent’s past
interactions with its environment and possible extra information. These values influ-
ence the agent’s decision-making process, in order to facilitate dealing with uncertain
information.

Big differences can be found among current models of trust and reputation, which
indicates the broadness of the research area. Several articles providing an overview
of the field conclude that the research activity is not very coherent and needs to be

COIN–101

more unified [1–4]. In order to achieve that, test-beds and frameworks to evaluate and
compare the models are needed.

Most present models of trust and reputation make use of game-theoretical con-
cepts [1, 5]. The trust and reputation values in these models are the result of utility
functions and numerical aggregation of past interactions. Some other approaches use a
cognitive model of reference, in which trust and reputation are made up of underlying
beliefs. Castelfranchi and Falcone [6] developed such a cognitive model of trust, based
on beliefs about competence, dependence, disposition, willingness and persistence of
others. Most existing models of trust and reputation do not differentiate between trust
and reputation, and if they do, the relation between trust and reputation is often not
explicit [1, 3]. The ReGreT system [7] is one of the few models of trust and reputation
that does combine the two concepts. Applications of computational trust and reputation
systems are mainly found in electronic markets. Several research reports have found
that seller reputation has significant influences on on-line auction prices, especially for
high-valued items [3]. An example is eBay, an online market place with a community
of over 50 million registered users [2].

Sierra and Debenham [8] introduced an approach using information theory for the
modeling of trust, which has been further developed in [9], [10]. The present article
presents an examination of Sierra and Debenham’s information-based approach to trust.
Experiments have been performed with the ART test-bed [4], a test domain for trust
and reputation. Section 2 introduces the trust model, section 3 describes the ART test-
bed, and section 4 describes how the model has been translated into an agent able to
participate in the ART test-bed. The remainder of the article gives an overview of the
experiments (section 5) and the results (section 6), followed by a discussion (section 7).
The article ends with conclusions and recommendations for further research (section
8).

2 The information-based model of trust
In Sierra and Debenham’s information-based model, trust is defined as the measure of
how uncertain the outcome of a contract is [8]. All possible outcomes are modelled and
a probability is ascribed to each of them. More formally, agent α can negotiate with
agent β and together they aim to strike a deal δ. In the expression δ = (a,b), a repre-
sents agent α’s commitments and b represents β’s commitments in deal δ. All agents
have two languages, language C for communication and language L for internal rep-
resentation. The language for communication consists of five illocutionary acts (Offer,
Accept, Reject, Withdraw, Inform), which are actions that can succeed or fail. With an
agent’s internal language L, many different worlds can be constructed. A possible world
represents, for example, a specific deal for a specific price with a specific agent.

To be able to make grounded decisions in a negotiation under conditions of un-
certainty, the information-theoretic method denotes a probability distribution over all
possible worlds. If an agent would not have any beliefs or knowledge, it would ascribe
to all worlds the same probability to be the actual world. Often however, agents do have
knowledge and beliefs which put constraints on the probability distribution. The agent’s
knowledge set K restricts all worlds to all possible worlds: that is, worlds that are con-
sistent with its knowledge. Formally, a world v corresponds to a valuation function on

COIN–102

the positive ground literals in the language, and is an element of the set of all possible
worlds V . Worlds inconsistent with the agent’s knowledge are not considered.

An agent’s set of beliefs B determines its opinion on the probability of possible
worlds: according to its beliefs some worlds are more probable to be the actual world
than others. In a probability distribution over all possible worlds, W , a probability pi
expresses the degree of belief an agent attaches to a world vi to be the actual world. From
a probability distribution over all possible worlds, the probability of a certain sentence
or expression in language L can be derived. For example the probability P(executed |
accepted) of whether a deal, once accepted, is going to be executed can be calculated.
This derived sentence probability is considered with respect to a particular probability
distribution over all possible worlds. The probability of a sentence σ is calculated by
taking the sum of the probabilities of the possible worlds in which the sentence is true.
For every possible sentence σ that can be constructed in language L the following holds:
P{W |K}(σ)≡Σn{pn : σ is true in vn}. An agent has attached given sentence probabilities
to every possible statement ϕ in its set of beliefs B.

A probability distribution over all possible worlds is consistent with the agent’s be-
liefs if for all statements in the set of beliefs, the probabilities attached to the sentences
are the same as the derived sentence probability. Expressed in a formula, for all be-
liefs ϕ in B the following holds: B(ϕ) = P{W |K}(ϕ). Thus, the agent’s beliefs impose
linear constraints on the probability distribution. To find the best probability distribu-
tion consistent with the knowledge and beliefs of the agent, maximum entropy inference
(see [11]) uses the probability distribution that is maximally non-committal with respect
to missing information. This distribution has maximum entropy and is consistent with
the knowledge and beliefs. It is used for further processing when a decision has to be
made.

When the agent obtains new beliefs, the probability distribution has to be updated.
This happens according to the principle of minimum relative entropy. Given a prior
probability distribution q = (qi)n

i=1 and a set of constraints, the principle of minimum
relative entropy chooses the posterior probability distribution p = (pi)n

i=1 that has the
least relative entropy with respect to q, and that satisfies the constraints. In general,
the relative entropy between probability distribution p and q is calculated as follows:
DRL(p ‖ q) = Σn

i=1 pi log2
pi
qi

. The principle of minimum relative entropy is a general-
ization of the principle of maximum entropy. If the prior distribution q is uniform, the
relative entropy of p with respect to q differs from the maximum entropy H(p) only
by a constant. So the principle of maximum entropy is equivalent to the principle of
minimum relative entropy with a uniform prior distribution (see also [8]).

While an agent is interacting with other agents, it obtains new information. Sierra
and Debenham [8] mention the following types of information from which the proba-
bility distribution can be updated:

– Updating from decay and experience. This type of updating takes place when the
agent derives information from its direct experiences with other agents. It is taken
into account that negotiating people or agents may forget about the behavior of a
past negotiation partner.

– Updating from preferences. This updating is based on past utterances of a partner.
If agent α prefers a deal with property Q1 to a deal with Q2, he will be more likely
to accept deals with property Q1 than with Q2.

COIN–103

– Updating from social information. Social relationships, social roles and positions
held by agents influence the probability of accepting a deal.
Once the probability distribution is constructed and up to date, it can be used to

derive trust values. From an actual probability distribution, the trust of agent α in agent
β at the current time, with respect to deal δ or in general, can be calculated. The trust
calculation of α in β is based on the idea that the more the actual executions of a contract
go in the direction of the agent α’s preferences, the higher its level of trust. The relative
entropy between the probability distribution of acceptance and the distribution of the
observation of actual contract execution models this idea. For T (α,β,b), the trust of
agent α in agent β with respect to the fulfillment of contract (a,b), the following holds:

T (α,β,b) = 1− ∑
b′∈B(b)+

Pt(b′) log
Pt(b′)

Pt(b′|b)

Here, B(b)+ is the set of contract executions that agent α prefers to b. T (α,β), the
trust of α in β in general, is the average over all possible situations. After making obser-
vations, updating the probability distribution and calculating the trust, the probability
of the actual outcomes for a specific contract can be derived from the trust value and an
agent can decide about the acceptance of a deal.

3 The ART Test-bed
Participants in the ART test-bed [4] act as appraisers who can be hired by clients to
deliver appraisals about paintings, each for a fixed client fee. Initially, a fixed number
of clients is evenly distributed among appraisers. When a session proceeds, apprais-
ers whose final appraisals were most accurate are rewarded with a larger share of the
client base. Each painting in the test-bed has a fixed value, unknown to the participating
agents. All agents have varying levels of expertise in different artistic eras (e.g. classi-
cal, impressionist, post-modern), which are only known to the agents themselves and
which will not change during a game. To produce more accurate appraisals, appraisers
may sell and buy opinions from each other. If an appraiser accepts an opinion request, it
has to decide about how much time it wants to invest in creating an opinion. The more
time (thus money) it spends in studying a painting, the more accurate the opinion.

However, agents might (on purpose) provide bad opinions or not provide promised
opinions at all. Then without spending time on creating an opinion, the seller receives
payment. So to prevent paying money for a useless opinion, the test-bed agents have to
learn which agents to trust. To facilitate this process, agents can buy information about
other agents’ reputations from each other. Here again agents do not always tell the truth
or provide valuable information.

Appraisers produce final appraisals by using their own opinion and the opinions re-
ceived from other appraisers. An agent’s final appraisal is calculated by the simulation,
to ensure that appraisers do not strategize for selecting opinions after receiving all pur-
chased opinions. The final appraisal p∗ is calculated as a weighted average of received
opinions: p∗= ∑i(wi·pi)

∑i wi
. In the formula, pi is the opinion p received from provider i and

wi is the appraiser’s weight for provider i: the better α trusts an agent i, the higher the
weight wi attached to that agent and the more importance will be given to its opinion.

COIN–104

Agent α determines its final appraisal by using all the opinions it received plus its own
opinion. The true painting value t and the calculated final appraisal p∗ are revealed by
the simulation to the agent. The agent can use this information to revise its trust models
of other participants.

4 An information-based test-bed agent
The implemented test-bed agent ascribes probabilities to the accuracy of the opinions
other agents provide. The agent maintains a probability distribution for each era of ex-
pertise with respect to each agent. The different possible worlds in a probability distri-
bution represent the possible grades of the opinions an agent might provide in a specific
era. An opinion of high grade means that the appraised value of a painting is close to the
real value of the painting. A low grade means that the agent provides very bad opinions
in the corresponding era or that the agent does not provide opinions at all. The quality
of an opinion actually is a continuous variable, but to fit the model all possible opinions
are grouped into ten levels of quality. The act of promising but not sending an opinion
is classified in the lowest quality level.

The probability distributions are updated during the course of a session each time
the agent receives new information, which can be of three types:

– Updating from direct experiences;
– Updating from reputation information;
– Updating from the evaporation of beliefs (forgetting).

Updating from reputation information corresponds to Updating from social information
in Sierra and Debenham’s model [8]. The other two types of updating are derived from
Updating from decay and experience in the model.

Updating from direct experiences takes place when the agent receives the true val-
ues of paintings. The value of a constraint is obtained by taking the relative error of
an opinion: the real value of a painting and an agent’s estimated value of a painting
are compared to each other. Updating from reputation information takes place when
the agent receives witness information. The value of a constraint is derived by taking
the average of the reputation values in all messages received at a specific time from
trusted agents about a specific agent and era. Updating from forgetting is performed
each time when a probability distribution is updated either from direct experiences or
from reputation information.

Direct experiences and reputation information are translated into the same type of
constraints. Such a constraint is for example: agent α will provide opinions with a qual-
ity of at least 7 in era e with a certainty of 0.6. This constraint is put to the probability
distribution of agent α and era e. After updating from this constraint, the probabilities
of the worlds 7, 8, 9 and 10 should together be 0.6. Constraints are always of the type
opinions of at least quality x.

The value of a constraint (the quality grade) derived from a direct experience is ob-
tained by comparing the real value of a painting to an agent’s estimated value according
to the equation: constraintValue = 10 · (1− |appraisedValue−trueValue|

trueValue). The outcome repre-
sents the quality of the opinion and a new constraint can be added to the set of beliefs.
If a value lower than one is found, a constraint with the value of one is added to the set
of beliefs. Reputation information is translated into a constraint by taking the average

COIN–105

of the reputation values in all messages received at a specific time from trusted agents
about a specific agent and era multiplied by ten: constraintValue = 10 ·Σr∈reps

r
n1

, where
r is a reputation value, reps is the set of useful reputation values and n1 is the size of
reps.

With a set of constraints and the principle of maximum entropy, an actual probability
distribution can be calculated. Therefore one general constraint is derived from all the
stored constraints for calculating the probability distribution. The general constraint
is a weighted average of all the constraints stored so far, calculated according to the
following equation: generalconstraintValue =
1
n2
·Σc∈C

1
(c(tobtained)−tcurrent)+1 · c(value), where constraint c is an element of the set C of

stored constraints and n2 the total amount of constraints. Each constraint c consists of
the time it was obtained c(tobtained) and a quality grade c(value), calculated with one of
the formulas constraintValue above. The outcome is rounded to get an integer value.

The constraints are weighted with a factor of one divided by their age plus one
(to avoid fractions with a zero in the denominator). Forgetting is modelled by giv-
ing younger constraints more influence on the probability distribution than older con-
straints. In this calculation, constraints obtained from reputation information are weighted
with a factor which determines their importance in relation to constraints obtained from
direct information. A ratio of 0.3:1, respectively, was taken because reputation info is
assumed to have less influence than info from direct experiences. With the principle of
maximum entropy, a new and updated probability distribution can be found.

Finally, when all information available has been processed and the probability dis-
tributions are up to date, trust values can be derived from the probability distributions.
There are two types of trust, the trust of a particular agent in a specific era and the
trust of a particular agent in general. The trust value of an agent in a specific era is
calculated from the probability distribution of the corresponding agent and era. In an
ideal probability distribution, the probability of getting opinions of the highest qual-
ity is very high and the probability of getting opinions with qualities lower than that
is very low. Now trust can be calculated by taking one minus the relative entropy be-
tween the ideal and the actual probability distribution, as follows: trust(agent,era) =
1−Σ

n3
i=1(Pactual(i) · log Pactual(i)

Pideal(i)
), where n3 is the number of probabilities. The trust of an

agent in general is calculated by taking the average of the trust values of that agent in all
the eras. At each moment of the game, the agent can consult its model to determine the
trust value of an agent in general or the trust value of an agent with respect to a specific
era. These trust values guide the behavior of the agent.

At the beginning of a new session the agent trusts all agents, so the probability dis-
tributions are initialized with all derived trust values (for each agent in each era) at 1.0.
During the game the model is updated with new constraints and trust values change.
The general behavior of the information-based agent is honest and cooperative towards
the agents it trusts. The agent buys relevant opinions and reputation messages from all
agents it trusts (with trust value 0.5 or higher). The agent only accepts and invests in
requests from trusted agents, and if the agent accepts a request it provides the best pos-
sible requested information. If the agent does not trust a requesting agent, it informs
the other agent by sending a decline message. If a trusted agent requests for reputation
information, the agent provides the trust value its model attaches to the subject agent.

COIN–106

If the agent trusts an agent requesting for opinions, it always highly invests in ordering
opinions from the simulator for that agent. Finally, the agent uses the model for gener-
ating weights for calculating the final opinions. It weights each agent (including itself)
according to the trust in that agent in that era.

5 Set-up of the experiments
To test the influences of the use of different types of information, four variations of an
information-based agent have been made. The suffixes in the names of the agents indi-
cate the information types they use for updating: de corresponds to direct experiences,
rep to reputation information and time to forgetting.

– Agent Info-de only updates from direct experiences;
– Agent Info-de-time updates from direct experiences and from forgetting;
– Agent Info-rep-time updates from reputation information and forgetting;
– Agent Info-de-rep-time updates from all three types of information.

The performances of these agents in the ART test-bed are in the first place measured
by their ability to make accurate appraisals, which is indicated by their client shares
after the last game round. Besides, information about the agents’ bank account balances
will be presented. The use of each of the information types is expected to increase the
average appraisal accuracy of an information-based test-bed agent. Moreover, the use
of the combination of all three information types is expected to deliver the best results.
In order to verify the correctness of these expectations, three test conditions have been
designed and four extra agents have been implemented.

The first condition tests an agent’s ability to distinguish between a cooperating and
a non-cooperating agent. In this first part of the experiment, the agents Info-de, Info-
de-time and Info-de-rep-time each participated in a game together with the test-agents
Cheat and Naive. The test-agent Cheat never makes reputation or opinion requests it-
self, but when it receives requests it always promises to provide the requested reputation
information or opinions. As its name suggests, the agent cheats on the other agents and
it never sends any promised information. Its final appraisals are just based on its own
expertise. The agent Naive bases its behavior on the idea that all agents it encounters
are trustworthy and Naive keeps on trusting others during the whole course of a game.
This agent always requests every other agent for reputation information and opinions,
it accepts all requests from other agents and it highly invests in creating the requested
opinions. Its final appraisals are based on its own expertise and on the (promised but
sometimes not received) opinions of all other agents.

For the second condition, a third test-agent was developed to investigate other
agents’ ability to adapt to new situations. This agent Changing shows the same be-
havior as Naive during the first ten rounds of a game. Then it suddenly changes its
strategy and from the eleventh game round till the end of the game it behaves exactly
the same as the agent Cheat. The performances of the agents Info-de and Info-de-time
in reaction to Changing have been examined.

The third condition was designed to examine the updating from reputation infor-
mation. This type of updating is only of use if there are agents in the game that provide
reputation information, so a reputation information providing agent Providing has been

COIN–107

Fig. 1. Bank account balances and average appraisal errors of agents Info-de-time (black), Cheat
(light grey) and Naive (dark grey) in the first test conditions.

Cheat Naive Agent
Bank Client Bank Client Bank Client

info-de 45957 24.5 14361 8.8 40700 26.4
info-de-time 47975 25.9 13552 8.8 40262 25.0
info-de-rep-time 46097 24.7 14073 8.2 41461 26.7

Table 1. Averages for three information-based agents in conditions of type one.

implemented. The only difference with Info-de-time is that the Providing agent always
accepts reputation requests and provides the wished reputation information, whereas the
agent Info-de-time only provides reputation to agents it trusts. The agents Info-de-time,
Info-rep-time and Info-de-rep-time each participated in a game with Providing, Cheat
and Naive.

6 Results
In the first experiment, each of the agents Info-de, Info-de-time and Info-de-rep-time
participated in a test-bed game together with the agents Cheat and Naive. The graphics
in Figure 1 show an example of a session with the agents Info-de-time, Cheat and Naive.
Left the development of the agents’ bank account balance during the whole game is
shown. All agents have increasing balances, but Info-de-time ends the game with the
most and Naive with the least money. The right part of the figure shows the average
appraisal errors of the agents in each round. The appraisals of Naive are obviously less
accurate than those of the other two agents. This can be explained by Naive’s behavior
to keep on trusting the cheating agent during the whole game. Info-de-time provides its
least accurate appraisals the first game round; there it still has to learn that it cannot
trust the agent Cheat. After that, its appraisals are the most accurate: the errors are
close to the zero line and show the least deviation. This can be explained by Info-de-
time using the expertise of two agents (itself and Naive), whereas Cheat only uses its
own expertise.

Table 1 shows the averages of 30 sessions for the three information-based agents in
condition one. In the tables, Client refers to the final number of clients of an agent at
the end of a session and Bank means its final bank account balance. The first row shows
the average final bank account balance and average final number of clients of respec-
tively, Cheat, Naive and Info-de, for the sessions in which the three of them participated
together in the game. The second row displays the results of the sessions with Cheat,

COIN–108

Naive and Info-de-time. Applying Student T-test (two-tailed, homoscedastic distribu-
tion) showed that with a significance level of 5% one can only conclude that Info-de-
rep-time gathers a significantly bigger client share than Info-de-time. The differences in
bank account balances between the different agents are not significant.

In the second condition Info-de and Info-de-time participate in a game with the agent
Changing, which starts to cheat from the tenth round of the game. In contrast to Info-de,
the agent Info-de-time does take forgetting into account. As time goes by, information
gathered in the past becomes less and less important. The difference is clear: after a
first big decrease in appraisal accuracy when the agent Changing starts cheating, Info-
de-time learns from Changing’s new behavior and adjusts its trust values. Its past beliefs
about a seemingly trustworthy agent Changing do not overrule the new information it
gathers and it ends with higher scores. The averages of all the sessions with the agent
Changing are presented in Table 2. Both client share and bank account balance of the
two information-based agents are significantly different on a 5% level of significance
according to the Student T-test. The results of the third condition, testing the update
from reputation information, are shown in Table 3. A Student T-test demonstrates that
all differences in client shares between the three tested agents are significant.

Changing Agent
Bank Client Bank Client

info-de 44189 33.4 25817 6.6
info-de-time 36211 21.2 33864 18.8

Table 2. Averages for the agent Changing.

7 Discussion
It was expected that the experiments would show that each of the three types of updating
would contribute to appraisal accuracy. Condition one shows that, except for Info-de-
time, all agents updating from direct experiences provide more accurate appraisals than
Cheat and Naive, which do not update from past experiences. The third condition of the
experiment is even more convincing regarding the usefulness of information from expe-
riences. Two information-based agents, one with and one without updating from direct
experiences, were tested in the same condition. The agent that updated from direct ex-
periences had a significantly larger final client share and therefore must have produced
more accurate appraisals. Thus, the expectation that updating from direct experiences
improves the appraisal accuracy is supported by the experimental results.

For evaluating updating from forgetting, the first two test conditions can be ex-
amined. Here two information-based agents updating from direct experiences, one of
them also updating from forgetting, were tested in the same condition. In the condition
with the agents Cheat and Naive, the agent Info-de scored better than Info-de-time, but
the difference is not significant. In the condition with the agent Changing, the agent
Info-de-time updating from forgetting, has a significant larger client share than Info-de.
This supports the expectation that updating from forgetting would contribute to more
accurate appraisals.

The last type of information, updating from reputation information, has been exam-
ined in the third condition. The participating agents are the information-based agent to
be evaluated, combined with the three test-agents Cheat, Naive, and Providing which

COIN–109

Cheat Naive Providing Agent
Bank Client Bank Client Bank Client Bank Client

info-de-time 43252 23.1 12986 10.6 34889 23.3 34245 22.7
info-rep-time 45337 22.3 15363 12.7 35337 23.5 28713 21.1
info-de-rep-time 41076 21.3 14089 10.8 34988 23.4 35099 24.5

Table 3. Averages for three information-based agents in the third set of conditions.

provides reputation information. The agent Providing performs very well, so the rep-
utation information it provides is supposed to be useful. Agent Info-rep-time does not
update from any of its own experiences, so its performance only depends on updating
from reputation information. Info-rep-time ended with much larger client shares than
Naive, so it seems to use Providing’s reputation information profitably. This observa-
tion supports the expectation that the use of reputation information would increase the
average appraisal accuracy of an information-based test-bed agent. Of course this con-
clusion only holds when there is at least one agent in the game that is able and willing
to provide useful reputation information.

The results show that all three types of updating contribute to appraisal accuracy, but
do they also work well in combination? Updating from forgetting can be used in combi-
nation with the other two types of updating without hindering them. However, updating
from information from direct experiences and from reputation information cannot be
added to each other. When more reputation information is used, less information from
direct experiences can be used and vice versa. The results show that in both condition
one and three, the use of all available types of information yields the most accurate
appraisals.

However, in the first condition Naive is the only agent providing reputation informa-
tion and it assumes that each agent is trustworthy, so it always provides reputations with
the value 1. So the good performance of the agent using reputation information in this
condition cannot be due to its updating from reputation information. In the third condi-
tion however, useful reputation information is provided and the agent Info-de-rep-time
seems to make good use of it. So the results support the expectation that all three types
of updating contribute to providing more accurate appraisals, and the information-based
agent using all three types of updating provides the most accurate appraisals.

The experiments performed are not exhaustive and when interpreting the results,
some remarks should be kept in mind. First, an agent’s performance depends a lot on
the other participants in a test-bed game. For example, an agent with a very sophis-
ticated model for dealing with reputation information only profits when other agents
are prepared to provide reputation information. A cooperative agent functions very
well with other cooperative participants, but it might perform very badly with non-
cooperative participants. In the experiments, four test-agents were used, Naive, Cheat,
Changing and Providing, which show quite simple and obvious behavior. The use of
more complex test-agents would provide more information. Moreover, conditions with
larger numbers of participants would create new situations and might yield extra infor-
mation.

A second consideration is the choice of the ART test-bed. A general problem of all
test-beds is validity: does the system test what it is supposed to test? Especially when
complicated concepts are involved, it is difficult to prove that a test-bed just examines
the performance of a model on that particular concept. The aim of the ART test-bed

COIN–110

is to compare and evaluate trust- and reputation-modeling algorithms [4]. But what do
the developers exactly understand by trust and reputation? The ART test-bed is quite
complicated and allows so many variables that it is sometimes difficult to explain why
something happened.

A final remark about the experiments is that in the translation of the trust model to
a test-bed agent some adjustments and adaptations had to be made. Not every part of
the model can be used in the ART test-bed. Sierra and Debenham’s model [8] allows
updating from preferences and different power relations between agents; these facets
cannot be tested by the ART test-bed. On the other hand, the trust model lacks theory
for some topics needed in the ART test-bed. The updating from reputation was not very
elaborated in the model [8] and had to be extended. Besides, the information-based trust
model does not provide a negotiation strategy: it is a system to maintain values of trust.
The strategy used might have influenced the test results.

8 Conclusion and further research
The goal of this article is to examine Sierra and Debenham’s information-based model
for trust [8]. Therefore, an agent based on the model has been implemented and several
experiments in the ART test-bed have been performed. The experiments showed that the
information-based agent learned about its opponents during a game session and could
distinguish between cooperating and non-cooperating agents. They also demonstrated
that the three examined types of updating (from direct experiences, from reputation
information and from the evaporation of beliefs as time goes by), all improved the agent.
So in general expectations have been met: the results are promising and the information-
based approach seems to be appropriate for the modeling of trust.

The diversity and the amount of the experiments could be extended. The information-
based agent could be tested in more conditions with different test agents and with larger
amounts of participating agents. It would also be interesting to pay more attention to
the agent’s strategy. Besides, the implementation of the agent could be improved. Some
aspects of the trust model could be translated more literally to the implementation of
the information-based agent. Even another test-bed could be used, as the ART test-bed
is not able to evaluate all aspects of the theory. All these suggestions would deliver new
information about the model and would justify making stronger statements about it.

As to Sierra and Debenham’s trust model itself [8, 9], its core seems to be robust
and clear: they use a clear definition of trust and probability distributions are updated
from a set of beliefs with the principle of minimum relative entropy. The experiments
support the model. To further improve it, more work could be done on other concepts
related to trust. For example, now it provides some initial ideas about how to deal with
reputation and other types of social information. But social aspects are becoming more
and more central in the field of multi-agent systems lately, so a contemporary model of
trust should give a complete account of it. So, it can be said conclusively that the core
of the model seems to be a good approach, but for a fully developed approach to trust
and reputation more work should be done. This should not be a problem, because the
model is flexible and provides ample space for extensions.

Acknowledgements. Carles Sierra’s research is partially supported by the OpenKnowl-
edge STREP project, sponsored by the European Commission under contract number

COIN–111

FP6-027253, and partially by the Spanish project “Agreement Technologies” (CON-
SOLIDER CSD2007-0022, INGENIO 2010).

References

1. Sabater, J., Sierra, C.: Review on computational trust and reputation models. Artificial
Intelligence Review 24 (2005) 33–60

2. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service
provision. Decision Support Systems 43 (2007) 618–644

3. Mui, L., Mohtashemi, M., Halberstadt, A.: Notions of reputation in multi-agents systems:
a review. In: AAMAS ’02: Proceedings of the First International Joint Conference on Au-
tonomous Agents and Multiagent Systems, New York, NY, USA, ACM Press (2002) 280–
287

4. Fullam, K., Klos, T., Muller, G., Sabater, J., Topol, Z., Barber, K.S., Rosenschein, J.: A spec-
ification of the agent reputation and trust (ART) testbed: experimentation and competition
for trust in agent societies. In et al., F.D., ed.: Fifth International Conference on Autonomous
Agents and Multiagent systems (AAMAS-05), Utrecht, The Netherlands (2005) 512–518

5. Ramchurn, S.D., Huynh, D., Jennings, N.R.: Trust in multiagent systems. Knowledge Engi-
neering Review 19 (2004) 1–25

6. Castelfranchi, C., Falcone, R.: Principles of trust for MAS: Cognitive anatomy, social im-
portance, and quantification. In Demazeau, Y., ed.: Proceedings of the Third International
Conference of Multi-agent Systems (ICMAS98). (1998) 72–79

7. Sabater, J., Sierra, C.: REGRET: reputation in gregarious societies. In: AGENTS’01: Pro-
ceedings of the Fifth International Conference on Autonomous Agents, New York, NY, USA,
ACM Press (2001) 194–195

8. Sierra, C., Debenham, J.: An information-based model for trust. In et al., F.D., ed.: Fifth
International Conference on Autonomous Agents and Multiagent systems (AAMAS-05),
Utrecht, The Netherlands (2005) 497–504

9. Sierra, C., Debenham, J.: Trust and honour in information-based agency. In Stone, P.,
Weiss, G., eds.: Proceedings Fifth International Conference on Autonomous Agents and
Multi Agent Systems AAMAS-2006, Hakodate, Japan, ACM Press, New York (2006) 1225
– 1232

10. Sierra, C., Debenham, J.: Information-based agency. In: Proceedings of Twentieth Interna-
tional Joint Conference on Artificial Intelligence IJCAI-07, Hyderabad, India (2007)

11. MacKay, D.: Information Theory, Inference and Learning Algorithms. Cambridge Univer-
sity Press (2003)

COIN–112

A Coherence Based Framework for Institutional Agents

Sindhu Joseph, Carles Sierra, and Marco Schorlemmer

Artificial Intelligence Research Institute, IIIA Spanish National Research Council, CSIC
Bellaterra (Barcelona), Catalonia, Spain

{joseph,sierra,marco}@iiia.csic.es

Abstract. We introduce in this paper an agent model based on coherence theory.
We give a formalization of Thagard’s theory on coherence and use it to explain the
reasoning process of an intentional agent that permits the agent to drop beliefs or
to violate norms in order to keep a maximal state of coherence. The architecture
is illustrated in the paper and a discussion on the possible use of this approach in
the design of institutional agents is presented.

1 Introduction

Electronic institutions are multiagent system models inspired by human institutions
[10] and used to create technological extensions of human societies [12]. These devices
are designed to help agents cope with the uncertainty on the environment and in some
cases to increase their individual utility. They are important due to the bounded nature
of human and software rationality (global maximization of individual utility cannot be
guaranteed in a complex society). If two or more persons exchange goods with one
another, then the result for each one will depend in general not merely upon his own ac-
tions but on those of the others as well [8]. Therefore, to make these exchanges possible,
behavioral rules that govern the way in which individuals can cooperate and compete
are required [7]. Behavioral rules translate the social objectives into executable per-
missions, prohibitions, and obligations. These modalities are collectively called norms.
Thus, institutions are role based normative systems representing a collective intention1.
This is the case in general, but we do acknowledge the fact that institutions need not
always represent a collective intention. But such institutions almost always undergo
periodic revolutions as an attempt to reinforce collective intention.

Human institutions tend to adapt when the group conscience shifts or is in conflict
with the current institutional definition. It is thus important to know and be able to
verify at any point in time, that the institutional definition do not have inconsistencies
between its norms and the social objectives, among its norms, and that the definition is
in agreement with the current values and objectives of the individuals in the group. Thus
an institution to be sustainable almost always needs to continuously strive to achieve
this consistent state, here we call it equilibrium. We say an institution is in a state of
equilibrium when it has no incentive to change the institutional definition. When an
inconstistency or a deviation from equilibrium is detected, it is also important to identify

1 Collective intention here refers to the explicit expression of the intention and do not refer to
the mental state.

COIN–113

the candidates that cause or are minimally consistent with the rest, to be able to bring
the institution back into equilibrium with the minimum possible change.

An autonomous agent is motivated to join an institution when it believes that the
individual goals of the agent can be satisfied within the institution. And that happens
in our opinion when the beliefs or goals of the agent are coherent with the institutional
objectives. For simplicity, here we assume that all institutional objectives are realized
through norms. Thus being incoherent with a norm is equivalent to being incoherent
with a corresponding institutional objective. An agent will hence need to continuously
re-evaluate the alignment of its beliefs and goals with that of the norms of the institution.
(The same applies to a group.) Thus, it is important for an agent to know whether there
is an incoherence among the beliefs and the norms, and how the decision is made on
what needs to be changed to bring the coherence back. This incoherence among other
things drives the agent to violate a norm, revise a belief or both. The individual state of
equilibrium is achieved when the coherence between individual beliefs and goals, those
of the group and those of the institution is maximized.

We use the theory of coherence and the theory of cognitive dissonance to ground our
framework. The theory of coherence [11] has been well studied in the field of cognitive
science and as a general theory to describe the world. Coherence theory is about how
different pieces fit together to make a whole. The acceptance of a new piece is based on
its coherence with the rest available. That does not mean that there is a primary set that
is given as accepted, but each time a system enters a new state, the pieces that contribute
to coherence maximization in the new state are accepted.

The theory of dissonance [5] in social psychology is closely related to the theory
of coherence. Leon Festinger calls dissonance as the distressing mental state in which
people feel they “find themselves doing things that don’t fit with what they know, or
having opinions that do not fit with other opinions they hold.” The tension of dissonance
motivates us to change either our behavior or our belief in an effort to avoid a distressing
feeling. The more important the issue and the greater the discrepancy between behavior
and belief, the higher the magnitude of dissonance that we will feel.

In this paper we propose an institutional agent architecture based on the theory of
coherence. This architecture permits us to talk about the coherence of the individual
beliefs, desires and intentions2, coherence among these cognitions, and the coherence
among the cognitions and institutional norms or social commitments. In particular when
there is an incoherence between any of these elements, the agent often needs to choose
between a norm violation or a belief revision to maximize its internal coherence. That
is, the theory of incoherence helps us to model autonomous agents who can reason
about obeying or violating institutional norms. From the institutional point of view, the
same tools can be used to reason about an institution, coherence of an institution with
respect to the conscience of the group and how to evolve norms to stay in alignment
with the objectives. While coherence theory helps to find the maximally coherent state,
dissonance theory helps to decide how much of incoherence an agent or an institution
can tolerate and which of the actions to chose from to reduce incoherence.

In Sections 2 and 3 we introduce our coherence-based framework and the reasoning
of a coherence-maximizing agent. In Section 4 we illustrate with the help of an example,

2 In the paper we discuss beliefs, the extension to desires and intentions is straight-forward.

COIN–114

how this framework can be used to reason about norm violations. We conclude with
related work in Section 5 and discussion future work in Section 6. We use the example
of a car agent in a traffic control institution. Here we give the intuitive summary of the
example, for the reader to follow the coherence framework introduced in Section 2. In
Section 4, we detail the example further. The car agent in our example has personal
beliefs and intentions. Where-as the traffic control institution has a set of objectives
which it implements through a number of norms. The car agent initially starts with
the belief that the traffic control is efficient, and has a maximally coherent graph with
his beliefs, intentions and institutional norms in it. But when the car agent reaches a
situation where, he is made to stop at a traffic signal, where as the other lane has no cars
waiting to go, he builds up a certain incoherence. This then leads to a norm violation
as the agent encounters a high incoherence to maintain the intention to obey the traffic
norms to restore maximum coherence.

2 Coherence framework

In this section we introduce a number of definitions to build the coherence framework.
Our primary interest is to put the theory in relation to an institutional agent context and
to provide a formal representation and some computing tools. We do this for the belief
cognition of an agent and for the norms of an institution.

2.1 Coherence Graph

To determine the coherence of a set of elements, we need to explore their associations.
We shall use a graph to model these associations in order to compute coherence of
various partitions of a given set of elements, and to determine its maximally coherent
partition as well as study other related aspects of coherency.

We shall define a coherence graph over an underlying logic. Given a set of propo-
sitional formulae PL, a logic over PL is a tuple K = 〈L, A,`〉, with language L ⊆
PL× [0, 1], i.e., a set of pairs formed by a proposition and a confidence value between
0 and 1, a set of axioms A ⊆ L, and a consequence relation ` ⊆ 2L × L.

The nodes of a coherence graph are always elements of L. The consequence relation
` determines the relationship between these elements, and thus puts contraints on the
edges that are allowed in a coherence graph. Furthermore, propositions that are assumed
to be true belong to the axioms A of the logic.

A coherence graph is therefore a set (∈ V) of nodes taken from L and a set E of
edges connecting them. The edges are associated with a number called the strength of
the connection which gives an estimate of how coherent the two elements are3. The
strength value of an edge (ϕ, γ), noted σ(ϕ, γ), respects the strength values that it has
with other connected edges. It is important to note that a coherence graph is a fully con-
nected graph with a restriction that for every node ϕ4 ∈ L, σ(ϕ,ϕ) = 1 and if there

3 This value is fuzzy and is determined by the type of relation between the edges. For an inco-
herence relation, tends toward −1, for coherence a positive value tending toward 1.

4 This should be understood as 〈ϕ, d〉, whenever it is understood from the context, we omit the
d part of the element for better readability.

COIN–115

are two nodes ϕ and, ψ that are not related, then σ(ϕ,ψ) = 0. Further α is a projection
function defined from the set V to [0, 1] which projects the confidence degrees asso-
ciated with elements of L. The role of this function is to make the confidence degrees
explicit in the graph for ease of explanation.

Definition 1. Given a logicK = 〈L, A,`〉 over a propositional language PL, a coher-
ence graph 〈V,E, σ, α〉 over K is a graph for which

– V ⊆ L
– E = V × V
– σ : E → [−1, 1]
– α : V → [0, 1]

and which satisfies the following constraints:

– A ⊆ V
– ∀v ∈ V, σ(v, v) = 1
– σ(v, w) = σ(w, v)

We write G(K) for the set of all coherence graphs over K.

Given this general definition of a coherence graph, we can instantiate two specific
families of coherence graphs namely the belief coherence graphs BG and the norm co-
herence graphs NG, which are of interest to us. BG represents graphs where the nodes
are beliefs of an agent and the edges are association between beliefs. And NG repre-
sents nodes which are the possible norms defined in an institution. In this paper, we do
not discuss the desire and the intention cognitions, but these can be defined similarly.
And when defining the norm logic, we only talk about permissions and obligations,
whereas norms may include prohibitions, too. Also for clarity we have kept the struc-
ture of the norms simple, but we intend to include objectives and values associated with
a norm. The work by Atkinson and Bench-Capon [1] is indicative. We now define the
belief and the norm logic to express the nodes of these graphs and their interconnec-
tions.

In our representation, beliefs are propositional formulas ϕ which are closed under
negation and union with an associated confidence degree d. We may borrow the axioms
and the consequence relation ` from an appropriate belief logic. Then for example we
have the following definition for the belief logic.

Definition 2. Given the propositional language PL, we define the belief logic KB =
〈LB , AB ,`B〉 where

– the belief language LB is defined as follows:
• Given ϕ ∈ PL and d ∈ [0, 1], 〈Bϕ, d〉 ∈ LB

• Given 〈θ, d〉, 〈ψ, e〉 ∈ LB , 〈¬θ, f(d)〉 ∈ LB and 〈θ ∧ ψ, g(d, e)〉 ∈ LB where
f and g are functions for example as in [3]

– AB as axioms of an appropriate belief logic.
– `B is a consequence relation of an appropriate belief logic.

COIN–116

We need a number of additional constraints that we want the Belief coherence
graphs to satisfy. They are constraints on how the strength values have to be assigned.
A constraint that we impose on this number is that if two elements are related by a `,
then the value should be positive and if two elements contradicts then then there is a
negative strength5. And here we define α more concretely as the projection function
over the belief degree. Then we have

Given the belief logic KB , the set of all belief coherence Graphs is G(KB) satisfy-
ing the additional constraints:

– Given ϕ,ψ ∈ V and Γ ⊆ V and Γ ` ϕ
– ∀γ ∈ Γ, σ(ϕ, γ) > 0
– ∀γ ∈ Γ and ψ = ¬ϕ, σ(ψ, γ) < 0

– ∀〈Bϕ, d〉 ∈ V, α(〈Bϕ, d〉) = d

We can similarly derive the set of all norm coherence graphs G(KN) corresponding
to norms. In our definition, norms define obligations and permissions associated with
a role. We use deontic logic to represent the norms, with the difference that we use
modalities subscripted with roles. Thus Or and Pr represent deontic obligations and
deontic permissions associated with a role r ∈ R, the set of all roles. In this paper
we assume the confidence degrees associated with norms to be 1. Thus we have the
following definition for a norm logic KN .

Definition 3. Given the propositional language PL and the set of rolesR, we define the
Norm logic KN = 〈LN , AN ,`N 〉 where

– LN is defined as:
• Given ϕ ∈ PL and r ∈ R, then 〈Orϕ, 1〉, 〈Prϕ, 1〉 ∈ LN

• Given 〈ϕ, d〉 and 〈ψ, e〉 ∈ LN then 〈¬ϕ, f1(d)〉 and 〈ϕ ∧ ψ, g1(d, e)〉 ∈ LN

– AN following the standard axioms of deontic logic.
– `N using the standard deduction of deontic logic6

Given the norm logic KN the set of all norm coherence graphs is G(KN) satisfying
the additional constraints:

– Given ϕ,ψ ∈ L and Γ ⊆ L and Γ ` ϕ
– ∀γ ∈ Γ, σ(ϕ, γ) > 0
– ∀γ ∈ Γ and ψ = ¬ϕ, σ(ψ, γ) < 0

– ∀〈ϕ, d〉 ∈ V, α(〈ϕ, d〉) = 1

2.2 Calculating Coherence

We can now define the coherence value of a graph, the partition that maximizes coher-
ence and the coherence of an element with respect to the graph. These values will help
an agent to determine whether to keep a belief or drop it, whether to obey a norm or

5 This relates to Thagard’s deductive coherence, though in this paper, we limit our discussion to
the general coherence relation.

6 For an introduction to deontic logic, see [13] and in the context of institutions see [6]

COIN–117

violate it to increase coherence and which of the beliefs or norms need to be dropped to
maximize coherence. This will also help an institution decide whether to accept a pro-
posed norm change and to determine the gain in coherence when accepting or rejecting
a change.

We use the notion of coherence as maximizing constraint satisfaction as defined
by Thagard [11]. The intuition behind this idea is that there are various degrees of
coherence/incoherence relations between nodes of a coherence graph. And if there is a
strong negative association between two nodes, then the graph will be more coherent
if we decide to accept one of the nodes and reject the other. Similarly when there is
a strong positive association, coherence will be increased when either both the nodes
are accepted or both are rejected. Thus we can construct a partition of the set of nodes,
with one set of nodes in the partition being accepted and the other rejected in such a
way to maximize the coherence of the entire graph. Such accepted sets are denoted
by A and the rejected sets by R. The coherence value is calculated by considering
positive associations within nodes ofA and within nodes ofR and negative associations
between nodes of A and R. This criteria is called satisfaction of constraints. More
formally we have the following definition:

Definition 4. Given a coherence graph g ∈ G(K) and a partition (A,R) of V , we
define the set of satisfied associations C+ ⊆ E as

C+ =
{
∀(vi, vj) ∈ E

∣∣∣∣vj ∈ A ↔ vi ∈ A(or vj ∈ R ↔ vi ∈ R) when σ(vi, vj) ≥ 0
vj ∈ A ↔ vi ∈ R when σ(vi, vj) < 0

}
In all other cases the association is said to be unsatisfied.

To define coherence, we first define the total strength of a partition. The total strength
of a partition is the sum of the strengths of all the satisfied constraints multiplied by the
degrees (the α values) of the nodes connected by the edge. Then the coherence of a
graph is defined to be the maximum among the total strengths when calculated over all
its partitions. We have the following definitions:

Definition 5. Given a coherence graph g ∈ G(K), we define the total strength of a
partition {A,R} as

S(g,A,R) =
∑

(vi,vj)∈C+

| σ(vi, vj) | · α(vi) · α(vj) (1)

Definition 6. Given a coherence graph g = 〈V,E, σ, α〉 ∈ G(K) and given the total
strength S(g′,A,R) for all partitions of V (P(V)), we define the coherence of g as

C(g) = max{S(g′,A,R) | A,R ∈ P(V)} (2)

and we say that the partition with the maximal value divides the set of nodes into an
accepted set A and a rejected set R.

Given the coherence C(g) of a graph, the coherence of an element C(ϕ) is the ratio
of coherence when ϕ is in the accepted set with respect to ϕ not being in the accepted
set. That is if the acceptance of the element improves the overall coherence of the set
considered, than when it is rejected, then the element is said to be coherent with the set.
Then we have the definition:

COIN–118

Definition 7. Given a coherence graph g ∈ G(K), we define the coherence of an ele-
ment ϕ ∈ V as

C(ϕ) =
max{S(g,A,R) | (A,R) ∈ P(V) ∧ ϕ ∈ A}
max{S(g,A,R) | (A,R) ∈ P(V) ∧ ϕ ∈ R}

(3)

Similar to the coherence definitions of a graph, we now define the dissonance of
a graph. We define dissonance as the measure of incoherence that exists in the graph.
Deducing from the theory of dissonance [5] an increase in dissonance increases in an
agent the need to take a coherence maximizing action. We use the dissonance as a crite-
ria to chose among the number of alternative actions an agent can perform such as belief
revision, norm violation or commitment modification for example. The dissonance of
a graph is computed as the difference between the total strength of the graph and the
coherence of the graph. Thus we have the following definition:

Definition 8. Given a coherence graph g ∈ G(K), we define the dissonance of g as

D(g)7 =

{
0 if C(g) = 0
C(g)−S(g)

C(g) otherwise (4)

2.3 Graph Composition

For an agent that is part of an institution and has social relations, it not only needs
to maximize the internal coherence between its beliefs, but also needs to maximize the
social coherence which is the coherence between the beliefs and the commitments made
in the context of his social relations. Similarly, an agent who belongs to an institution,
needs to maximize the institutional role coherence, that is the coherence between the
projection of the norms onto the role he plays in the institution and his beliefs. This
leads naturally the notion of graph composition, which will allow us to explore the
coherence or incoherence that might exist between nodes of one graph and those of the
other.

The nodes of a composite graph are always the disjoint union of the nodes of the
individual graphs. The set of edges contains at least those edges that existed in the
individual graphs. In addition a composite graph may have new edges between nodes
of one graph to the nodes of the other graph.

Definition 9. Let K1 = 〈L1, A1,`1〉 and K2 = 〈L2, A2,`2〉 be logics over propo-
sitional language PL1 and PL2. Let g1 = 〈V1, E1, σ1, α1〉 ∈ G(K1) and g2 =
〈V2, E2, σ2, α2〉 ∈ G(K2). The set of composite graphs g1 � g2 ⊂ G(K) is the set
of those coherence graphs 〈V,E, σ, α〉 ∈ G(K) over logic K = 〈L, A,`〉—where L
is the disjoint union of L1 and L2, A is the disjoint union of A1 and A2, and ` is the
smallest consequence relation containing both `1 and `2

8— such that

7 When C(g) = 0, S(g) = 0 and hence the dissonance D(g) = 0
8 For the moment we assume that the properties that make `1 and `2 a consequence relation as

the same.

COIN–119

– V = {L1/ϕ | ϕ ∈ V1} ∪ {L2/ϕ | ϕ ∈ V2}9

– E = V ×V such that
– if(ϕ,ψ) ∈ E1 then (L1/ϕ,L1/ψ) ∈ E
– if(ϕ,ψ) ∈ E2 then (L2/ϕ,L2/ψ) ∈ E

– σ : E → [−1, 1] such that
– σ(L1/ϕ,L1/γ) = σ1(ϕ, γ)
– σ(L2/ϕ,L2/γ) = σ2(ϕ, γ)

These properties state that the nodes of the composite graph are the disjoint union of the
original graphs. When making the composition, the existing edges and strength values
are preserved.

3 A coherence maximizing agent

In this section we describe some of the reasoning performed by a coherence maximizing
agent. Consider an agent a having a belief coherence graph b, intention coherence graph
i and role coherence graph nr. At any moment in time the agent aims at coherence
maximization. When the coherence cannot be further maximized, a does nothing, or
has no incentive to act. For an agent who has no social commitments, nor is part of any
institution, nor has any unfulfilled intentions, the accepted set A is the entire belief set,
as he is not likely to have an incoherence.

We consider an agent that is part of an institution, has social commitments and is in
the state of equilibrium. When a new belief is created (either communicated to the agent
by others, by observation, or internally deduced), a executes the sequence in Figure 1.

Fig. 1. Reasoning in a coherence maximizing agent

The lines from 1 to 14 put certain constraints on how new edges are created and how
their strength values are determined. Here we assume that a human user will provide

9 We write Li/ϕ for those elements of L that come form Li in the disjoint union, with i = 1, 2.

COIN–120

them while respecting the constraints though we envision many semi automatic meth-
ods worth exploring (see section 6). The lines from 15 to 17 recalculate the strength,
coherence and dissonance values of the new graph. Lines 18 and 19 check whether the
dissonance value exceeds the threshold and if it does, the agent acts by removing the
nodes causing the incoherence from the accepted set. To keep the discussion simple in
this algorithm, we have simply removed the nodes. But in reality, the reaction to an in-
coherence can vary greatly. For instance a mildly distressed agent may choose to ignore
the incoherence, may be satisfied with lowering the degree associated with a particular
belief, may still choose to follow a norm. Where as a heavily distressed agent may not
only chose to violate a norm, but initiate a dialogue to campaign for a norm change.

4 An Example

The main entities in our example are a car agent a having the role c in a traffic control
institution and the institution itself T . We take a very simplified version of the objectives
of T as

− minimizing the probability of collisions
− increasing the traffic handling capacity

To meet these objectives, the traffic control system has a signal at the crossing of the
lanes along with specific norms of use. The norms of the traffic control system for the
car agents belong to the set Nc.

Pc(GREEN → GO),
1

Oc (RED → STOP),
1Oc(obey(traffic_rules)), 1

1

1 1

Fig. 2. Norm Coherence graph of the traffic control institution

The traffic is controlled using the norms given below and the corresponding norm
coherence graph is shown in the Figure 2. Note that all the coherence graphs in this
example have additional self loops which are not drawn for the sake of readability. But
it is included in the coherence calculations.

– Oc(RED → STOP), 1 → It is obligatory to STOP, when the signal is RED
– Pc(GREEN → GO), 1 → It is permitted to GO , when the signal is GREEN

Here we illustrate the model with one of the most simple cases, namely the crossing
between a major and a minor lane. The major lane has more traffic than minor lane. Due
to the fixed time control, and due to ignoring to assign priority to the lanes, the signal
durations are the same for both major and minor lanes. Thus there are situations when
there are no cars waiting to cross at the minor lane and there is a “RED” light at the
major lane. So the car agents at the major lane sometimes experience an incoherence
when trying to follow the traffic norms. We now show the evolution of the coherence of
an agent situated at the major lane with the help of the some figures.

COIN–121

A car agent a of role c at the major lane has the intention to reach destination X
at time T . He holds a number of beliefs which support this intention. A few relevant
beliefs of a for this intention are can reach destination X in time t and traffic control
is efficient and a generic belief that It is good to reduce pollution. The composite graph
b� i is shown in Figure 3.

0.7

1

0.2

0.8
I(reach_X, in, T))

,1
I1

B(reducepollution,
is, good), 0.6

B3B(X, is,
reachable), 1

B2 B(traffic_control,
is, efficient), 0.8

B1

Fig. 3. b� i Coherence graph of the car agent

We use Equations 1, 2, 4 of Section 2 for calculating the various coherence values
of all the graphs of the example10.

The coherence of the graph is C(b � i) = 5.296 with A = {B1, B2, B3, I1} and
D(b � i) = 0. As a is part of the traffic control system, having a role c, the projection
of the norms nc to the beliefs graph of a with an additional intention to stop at RED
signal is as given in Figure 4. This additional intention is due to the fact that a intends
to follow the norms of the institution. Now the coherence of the composite graph is
C(b � i � nc) = 17.716 with A = {B1, B2, B3, I1, I2, N1, N2} and dissonance
D(b� i� nc) = 0, still staying 0.

0.7

1
10.8

0.8 0.2

1

0.2

0.8

0.8

Oc(obey
(traffic_rules)), 1

N1

I(reach_X, in, T))
,1

I1
B(reducepollution,
is, good), 0.6

B3B(X, is,
reachable), 1

B2 B(traffic_control,
is, efficient), 0.8

B1

0,5

1

1

1

1

1
RED →Oc(STOP),

1
N2

I(stop, at, RED),
1

I2

Fig. 4. Belief Coherence graph of the car agent with projected norms

When a encounters the “RED” signal, and observes the traffic, its belief graph gets
enriched with new information, and due to this addition of new beliefs, the strengths get
modified. The new beliefs added to b are a is at the Major lane, The signal is “RED”
and that there are no cars on the minor lane. The modified coherence graph is shown
in Figure 5.

10 The strength values and the degrees on beliefs and intentions are given manually respecting
the constraints on the graph definition.

COIN–122

0.7

1
10.8

0.8 0.2

1

0.2

0.8

0.8

Oc(obey
(traffic_rules)), 1

N1

I(reach_X, in, T))
,1

I1

B(¬(car, in,
minorlane)),

1

B6

B(signal, is,
RED), 1

B5

B(car, on,
majorlane), 1B4

B(reducepollution,
is, good), 0.6

B3B(X, is,
reachable), 1

B2 B(traffic_control,
is, efficient), 0.8

B1

-1

-0,5

1

1

-1

-1

-1
RED →Oc(STOP),

1
N2

I(stop, at, RED),
1

I2

1

1

B((signal, is,
RED)∧¬(car, in,
minorlane)), 1

B7
-1

Fig. 5. Modified coherence graph

R

0.7

1
10.8

0.8 0.2

1

0.2

0.8

0.8

Oc(obey
(traffic_rules)), 1

N1

I(reach_X, in, T))
,1

I1

B(¬(car, in,
minorlane)),

1

B6

B(signal, is,
RED), 1

B5

B(car, on,
majorlane), 1

B4

B(reducepollution,
is, good), 0.6

B3B(X, is,
reachable), 1

B2 B(traffic_control,
is, efficient), 0.8

B1

-1

-0,5

1

1

-1

-1

-1
RED →Oc(STOP),

1
N2

I(stop, at, RED),
1

I2

1

1

B((signal, is,
RED)∧¬(car, in,
minorlane)), 1

B7
-1

Fig. 6. maximizing coherence - A = b� i� n \ {I2}

Now when trying to maximize the coherence, a discovers that if it removes the in-
tention I2 → to stop at RED signal from the accepted set, he is able to maximize the
coherence as in Figure 6. The total strength is S(b�i�nr, V, ∅) = 15.516, Coherence of
the graph isC(b�i�nr) = 23.716 withA = {B1, B2, B3, B4, B5, B6, B7, I1, N1, N2}
and dissonance D(b � i � nr) = .35. Here the agent has a high enough dissonance to
reject the intention I2, that is violate the norm. This example though simple, illustrates
how an agent can act based on coherence maximization.

5 Related work

BDI theory is the most popular of the existing agent architectures. This architecture
concentrates on the deliberative nature of the agent. There are several add ons to BDI ar-
chitecture considering the recent developments in social and institutional agency, where
the traditional cognitive model seems inadequate. They primarily include the addition
of norms to the cognitive concepts of belief, desire, and intention. The BOID architec-

COIN–123

ture with the addition of obligation [2], and the work on deliberative normative agents
[4] are the most prominent among them. In the BOID architecture the main problem
is conflict resolution between and within the modules belief, desire, intention and obli-
gation. Their focus is on architecture, while they do not specify any means to identify
or resolve the conflict arising from the various interactions. They also do not have a
structure of the cognitive modules, where the associations can be explored. The work
by Castelfranchi in [4] again concentrates on the architecture. Their main contribution
is the emphasis on agent autonomy. While most literature assume the strict adherence
to the norms, they insist that it is an agent’s decision whether to obey norms or not. As
in the BOID architecture, they do not provide any mechanism by which an agent can
violate a norm or reason about a norm violation. Another work by Lopez et al. [14]
discusses how norm compliance can be ensured while allowing autonomy, using re-
wards and sanctions. Such mechanisms, while certainly complimenting our approach,
only handle the issue at a superficial level and do not give the power to an agent to un-
derstand what it means to obey or violate a norm with respect to its cognitions. On the
other hand, the work of Pasquier et al [9] is the first to our knowledge that attempts to
unify the theory of coherence with the BDI architecture. The authors propose the theory
as a reasoning mechanism associated with agent interaction such as when to dialogue
based on the associated utility. In their work, the details of how coherence is calculated
is not clear, nor do they provide a formalism based on coherence theory, but rather use
the BDI framework.

Thagard, who proposed the coherence theory as constraint satisfaction [11] has ap-
plied his theory to explain many of the natural phenomena. But so far has not given
a formal specification and integration into other theories. And finally, there is no work
which gives a coherence framework to reason about agents and institutions, individually
and together.

6 Discussion and Future work

In this paper, we have formally defined the basic coherence tools for building institu-
tional agents. We aim to further develop this theory in the following directions.

An important question we have left unanswered in the paper is given the beliefs or
norms how their corresponding coherence graphs can be created. Evaluating the asso-
ciation between two atomic beliefs looks more like a human task, yet we can use sim-
ilarity measures extracted from other repositories like ontologies, Wordnet or search
results. Whereas evaluating associations between complex beliefs, we can use the un-
derlying logic. We plan to explore these ideas in more detail in our future work.

In the present work, we have provided the basic reasoning tools for a norm aware
agent. We have shown when and how an autonomous agent could violate a norm. From
the institutional perspective, a series of norm violations should trigger further actions,
such as an analysis of why the norm is being violated. This could lead to a norm revision
leading to an institutional redefinition. Our future work involves further exploration into
questions related to norm violation from an institutional perspective.

We have simplified the representation of norms in the present work. In the future,
we plan to have a more expressive representation of norms which includes the state of

COIN–124

action when the norm is applicable, objectives behind the norm and the values promoted
by the norm, borrowing the ideas developed in [1].

And finally, a coherence maximization may not only lead to a norm violation, but
can also trigger a belief update, leading to the process of evolution of cognition. There
are no widely accepted theories on how a cognitive agent can be evolved. The proposed
theory helps to understand when a belief revision is profitable. In the future work, we
propose to further explore cognitive revision in an institutional agent.

Acknowledgments. This work is supported under the OpenKnowledge11 Specific Tar-
geted Research Project (STREP), which is funded by the European Commission un-
der contract number FP6-027253. Schorlemmer is supported by a Ramon y Cajal re-
search fellowship from Spain’s Ministry of Education and Science, which is partially
funded by the European Social Fund. Special acknowledgments to all the reviewers of
COIN@DURHAM07 for their detailed reviews and insightful comments.

References

[1] K. Atkinson. What Should We Do?: Computational Representation of Persuasive Argument
in Practical Reasoning. PhD thesis, University of Liverpool, 2005.

[2] Jan Broersen, Mehdi Dastani, Joris Hulstijn, Zisheng Huang, and Leendert van der Torre.
The BOID architecture: conflicts between beliefs, obligations, intentions and desires. In
AGENTS ’01, 2001.

[3] A. Casali, L. Godo, and C. Sierra. Graded BDI models for agent architectures. In lecture
notes in computer science, volume 3487, 2005.

[4] Cristiano Castelfranchi, Frank Dignum, Catholijn M. Jonker, and Jan Treur. Deliberative
normative agents: Principles and architecture. In ATAL ’99, 2000.

[5] Leon Festinger. A theory of cognitive dissonance. Stanford University Press, 1957.
[6] Lou Goble and John-Jules Ch. Meyer. Deontic logic and artificial normative systems. In

DEON 2006, 2006.
[7] Justin Yifu Lin. An economic theory of institutional change: induced and imposed change.

Cato Journal, 9(1), 1989.
[8] John Von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior.

Science Editions, J. Wiley, 1964.
[9] Philippe Pasquier and Brahim Chaib-draa. The cognitive coherence approach for agent

communication pragmatics. In AAMAS ’03, 2003.
[10] John R. Searle. The Construction of Social Reality. Free Press, 1997.
[11] Paul Thagard. Coherence in Thought and Action. MIT Press, 2002.
[12] Francesco Vigan, Nicoletta Fornara, and Marco Colombetti. An operational approach to

norms in artificial institutions. In AAMAS ’05, 2005.
[13] G. H. von Wright. An Essay in Deontic Logic and the General Theory of Action : with a

Bibliography of Deontic and Imperative Logic. North-Holland Pub. Co, 1968.
[14] Fabiola López y López, Michael Luck, and Mark d’Inverno. Constraining autonomy

through norms. In AAMAS ’02: Proceedings of the first international joint conference
on Autonomous agents and multiagent systems, 2002.

11 http://www.openk.org

COIN–125

COIN–126

Organisational Artifacts and Agents
For Open Multi-Agent Organisations:
“Giving the power back to the agents”

Rosine Kitio1, Olivier Boissier1 ?, Jomi Fred Hübner2, and Alessandro Ricci3

1 SMA/G2I/ENSM.SE, 158 Cours Fauriel
42023 Saint-Etienne Cedex, France

{kitio,boissier}@emse.fr
2 GIA/DSC/FURB, Braz Wanka, 238

89035-160, Blumenau, Brazil
jomi@inf.furb.br

3 DEIS, ALMA MATER STUDIORUM Università di Bologna
47023 Cesena (FC), Italy

a.ricci@unibo.it

Abstract. The social and organisational aspects of agency have have
become nowadays a major focus of interest in the MAS community,
and a good amount of theoretical work is available, in terms of formal
models and theories. However, the conception and engineering of proper
organisational infrastructures embodying such models and theories
is still an open issue, in particular when open MAS are considered.
Accordingly, in this paper we discuss a model for an organisational
infrastructure called ORA4MAS that aims at addressing these issues.
By being based on the A&A (Agents and Artifacts) meta-model, the key
and novel aspect introduced with ORA4MAS is that organisations and
the organisation infrastructure itself are conceived in terms of agents
and artifacts, as first-class basic abstractions giving body to the MAS
from design to runtime. This is in analogy with human organisation
and organisation infrastructures, that are populated by humans (as
participants and part of the organisation machinery), and by rich sets
of artifacts and tools that humans use to support their activities inside
the organisation and the organisation itself, encapsulating essential
infrastructure services.

Keywords: Multi-agent Systems, MAS organisations, Open systems,
Artifacts.

1 Introduction

Nowadays, current applications of IT show the interweaving of both human
and technological communities (e.g. pervasive computing and ambient intelli-
gence [15]), resulting in the construction of connected communities (ICities [30])
? Partially supported by USP-COFECUB.

COIN–127

in which software entities act on behalf of users and cooperate with infohabitants,
taking into account issues like trust, security, flexibility, adaptation and open-
ness. As shown in [20], current applications have led to an increase in number
of agents, in the duration and repetitiveness of their activities, with a decision
and action perimeter still enlarging. Moreover the number of agents’ designers
is also increasing, leading to a huge palette of heterogeneity in these systems.
The complex system engineering’s approach needed to build such applications
highlights and stresses requirements on openness in terms of ability to take into
account several kinds of changes and to adapt the system configuration while it
keeps running.

In this paper, we are interested in social and organisational aspects of agency.
They have always been a topic of study in the multiagent domain since the semi-
nal work of [12, 7] and have become a major focus of interest in the MAS commu-
nity (e.g. [21, 4]). However, most designers have doubts about how to put these
concepts in practice, i.e., how to program them, while both addressing the open-
ness and scalability issues and keeping agent’s autonomy and decentralization
which are essential features of MAS. Addressing the requirements stated above
at the organisation level leads to a shift of design and programming paradigm.
We denote it as a shift from closed to open organisations introducing the need for
agents’ systems that: (i) allow agents to arrive/leave dynamically into/from it,
(ii) permit the dynamic change of both agents’ individual behaviors in response
to evolving environmental constraints and agents’ social or collective behaviors
due to changes of the systems’ goals, and (iii) move from off-line to on-line adap-
tation, in the sense that designers should be replaced by the agents themselves
to control and to realize the above issues.

Since it is a huge and complex work to develop systems with this kind of
openness, in this paper we propose an organisational infrastructure referred as
ORA4MAS which is meant to provide a conceptual and architectural step towards
the simplification of this problem. Our proposal is based on the A&A approach
where instead of a lot of different components and concepts (e.g., agents, ser-
vices, proxies, objects, ...), only two types of entities are involved: agents and
artifacts. Roughly, while agents model the decisions of the system, the artifacts
model its functions. We especially demonstrate this approach showing how the
organisational aspect of the MAS can be conceived and designed by only or-
ganisational agents and organisational artifacts. This is in analogy with human
organisation and organisation infrastructures, that are populated by humans (as
participants and part of the organisation machinery), and by rich sets of artifacts
and tools that humans use to support their activities inside the organisation and
the organisation itself, encapsulating essential infrastructure services.

In the first part of the paper (cf. sec. 2), we will have a look at the different
approaches that have been developed in the field of multi-agent organisation,
stressing what limitations we consider. This is complemented by a look at what
has been done in the other dimensions of a MAS, i.e. environment and interac-
tion. Then, we present the basic concepts underlying ORA4MAS infrastructure
(cf. sec. 3), and we briefly describe the shapes of the organisational artifacts

COIN–128

devised in ORA4MAS reifying the Moise+ organisational model (cf. sec. 4).
Finally, we provide concluding remarks and perspectives for the work in (cf.
sec. 5)

2 Background

The recent developments in MAS domain, belonging to what we call Organ-
isation Oriented Programming (OOP) [3], have provided many proposals of
organisation-oriented middleware. In the different approaches related to OOP,
we distinguish two important components: an declarative organisation modeling
language (OML) and an Organisation Implementation Architecture (OIA). The
OML specifies the organisation(s) of a MAS. It is used to collect and express spe-
cific constraints and cooperation patterns imposed on the agents by the designer
(or the agents), resulting in an explicit representation that we call organisation
specification (OS). A collective entity, called Organisation Entity (OE), instan-
tiates this OS by assigning agents to roles. The OIA will then help these agents
to properly “play” their roles as they are specified in the OS.

The OIA considers both an agent centered and a system centered point of
view 4. In the former, the focus lies on how to develop different agent reasoning
mechanisms to interpret and reason on the OS and OE applying on the agents
(e.g. [5, 6]). In the latter, the main concern is how to develop an infrastructure,
that we call Organisation Infrastructure (OI), that ensures the satisfaction of
the organisational constraints (e.g., agents playing the right roles, following the
specified norms). This second point of view is important in heterogeneous and
open systems where the agents that enter into the system may have unknown
architectures. Of course, to develop the overall MAS, the former point of view
is necessary since the agents probably need to have access to an organisational
representation that enable them to reason about it.

The implementation of OI normally follows a common trend in multiagent
platforms like JADE [2] and FIPA-OS [1]. These platforms have demonstrated
the requirement and utility of the notion of “infrastructure” for MAS devel-
opment [13]. Not only have they supported the implementation of the agents,
but are being noticed as a provider of fundamental global generic services going
further of only directory facilitator, agent management system or agent commu-
nications by also addressing coordination [24]. Therefore, agents related to the
application domain operate on top of a middleware layer.

As shown in [3], many implementations of the OI follow the general layered
architecture depicted in Fig. 1: (i) domain (or application) agents, responsible
to achieve organisational goals and use an organisational proxy component to
interact with the organisation, (ii) organisational layer, responsible to bind all
agents in a coherent OS and OE and provides some services for them, and
(iii) communication layer for connecting all components of the infrastructure
4 We prefer here system-centred to organisation-centred in order to avoid confusion

even if, as we have seen, the organisation is reified in OE. Let’s notice that in [33]
these points of view are called agent and institutional perspectives.

COIN–129

Fig. 1. Common Organisation Infrastructure (OI) for open MAS

in a distributed and heterogeneous applications. This layered structure results
in an engineering approach where the MAS development is considered to be
addressed by three kinds of designers: domain or application designers (for the
agents and the specification of the OS using the OML), MAS or OI designers (for
the organisational layer and OE management), and communication designers.

From the study of the different works considering this organisation layer,
we can identify a set of specialized services and proxies (e.g., angels [8], gover-
nors [10], managers [18]). In order to stress their ability to manage organisational
concepts and to develop dedicated reasoning/processing abilities on the organ-
isation, let’s call them respectively organisational services (OrgServices). One
important point to notice is that all the access to the OE by the agents is me-
diated by these OrgServices in the OI.

This brief general introduction of OI designs allow us to point out some
drawbacks:

1. In some proposals, like S-Moise+ [18], OrgServices are implemented as
agents. The problem is that, conceptually, services are not in the same ab-
straction level as agents.

2. In the proposals where OrgServices are not agents, whenever an application
designer needs to customise some decisions of the system in the organisa-
tional dimension (e.g., a sanction system, a reorganisation strategy, the allo-
cation of agents to roles), s/he has to develop/change an OrgService. It can
be quite confusing to deal with both OrgServices and agents concepts while
developing a system. It will be better to always use the same abstraction
level when modelling and implementing the decision aspect of system.

3. The designer (and the agents) also have to deal with two kinds of environ-
ments: a virtual organisational environment (where the agents adopt roles,
send messages) and the real environment (where the agents act). An unified
view of the environment simplifies the concept of agent interaction.

COIN–130

4. In the general architecture of Fig. 1, the middleware has too much power.
Most of the organisational “decisions” are performed at this layer. It is more
suitable if the agents make decisions and not the OrgServices. For example,
if some agent wants to perform some action or send a message that its
organisation does not allow, it can not do it since the middleware (and its
organisational proxy) will detect this violation tentative and deny it. The
middleware is thus performing two functions: detection and decision. In some
cases agents operating on the application layer should get their control power
back in the sense that they could play some of the roles of the OrgServices.
As another example, reorganisation requires that agents should be able to
manage and access the creation of new organisations.
The problems of existing approaches of organisations are consequence of
some properties of the organisational managers design: (i) the enforcement
of organisational functions and constraints and (ii) the inclusion of reasoning
and decision aspects that can be managed by agents and thus should be in
the agent layer.

It’s worth noting that the issues stated in this section do not concern solely
the implementation level, but also the conceptual and theoretical level: what is
the nature of OrgServices in MAS where only agents are considered as first-class
entities?

3 An Organisational Infrastructures based on Agents and
Artifacts

The proposal presented in this paper draws its inspiration from human organisa-
tion infrastructures. Human organisation and organisation infrastructures, that
are populated by humans (as participants and part of the organisation machin-
ery), and by rich sets of artifacts and tools that humans use to support their
activities inside the organisation and the organisation itself, encapsulating essen-
tial infrastructure services. According to psycho-sociological theories and studies
such as Activity Theory and Distributed Cognition [22]—recently adopted in
computer science fields such as CSCW, HCI and MAS [32, 31, 27]—the notion
of artifact (and tool, taken here as a synonym) plays a key role for the overall
sustainability of an organisation and the effectiveness and efficiency of activities
taking place inside the organisation.

In particular, some of these artifacts—that we call here organisational arti-
facts—appear to be vital for supporting the coordination of organisation pro-
cesses and management: for instance by making more effective the commu-
nication among the members of an organisation (e.g. the telephone, instant-
messaging services, chat-rooms), by providing information useful for orienting
the activities of organisation participants (e.g. signs inside a building), by co-
ordinating participants (e.g. queue systems at the post-office), by controlling
access to resources and enforcing norms (e.g. the badge used by members in a
computer science department to access certains rooms or use some other arti-
facts, such as copiers). Human societies and organisations continuously improve

COIN–131

INTERFACE
CONTROL
(COMMAND)

<NAME+PARAMS>

 OPERATION Y

 OPERATION Z

 OPERATION X

USAGE
INTERFACE

PROP_NAMEX
PROP_VALUEX OBSERVABLE

PROPERTY
<NAME,VALUE>

OBSERVABLE
PROPERTIES

OBSERVABLE EVENTS
GENERATION ARTIFACT

MANUAL<DESCR,CONTENT>

AN ARTIFACT

Fig. 2. (Left) abstract representation of workspaces, populated by agents—represented
by circles—and artifacts—represented by squares. (Right) A representation of the main
parts and properties of an artifact, with in evidence the usage interface, the observable
properties and the manual.

their experience in designing artifacts more and more effective to support both
organisation participation—helping members to cope with the complexity of so-
cial activities and work—and organisation management—helping managers to
monitor and control the organisation behaviour as a whole.

Analogously, here we propose an organisational infrastructure called
ORA4MAS in which both organisations and the organisation infrastructure itself
are conceived and engineered in terms of a set of agents and artifacts. ORA4MAS
in particular exploits the notion of artifact as introduced by the A&A meta-model
[28] to encapsulate as first-class abstractions from design to runtime structures,
and related functionalities / rules as defined theoretically by the Moise+ or-
ganisational model [17].

In the remainder of the section, first we recall the basic ideas provided by the
A&A meta-model, and then describe how such concepts are exploited to shape
the ORA4MAS infrastructure.

3.1 The Notion of Artifacts in MAS

The notion of MAS environment, as remarked by recent literatures, has gained a
key role in the recent past, becoming a mediating entity, functioning as enabler
but possibly also as a manager and constrainer of agent actions, perceptions,
and interactions (see here [34] for comprehensive surveys). According to such
a perspective, the environment is not a merely passive source of agent percep-
tions and target of agent actions—which is, actually, the dominant perspective
in agency and in MAS—, but a first-class abstraction that can be suitably de-
signed to encapsulate some fundamental functionalities and services, supporting
MAS dimensions such as coordination and organisation, besides agent mobility,
communications, security, etc.

COIN–132

Among the various approaches, the A&A in particular introduces a notion of
working environment, representing such a part of the MAS explicitly designed
on the one hand by MAS engineers to provide various kinds of functionality—
including MAS coordination, organisation—and perceived as first-class entity on
the other hand by agents of the MAS [29, 28, 25]. By drawing its inspiration from
human society and theories such as Activity Theory and Distributed Cognition,
A&A working environment are made of artifacts, introduced as first-class ab-
straction representing function-oriented dynamic entities and tools that agents
can create and use to perform their individual and social activities.

Artifacts can be considered as a complimentary abstraction to agent pop-
ulating a MAS: while agents are goal-oriented pro-active entities, artifacts are
a general abstraction to model function-oriented passive entities, designed by
MAS designers to encapsulate some kind of functionality, by representing (or
wrapping existing) resources or instruments mediating agent activities. Passive
here means that—differently from the agent case—they do not encapsulate any
thread of control.

As artifacts and tools in human societies play a key role in mediating any
not naive social activities, analogously artifacts in MAS are meant to play an
important role in supporting the activities performed inside MAS organisations.
Among the others, coordination artifacts have been introduced as an important
class of artifacts for MAS organisations [26], as artifacts mediating agent interac-
tions and encapsulating some kind of coordinating functionality— whiteboards,
event services, shared task schedulers are examples.

Figure 2 shows an abstract representation of an artifact as defined in the A&A
meta-model, exhibiting analogous parts and properties of artifacts as found in
human society. The artifact function—and related artifact behaviour—is parti-
tioned in a set of operations, which agents can trigger by acting on artifact usage
interface. The usage interface provides all the controls that make it possible for
an agent to interact with an artifact, that is to use and observe it. Agents can use
an artifact by triggering the execution of operations through the usage interface
and by perceiving observable events generated by the artifact itself, as a result of
operation execution and evolution of its state. Besides the controls for triggering
the execution of operation, an artifact can have some observable properties, i.e.
properties whose value is made observable to agents, without necessarily execut-
ing operations on it. The interaction between agents and artifacts strictly mimics
the way in which humans use their artifacts: let’s consider a coffee machine, for a
simple but effective analogy. The set of buttons of the coffee machines represents
the usage interface, while the displays that are typically used to show the state
of the machine represent artifact observable properties. The signals emitted by
the coffee machine during its usage represent observable events generated by the
artifact.

Analogously to the human case, in A&A each artifact type can be equipped
by the artifact programmer with a manual composed essentially by the function
description—as the formal description of the purpose intended by the designer—,
the usage interface description—as the formal description of artifact usage in-

COIN–133

terface and observable states—, and finally the operating instructions—as the
formal description of how to properly use the artifact so as to exploit its func-
tionalities. Such a manual is meant to be essential for creating open systems
with intelligent agents that dynamically discover and select which kind of arti-
facts could be useful for their work, and then can use them effectively even if
they have not pre-programmed by MAS programmers for the purpose.

Finally, artifacts can be composed together by means of link interfaces, that
are sets of input / output ports that can be (dynamically) linked together by
means of suitable channels and through which artifacts can exchange data. Link
interfaces serve two purposes: on the one side, to explicitly define a principle of
composability for artifacts, enabling the ruled construction of articulated and
complex artifacts by means of simpler ones; on the other side, to realise dis-
tributed (composed) artifacts: channels can connect link interfaces of artifacts
possibly belonging to different workspaces.

3.2 ORA4MAS Infrastructure: The Basic Idea

The basic idea in ORA4MAS is to engineer the organisational infrastructure—
and the organisations living upon it—in terms of agents and artifacts, following
the basic A&A metamodel.

Here we use the terms organisational agents and organisational artifacts to
identify those agents and artifacts of the MAS which are part of the organi-
sational infrastructure, and that are responsible of activities and encapsulate
functionalities concerning the management and enacting of the organisation. In
particular, organisation agents—analogously to managers and administrators in
human organisation—are responsible of management activities inside the or-
ganisation, concerning observing, monitoring, and reasoning about organisation
dynamics, etc. Such activities take place almost by creating and managing or-
ganisational artifacts that are then used by member agents of the organisation.
Organisation artifacts are those artifacts that agents of an organisation may
want or have to use in order to participate in organisation activities and access
to organisation resources, encapsulating organisation rules and functionalities,
such as enabling and mediating (ruling) agent interaction, tracing and ruling re-
source access, and so on. The overall picture accounts for organisational agents
that dynamically articulate, manage and adapt the organisation by creating,
linking and manipulating the organisational artifacts, which are discovered and
used by the member agents to work inside the organisation.

Even from this abstract characterisation, it is possible to identify some gen-
eral properties that are of some importance to face the drawbacks listed at the
end of Section 2:

– Abstraction & encapsulation—By using agents and artifacts to reify both the
organisation and the organisation infrastructure—from design to runtime—,
we raise the level of abstraction with respect to approaches in which organ-
isation mechanisms are hidden at the implementation / middleware level.
Such mechanisms become parts of the agent world, suitably encapsulated

COIN–134

in proper entities that agents then can inspect, reason and manipulate, by
adopting a uniform approach.

– “Power back to agents”—Decision functionalities that were embedded in the
OrgServices in the OI go back to the agents’ layer in organisational agents.
Agents are autonomous with respect to decision of using or not a specific
artifact—including the organisational artifacts—and keeps its autonomy—
in terms of control of its actions—while using artifacts. Agents however can
depend on the functionalities provided (encapsulated) by artifacts, which
can concern, for instance, some kind of mediation with respect to the other
agents co-using the same artifact. Then, by enforcing some kind of media-
tion policy an artifact can be both an enabler and a constrainer of agent
interactions. However, such a constraining functioning can take place with-
out compromising the autonomy of the agents, who are fully encapsulating
their control.

– Distributed management—Distributing the management of the organisa-
tion into different organisational artifacts installs a distributed coordination
(meaning here more particularily synchronization) of the different functions
related to the management of the organisation. Completing this distribution
of the coordination, the reasoning and decision processes which are encapsu-
lated in the organisational agents may be also distributed among the different
agents. Thanks to their respective autonomy, all the reasoning related to the
management of the organisation (monitoring, reorganisation, control) may
be decentralized into different loci of decision with a loosely coupled set of
agents.

– Openness—Organisational artifacts can be created and added dynamically
according to the need. They have a proper semantics description of both
the functionalities and operating instructions, so conceptually agents can
discover at runtime how to use them in the best way. Related to openness, the
approach promotes heterogeneity of agent (societies): artifacts can be used by
heterogeneous kinds of agents, with different kinds of reasoning capabilities.
Extending the idea to multiple organisations, we can have the same agents
playing different roles in different organisations, and then interacting with
organisational artifacts belonging to different organisations.

– Re-organisation and autonomic-properties—The basic properties of organ-
isational agents and artifacts can be effective in devising scenarios in
which the MAS supports forms of self-organisation (and configuration,
healing, protection). On the one side we have organisation artifacts that
are inspectable—in terms of their manual (static) and observable state
(dynamic)—and malleable, i.e. they can be designed so as to be manipulated
and adapted at runtime. On the other side we have organisation agents that
can have suitable reasoning capabilities so as to observe, reason and ma-
nipulate organisation artifacts according to the needs. This is particularly
important when organisational artifacts mediating the interaction of groups
of agents are considered: by observing and changing the mediating behaviour
of such kinds of artifacts, agents are able to change the collective behaviour
of overall groups of agents. In other words, here the re-organisation process

COIN–135

is modelled as an organisation process itself, in the same vein as proposed
in [16].

After sketching the basic concepts underlying the ORA4MAS approach, in next
section we finally describe how a full-fledged organisational model—Moise+ in
this case—can be abstractly implemented on top of agents and artifacts.

4 Shaping ORA4MAS Artifacts Upon Moise+

4.1 The Moise+ Model

Moise+ (Model of Organisation for multI-agent SystEms) [17] is an OML that
explicitly decomposes the organisation into structural, functional, and deontic
dimensions. The structural dimension defines the roles, groups, and links of the
organisation. The definition of roles states that when an agent decides to play
some role in a group, it is accepting some behavioural constraints related to this
role. The functional dimension describes how the global collective goals should
be achieved, i.e., how these goals are decomposed (in global plans), grouped in
coherent sets (by missions) to be distributed to the agents. The decomposition
of global goals results in a goal-tree where the leafs-goals can by achieved in-
dividually by the agents. The deontic dimension is added in order to binds the
structural dimension with the functional one by the specification of the roles’
permissions and obligations for missions. Instead of being related to the agents’
behavior space (what they can do), the deontic dimension is related to the agents’
autonomy (what they should do).

S-Moise+ is an open source implementation of an OI that supports the
Moise+ OML [18]. The organisational proxy is called OrgBox and it consists
of an API that agents use to access the OrgServices, provided by a special
systen agent called OrgManager. The OrgManager receives and manages all the
messages from the agents’ OrgBox asking for changes in the OE state (e.g. role
adoption, group creation, mission commitment). Those changes bring about the
OrgManager to modify the OE only if they do not violate any organisational
constraint. For instance, when some agent asks for a role adoption in a group g,
the OrgManager ensures that: (1) the role belongs to a specified group g; (2) the
number of players in g is lesser or equals than the maximum number of players
defined in the group’s compositional specification; (3) each role ρi that the agent
already plays is specified as compatible with the new role in g. Besides the
organisational compliance, the OrgManager also provides useful information for
the agents’ organisational reasoning and coordination, for example the missions
they are forced to commit to and goals it can pursue.

An important feature of this architecture is that the OS may be interpreted
at run-time by the agents because its specification is available to them. Thus
agents can be developed as hardwired programmed for some particular OS or
they can be programmed to interpret the current available OS. This last feature
is not only useful in open systems, but also when one considers a reorganisation
process, since the adaptation of the new OS may be dynamic. S-Moise+ does

COIN–136

not require any specific type of agent architecture. Although agents normally
use the OrgBox to interact with the system, an agent could even interact with
the OrgManager directly using KQML.

4.2 Organisational Agents and Artifacts based on Moise+

We exploit here the Moise+ model to identify and shape a basic set of or-
ganisational artifacts (kind) and agents that constitute the basic infrastructure
building blocks of ORA4MAS, being a sort of “reification” of the SS, FS, DS
specifications (see figure 3). This basic set accounts for:

– an OrgBoard artifact—used to keep track of the structure of organisation in
the overall;

– a GroupBoard artifact—used to manage the life-cycle of a specific group;
– a SchemeBoard type—used to support and manage the execution of a social

scheme.

Here we consider just a core set, skipping most details that would make heavy
the overall understanding of the approach: the interested reader is forwarded on
this technical report [19] to get further details.

In the following we briefly describe the basic characteristics of these kinds
of artifact. In the description, the operations (commands) enlisted in artifact
usage interface are abstractly described by a name with input parameters, fol-
lowed (optionally) by a set of the observable events possibly generated by the
operation execution (only events significant for artifact specific functionalities
are considered, skipping those generated by default by the artifact). Observable
properties are represented just by a name, which corresponds to the name of the
property.

OrgBoard Artifacts. A simple abstract model for the OrgBoard artifact is de-
picted in figure 3 (left). The usage interface is composed by operations to:

– enter the organisation: enterOrg;
– leave the organisation: leaveOrg;
– register / de-register a new group: registerGroup(G,GB), removeGroup(G)—

where G is an identifier for a group and GB is the identifier of the related
group board artifact;

– register / de-register a new scheme: registerScheme(S,SB), removeScheme(S)
where S is the identifier for a schema and SB is the identifier of the related
scheme board.

Among the observable properties:

– list of current groups: current-groups property;
– list of current schemes: current-schemes property;
– organisation specification (including SS, FS, DS): org-spec property.

COIN–137

adoptRole(R)
giveUpRole(R)
sendMsg(A,M)

GROUP-BOARD

commitMission(M)
setMissionState(M,S)

setGoalState(G,S)

SCHEME-BOARD

enterOrg
leaveOrg

removeGroup(G)

ORG-BOARD

registerScheme(S,SB)
removeScheme(S)

registerGroup(G,GB)

current-groups

current-schemes

scheme-state

missions-committed
role-assignmnentsorg-spec

Fig. 3. Basic kinds of artifacts in ORA4MAS, with in evidence their usage interface,
including operations and observable properties

GroupBoard
G2

OrgBoard
O

SchemeBoard
S

GroupBoard
G1

Scheme
Manager

Group
Manager

Member

Member

Member

Member

OrgManager

Group
Manager

OrgManager

B

B

A control B

A use BA

A

Workspace

LEGEND

Fig. 4. A simple example of instance of an Moise+ organisation with 2 groups and a
running social scheme, with in evidence the artifacts used

COIN–138

Generally speaking, the observable properties of the artifact make it possible—
for agents observing an OrgBoard —to monitor and be aware of which agents
are actually participating to the organisation, and which are the schemes and
groups instantiated. Also, this artifact can be inspected to know which are the
SS, FS, DS currently adopted in the organisation.

GroupBoard Artifacts. The GroupBoard artifact type (see figure 3, center) is
instantiated upon a specific instance of SS and DS, and provides functionalities
to manage a group in terms of set of available roles and agents participation,
according to the specific structure and strategy specified in SS and DS. For what
concerns the DS, the artifact enforces those deontic rules that entail permissions
and obligations in role adoptions and give up for the agents.

The usage interface accounts for the following operations:

– adopt a new role: adoptRole(R):{role adoption ok,role adoption failed}, where
R is the identifier for a role;

– give up a role: giveUpRole(R):{role giveup ok,role giveup failed};
– sending a message to a specific agent or all the agents part of the group:

sendMsg(A,M), sendMsg(M), where A is the identifier for the receiver agent,
m is the message content.

Among the observable properties:

– role assignments: role-assignments property.

By observing a GroupBoard artifact, an agent can monitor and be aware of the
role-agent assignments inside the group.

SchemeBoard Artifacts. The SchemeBoard artifact type (see figure 3, right) is
instantiated upon a specific instance of FS and DS, and provides functionalities
to manage the execution of a social scheme, coordinating the commitments to
missions and goals, and their interaction. It function as a coordination artifact,
automating the management of the dependencies between the missions and the
goals as described by the social scheme, and embedding such part of the deontic
specification concerning permissions and obligations for agents to commit to
missions. The usage interface provides commands to:

– commit to a mission: commitMission(M):{commit ok, commit failed}, where
M is the identifier for a mission;

– set mission state: setMissionState(M,S), where M is the identifier for a mission
and S can be either completed or failed ;

– set goal state: setGoalState(G,S), where G is the identifier for a goal and S
can be either satisfied or impossible.

Among the observable properties:

– scheme dynamic state: scheme-state property, that includes all the goals of
the scheme and their state;

COIN–139

– list of the current missions committed: missions-committed property.

By observing a SchemeBoard artifact, an agent can monitor then the overall
dynamics concerning the scheme execution, and the be aware of which missions
are assigned to which agents.

Organisational Agents. The organisational agents introduced are essentially
managers responsible to create and manage the organisational artifacts described
previously. Such activities typically include observing artifacts dynamics and
possibly intervening, by changing / adapting artifacts or interacting directly
with agents, so as to improve the overall (or specific) organisation processes or
taking some kinds of decisions when detecting violations. As an example, one or
multiple scheme managers agents can be introduced, responsible of monitoring
the dynamics of the execution of a specific running scheme by observing a specific
SchemeBoard instance. The SchemeBoard artifact and scheme manager agents
can be designed so as that the artifact allows for violation of the deontic rules
concerning the commitment of missions by agents playing some specific roles, and
then the decision about what action to take—after detecting the violation—can
be in charge of the manager agent.

4.3 Towards a Concrete Architecture

ORA4MAS concrete architecture is realised on top of CARTAGO infrastructure,
embedding algorithms used in S-Moise+. CARTAGO (Common ARtifact In-
frastructure for AGent Open environment) is a MAS infrastructure based on
the A&A meta-model, providing the capability to define new artifacts types,
suitable API for agents to work with artifacts and workspaces, and a runtime
supporting the existence and dynamic management of working environments.
CARTAGO is meant to be integrated with existing cognitive MAS architectures
and models / languages / platforms, so as to extend them to create and work
with artifact-based environments. A first example of integration with the Jason
agent programming platform is briefly described here [28]. CARTAGO technology
is based on Java and are available as open-source projects freely downloadable
from the project web sites5.

The engineering of the first prototype of the ORA4MAS infrastructure upon
CARTAGO is still a work in progress.

5 Conclusion and Perspectives

In this paper, we have followed the A&A approach to give back the power to
agents in an organisational approach. From this perspective, we have defined
on the one hand the organisational artifacts which encapsulate the functional
aspects of an organisation and organisation management, and on the other hand

5 http://www.alice.unibo.it/cartago

COIN–140

the organisational agents, which encapsulated the decision and reasoning side of
the management of organisations. We have thus designed the ORA4MAS model.
With this proposal, we provide a decentralized management of an organisational
entity.

Extensions to this work includes the instantiation of OrgArts to different
OMLs such as Islander [9] or MoiseInst [14], or those like AGR [11]. Other
extensions aim at taking benefit of the uniform concepts used to implement the
environment and the organisation abstractions through the concept of artifacts.
Such an homogeneous conceptual point of view will certainly help us to bind both
concepts together in order to situate organisations in environment or to install
the access to the environment into organisational models (in the same direction
as proposed in [23]). Another point of investigation is the definition of a meta-
organisation for the ORA4MAS, so that we have special roles for organisational
agents that give them access to the organisational artifacts.

References

1. FIPA-OS. Technical report, Nortel Networks, 2000.
(http://www.nortelnetworks.com/products/announcements/fipa/).

2. F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi. JADE – a java agent de-
velopment framework. In R. H. Bordini, M. Dastani, J. Dix, and A. El Fal-
lah Seghrouchni, editors, Multi-Agent Programming: Languages, Platforms, and
Applications, number 15 in Multiagent Systems, Artificial Societies, and Simulated
Organizations, chapter 5. Springer, 2005.

3. O. Boissier, J. F. Hübner, and J. S. Sichman. Organization oriented programming
from closed to open organizations. In G. O’Hare, M. O’Grady, O. Dikenelli, and
A. Ricci, editors, Engineering Societies in the Agents World VII, volume 4457 of
LNCS. Springer-Verlag, 2007.

4. O. Boissier, J. Padget, V. Dignum, G. Lindemann, E. Matson, S. Ossowski, J. Sich-
man, and J. Vázquez-Salceda, editors. Coordination, Organizations, Institutions,
and Norms in Multi-Agent Systems, volume 3913 of Lecture Notes in Artificial
Intelligence. Springer Verlag, 2006. AAMAS 2005 International Workshops on
Agents, Norms, and Institutions for Regulated Multiagent Systems, ANIREM 2005
and on Organizations in Multi-Agent Systems, OOOP 2005, Utrecht, The Nether-
lands, July 25-26, 2005, Revised Selected Papers.

5. J. Broersen, M. Dastani, J. Hulstijn, Z. Huang, and L. der van Torre. The BOID
architecture: conflicts between beliefs, obligations, intentions and desires. In J. P.
Müller, E. Andre, S. Sen, and C. Frasson, editors, Proceedings of the Fifth Inter-
national Conference on Autonomous Agents, pages 9–16, Montreal, Canada, 2001.
ACM Press.

6. C. Castelfranchi, F. Dignum, C. M. Jonker, and J. Treur. Deliberate norma-
tive agents: Principles and architecture. In Proceedings of The Sixth International
Workshop on Agent Theories, Architectures, and Languages (ATAL-99), 1999.

7. D. D. Corkill. A Frameworkfor Organizational Self-Design in Distributed Problem
Solving Networks. PhD thesis, University of Massachusetts, Amherst, 1983.

8. V. Dignum, J. Vazquez-Salceda, and F. Dignum. OMNI: Introducing social struc-
ture, norms and ontologies into agent organizations. In R. H. Bordini, M. Das-
tani, J. Dix, and A. El Fallah-Seghrouchni, editors, Proceeding of the Programming
Multi-Agent Systems (ProMAS 2004), LNAI 3346, Berlin, 2004. Springer.

COIN–141

9. M. Esteva, J. A. Rodriguez-Aguiar, C. Sierra, P. Garcia, and J. L. Arcos. On the
formal specification of electronic institutions. In F. Dignum and C. Sierra, editors,
Proceedings of the Agent-mediated Electronic Commerce, LNAI 1191, pages 126–
147, Berlin, 2001. Springer.

10. M. Esteva, J. A. Rodŕıguez-Aguilar, B. Rosell, and J. L. AMELI: An agent-based
middleware for electronic institutions. In N. R. Jennings, C. Sierra, L. Sonenberg,
and M. Tambe, editors, Proceedings of the Third International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS’2004), pages 236–243,
New York, 2004. ACM.

11. J. Ferber and O. Gutknecht. A meta-model for the analysis and design of or-
ganizations in multi-agents systems. In Y. Demazeau, editor, Proceedings of the
3rd International Conference on Multi-Agent Systems (ICMAS’98), pages 128–135.
IEEE Press, 1998.

12. M. S. Fox. An organizational view of distributed systems. IEEE Transactions on
Systems, Man, and Cybernetics, 11(1):70–80, Jan 1981.

13. L. Gasser. Mas infrastructure: Definitions, needs and prospects. In Revised Papers
from the International Workshop on Infrastructure for Multi-Agent Systems, pages
1–11, London, UK, 2001. Springer-Verlag.

14. B. Gâteau, O. Boissier, D. Khadraoui, and E. Dubois. Moiseinst: An organizational
model for specifying rights and duties of autonomous agents. In Third European
Workshop on Multi-Agent Systems (EUMAS 2005), pages 484–485, Brussels Bel-
gium, December 7-8 2005.

15. I. A. Group. Ambient intelligence: from vision to reality. Techni-
cal report, IST, 2003. ftp://ftp.cordis.europa.eu/pub/ist/docs/istag-
ist2003 consolidated report.pdf.

16. J. F. Hübner, O. Boissier, and J. S. Sichman. Programming MAS reorganisation
with MOISE+. In J. Meyer, M. Dastani, and R. Bordini, editors, Dagstuhl Seminar
on Foundations and Practice of Programming Multi-Agent Systems, volume 06261,
2006.

17. J. F. Hübner, J. S. Sichman, and O. Boissier. A model for the structural, functional,
and deontic specification of organizations in multiagent systems. In G. Bittencourt
and G. L. Ramalho, editors, Proceedings of the 16th Brazilian Symposium on Ar-
tificial Intelligence (SBIA’02), volume 2507 of LNAI, pages 118–128, Berlin, 2002.
Springer.

18. J. F. Hübner, J. S. Sichman, and O. Boissier. S-Moise+: A middleware for de-
veloping organised multi-agent systems. In O. Boissier, V. Dignum, E. Matson,
and J. S. Sichman, editors, Proceedings of the International Workshop on Orga-
nizations in Multi-Agent Systems, from Organizations to Organization Oriented
Programming in MAS (OOOP’2005), volume 3913 of LNCS. Springer, 2006.

19. R. Kitio. Organizational artifacts and agents for open multi-agent systems, Jun
2007. Master Thesis report, Available at http://www.emse.fr/˜boissier/kitio.

20. M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent Technology: Computing
as Interaction (A Roadmap for Agent Based Computing). AgentLink, 2005.

21. Modeling Autonomous Agents in a Multi-Agent World (MAAMAW’2001). Pre-
Proceeding of the 10th European Workshop on Modeling Autonomous Agents in a
Multi-Agent World (MAAMAW’2001), 2001.

22. B. A. Nardi. Context and Consciousness: Activity Theory and Human-Computer
Interaction. MIT Press, 1996.

23. F. Y. Okuyama, R. H. Bordini, and A. C. da Rocha Costa. Spatially distributed
normative objects. In G. Boella, O. Boissier, E. Matson, and J. Vázquez-Salceda,

COIN–142

editors, Proceedings of the Workshop on Coordination, Organization, Institutions
and Norms in Agent Systems (COIN), held with ECAI 2006, 28th August, Riva
del Garda, Italy., 2006.

24. A. Omicini, S. Ossowski, and A. Ricci. Coordination infrastructures in the engi-
neering of multiagent systems. In F. Bergenti, M.-P. Gleizes, and F. Zambonelli,
editors, Methodologies and Software Engineering for Agent Systems: The Agent-
Oriented Software Engineering Handbook, volume 11 of Multiagent Systems, Arti-
ficial Societies, and Simulated Organizations, chapter 14, pages 273–296. Kluwer
Academic Publishers, June 2004.

25. A. Omicini, A. Ricci, and M. Viroli. Agens Faber: Toward a theory of artefacts for
MAS. Electronic Notes in Theoretical Computer Sciences, 150(3):21–36, 29 May
2006.

26. A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini. Coordination
artifacts: Environment-based coordination for intelligent agents. In AAMAS’04,
volume 1, pages 286–293, New York, USA, 19–23July 2004. ACM.

27. A. Ricci, A. Omicini, and E. Denti. Activity Theory as a framework for MAS
coordination. In P. Petta, R. Tolksdorf, and F. Zambonelli, editors, Engineering
Societies in the Agents World III, volume 2577 of LNCS, pages 96–110. Springer-
Verlag, Apr. 2003.

28. A. Ricci, M. Viroli, and A. Omicini. A general purpose programming model &
technology for developing working environments in MAS. In M. Dastani, A. El Fal-
lah Seghrouchni, A. Ricci, and M. Winikoff, editors, 5th International Workshop
“Programming Multi-Agent Systems” (PROMAS 2007), pages 54–69, AAMAS
2007, Honolulu, Hawaii, USA, 15 May 2007.

29. A. Ricci, M. Viroli, and A. Omicini. “Give agents their artifacts”: The A&A ap-
proach for engineering working environments in MAS. In E. Durfee, M. Yokoo,
M. Huhns, and O. Shehory, editors, 6th International Joint Conference “Au-
tonomous Agents & Multi-Agent Systems” (AAMAS 2007), pages 601–603, Hon-
olulu, Hawai’i, USA, 14–18 May 2007. IFAAMAS.

30. J. Sairamesh, A. Lee, and L. Anania. Introduction. Commun. ACM, 47(2):28–31,
2004.

31. K. Schmidt and C. Simone. Coordination mechanisms: Towards a conceptual foun-
dation of CSCW systems design. International Journal of Computer Supported
Cooperative Work (CSCW), 5(2–3):155–200, 1996.

32. T. Susi and T. Ziemke. Social cognition, artefacts, and stigmergy: A compara-
tive analysis of theoretical frameworks for the understanding of artefact-mediated
collaborative activity. Cognitive Systems Research, 2(4):273–290, Dec. 2001.

33. J. Vázquez-Salceda, H. Aldewereld, and F. Dignum. Norms in multiagent systems:
some implementation guidelines. In Proceedings of the Second European Workshop
on Multi-Agent Systems (EUMAS 2004), 2004.

34. D. Weyns and H. V. D. Parunak, editors. Journal of Autonomous Agents and
Multi-Agent Systems. Special Issue: Environment for Multi-Agent Systems, volume
14(1). Springer Netherlands, 2007.

COIN–143

COIN–144

Knowledge Sharing Between Agents in a
Transitioning Organization

Eric Matson12 and Raj Bhatnagar1

1 Wright State University
Department of Computer Science and Engineering

Dayton, OH, USA
2 University of Cincinnati

Department of Computer Science
Cincinnati OH, USA

eric.matson@wright.edu

Abstract. People that interact within a cooperative organization must
constantly exchange information on the details of the organization as
well as the goals the organization exists to meet. Agent organizations
must share knowledge if they are to cooperatively act in the solution of
some set of defined goals. The manner in which they share and when
they share information varies. In this paper, we present the process to
share organization information during the process of transition from one
organization state to the next. Some organization models choose to vary
the information known between two agents, in relation to the organiza-
tion. A key element of organization success is that all members operate
with the same information so as not to cause divergence in action or
purpose.

1 Introduction

Organizations exist in every facet of human existence. People join organizations
for reasons such as fulfillment, position or learning. When a person joins an or-
ganization, they must learn, or at least be aware, of the others involved in the
organization. They must understand the overall structure to fully comprehend
their place within the organization. As an example, human organizations com-
monly use charts to describe where each person fits into the structure. These
organization charts exhibit the relationships between positions and people. When
a new person joins an organization they are shown where they fit as part of the
orientation to the organization. As the organization transitions through changes,
the knowledge required for continued understanding of place and position must
be updated.

To learn about the organization, the person must exchange organization spe-
cific information with others. When they first join, others in the organization
transfer information to them to facilitate their organizational learning. The or-
ganizational learning is not necessarily classical learning, but instead a process

COIN–145

to share or transfer knowledge. Each agent is previously aware of the knowledge
structure and process required to interact with other agents in the organization.

Modeling agent organizations using the inspiration of human organizations,
as is commonly done, the designer must create the formalities and implementa-
tion to allow the transfer of information between agents. We look at interaction
as a basic exchange of information between two agents, but can be extended to
any number of agents belonging to an organization. The goal of the exchange is
to maintain a state of perfect information between all agents. Perfect organiza-
tion dictates that all agents must have identical organizational knowledge. The
trick is that during transition, initial organization or reorganization, the infor-
mation will change for at least one agent. That agent then has to insure that all
other agents must receive the same knowledge changes. Differences in knowledge
between agents will cause potential divergence in goals or roles played by the
organization. The effect of bad information, in an agent organization, is much
the same as if it were a human organization.

Our logic-based approach to this problem stems from some fundamental
work, such as work by Su et al. [13]. Deitterich expressed the need to establish
a useful level to approach knowledge, both for storing and learning or exchange
[4]. Gordon and Subramanian augmented the approach to knowledge, by estab-
lishing the need for finer grain tuning of logic [8]. Baader provides a more general
approach to the need for knowledge representation [2]. The basis of these works
establishes the fit of logical representations for organization knowledge storage.
In this work, the logical representation of organization will mirror the structural
representation of organization.

In terms of knowledge sharing, Dignum and Dignum [5] indicate the shift
from sharing to collaboration. That is key for this effort, although the basis of
our model restricts the knowledge exchanged to a very specific set, lending to
the strategy shown by Soller and Busetta [14] to develop a shared understanding
between agents. While not strictly a default set of rules, as described by Rybinski
and Ryzko [12], our logical structures are standardized, to simplify the body of
knowledge exchanged.

An assumption, for this research, is agents are cooperatively participating
in an organization where common goals are paramount. Individual agent goals
and motivations are not above the needs of the organization. The difference
is our approach reflect separating the constitution of the organization from a
strictly structural concept. Organizations are normally perceived as structural,
with components and relationships. Our approach considers an organization as a
mental image of a structural entity. This approach allows better scalability and
computation of new states.

In this paper, we describe and demonstrate the organization knowledge ex-
change between agents belonging to the same organization. In section 2, we
describe model elements and processes for sharing of knowledge between orga-
nization agents. In section 3, the implementation of this system is described.
Results of the implementation are described in section 4. Section 5 explains
opportunities for further work.

COIN–146

2 Organization Knowledge Sharing

In this section, we describe the basic structure required to model organizational
information to facilitate exchange of information. The foundation of exchange
is an organization model [9, 3]. The agent structure is shown first followed by
the structural, state and transitional elements of our organization model. Once
an organization model is described we extend the model to include processes of
exchange. Finally, the model and processes are integrated to show the overall
formalities of knowledge transfer between agents.

2.1 Agent Core Composition

Before looking at the specific elements of organization, we must first show the
overall structure of an agent. An agent is comprised of several knowledge cores, as
shown in Fig. 1. An agent has three knowledge cores which are the organization
core, communications core and task core. Each core represents the knowledge
held by an agent in an area. For example, the communications core represents
all knowledge required to communicate with all other agents to which the agent
has access. The task core represents it knowledge of each of the capabilities pos-
sessed by the agent. An agent may have numerous task cores. While all three
cores compose an agents knowledge, the organization core is the one of most
interest in this research, and will be the focus of the discussion. This core repre-
sents all of the knowledge of the organization in which an agent participates. In
simple terms, it is its own internal organization chart defining all components,
structural relationships and state relationships of the organization. As the struc-
tures contained within the core are discrete, all agents work with an even base
in which to share organization knowledge.

2.2 Organization Model Elements

Our organizational model (O) has a structural model, a state model and a tran-
sition function [9], described as:

O = (Ostructure, Ostate, Otransition) (1)

Before approaching the details of information exchange, we must examine
the structural and state elements of our model. The component and relationship
elements are represented as the stored knowledge to be exchanged.

Structure The structure is defined by:

Ostructure =< G,R, L,C, ach, rel, req, sub, con > (2)

where ach is achieves, rel is related, req is requires, sub is subgoal and con is
conjunctive, respectively. G describes the set of goals, R is the set of roles,
L is the set of laws or rules required, and C is the set of capabilities. The

COIN–147

Fig. 1. Knowledge Cores of an Agent

organization structure also contains a set of relations. The achieves relation,
achieves : R,G → [0..1], states the relative ability of a role to satisfy a given
goal. The related function related : R,R → Boolean exists only if two roles are
related. Roles require capabilities to satisfy a set of goals and this is captured by
the requires : R,C → Boolean. The organization may contain subgoal relation-
ships subgoal : G, G → Boolean. The conjunctive relationship between goals is
conjunctive : G → Boolean.

State The state is defined by:

Ostate =< A, possesses, capable, assigned, coord > (3)

where an A defines a set of agents available to participate in the organization.
There are several relationships in the state element of the organization. An agent
capable of playing a certain role possesses the necessary capabilities described
by the possesses relation, possesses : A,C → [0..1]. An agent is capable of
playing a role in the organization as described by the capable relation, capable :
A,R → [0..1]. The assigned relation, assigned : A,R, G → [0..1], is used to
match the best agent, role, goal combination that maximizes the capability of
the organization. The coordination relation, coord : A,A → Boolean, allows a
relationship between two agents.

Transition Transition is the main topic of knowledge exchange as transition
requires that knowledge be exchanged by all agents participating in the orga-
nization. There are two specific transition processes, initial organization and
reorganization. From organization state0 to state1 is initial organization. All

COIN–148

other transitions are reorganization. Transition is expressed by:

Otransition = (O,Φ, δ, sn, Soptimal, Spossible, Sfinal) (4)

Where O is the organization over which the transition will occur, Φ is the set
of properties that can trigger a transition of the organization, δ is the transition
function, sn is the set of relative states of the organization, Soptimal is the set
of optimal states that result from transition and Spossible are states that are
possible to reach, from the current state. Sfinal is a set of organization states
where all goals are satisfied, or the lst goal is satisfied, or it is determined that
not all goals can be satisfied. Even though the outcomes are different, each final
state draws a conclusion to the organization’s set of transitions. Because an
organization can only exist as a single entity or instance, the current state sn is
always a unique value [10].

The basic transition is defined as a product of the O, Φ and S resulting in a
set of reachable organization states:

δ : O × Φ× S ⇒ S (5)

So, the transition function is of the form:

δ(O,φ, sn) ⇒ S′ (6)

Where transition function δ takes the organization O, a specific transition prop-
erty φ, and a state of the organization sn and can transition to a set of new
states S′ where Soptimal ⊆ Spossible , Soptimal ⊆ S′ and Sfinal ⊆ Spossible.

Transition Properties Transition properties Φ represent stimuli that can
change the organization. They are represented in logical format which capture
the generic nature of what they can define. In general terms, an organization
will need a set of properties Φ, for example, capabilities or agents, which can be
the stimulus of transition. An individual property φ ∈ Φ is eligible to act as a
reorganization trigger. Some examples of φ include a change in the real value of
a capability, the loss of overall capability or agent function, loss of an agent, the
reentry of an agent, or the addition of a new agent.

Each domain problem, represented by knowledge in a task core, may create a
number of task specific transition properties. We will first show general, abstract
properties and then discuss specific properties. These general properties can be
instantiated to fit specific examples. Some general transition properties are:

1. Loss of an agent participating in the organization
2. An agent loses capability required to play some role
3. A new agent becomes available
4. Capability of an agent increases
5. Capability of an agent decreases
6. A goal is removed
7. A goal is added

COIN–149

8. A goal is relaxed (changed)
9. Change in goals to roles achieves relationship

10. Change in role to capability requires relationship

Changes in organization structure and participants will drive transition activ-
ities. Transition properties can be triggered internally or externally. The general
transition properties can be split into properties that are external and those that
are internal.

Transition Predicates A transition predicate is a formalization of a transi-
tion property. The formalization of transition predicates enables the exchange
of information. Transition predicates can also be expressed as Φ = {φ1 . . . φn}.
In general, Φ can be expressed as a set of standard, abstract predicates, Φ =
{φlose, φadd, φchange}, where φlose is the abstract property dealing with loss,
such as losing an agent from the organization or an agent losing capability to
play a role. The add property φadd describes the action when an agent becomes
available for invitation to the organization. The change property φchange can
either be an increase or decrease and further specializes the change predicate,
φchange = {φdecrease, φincrease} [11].

The primitive predicates exhibit polymorphic behavior as each can be applied
to different organization elements to capture different properties.

1. Loss of an agent participating in the organization φlose(a)
2. An agent loses capability required to play some role φlose(ci, a)
3. A new agent becomes available φadd(b)
4. Capability of an agent increases φincrease(ci, a)
5. Capability of an agent decreases φdecrease(ci, a)
6. A goal is removed φlose(g)
7. A goal is added φadd(g)
8. A goal is relaxed (changed) φchange(g)
9. Change in goals to roles achieves φchangeachieves(ri, gj)

10. Change in role to capabilities φchangerequires(ri, cj)

Primitive predicates can be used to formalize single properties. If there is a loss
of an agent participating in the organization, it can be formalized as the predi-
cate φlose(a). An agent a losing some capability can be captured as φlose(ci, a).
Complex predicates represent the combination of simple predicates logically con-
structed using common and (∧), or (∨) and not (¬) relations.

Some predicates will encompass others, but in some cases two properties can
be successfully combined to form a single property of transition. In the case that
an agent exits an organization, it can be reasoned that all capability of that
agent will also exit. So combining the two previous predicates of losing an agent
and losing a capability by an agent are redundant, in respect to the capability
predicate φlose(a) ∧ φlose(ci, a). In another situation, an organization may lose
two agents simultaneously. If agents a and b both leave, we can capture that by
φlose(a) ∧ φlose(b), where one primitive predicate does not contain the other.

COIN–150

As there are primitive and complex predicates, another perspective shows
component and relationship predicates. A component predicate is defined as a
predicate where the property relates to a component of the organization, such as
an agent being added or a goal being deleted. A relationship predicate is defined
by a property where a relationship between two components is added, deleted or
altered. Relationship predicates can be primitive. Component predicates must
be complex as the component must collaborate with a relationship to connect
to the organization.

2.3 Exchange Processes

A model is not necessarily sufficient to completely explain the exchange of knowl-
edge. The process must also show how the agents interact to share the informa-
tion. This definition only describes the basic mechanics of the exchange. It must
be further explored to answer questions on what basis is information exchanged.
Will the information be shared with anyone who asks? Will the information be
shared with all agents? Will it be shared with agents who do not specifically
ask for it? These questions not only pose a set of philosophical queries, but also
pose some practical problems in exchange. Automatically sending data to an
agent that does not need it, as it already possesses the information, is wasteful
in terms of resources.

Our approach to knowledge exchange is similar to the mind-body problem
of Descartes. In the mind-body problem, the mind is differentiated from the
matter of the body. The knowledge of an organization, which resides in the
individual mind of each agent, within the organization, is different than the
physical manifestation of the organization. Each agent carries an image of the
organization with all components and relationships. The key is for all agents to
have the same image of the organization, in other words, perfect information.

The basic premise is that when each transition occurs, all agents need to be
updated with the current organization knowledge. When a human organization
requires change, a decision is made and the change is then communicated by the
decision maker to those affected. As with human organizations, a single agent
will receive the change, φ and propagate the change to each of the other agents
in the organization.

There exists a risk of a transition property not correctly propagating from
the sending agent to the receiving agent. If this occurs, the receiving agent will
not compute a new organization and will be different than those agents who
successfully received the message. If for some reason, such as an agent being
deleted, another agent will sense the agent loss and update the others. It can
also be said that each of the others can self update in the event of a loss, but
questions whether each is required to recompute. A key goal is to minimize the
amount of information transferred for each organization transition.

COIN–151

2.4 Integration

Each agent optimally has the same organization knowledge. This supports the
premise that all agents operate on full information. Fig. 2 shows an organiza-
tion of 4 agents {agent1, agent2, agent3, agent4}. Agent1 receives a transition
property from either an internal or external force. Agent1 then propagates the
predicate to agent2, agent3 and agent4. The organization core represents the
part of the mind of the agent concerned with where it fits in the organization.
The agents themselves represent the physical manifestation, or the body.

Fig. 2. Knowledge Transfer

3 Implementation

The organization formalisms and knowledge exchange processes have been im-
plemented to complete this work. The implementation is a combination of Java
used as the main development platform with JESS utilized to implement the
knowledge bases. JESS has a natural relationship with Java as described by
Friedman-Hill [6] and utilizes the rete algorithm of Forgy et al. [7] and Albert [1]
shows the computational fit for this algorithm applied to this technical problem.

In this section, the implementation of the structural and state elements as
logical constructs in JESS are discussed. Each component and relationship are
expressed as logical predicates. This logical expression represents the mind of
the organization. Each predicate is sent to each agent in the body and then
each agent recomputes a new organization image within their own structure.
Thus the mind of each agent in the body recomputes its own like image of the
organization after each change. All JESS logical functions are constructed with

COIN–152

rules and facts, based on templates. The organization object is then embedded
inside a Java shell for integration with the body of the organization, written in
Java.

3.1 Structure and State

Each predicate of the organization model’s structure and state can be directly
represented by a template in JESS. For example, the structural templates are:

(deftemplate goal (slot goal))
(deftemplate goal (slot role))
(deftemplate goal (slot capability) (slot score))
(deftemplate achieves (slot role) (slot goal) (slot score))
(deftemplate related (slot role) (slot role))
(deftemplate requires (slot role) (slot capability))
(deftemplate subgoal (slot goal) (slot goal))
(deftemplate conjunctive (slot goal))

The state templates are:

(deftemplate agent (slot agent))
(deftemplate possesses (slot agent) (slot capability) (slot score))
(deftemplate capable (slot agent) (slot role) (slot goal) (slot score))
(deftemplate coord (slot agent) (slot agent))

So a φ property of adding a goal, φadd(g), will exist in JESS as (goal(goalg))
added by a rule in JESS.

3.2 Transition and Exchange

Each agent is a complete independent entity communicating via TCP/IP sock-
ets. All knowledge is exchanged using Java via networking between distributed
agents. This technology is employed specifically for loss reduction and error han-
dling abilities in relation to knowledge exchange.

There are three specific change categories which can effect the exchange pro-
cess. The first is change to a structural element of the organization. Examples of
structural change are to add or lose a goal. The second is the change in a state
element. An example of state change is an agent gaining or losing capability,
thereby requiring a computation of the organization. The third option is the loss
or gain of an agent. Each of these changes will be described using the transition
predicates and exchange of JESS constructs.

Structural Change If a goal is added or lost, the agent first notified must send
a message to all others to retain the state of perfect information. If a transition
predicate φadd(gn) is received by agent x, ax, then a message must be propagated
to all other agents to add the new goal, as a fact. For each organization knowledge
core a new fact is added.

COIN–153

State Change If there is a state change such as the capability of agent x increases
φincrease(ci, ax), then that agent will propagate the new fact to all other agents.

Agent Change When there is no change to the collection of agents, within the
organization, it is straightforward to propagate the new information to all agents.
When an agent is gained or lost, the matter of communication takes on a new
level of complexity. When an agent is lost, one or more of the agents remaining
must recognize the loss. One of the agents must define a predicate φlose(ax),
create the update and send to all agents. If an agent is gained to the organization,
φgain(ax), the new fact that an agent has been added is sent to all agents by one
of the agents, already in the organization.

4 Results

We must first distinguish between results split by the two transition processes,
initial organization and reorganization. The result indicates the initial organiza-
tion is computationally more intense and is based on the number of components
and relationships. Since it will only be computed once in each organization’s life,
its effect is discounted. Reorganization is much smaller, due to the incremental
nature of only having to recompute around new components and relationships of
the φ predicate. If φ is quite large, it may alter the computational intensity. For
example, if the number of components and relationships in φ is equal or greater
than the existing organization, reorganization may be computationally large.

Fig. 3. Results

The computation of a transitioning organization differs from an initial orga-
nization to a reorganization. In a strictly structural context, initial organization
and reorganization do not differ a great deal. In our mind body approach the
difference is significant. For a small organization size of 10 goals, 10 roles, 10
agents and complete relationship set, the time for initial organization is 0.03219
seconds. The time for a reorganization based on one new component and all
relationships is 0.01754 seconds. Fig. 3 shows the time to compute a transition
against the size of the organization, in elements. The initial organization used in

COIN–154

this analysis has 10 organization components, such as roles, agents or goals, and
15 relationships between those components. The total number of components,
on the lower end, is 25. The data shows the time to compute the transition
going from 25 components to 100, which is beyond a trivial organization. The
transition process is based on computing an optimal organization configuration.
The key is that the time to recompute is not significantly different for the larger
organization. This is due to the incremental nature of the computation process.
This indicates use of this method, is at least initially, scalable.

If we compare this timing to another result by Zhong it shows the difference.
In Zhong’s research[15], based on a similar model, using only the constructive
version of the structural model algorithm to transition, the results of a structural
computation yields two interesting points. First, the structural model transition
algorithms grows at a fast rate as the number of organization components grow.
Secondly, the ability to scale to large organizations will be significantly hindered
by a strictly structural approach. This indicates as the size of the organiza-
tion grows, the difference between our approach and a more structural-based
approach will grow, in terms of time to compute.

Instantiating an organization and its transition processes in terms of a mind-
body approach has advantages over a strictly structural computational approach.
While there are also a few disadvantages, these are overcome by the positives.

Computation minimization is the best result of this approach. While larger,
more complex organizations must be tested, the early results show promise. The
computation is performed locally and in parallel, which allows the transition
process to be completed more rapidly. The intent is for each agent to work with
perfect information and each agent will have the same organization image, with-
out transferring the entire structure each transition cycle. The rate of message
growth is small. Even with a large change, all computation is local. This will al-
low a near linear growth rate during organization augmentation. This will reduce
temporal computation problems in transition processes.

There are a few negative side effects of this approach. Perfect information
requires that information is transferred from agent to agent without interrup-
tion or error. If there is a transfer loss, the synchronization of the organization
image maps will suffer. Recovering from loss, during exchange, is key for the
design. There must be synchronization allowing each agent to recompute simul-
taneously with all others. If there are lag times, it can create temporal problems
in transition.

5 Further Work

The initial algorithm will be extended to a complete distributed model and
a hybrid model, which allows an integration of command mode and complete
distributed behavior. Larger organizations will be theoretically analyzed and
empirically analyzed to determine performance over large, distributed agent or-
ganizations and societies. The scalability question will be further developed to
see if there is a breaking point of the design.

COIN–155

References

1. Luc Albert, Average Case Complexity Analysis of Rete Pattern-match algorithm
and Average Size of Join in Databases. Rapports de Reserche, No. 1010. Institut
National de Reserche en Informatique and Automatique, Rocquencourt, France,
April, 1989.

2. Franz Baader, Logic-based Knowledge Representation. Artificial Intelligence To-
day, Recent Trends and Developments, no. 1600. Springer-Verlag, M. Wooldridge
and M. Velosa (eds.), 13-41, 1999.

3. Scott DeLoach, Eric Matson. An Organizational Model for Designing Adaptive
Multiagent Systems. Agent Organizations: Theory and Practice at the National
Conference on Artificial Intelligence (AAAI-04), July 25-29, 2004, San Jose, CA.

4. Thomas Dietterich, Learning at the Knowledge Level. Machine Learning, 1:287-
316, 1986, Kluwer Academic Publishers, Boston, MA, USA.

5. Virginia Dignum, Frank Dignum.The Knowledge Market: Agent-Mediated Knowl-
edge Sharing, Lecture Notes in Computer Science Springer Berlin/Heidelberg, vol.
2691, Multi-Agent Systems and Applications III: 3rd International Central and
Eastern European Conference on Multi-Agent Systems, CEEMAS 2003, Prague,
Czech Republic, June 16-18, 2003.

6. Ernest Friedman-Hill. JESS in Action: Rule Based Systems in Java. Manning
Publications, Inc., Grennwich Connecticut, USA, 2003.

7. Charles Forgy, Allen Newell, Anoop Gupta. High-Speed Implementation of Rule-
Based Systems. ACM Transactions on Computer Systems, Vol. 7, no. 2, May
1989, pages 119-146.

8. Diana Gordon, Devika Subramanian, A MultiStrategy Learning Scheme for Agent
Knowledge Acquisition, Informatica, 17:4, 1993.

9. Eric Matson, Scott DeLoach. Organizational Model for Cooperative and Sustain-
ing Robotic Ecologies, Proceedings of Robosphere 2002 Workshop, NASA Ames
Research Center, Moffett Field, California, November 14-15, 2002.

10. Eric Matson, Scott DeLoach, Formal Transition in Agent Organizations, IEEE
International Conference on Knowledge Intensive Multiagent Systems (KIMAS
’05), Waltham, MA, April 18-21, 2005.

11. Eric Matson, Raj Bhatnagar. Properties of Capability Based Agent Organization
Transition. 2006 IEEE/WIC/ACM International Conference on Intelligent Agent
Technology (IAT-2006), Hong Kong, December 18-22, 2006.

12. H. Rybinski and D. Ryzko. Knowledge Sharing in Default Reasoning-Based Multi-
agent Systems, IEEE/WIC/ACM International Conference on Intelligent Agent
Technology, 2003. October 13-16, 2003, pp. 576 - 579.

13. Kaile Su, Xudong Luo, Huaiqing Wang, Chengqi Zhang, Shichao Zhang, Qingfeng
Chen. A Logical Framework for Knowledge Sharing in Multi-agent Systems, Lec-
ture Notes in Computer Science, vol. 2108, Springer Berlin/Heidelberg. Comput-
ing and Combinatorics : 7th Annual International Conference, COCOON 2001,
Guilin, China, August 20-23, 2001,

14. Amy Soller and Paolo Busetta. An Intelligent Agent Architecture for Facilitat-
ing Knowledge Sharing Communication, in Proceedings of Workshop on Humans
and Multi-Agent Systems, International Conference on Autonomous Agents and
Multi-Agent Systems, Melbourne, 2003, pp. 94-100.

15. Christopher Zhong, Scott A. DeLoach. An Investigation of Reorganization Al-
gorithms. Proceedings of the International Conference on Artificial Intelligence
(IC-AI’2006). June 2006, Las Vegas, Nevada, CSREA Press, 2006.

COIN–156

Distributed Norm Enforcement via Ostracism

Adrian Perreau de Pinninck, Carles Sierra, and Marco Schorlemmer

IIIA – Artificial Intelligence Research Institute
CSIC – Spanish National Research Council

Bellaterra (Barcelona), Catalonia, Spain
adrianp,sierra,marco@iiia.csic.es

Abstract. An agent normative society has to deal with two main con-
cerns: how to define norms and how to enforce them. Enforcement be-
comes a complex issue as agent societies become more decentralized and
open. We propose a new distributed mechanism to enforce norms by os-
tracizing agents that do not abide by them. Our simulations have shown
that, although complete ostracism is not always possible, the mechanism
substantially reduces the number of norm violations.

1 Introduction

In a normative Multi-Agent System (MAS) a set of norms are added to restrict
the set of available actions in order to improve the coordination between agents.
An autonomous agent has the choice whether or not to support a norm. It is
up to the agent to decide if it is convenient for it to abide by it. For a utility
maximizer agent if following a norm is profitable, it is in the agent’s own interest
to act as the norm establishes. But this is not always the case, as some norms
are profitable even when not all agents abide by them. For example, a norm that
dictates that owners must clean the common areas. Cleaning entails a cost, and
a clean area is a benefit to all. If an owner does not clean the common area (i.e.,
a norm violator) thus not bearing its cost, but the others do, the area is still
clean.

The aim of this paper is to introduce a new distributed mechanism that at-
tains norm compliance by ostracizing norm violating agents. Our scenario allows
agents to interact with each other. An agent can interact with the agents it is
linked to directly or indirectly through a path of links (i.e., agents can interact
with direct neighbors, with neighbors of neighbors, and with their neighbors and
so on...). An initiator agent will search for a path in the society to find a partner
agent with which to interact. All the agents in the path that are not the initiator
or the partner agent will be called mediator agents (i.e., agents mediating the
interaction).

We use a game-theoretic approach to interactions, which we model as a two-
player game with two possible strategies; cooperate and defect. The utility func-
tion will be that of a prisoner’s dilemma (see Figure 1).

The norm in this scenario is for all agents to cooperate, thus attaining the
maximum utility for the society. Nonetheless, agents can choose to ignore the

COIN–157

PD Cooperate Defect

Cooperate 3,3 0,5

Defect 5,0 1,1

Fig. 1. Prisoner’s Dilemma Payoff Matrix

norm and defect (i.e., violate the norm) thus gaining more utility. In order to
attain norm enforcement, some agents (we will call them enforcer agents) are
given the ability to stop interacting with violators, and to stop them from inter-
acting with the enforcer’s own neighbors. When enough agents use this ability
against a violator, it is ostracized. An agent is ostracized when it cannot interact
with anyone else in the society, in this case it is a consequence of defecting in
the interaction against many different agents.

The motivation behind using ostracism comes from the study of norm en-
forcement in primitive societies [11]. When a member of a community repeatedly
ignored its customs, it was forced to leave. No one in the community would inter-
act with the ostracized member from then on. Ostracism is achieved in human
societies through force and physical constraint. In order to achieve ostracism of
electronic entities, which interact through a network, we seek inspiration from
the network security area. The most commonly used component in this case is a
firewall, which blocks those communications which appear to be harmful. While
firewalls are usually set up by humans through complex rules, enforcer agents
will use gossip as a way to inform each other about malicious agents.

Fig. 2. Ostracizing a violator

The ostracism process can be seen in Figure 2. At first an undetected violator
in the network (the dark gray node) can interact with all the other agents (light
gray nodes are liable to interact with the violator). When the violator interacts,
and defects, it can be detected by enforcer agents which will block it (black

COIN–158

nodes are blocking agents, and white nodes are agents that the violator cannot
interact with). When all the violator’s neighbors block it, it is ostracized.

Gossip is essential to find out information about other agents in a distributed
environment. We will use gossip as part of the enforcement strategy to ostra-
cize agents. Information is gossiped only to agents mediating the interaction, to
minimize the amount or resources it takes. If agent agv violates the norm when
interacting with agent ag1, ag1 may spread this information to all mediator
agents so they may block agv in the future.

By running a set of simulations, we study under which conditions the mech-
anism works, and give measures of its success (such as the violations received or
the utility gained). Our hypotheses are:

– H1 - Norm violations can be reduced by applying a local blocking rule.
– H2 - The society’s structure influences its enforcement capabilities.
– H3 - The choice of blocking strategy influences the number of violations

received.
– H4 - Enforcement makes norm-abiding a rational strategy.

Section 2 describes related work in the area of norm enforcement. Section
3 presents a detailed description of the scenario we employ in the simulations.
Section 4 describes the simulations and analyzes the resulting data. Finally,
section 5 presents future work.

2 Related Work

The problem of norm enforcement has been dealt with in human societies through
the study of law, philosophy, and the social sciences. Recently it is being dealt
with in computer science, where norms are studied as a coordination mechanism
for multi-agent systems. Axelrod [1] first dealt with the application of norms
from an evolutionary perspective. Enforcement is seen by Axelrod as a sort of
meta-norm to punish agents that do not punish violators. The norm game is of-
ten modeled as an N-Player Iterated Prisoner’s Dilemma [1, 8]. In these cases the
norm is to cooperate and ways are sought to ensure that agents prefer coopera-
tion. Other research studies norms that avoid aggression or theft [4, 7, 12, 15]. In
these cases agents gain utility by either finding items or receiving them as gifts.
But these items can be stolen by other agents through aggression. An agent that
abides by the possession norms will not steal food possessed by another agent,
therefore avoiding aggression.

Two enforcement strategies have been studied to attain norm compliance:
the use of power to change the utilities through sanctions or rewards [2, 3, 8,
14], and the spread of normative reputation in order to avoid interaction with
violators [4, 6, 7, 12, 15]. Both strategies have the goal of making norm adopters
better off than norm violators. But this is not always accomplished [4, 7], since
all agents benefit from the norm while only enforcers agents bear its cost.

Norm enforcement models in [2, 6] show how violating the norm becomes an
irrational strategy when punishment is possible. But these models assume the

COIN–159

following: (i) agents are able to monitor other agents’ activities; and (ii) agents
have the ability to influence the resulting utility of interactions. Assumption
(i) can be materialized by having a central agent mediate all interactions [2],
or by having agents recognize violators through direct interaction with them,
or through gossip with other agents [4]. The first solution does not scale, since
the mediator agent would be overwhelmed in a large system. The second scales
because no agent is the enforcement bottleneck, but it is less efficient since in
a distributed environment not all violations can be detected. Assumption (ii)
can be carried out through third-party enforcement [2], or self-enforcement [6]
in which each agent carries out sanctions to agents it interacts with. Third party
does not scale since it can easily be overwhelmed in a large system. For self-
enforcement, all agents must have the ability to affect the outcome utility of
interactions.

Axelrod [1] defines the “shadow of the future” as a mechanism to affect an
agent’s choice in iterated games. An agent is deterred from defecting when the
probability of interacting with the same agent in the future is high, and agents
will defect in future interactions with known violators. Nonetheless, this mech-
anism makes enforcers violate the norm as they also defect. Another method is
the threat of ostracism or physical constraint. By not interacting with violators,
an agent can interact with another agent and achieve a higher payoff. Younger
has studied [15] the possibility of avoiding interaction with norm-violators, but
does not prevent norm-violators from interacting with anyone else.

Kittock [9] was the first to study how the structure of a multi agent system
affected the emergence of a social norm. He studied regular graphs, hierarchies,
and trees. In [5] Delgado studied emergence in complex graphs such as scale-free
and small-world, and in [10] studied the relationship between a graph’s clustering
factor and emergence.

Using the scenario presented in this paper, agents can monitor other agents’
activities, and influence future interactions. The spread gossip, and sanctioning
norm-violators with ostracism via blockage are the techniques used to achieve
this influence. We have studied norm enforcement using these techniques in
societies with differing structures.

3 The Scenario

We model our multi-agent system as an undirected, irreflexive graph: MAS =
〈Ag,Rel〉, where Ag is the set of vertices and Rel the set of edges. Each vertex
models an agent and each edge between two vertices denotes that the agents are
linked to each other. We have chosen three kinds of graphs for their significance:
Tree, Random, and Small-World. We define a tree as a graph in which each
node has one parent and some number of children; one node, the root node,
has no parent, and the leave nodes have no children. Nodes are linked to their
parents and children. In a random graph any node can be linked to any other
one with a given probability. A small-world graph is created by starting with a

COIN–160

regular graph1, and adding enough random edges to make the average distance
between any two vertices significantly smaller [13]. A small-world graph is highly
clustered (i.e., if a node has two neighbors, the probability of them being linked
is high), and there are some links between distant parts of the graph that make
the average distance between any two edges small. The graph structures have
been generated with a similar average number of links per node.

We use a game-theoretic approach by modeling interactions as a two-player
prisoner’s dilemma game. The norm is that agents ought to cooperate (i.e., an
agent disobeys the norm by defecting). In order for two agents to interact, there
must be a path in the graph between the two. One agent will search for a path
that leads to another agent with which to interact. We call the searching agent
initiator agent, the agent chosen to interact partner agent, and the remaining
agents in the path mediator agents. The partner finding process is explained
below, but first we need to formally describe some terms.

We define the set of neighbors of an agent ai as the set of agents it is linked
to directly in the graph: N(ai) = {aj ∈ Ag | (ai, aj) ∈ Rel}. Each agent also has
a set of agents it blocks (an agent cannot block itself): B(ai) ⊆ Ag \ {ai}. An
agent ai can query another agent aj for a list of its neighbors. We call the set
of agents that aj returns, reported neighbors: RN(ai, aj) ⊆ N(aj). The set of
reported neighbors depends on the blocking strategy of aj . The strategies used in
our simulations are explained below. A path is the route (without cycles) in the
graph structure through which interaction messages are delivered. We represent
a path as a finite (ordered) sequence of agents p = [a1, a2, . . . , an] such that for
all i with 1 ≤ i ≤ n − 1 and n ≥ 2 we have that ai+1 ∈ N(ai), and for all i, j
with 1 ≤ i, j ≤ n and i 6= j we have that ai 6= aj . The agent a1 of a path is the
initiator agent, agent an is the partner agent, the remaining ones are mediator
agents.

In order to find a partner, the initiator agent ai creates a path p = [ai]
with itself as the only agent in it. A path with one agent is not valid, since an
agent cannot interact with itself. Therefore, the initiator agent will query the last
agent in the path (the first time it will be itself) to give it a list of its neighbors.
It will choose one of them randomly2 (aj) and add it to the end of the path
p = [ai, ..., aj]. At this point, if agent aj allows it, the initiator agent can choose
agent aj as the partner. Otherwise, it can query agent aj for its neighbors and
continue searching for a partner. This choice is taken randomly, with probability
p = 0.3 aj becomes the partner, and with probability 1−p it becomes a mediator
and ai asks it for its neighbors.

If the path’s last element is an agent an that refuses to interact with the
initiator agent, and an returns an empty list of agents when queried for its
neighbors, backtracking is applied. Agent an is removed and a different agent is
chosen from the list of an−1’s neighbors and added to the end of the list.

1 CN,r is a regular graph on N vertices such that vertex i is adjacent to vertices
(i + j) mod N and (i− j) mod N for 1 ≤ j ≤ r.

2 To avoid loops, an agent that is already part of the path cannot be chosen again.

COIN–161

Once the partner is chosen, a prisoner’s dilemma game is played between the
initiator and the partner. The game results and the path are known by both
playing agents. Playing agents can choose to send the game results to all the
mediators in the path. This is what we call gossip, which formally speaking is
a tuple that contains the agents’ names and their strategy choices for the given
game: Gossip = 〈agi, chi, agj , chj〉, where chi and chj are either cooperate or
defect.

During the whole process agents can execute any of the following actions:

– Return a list of neighboring agents when asked for its neighbors.
– Accept, or reject, an offer to interact.
– Choose a strategy to play in the PD game when interacting.
– Inform mediators of the outcome of the interaction.

The society of agents is composed of three types of agents, each one charac-
terized by a different strategy for the actions it can execute. A meek agent is a
norm-abiding agent that always cooperates. It will always return all its neighbors
to any agent that asks. A meek agent will always accept an offer to interact, it
will always cooperate in the PD game, and it will never gossip. A violator agent
follows the strategy of a meek agent, except that it always defects when playing
a game, therefore it is not a norm-abiding agent. Violator agents in our simula-
tions are very naive, they never model the other agents, or treat them differently
depending on their actions. In short, they cannot change the strategies. Future
work will look into more sofisticated norm-violators.

Finally, an enforcer agent has the ability to block violators, which is essential
in order to achieve their ostracism. An enforcer agent shares the same strategies
with meek agents with the following exceptions: It will add agents that have
defected against it to its set of blocked agents, and will gossip to all mediators
when defections happen. If an enforcer is informed of the results of a game it
was mediating, it will act as if it had played the game itself. An enforcer agent
will never choose an agent in its blocked set as a partner, and will not allow
an agent in its blocked set to choose it as a partner. Therefore, a violator agent
cannot interact with an enforcer who is blocking it. When an enforcer agent am

is asked to return a list of its neighbors by an agent ai who is not in its blocked
set, two different strategies are possible. The Uni-Directional Blockage (UDB)
strategy, where all its neighbors will be returned (RN(ai, am) = N(am)). Or the
Bi-Directional Blockage (BDB) strategy, where only those neighbors not in its
blocked set are returned (RN(ai, am) = N(am) \ B(am)). When the querying
agent is in the enforcer agent’s blocked set, it always returns an empty set.

The choice of enforcement strategy entails a trade off. Intuitively, one can
see that enforcer agents are better off with the UDB strategy, since they will
be able to use violator agents as mediators to reach other parts of the society.
Enforcers will not be tricked by a violator more than once, so they are sure not
to interact with them. Therefore, using violators as mediators benefits enforcers.
Meek agents, on the other hand, do not learn to avoid violators. They may
choose one unknowingly as their partner repeatedly. BDB is a better strategy for
meek agents, it reduces their chances of choosing violator agents. Furthermore, a

COIN–162

structure with a violator as a cut vertex, may be split into two different societies
when the BDB strategy is used, and the violator is ostracized. If the UDB
strategy is used, the society stays connected, since the ostracized violator can
stil be used as a mediator.

In order to focus on the most relevant aspects in our simulations, we made
the following limiting assumptions:

– Agents cannot change their strategy (i.e., a violator is always a violator).
– Agents cannot lie when sending gossip.
– There are no corrupt enforcer agents.
– There is no noise (i.e., an agent knows its opponent’s chosen strategy).

These assumptions imply that modeling agents’ reputation is simple. Being in-
formed once about an agent’s strategy is enough, since information will never
be contradictory. Therefore, there is no place for forgiveness, and sanctions are
indefinite. Relaxation of these assumptions will be studied in future work.

4 Simulations

The simulations have been run using the scenario specified in Section 3. Each
simulation consists of a society of 100 agents. The society will go through 1000
rounds, in a round each agent tries to find a partner with which to interact. If
the agent finds a partner a prisoner’s dilemma with the utility function of Figure
1 is played.

The parameters that can be set in each simulation are:

– Percentage of Violators (V) - from 10% to 90% in 10% increments.
– Percentage of Enforcers (E) - from 0% to 100% in 10% increments3.
– Type of Graph (G) - either tree, small world, or random.
– Enforcement Type (ET) - Uni-Directional Blockage (UDB), or Bi-Directional

Blockage (BDB).

An exhaustive set of simulations have been run with all the possible values
for each parameter. Each simulation has been run 50 times in order to obtain
an accurate average value. The metrics that have been extracted are: the mean
violations received per agent, and the mean utility gained per agent. The metrics
have been calculated for the whole society and for each agent type. The data
gathered from the simulations supports our hypotheses.

(H1) Norm violations can be reduced by applying a local blocking
rule. The graph in Figure 3(a) shows that the higher the percentage of norm-
abiding agents that use a blocking rule, the lower the average number of norm
violations received by any agent in our system. There are five different lines in
the graph, each one stands for a different percentage of violating agents. In all
cases a higher enforcer to meek agent ratio (x-axes) leads to lower violations

3 The percentage of meek agents is computed through the following formula: M =
100%− V − E. Therefore, V + E cannot be more than 100%.

COIN–163

received in average by any agent (y-axes). When the ratio of enforcers is high,
violators end up interacting with each other. Therefore, the y-axes measures the
violations received by “any” agent, the reduction in violations in Figure 3(a)
is not significant. The data referring to the violations received only by norm-
abiding agents shows a larger reduction (see Figure 3(b)). Enforcer agents can
perceive a norm violation at most once per violator agent. But if we look at the
violations received by meek agents, we see that they experience an increment
of violations when the ratio of enforcers is high (see Figure 7(a)). This means
that enforcer agents have blocked violator agents, which are forced to interact
with the small number of meek agents left unprotected. Since the meek are a
small portion of the norm supporters, this does not influence the total violations
perceived by norm supporters as a whole. Therefore, the higher the ratio of
enforcer agents, the lower the average of violations perceived by norm-abiding
agents.

(a) all agents (b) norm-abiding agents

Fig. 3. Local blocking rule reduces violations

(H2) The society’s structure influences its enforcement capabili-
ties. It is also seen from the data that different organizational structures in the
multi-agent system influence norm enforcement. In Figure 4(a) and 4(b) we have
extracted the average norm violations (y-axes) for each of the different structures
tested: Random, Small World, and Tree. We have only shown the simulations
where violator agents account for 10% and 20% of the population, therefore at
most there will be 90% or 80% of enforcers, respectively. The x-axes contains the
different percentages of enforcer agents tested. It can be seen that both random
and small world networks have an almost identical graph line. On the other hand
the tree structure has shown to improve the enforcement capabilities. The main
difference between a tree and the other structures studied is that in a tree there
is only one path between any two agents. In random and small world graphs,
many paths can be usually found between any two agents.

(H3) The choice of blocking strategy influences the number of viola-
tions received. The data in Figure 5 supports this hypothesis. The x-axes shows

COIN–164

(a) 10% violators (b) 20% violators

Fig. 4. Enforcement capabilities vary depending on structure

the enforcer to meek agent ratio. The y-axes contains a metric for the increment
in efficiency at protecting meek agents from violations. Efficiency is the difference
(calculated in percentage) in violations received by meek agents for each of the
two different enforcement strategies ∆E = ((VUDB/VBDB)− 1)× 100. ∆E cal-
culates the increase in violations received by agents when using uni-directional
blockage in respect to bi-directional blockage.

Figure 5 shows that for random and small world networks the efficiency is
positively correlated with the enforcer to meek agent ratio. We can conclude
that Bi-Directional Blockage has a higher efficiency at protecting meek agents
from violator agents. This is not observed in the tree network. In this case
the efficiency stays along the 0% line with some deviations. We argue that in
networks organized as trees, the choice of enforcement strategy does not have
a significant influence in the outcome. The tree network is already good for
ostracizing offenders, and the blockage strategy does not improve it.

Fig. 5. Enforcement strategy influences received violations

COIN–165

(H4) Enforcement makes norm-abiding a rational strategy. This
hypothesis is supported by the utility gained by agents. A strategy is rational
if it maximizes the agent’s utility. What has been tested is whether following
the norm maximizes the agent’s utility, and in which conditions. Figure 6(a)
shows the utility gained (y-axes) by norm supporting agents, its x-axes shows
the enforcer to meek agent ratio. Figure 6(b) instead shows the utility gained
by norm violating agents. In both figures each line represents the amount of
violating agents in the system. As the number of enforcers increases there is a
tendency for norm supporters to gain more utility, while the opposite tendency
is observed for violator agents. When the number of enforcer agents is low, the
utility gained by violator agents is much higher than the one gained by norm
supporters. As the number of enforcer agents grows the roles are reversed. The
inflection point depends on the amount of violator agents in the system. For
simulations with 10% of violator agents, supporting the norm becomes rational
when the enforcer to meek ratio is higher than 1.25. For simulations with 50%
of violator agents, the ratio needs to be higher than 0.7. The rest of simulations
have inflection points between those two values.

(a) norm-abiding agents (b) norm-violating agents

Fig. 6. Utility gained by norm-abiding

It is interesting to note that even though meek agents receive more violations
as the number of enforcer agents grows (see Figure 7(a)), the utility gained by
them surprisingly increases (see Figure 7(b)). This is due to the fact that meek
agents are still able to interact with other norm-abiding agents. Since violators
are being blocked the ratio of defection to cooperation is lowered and the utility
is increased.

5 Future Work

This paper is part of ongoing research on norm enforcement. Future work will
relax the set of assumptions about agents, by giving them the ability to change

COIN–166

(a) Violations Received (b) Utility gained

Fig. 7. Local blocking rule increases both utility and violations to meek agents

their strategies in time, to lie, and to allow enforcer agents to violate the norm
(i.e., corrupt enforcers). The assumption of perfect information will be relaxed
by adding uncertainty and noise. For these cases elaborate gossip techniques and
reputation management will allow agents to enforce the norm. In future work the
agent’s reputation will be modeled not through gossip but through interaction
overhearing. Mediating agents could overhear the interactions instead of waiting
for interacting agents to report the outcome. More so, other conservative blocking
strategies can be studied; such as blocking off agents that mediate norm violators,
or blocking agents until they are shown to be norm-abiders.

Furthermore, the impact of other network parameters and dynamic networks
will be analyzed. New links between agents could be added dynamically and test
how this affects norm enforcement. New enforcement techniques will be studied
to take advantage of dynamic networks.

Finally, other studies have shown that the efficiency of enforcement dimin-
ishes when enforcement conveys a cost to the enforcing agent [1, 8]. In future
work there will be cost associated to blockage. One way to associate cost to en-
forcers is by removing their ability to stop agents from interacting with them. In
this case, enforcers can withhold information from known violators, but if asked
will have to interact with them and endure the norm violation.

Acknowledgments

This work is supported by the FP6 OpenKnowledge4 Project. A. Perreau de
Pinninck is supported by a CSIC predoctoral fellowship under the I3P program,
and M. Schorlemmer is supported by a Ramón y Cajal research fellowship from
Spain’s Ministry of Education and Science, both of which are partially funded
by the European Social Fund.

4 http://www.openk.org

COIN–167

References

1. Robert Axelrod. An evolutionary approach to norms. The American Political
Science Review, 80:1095–1111, 1986.

2. Guido Boella and Leendert van der Torre. Enforceable social laws. In AAMAS ’05:
Proceedings of the Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 682–689, 2005.

3. Jeffrey Carpenter, Peter Matthews, and Okomboli Ong’ong’a. Why punish: So-
cial reciprocity and the enforcement of prosocial norms. Journal of Evolutionary
Economics, 14(4):407–429, 2004.

4. Cristiano Castelfranchi, Rosaria Conte, and Mario Paoluccci. Normative reputa-
tion and the costs of compliance. Journal of Artificial Societies and Social Simu-
lation, 1(3), 1998.

5. Jordi Delgado. Emergence of social conventions in complex networks. Artificial
Intelligence, 141(1):171–185, 2002.

6. Amandine Grizard, Laurent Vercouter, Tiberiu Stratulat, and Guillaume Muller.
A peer-to-peer normative system to achieve social order. In AAMAS ’06 Workshop
on Coordination, Organization, Institutions and Norms in agent systems (COIN),
2006.

7. David Hales. Group reputation supports beneficent norms. Journal of Artificial
Societies and Social Simulation, 5(4), 2002.

8. Douglas D. Heckathorn. Collective sanctions and compliance norms: a formal
theory of group-mediated social control. American Sociological Review, 55(3):366–
384, 1990.

9. James E. Kittock. The impact of locality and authority on emergent conventions:
initial observations. In AAAI ’94: Proceedings of the Twelfth National Conference
on Artificial Intelligence, volume 1, pages 420–425, Menlo Park, CA, USA, 1994.
American Association for Artificial Intelligence.

10. Josep M. Pujol, Jordi Delgado, Ramon Sangüesa, and Andreas Flache. The role of
clustering on the emergence of efficient social conventions. In IJCAI ’05: Proceed-
ings of the Nineteenth International Joint Conference on Artificial Intelligence,
pages 965–970, 2005.

11. Michael Taylor. Community, Anarchy & Liberty. Cambridge University Press,
1982.

12. Adam Walker and Michael Wooldridge. Understanding the emergence of conven-
tions in multi-agent systems. In Victor Lesser, editor, Proceedings of the First
International Conference on Multi–Agent Systems, pages 384–389, San Francisco,
CA, 1995. MIT Press.

13. Duncan J. Watts and Steven H. Strogatz. Collective dynamics of small-world
networks. Nature, (393):440–442, 1998.

14. Fabiola López y López, Michael Luck, and Mark d’Inverno. Constraining auton-
omy through norms. In AAMAS ’02: Proceedings of the First International Joint
Conference on Autonomous Agents and Multiagent Systems, pages 674–681, New
York, NY, USA, 2002. ACM Press.

15. Stephen Younger. Reciprocity, sanctions, and the development of mutual obligation
in egalitarian societies. Journal of Artificial Societies and Social Simulation, 8(2),
2005.

COIN–168

A Dynamic Coordination Mechanism Using Adjustable
Autonomy

Bob van der Vecht1,2, Frank Dignum2, John-Jules Ch. Meyer2, and Martijn Neef1

1 TNO Defence, Safety and Security, The Hague,
bob.vandervecht, martijn.neef@tno.nl

2 Department of Information and Computing Sciences, Universiteit Utrecht, Utrecht
dignum, jj@cs.uu.nl

Abstract. Agents in an organization need to coordinate their actions in order to
reach the organizational goals. This research describes the relation between types
of coordination and the autonomy of actors. In an experimental setting we show
that there is not one best way to coordinate in all situations. The dynamics and
complexity of, for example, crisis situations require a crisis management orga-
nization to work with dynamic types of coordination. In order to reach dynamic
coordination we provide the actors with adjustable autonomy. Actors should be
able to make decisions at different levels of autonomy and reason about the re-
quired level. We propose a way to implement this in a multi-agent system. The
agent is provided with reasoning rules with which it can control the external in-
fluences on its decision-making.

1 Introduction

The motivation of this research lies in coordination challenges for crisis management
organizations. Crisis situations in general are complex and share environmental fea-
tures; there is no complete information, the evolvement of the situation is unpredictable
and quick response is required. A crisis management organization should control the
crisis as fast as possible, and therefore, it should be able to cope with such situations.
For an adequate, quick response the organization needs high control. At the same time
the organization needs to be able to adapt to unexpected events and therefore it needs
to be dynamic and robust.

In this paper we describe different ways of coordination, and show that there is
not one best way to coordinate in all situations. When modelling the decision-making
process of the actors we see that there is always a trade-off between local autonomy
and global control. In this paper we describe levels of autonomy in decision-making of
actors, and we propose a way to implement adjustable autonomy in artificial actors in
order to achieve a dynamic coordination mechanism.

In Section 2 we argue why we need dynamic coordination mechanisms in multi-
agent systems. We describe the relation between types of coordination and the auton-
omy of actors. Using an experiment we point out the strong and the weak points of
different coordination types. In Section 3 we define agent autonomy and we introduce
adjustable autonomy as a concept that allows dynamically switching between coordi-
nation types. Section 4 proposes a way to implement adjustable autonomy in agents.

COIN–169

We extend the experiment with an implementation of adjustable autonomy. After that,
Section 5 discusses our results and describes future research.

2 Why Dynamic Coordination?

In this section we argue why dynamic coordination mechanisms are relevant to achieve
coordinated behavior in multi-agent systems. We discuss different types of coordination
and their relation with the autonomy of the actors. Using an experiment we point out
the weak and strong points of the coordination types and show that a static coordination
mechanism is not optimal in all situations.

2.1 Autonomy and Coordination

All organizations designed for a certain purpose require coordinated behavior of the
participants. There are several approaches to reach coordination, ranging from emergent
coordination to explicit coordination by strict protocols. At the same time the actors in
an organization are seen as autonomous entities that make their own decisions. In this
paragraph we investigate the relation between autonomy of actors and coordination of
behavior.

Autonomy is one of the key features of agents. It is often being used in the definition
of agents [1]. In Jennings’ use of the term, agent autonomy means that agents have
control over both their internal state and over their behavior. The agent determines its
beliefs and it decides by itself upon its actions. Multi-agent systems consist of multiple
autonomous actors that interact to reach a certain goal. We will first take a closer look
at coordination mechanisms for multi-agent systems.

One approach to reach coordinated group behavior is emergent coordination. Au-
tonomous actors perform their tasks independently and the interaction between many
of them leads to coordinated behavior. This approach is often used for agent-based so-
cial simulations. One characteristic of emergent coordination is that the actors have no
awareness of the goals of the organization they are part of. The actors make their own
local decisions and are fully autonomous. Although the actors have no organizational
awareness, the designer of such a system has. The coordination principles are specified
implicitly within the local reasoning of all actors. The organization is relatively flexible
within the single task for which it has been designed. However, in the extreme case, the
agents are fully autonomous, and there is no point of control that can force the organi-
zation to change its behavior if unexpected situations occur that cannot be solved by the
local reasoning rules of the actors.

Where the fully emergent approach is one extreme type of coordination, the other
extreme is fully controlled coordination. This is the case in a hierarchical organization,
where there is a single point of control that determines the tasks all the others have to
perform. The actors are autonomous in performing their task, but they do not make their
own decisions. Therefore, the actors do not meet the autonomy definition as used in [1].

A characteristic of such a centralistic approach is that the task division is made
from a global perspective. Therefore an organization can adapt quickly to changes in
the environment by sending out new orders to all actors. However, such an organization

COIN–170

is sensitive to incomplete information. Wrong information at the global level can lead
to wrong decisions. Furthermore, the organization is highly dependent on the decision
maker at the top of the hierarchy and it misses the flexibility at the local level. Fully
controlled coordination can be a good solution if there is always complete information
about the situation. Task specifications and interaction protocols can be defined for all
possible cases.

In between the two extreme types there are several ways to achieve coordination. For
example, the designer can allow the agents to communicate and exchange information.
Or he can divide the organizational task in roles, and define the interaction in protocols.
This is the approach that is taken in several methodologies for multi-agent systems
design, e.g. Opera [2]. Drawback of those approaches is that the specified coordination
rules are static. There is no flexibility within the predefined roles and interactions.

2.2 Experiment

We have set up an experimental environment in which we can test the characteristics
of coordination principles. A simple coordination task is performed by an organization,
and different scenarios contain situational features that can reveal the strong and the
weak points of each coordination mechanism.

Organizational Description The basic setting is a Firefighter organization. The or-
ganization operates in a world where fires appear that need to be extinguished as fast
as possible. In the organization we define two roles; coordinator and firefighter. The
coordinator makes a global plan and tells the firefighters which fire they should extin-
guish. Therefore the coordinator has a global view of the whole world. The firefighters
perform the actual tasks in the world; they move to a fire location and extinguish the
fires. They have only local views.

There is a hierarchical relation between the two roles, the coordinator is superior
of the firefighters and can send orders to the firefighters, which fire they have to ex-
tinguish. We want to show different forms of coordination within this organization. In
our implementation we achieve this by changing the autonomy level of the decision-
making process of the firefighters. We have created different types of firefighters; obe-
dient agents that follow the orders of their superior (no decision-making autonomy)
and disobedient agents that ignore their superior and make their decisions only based
on local observations. Now we can describe the coordination types:

– Emergent coordination: disobedient firefighters, choices are made based on local
information

– Explicit coordination: obedient firefighters, choices are made based on global in-
formation

The performance of the organization should be measurable. In our experiment we can
measure the time it takes to extinguish the fires for each of the coordination types. The
best organizational performance has the lowest score.

COIN–171

Scenarios We will describe the scenarios in more detail. The organization in our exper-
iment has one coordinator and four firefighters. The start position of the firefighters in
the world is equally distributed. We have one standard scenario, scenario A, in order to
test whether both coordination types perform equally well. In this scenario four fires are
distributed equally over the world. The start situation of scenario A is shown in Figure
1.

Fig. 1. Screenshot of the experimental environment: begin situation of scenario A

Two other scenarios have been created that make this situation more complex. They
contain the features that also return in real world situations. Scenario B is a setting
where the fires are distributed equally over the world, but the coordinator has no global
view, he can only see half of the world at once. As result there is no complete infor-
mation at the global level. The third scenario, Scenario C, reflects a situation where the
fires are not distributed equally.

Results The results of the experiment are shown in Table 1. The score is equal to the
time it took until all fires where extinguished and is measured per scenario and coor-
dination type. Scenario A shows no significant difference in the performance of both
organizations. In scenario B the firefighters reach a better performance based on their
local information than the coordinator based on its information. The coordinator has no
complete knowledge, and therefore he might miss important information for his plan-
ning task. In scenario C the fires were not equally distributed. The global information
of the coordinator was more useful than the local information of the firefighters.

The difference between the two organizations was that the decisions were made at
a different level of the organization and based on different information. None of the
levels proved to be sufficient for all situations. We can conclude that in a scenario with
a dynamic environment in which the agents experience these situations successively,

COIN–172

Table 1. Results of our Experiment; time (s) until all fires are extinguished per scenario and
coordination type

Explicit Coordination: Emergent coordination:
No Autonomy Full Autonomy

Scenario A: Standard scenario 38.7 36.8
Scenario B: No complete global information 93.8 69.8
Scenario C: No equal distribution of fires 36.8 66.6

both coordination types perform badly because of the weak points that are pointed out
in the previous scenarios.

2.3 Dynamic Coordination

From our experiment, we can conclude that a dynamic coordination mechanism can
outperform the presented organizations in a dynamic environment. In each coordina-
tion mechanism mentioned in Section 2.1 the autonomy of the actors with respect to
the organization is fixed. We want to achieve dynamic coordination by allowing the
agents to make local decisions about their autonomy level. We want them to act fol-
lowing organizational rules, but also allow them to decide not to follow the rules in
specific situations. We believe that organizations in complex environments can benefit
from agents that show adjustable autonomy. In the next paragraph we define adjustable
autonomy in more detail and propose a way to achieve this in artificial agents.

3 Adjustable Autonomy

In this section we explain the concept of adjustable autonomy. Recall the autonomy
requirement for agents as it is used by [1]. It states that agents should have control
over their internal state and their behavior. We have argued that this conflicts with the
extreme form of explicit coordination. The agents just follow orders and they do not
determine their own actions.

We will take a closer look at agent decision-making. We believe that the decision-
making process can take place at different levels of autonomy. An autonomous agent
should be able to select its style of decision-making. This process is what we call
adjustable autonomy. In this section we define levels of autonomy in agent decision-
making and we propose a way to implement adjustable autonomy in agents.

3.1 Autonomy Levels in Agent Decision-Making

The difference between the two agent types in the experiment, obedient and disobe-
dient, was the knowledge they used for their own decision-making. With autonomous
decision-making the agent makes its own decisions based on its own observations, dis-
regarding information and orders from other agents. The other extreme is that agents

COIN–173

perform only commands that are given, and do not choose their actions based on their
own knowledge.

The degree of autonomy of decision making can be defined as the degree of inter-
vention by other agents on the decision making process of one agent [3]. Using this def-
inition, the disobedient agent from our experiment makes its decisions autonomously,
whereas the obedient agent had no autonomy at all concerning the decision making.
An agent that switches between different levels of autonomy of its decision-making
shows adjustable autonomy. We propose a reasoning model in which different levels of
autonomy can be implemented.

3.2 Adjustable Autonomy

An agent’s level of autonomy is determined by the influence of other agents on the
decision-making process. Adjustable autonomy implies that the level of autonomy in
the decision-making process can be adjusted. Therefore, an agent should control exter-
nal influences that it experiences. The agent should choose which knowledge it uses for
its decision-making. Figure 2 shows the reasoning process of an agent schematically.
The module for event-processing determines the level of autonomy of the decision-
making process.

Fig. 2. The adjustable autonomy module within the reasoning process

In the reasoning model the agent is provided with reasoning rules that give him
control over external influences. These external influences are the agent’s own observa-
tions and messages that it gets from other agents. The agent can make an explicit choice
about the knowledge that it will use for its decision-making process.

3.3 Related Work on Adjustable Autonomy

The topics agent autonomy and adjustable autonomy have been subject of many studies.
However, there is no common definition of autonomy. As a result, the approaches taken
to tackle the problem are quite distinct. We discuss the concept of autonomy and the
way it is used in related work. And we investigate what adjustability is in the different
perspectives that are taken. We will relate the other views on autonomy with our own
view.

Castelfranchi and Falcone, [4] [5], have investigated autonomy in the context of (so-
cial) relations between agents. Considering a hierarchical relation, the abstraction level

COIN–174

of decision-making of the delegate determines the agent’s level of autonomy with re-
spect to the master. Levels of autonomy they distinguish are executive autonomy (agent
is not allowed to decide anything but the execution of delegated task), planning auton-
omy (agent is allowed to plan (partially), the delegated task is not fully specified) and
goal autonomy (agent is allowed to find its own goals). Verhagen, [6], has added norm
autonomy (the agent is allowed to violate organizational norms) as an extra level.

Adjustable autonomy is the process of switching between the abstraction levels of
decision making. The autonomy levels as presented above concern goals, actions, plans
and norms. We believe that also beliefs should be part of the autonomy definition, since
beliefs are another concept used in the reasoning process. If an agent does not control its
own beliefs, it can hardly be called autonomous. In our definition the autonomy level
is gradually related to the influence an agent allows on its decision-making process.
We propose reasoning rule that capture more explicit knowledge for reasoning about
autonomy.

Schurr et al. [7] and Tambe et al. [8] use the term adjustable autonomy for the
process in which a decision maker transfers the control of the decision-making process
to another agent (or human). The researchers do not give a definition of autonomy, but
it is related to decision-making control with respect to a certain goal. A coordination
mechanism that runs independent of the agent’s decision-making, handles the transfer-
of-control (t-o-c) process. A t-o-c strategy consists of a list of decision makers and
the constraints for transferring the control. An agent’s position in the list of decision-
makers determines an agent’s level of autonomy with respect to the goal. They do not
use autonomy as a gradual property of the decision-making process of the agent itself.
Their reasoning mechanism for adjustable autonomy can only be used when there are
more agents that have the capability to making the decision. The mechanism should
make sure the optimal decision maker is selected.

In contrast, our approach focuses on the decision-making process of a single agent.
The agent should select the optimal input (beliefs, goals, plans) for its own reasoning
process. Those resources determine the autonomy level of a reasoning process. We look
at adjustable autonomy as a process within an agent’s reasoning, whereas they view it
as a separate mechanism.

Barber and Martin, [9], look at the decision-making process of a group of agents.
An agent’s level of autonomy with respect to a task is measured as its share in the
group decision-making process. In their context adjustable autonomy concerns different
decision-making strategies for a group of agents. They present an Adaptive Decision-
Making Framework, in which agents propose strategies to the group, and therewith
change their own autonomy level. This way, adjustable autonomy becomes a group
process, because other agents can accept or reject proposed decision-making strategies.

The focus of Barber and Martin is on the decision-making process of a group of
agents. In contrast, our focus is on the decision-making of a single agent. In our work,
adjustment of the autonomy is a local process within the agent’s reasoning process.
Furthermore Barber and Martin do not specify how an agent can determine the right
decision-making strategies. In the experiments they conducted they provided the agents
with knowledge about the best strategy for each situation. We want the agents to reason
about what the best strategy is, based on local observations.

COIN–175

Dastani et al., [10], argue that the deliberation cycle of an agent determines auton-
omy of an agent as well. Autonomy levels can be viewed at as an agent’s commitment to
its own decisions. For example, one deliberation cycle makes that an agent commits to
a goal until it has been fulfilled, whereas another cycle makes an agent to reconsider its
goals every time it receives new information. They propose a meta-language to describe
the deliberation cycle of an agent. The functions used in the deliberation cycle as well
as their actual implementation are relevant for agent autonomy. Levels of autonomy can
be constructed changing the deliberation cycle.

In their approach, levels of autonomy are determined by the deliberation cycle, and
therefore by the way decisions are made. Our approach focuses on the sources that are
used for decision-making and on the process of how an agent determines its autonomy
level. The two approaches can exists next to each other and complement each other.

As we see in this discussion of related work there is not a single definition of agent
autonomy and adjustable autonomy. Sometimes autonomy and adjustable autonomy
is viewed in the context of group decision-making, whereas others look at single agent
decision-making. Furthermore different aspects of agent decision-making are taken into
account, such as decision-making control or abstraction levels of decision-making. Our
approach is to give the agent control over the external influences it experiences.

4 Agent Reasoning Model

Here we present a reasoning model for agents that enables the agent to control its au-
tonomy level. The level of autonomy depends on the influence of other agents on the
reasoning process. In the reasoning-process we distinguish a phase for event-processing
and a phase for decision-making, as shown in figure 2. The event-processing phase gives
the agent control over its autonomy. The decision phase focuses on the decision on ac-
tion. We describe the implementation of the two phases, starting with the latter one.

4.1 Decision Making

In the decide-phase the agent will decide upon the next action. A popular approach for
goal-directed reasoning is to use of Beliefs, Desires and Intentions (BDI), introduced
by Rao and Georgeff [11]. Several BDI reasoning-models have been proposed. For ex-
ample, 3APL [12], [13] provides the designer with a formalized programming language
which is designed for BDI-agent programming. A 3APL agent uses reasoning rules to
create plans to reach a certain goal. Such reasoning rules have the following form:

<HEAD> <- <GUARD> | <BODY>

The head of a rule should match the goals of an agent. The guard should match the
beliefs of the agent. The body of the agent contains sets of actions. If head and body
match, the agent can commit to the plan in the body and start to execute it.

The firefighters in our experiment have been implemented using 3APL. They have
a goal to fight fires and they have reasoning rules to reach their goal. Figure 3 shows
the source code. If they have a certain fire selected, they are going to extinguish it. If
no fire is selected, they wait. Depending on the distance to this fire, they will perform
either the action GoTo or Extinguish.

COIN–176

Fig. 3. Source code of 3APL plan to fight fires

Each decision the agent takes depends on its beliefs. The beliefs that are used in
this plan are: selectedFire and distance. These beliefs are determined before the plan
reasoning starts. Therefore we describe the event-processing phase, which prepares the
actual decicion-making phase.

4.2 Event Processing

In the event-processing phase the agent prepares the decision-making phase. External
influences are processed here. External influence can be an agent’s observations or mes-
sages from other agents. We have chosen to implement the orient phase using 3APL
rules as well. This gives us the opportunity to reason with semantic knowledge. The
main process consists of three functions: handle observations, handle messages, and
prepare decision-making.

The autonomy level of the decide phase is determined by those functions. Will the
agent follow the commands from the coordinator, or will it create own goals? Does the
agent adopt information from the coordinator, or does it use its own observations? We
show how we can implement reasoning rules that provide the agent with choices. We
will take the firefighters from our experiment as example.

Reasoning rules can be added to make the agent choose to handle observations
differently. We gave one rule to our firefighters, which states that is believes all its own
observations:

handleObservations() <- TRUE | Observations2Beliefs()

Our firefighters use only this rule for observation processing. It is possible too add more
rules that distinguish between different situations. To use the rule, the guard of the rule
has to match with the beliefs of the agent. Adding rules with a specified guard, the agent
handles its observations differently if that guard is true.

Agents can receive messages from other agents. An agent can be programmed to
handle messages in different ways by adding the same types of rules. If an agent func-
tions in an organization, it needs to know how to deal with relations towards other
agents. We have implemented the following rule for a hierarchical relation. When the
agent gets a request from another agent who is his superior, he interprets the content as

COIN–177

a command.
handleMessages() <- message(SENDER, request, CONTENT)

AND superior(CONTENT) | AcceptCommand(SENDER, CONTENT)

The firefighters believe that the coordinator is their superior. They will process the re-
quests of the coordinator as commands. In a similar manner other rules that can be
defined. For example, an agent can have a rule to ignore all messages when it feels it is
in danger.

handleMessages() <- danger() | ignoreMessages()

If an agent has both rules for message handling it is dependent on the agent whether it
processes messages or not. Does the agent perceive danger or not? By adding such a
rule, local beliefs of the agent can change the way it handles external influences, and
therefore it can influence the autonomy level of the agents’ decision-making.

Finally, in the function prepare decision-making rules are specified that determine
the autonomy level of the agent. The reasoning rules in the decide-phase use certain be-
liefs. Here we specify per goal what kind of belief processing should take place. Recall
from Figure 3 that the beliefs that are used for the goal to fight fires are selectedFire and
distance. We have specified the following rules:

prepareDecisionMaking() <- goal(fightfires) AND

command(FIRE) | SelectFire(FIRE); CalculateDistance(FIRE)

prepareDecisionMaking() <- goal(fightfires) AND noCommand()

AND seeFire(FIRE) | SelectFire(FIRE); GetDistance(FIRE)

These two rules specify how the beliefs for the decision-making process are determined
dependent on the situations. The SelectFire and CalculateDistance statements are capa-
bilities of the agent that construct the selectedFire and the distance belief respectively.
The variable given to those functions has a different origin in both cases. If the agent
has a command, he will follow the command. If there is no command, but the agent
sees a fire, it will use this observation for further reasoning.

5 Extending the Experiment

We have extended the experiment of Section 2. We have constructed a third organization
with firefighters that show adjustable autonomy. They are at certain moments disobedi-
ent to the commands of the coordinator and at other moments they follow the orders,
depending on their local beliefs. So, the organization can switch between explicit co-
ordination and emergent coordination. We have implemented reasoning rules for event
processing, we have used the same rules as presented in the section 4.2.

5.1 Results

We have run all three scenarios. Table 2 shows the results. We can see that the organiza-
tion with agents that use adjustable autonomy performs well in all scenarios compared
to the other two organizations. The organization adapts its coordination mechanism to
the environmental features.

COIN–178

Table 2. Results of our Experiment, including adjustable autonomy

Explicit Emergent Adjustable
coordination coordination autonomy

Scenario A: Standard scenario 38.7 36.8 37.0
Scenario B: No complete global information 93.8 69.8 70.2
Scenario C: No equal distribution of fires 36.8 66.6 37.1

From the experiment we can conclude that dynamic coordination is powerful in
agent organizations; the organization using adjustable autonomy will perform well in
dynamic scenarios. The way we achieve a dynamic coordination mechanism, is by let-
ting the agents adjust their autonomy level. The agents have reasoning rules to control
external influences in the reasoning process. The agents decide locally on their auton-
omy level.

5.2 Discussion

We provide the agents with reasoning rules to control external influences. This gives the
agents additional, not task-specific knowledge that it can use in its reasoning process.
It allows the agent to use its beliefs and its goals to reason about its openness towards
other agents. The reasoning rules make use of criteria based on introspection, social
knowledge, or coordination requirements.

Using introspection, the agent assesses its own mental state. Castelfranchi, [4], ar-
gues the importance of introspection in the reasoning process. For example, relevance
of information can be determined by introspection. Certain information can be more or
less relevant depending on an agent’s goals. Therefore an agent may observe the world
differently depending on its goals.

An agent may have a reasoning rule that makes the agent react differently to external
input when it feels danger than when it feels at ease. To make such adaptive behavior
possible, the agent also needs to have the capability to determine when it is in danger.

Social and organizational knowledge are other examples of criteria that can be used
to control external influences. The importance of explicitly modelling organizational
awareness for coordination is argued by Oomes [14]. For example, knowledge about
the sender of a message is useful when deciding what to do with the content. If we
assume that an organization is implemented following a methodology as Opera [2], or-
ganizational concepts are available in the beliefbase. By using them in reasoning rules,
we add the social knowledge to the reasoning process of the agents.

The third example of knowledge that can be used for autonomy adjustment is knowl-
edge about coordination requirements. Given that an agent acts in a coordination mech-
anism, it can encounter environmental changes that influence the coordination. For ex-
ample, if an agent follows orders from a superior and the communication fails at a
certain moment, it can choose to increase its autonomy in order to fulfill the goals.

We will conduct more experiments to develop general heuristics that an agent can
use to control external influences. This way, we want to combine single-agent decision-
making and multi-agent interaction to develop dynamic coordination mechanisms.

COIN–179

6 Conclusion

There are several ways to achieve coordination within an agent organization. Approaches
range from emergent coordination, where the actors are autonomous and the coordina-
tion is implicitly implemented, to explicit coordination, such as a hierarchical organi-
zation where the actors have no decision autonomy but just follow the orders from their
superiors. We have shown that there is not one best way to coordinate in all situations.
Complex and dynamic situations therefore require a dynamic coordination mechanism.

We have implemented a dynamic coordination mechanism by providing the actors
with adjustable autonomy. An agent’s level of autonomy depends on the influence of
others on the reasoning process. The actors have reasoning rules that control the external
influences they experience. This way we have defined situations at the individual level
in which the actor can change its autonomy level. In addition to the task specific domain
knowledge, the knowledge for event processing is used in the agent’s reasoning process.

References

1. Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117(2) (2000)
277–296

2. Dignum, V.: A Model for Organizational Interaction: based on Agents,founded in Logic.
Utrecht University, PhD Thesis (2004)

3. Barber, K., Han, D., Lui, T.H.: Strategy selection-based meta-level reasoning for multi-
agent problem-solving. In: Ciancarini, P., Wooldridge, M.J. (eds): Agent-Oriented Software
Engineering: AOSE 2000. Lecture Notes in Computer Science 1957 (2001) 155–187

4. Castelfranchi, C.: Guarantees for autonomy in cognitive agent architecture. Intelligent
Agents (890) (1995) 56–70

5. Falcone, R., Castelfranchi, C.: The human in the loop of a delegated agent: the theory of
adjustable social autonomy. IEEE Transactions on Systems, Man, and Cybernetics, Part A
31(5) (2001) 406–418

6. Verhagen, H.: Norm Autonomous Agents. Stockholm University, PhD Thesis (2000)
7. Schurr, N., Marecki, J., Lewis, J., Tambe, M., Scerri, P.: The defacto system: Training tool

for incident commanders. AAAI05 (2005)
8. Tambe, M., Scerri, P., Pynadath, D.: Adjustable autonomy for the realworld. Journal of

Artificial Intelligence Research (17) (2002) 171–228
9. Barber, K., Martin, C.: Agent autonomy: Specification, measurement, and dynamic adjust-

ment. Proc. of the Autonomy Control Software Workshop at AA-1999 (1999) 8–15
10. Dastani, M., Dignum, F., Meyer, J.J.C.: Autonomy and agent deliberation. Agents and

Computational Autonomy 2003 (2003) 114–127
11. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings of the First

Intl. Conference on Multiagent Systems, San Francisco (1995)
12. Dastani, M., van Riemsdijk, B., Dignum, F., Meyer, J.J.C.: A programming language for

cognitive agents: Goal directed 3apl. PROMAS 2003 (2003) 111–130
13. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.J.C.: Agent programming in 3apl.

Autonomous Agents and Multi-Agent Systems 2(4) (1999) 357–401
14. Oomes, A.H.J.: Organization awareness in crisis management. Proceedings of the Interna-

tional Workshop on Information Systems on Crisis Response and Management (ISCRAM)
(2004)

COIN–180

Model Checking Norms and Sanctions in Institutions ?

Francesco Viganò1 and Marco Colombetti1,2

1 Università della Svizzera italiana, via G. Buffi 13, 6900 Lugano, Switzerland
{francesco.vigano,marco.colombetti}@lu.unisi.ch,
2 Politecnico di Milano, piazza Leonardo Da Vinci 32, Milano, Italy

marco.colombetti@polimi.it

Abstract. In this paper we enrich FIEVeL (a modelling language for institutions
amenable to model checking) with new constructs to describe norms and sanc-
tions. Moreover, we present a specification language to reason about the effective-
ness of norms and sanctions in shaping agent interactions. Finally we show that
when properties of artificial institutions reflect certain interpretations of norms of
human institutions, it is not always possible to satisfy them. As a consequence,
regimentation of norms is not always a viable solution.

1 Introduction

Rules defined by artificial institutions and enforced by their software implementations,
named electronic institutions [5], have been put forward as means to regulate open
multiagent systems. Institutions define two kinds of rules [17]: norms (also named reg-
ulative rules [17]), which regulate existing activities, and constitutive rules, which cre-
ate the very possibility of certain institutional actions. Artificial institutions are often
designed to reflect constitutive and regulative rules defined by human institutions in ar-
tificial systems [10, 9, 7], and model checking can play an important role to evaluate the
compliance of artificial institutions with rules of human institutions and to compare de-
sign alternatives arising from different interpretations of such rules. In particular, when
we map human rules only onto constitutive rules of artificial institutions, we obtain
systems where violations cannot occur (they are regimented [10, 9]). Instead, when we
introduce regulative rules into artificial institutions, we obtain systems where violations
may occur due, for instance, to the agents’ autonomy. This fact is particularly important
when we consider results obtained by a model checker: if a norm of a human institution
has been mapped onto a set of constitutive rules of an artificial institution and a property
that reflects it does not hold, then the artificial institution is incorrect. Instead, when a
norm n has been mapped onto regulative rules of the artificial institution, we have to
analyze whether: (i) norms of the artificial institution are correct, that is, a property
reflecting expected effects of norm n holds over paths compliant with norms, and (ii)
sanctions applied when norms are violated enforce desirable effects of norm n over all
other possible evolutions.

The main contributions of this paper are threefold: first, we extend FIEVeL [19], a
modelling language for institutions amenable to model checking, with new constructs
? Supported by the Swiss National Science Foundation project 200020-109525, “Artificial Insti-

tutions: specification and verification of open distributed interaction frameworks.”

COIN–181

to describe norms and sanctions, exemplifying how norms can be defined and enforced
with our language; second, we present a flexible specification language which provides
temporal operators that select paths compliant with certain sets of norms, showing that
existing proposals (e.g. [12, 16, 1]) can be reduced to particular patterns of specification
of our language; finally, we contribute to the ongoing debate about regimentation and
enforcement of norms [10, 9, 6, 8], showing that when human institutions impose a spe-
cific interpretation of norms, it may be the case that properties that reflect them cannot
be satisfied by artificial institutions under the assumption that agents are autonomous.
As a consequence, regimentation of norms is not always a viable solution.

The remainder of this paper is structured as follows: Section 2 introduces the OMS-
FOTL logic which is used to define the semantics of FIEVeL and to state properties of
institutions in Section 3, where we provide an overview of our framework by resuming
results discussed in our previous works. Section 4 presents how norms can be described
with FIEVeL, while Section 5 introduces a language to define properties which consider
only evolutions of institutions that comply with certain sets of norms. Section 6 explains
how to formalize sanction mechanisms with FIEVeL and finally Section 7 provides a
comparison of our approach with related works and presents some conclusions.

2 Ordered Many-Sorted First-Order Temporal Logic

An ordered many-sorted first-order temporal logic (OMSFOTL) is a many-sorted first-
order logic [13] enriched with temporal operators and hierarchies of sorts. The signature
of an OMSFOTL logic consists of a finite nonempty set of sort symbols Σ, a hierarchy
of sorts ≤Σ (where σ1 ≤Σ σ2 means that sort σ1 is a subsort of sort σ2), finite sets of
constants (C), function symbols (F), and predicate symbols (P), and a denumerable set
of variables (V). Moreover, an OMSFOTL signature defines function ξ which assigns
a sort to every variable and every constant, and a signature (i.e. a sequence of sorts) to
every function and predicate symbol. Given sorts Σ, the set Tσ of terms of sorts σ is the
smallest set such that:

– v ∈ Tσ if v ∈ V and ξ(v) ≤Σ σ;
– c ∈ Tσ if c ∈ C and ξ(c) ≤Σ σ;
– f(t1, ..., tn) ∈ Tσ if f ∈ F, ξ(ti) ≤Σ [ξ(f)]i for 1 ≤ i ≤ n and [ξ(f)]0 ≤Σ σ

where [ξ(q)]i refers to the i-th sort of the signature of a predicate or function symbol
q. The set T of terms is the union of the sets Tσ for all σ ∈ Σ and the set A of atomic
formulae is the smallest set such that:

– (t1 = t2) ∈ A if there exists sort σ such that ξ(t1) ≤Σ σ and ξ(t2) ≤Σ σ;
– p(t1, ..., tn) ∈ A if p ∈ P and ξ(ti) ≤Σ [ξ(p)]i for 1 ≤ i ≤ n.

The set of formulae is defined according to the following grammar:

ϕ ::= α | ¬ϕ | ϕ ∧ ϕ | ∀ϕ | Xϕ | ϕUϕ | Eϕ | Gϕ

where α is an atomic formula. Expressions true, false, (ϕ ∨ ψ), (ψ → ϕ), (ϕ ↔ ψ),
∃xϕ, Fϕ, and Aϕ are introduced as abbreviations as usual.

COIN–182

In [20] we have shown that if we assume that each sort σ is associated to a finite
domain Dσ , then OMSFOTL is as expressive as CTL∗ [4, 3] and its models can be en-
coded with a finite number of atomic propositions. Despite it, we adopt OMSFOTL for
two main reasons: (i), it represents an abbreviated form for long and complex formulae
and (ii), institutions describe rules that typically are independent of the cardinality of
domains and which can be naturally expressed by allowing quantification over sorts.

3 Describing, Specifying, and Verifying Institutions

In [19] we proposed a metamodel of institutions based on the notion of an agent status
function, which can be interpreted as a position involving a (possibly empty) set of in-
stitutionalized powers [11], obligations, prohibitions, etc. To formalize status functions
and related concepts, we map them onto sorts, functions, and predicates of an OMS-
FOTL signature and define a set of axioms to capture their interrelations and temporal
evolution. For instance, common aspects of status functions are represented by intro-
ducing sort σsf , which also defines the function subject denoting the agent (σaid) the
status function has been assigned to. Sort σsf also induces the two predicates assigned
andmodified, which respectively represent if a status function is currently assigned (or
revoked) and if it has been modified by the occurrence of an institutional event. Finally,
the metamodel defines a set of axioms based on such symbols, for instance requiring
that if a status function is not affected, then its subject does not change:

AG∀f(¬Xmodified(f)→ ∃a(subject(f) = a ∧Xsubject(f) = a)) (A.1)

An institution evolves because events (σev) occur or agents perform actions (σact ≤Σ

σev). Each event-type e induces a sort σe and three predicates, happense, prece, and
effe, which express when an event of type e happens and what conditions must be sat-
isfied before and after its occurrence. In contrast with base-level events (e.g., exchange-
message events), the occurrence of an institutional event (σie) requires that another
event conventionally associated to it occurs and that, in the case of institutional actions,
the actor must be empowered to perform it:

AG∀x((precia(x) ∧ ∃f(subject(f) = x1 ∧ empoweredia(f, x) ∧ assigned(f)

∧
∨

a∈σact

X(conva−ia(x) ∧ happensa(x
′)))↔ Xhappensia(x))

(A.2)

where: x is a set of variables determined by predicate happensia; the first variable of
x refers to the actor of action ia; predicate empoweredia states when status functions
are empowered to perform institutional action ia; predicate conva−ia represents the
existence of a convention among action a and institutional action ia; and x′ reflects
how arguments of ia are mapped over arguments of action a.

To model institutions in terms of the concepts described by our metamodel, in [19]
we introduced FIEVeL, a modelling language for institutions, whose syntax is exempli-
fied in Figure 1 and whose semantics is given by providing a translation of its constructs

COIN–183

basic-sorts:
σresources;
σreqState = {answ,notAnsw};

base-events:
message giveResource(rec:σaid,res:σresources);

...
institution resourceManagement {
status-function member() {...}
status-function requested(reqRes:σresources,ag:σaid,sta:σreqState){...}
status-function holder(resource:σresources){
key resource;
powers give <- (∃ r:σrequested (assigned(r)∧reqRes(r)=resource(f)

∧ag(r)=rec∧sta(r)=answ)∧res=resource(f));
}

...
institutional-events:

institutional-action give(rec:σaid,res:σresources)
pre ∃ x:σmember(assigned(x)∧subject(x)=rec∧¬subject(x)=actor);
eff r:σrequested revoke (reqRes(r)=res),

r:σholder assign (subject(x)=rec,resource(x)=res);
...

conventions
exch-Msg(giveResource) [true]=c=> give[rec=c=>rec res=c=>res]
...

}

Fig. 1. Fragments of the Resource Management institution.

into a set of symbols and formulae of an OMSFOTL logic. According to Figure 1, in the
Resource Management institution a member can request a holder to give the control
of one of its resources. When an agent accepts to satisfy the request, it is empowered
to give a resource to the agent that has requested it, which becomes its new holder.
The model described in Figure 1 induces, among others, sort σholder ≤Σ σsf , function
resource of signature ξ(resource) = 〈σresources, σholder〉, and predicate happensgive
such that ξ(happensgive) = 〈σaid, σaid, σresources〉.

In our framework, also properties are specified in terms of OMSFOTL formulae
such that temporal operators (X, G, F, and U) are always preceded by a path quan-
tifier (E or A). One of the main advantages of our approach resides in the fact that
any symbol introduced by our metamodel or by an institution can appear in a property.
Furthermore, to increase the flexibility of the language, occurrences of events are refer-
enced with a generic predicate happens and we write “x : σ” to say that variable x is
of sort σ. For instance, the following property requires that whenever an agent receives
a positive answer to its requests, it will eventually become the holder:

AG∀act : σaid∀rec : σaid∀res : σresources(happens(accept, act, rec, res)

→ AF∃h : σholder(subject(h) = rec ∧ resource(h) = res)) (P.1)

Analogously, we can also check if whenever a holder accepts to give a resource, it
will eventually do so:

AG∀act : σaid∀rec : σaid∀res : σresources(happens(accept, act, rec, res)

→ AFhappens(give, act, rec, res)) (P.2)

COIN–184

In [20] we presented a symbolic model checker specifically developed to verify
FIEVeL institutions. Given an institution and a set of properties, our tool proceeds as
follows: (i) it converts the institution into a set Φ of OMSFOTL formulae by considering
the semantics of FIEVeL constructs and axioms determined by our metamodel; (ii)
formulae Φ are translated into propositional logic and subsequently converted into a
formula in conjunctive normal form (CNF); (iii) given the set of assignments satisfying
the CNF (whose disjunction constitutes the transition relation of a Kripke structure)
and a formula ϕ0, representing a set of initial states, a symbolic representation of an
institution is built and is exploited to verify properties by applying standard symbolic
algorithms [3]. According to our model checker, properties (P.1) and (P.2) do not hold:
since constitutive rules reported in Figure 1 define possible actions that agents can carry
out, but do not ensure that empowered agents will necessarily perform them, it may be
the case that agents accept to give their resources but do not perform action give.

4 Norms

To define the semantics of norms, our metamodel assumes the existence of sort σo,
whose individuals reify norms of institutions. Sort σo is used to express prohibitions
and obligations characterized by certain deadlines (not necessarily a time expression),
and we consider that a state of affairs is permitted if it is reached without violating
any norm. In particular, for the sake of conciseness, in this paper we focus only on
norms which are considered fulfilled or violated only once after a given status func-
tion is imposed on an agent and certain conditions are met. Given sort σstate, which
introduces constants unfired, activated, and inactive, sort σo is characterized by
function state (ξ(state) = 〈σstate, σo〉), which keeps trace of the temporal evolu-
tion of a norm, a set of timers (e.g., function activation which counts how many
time events have occurred since a norm has been activated), and by a set of predicates
(start, fulfillment, and violation of signature ξ(violation) = 〈σsf , σo〉). Agents
are subject to norms when certain status functions are imposed on them: to model the
interdependency among norms and status functions, we introduce function ofStatus
(ξ(ofStatus) = 〈σsf , σo〉) which denotes the status function an obligation is asso-
ciated to. When a status function is not assigned, then its norms are considered to be
inactive and cannot be violated: we represent this fact by the following axiom, which
states that norms of a revoked status function are always inactive:

AG∀o∀f((ofStatus(o) = f ∧ ¬assigned(f))→ state(o) = inactive) (A.3)

where ξ(o) = σo and ξ(f) = σsf . Similarly, Axiom (A.4) requires that when a status
function is imposed on an agent, then the state of a norm is set to unfired if predicate
start is not satisfied, otherwise it is set to activated:

AG∀o∀f((ofStatus(o) = f ∧X(assigned(f) ∧modified(f)))→ ((¬start(o, f)

∧Xstate(o) = unfired) ∨ (start(o, f) ∧Xstate(o) = activated)))
(A.4)

COIN–185

Axioms (A.3) and (A.4), as well as other axioms omitted here for the sake of
brevity, describe the temporal evolution of functions state and activation, which in
combination with predicates fulfillment and violation, determine when an obliga-
tion should be considered to be infringed. In particular, given predicate violated of
signature ξ(violated) = 〈σo〉, a norm is violated if and only if it was activated, the
associated status function is not modified, violation holds while fulfillment is false:

AG∀o∀f(ofStatus(o) = f → (Xviolated(o)↔ (state(o) = active∧

(violation(o) ∧ ¬fulfillment(o) ∧ ¬Xmodified(f))))) (A.5)

Norms are described in FIEVeL according to the following syntax:

norm ::= symbol start fulfillment violation ;
start ::= "start" "<->" expression ";" ;
fulfillment ::= "fulfillment" "<->" expression ";" ;
violation ::= "violation" "<->" expression ";" ;

where expression is an OMSFOTL formula which does not contains U, E, G,
or nested occurrences of X. Moreover, given that a norm is described within a status
function σs, free occurrences of a variable f of sort σs may appear in any formula
used to describe a norm’s condition. A norm symbol induces sort σsymbol ≤Σ σo and
defines under what conditions predicates fulfillment, violation, and start hold when
are evaluated over an obligation of sort σsymbol, as exemplified by the following axiom
schema:

AG∀o∀f(fulfillment(o, f)↔ (ofStatus(o) = f ∧ expression)) (A.6)

where ξ(o) = σsymbol and ξ(f) = σs. Combining instances of Axiom Schema (A.6)
(and similarly for predicates violation and start) with Axiom(A.5), it is possible to
automatically classify states with respect to each norm defined by an institution. In
contrast with other approaches (e.g., [16] and [1]), in our framework designers can
describe norms at a high-level in terms of institutional concepts, ignoring the actual
number of states and transitions admitted by an institution. For instance, the following
norm, named h1 and associated to the holder status function, states that once a holder
accepts to give the control of a resource, then it ought to do so before a certain time
interval elapses:

h1 start<->X ∃ ag:σaid ∃ rec:σaid ∃ res:σresources (subject(f)=ag ∧
resource(f)=res ∧ happens(accept,ag,rec,res));

fulfillment<->∃ ag:σaid ∃ rec:σaid ∃ res:σresources (subject(f)=ag
∧ res=resource(f) ∧ X happens(give,ag,rec,res));

violation<->(activation(o)=1 ∧ X happens(time));

Without proper sanction mechanisms, the introduction of norms typically does not
change the set of properties satisfied by an institution, given that autonomous agents
may not comply with such norms [5, 2, 9, 18, 7]: as a consequence certain properties
may not hold in an institution even if its rules are correctly stated. For instance, prop-
erties (P.1) and (P.2) do not hold in the new model of the Resource Management insti-
tution obtained by adding norm h1, despite this correctly requires that a holder gives a

COIN–186

resource after it has positively answered to an agent. This is due to the fact that norms
regulate existing activities, describing what evolutions of an institution should be con-
sidered as legal, but do not change the temporal evolution admitted by an institution.

5 Normed Temporal Operators

To analyze whether an institution may lead a system into certain states when its norms
are respected, we can exploit predicate violated and the fact that in our framework
norms are reified as norm individuals. Therefore, it is possible to quantify over sort
σo (and its subsorts induced by each norm), investigating how norms condition the
evolution of an institution. In particular, in this paper we define operators that allow
designers to reason about what properties are satisfied by an institution when a set of
norm individuals are not violated. More precisely, given a set of norms which constitute
the extension of formula ϕo (an open formula in which variable o of sort σo occurs free),
normed temporal operators are defined as follows:

– EG
ϕoϕ =def EG(∀o : σo(ϕo → ¬violated(o)) ∧ ϕ);

– EX
ϕoϕ =def EX(∀o : σo(ϕo → ¬violated(o)) ∧ ϕ);

– EψU
ϕoϕ =def E(∀o : σo(ϕo → ¬violated(o))∧ψ)U(∀o : σo(ϕo → ¬violated(o))∧

ϕ);

Since the satisfaction of CTL temporal operators (with the exception of EX) refers
to the initial state π0 of a path π [4, 3], then also their normed counterparts refer to state
π0. As a consequence, if state π0 violates norms ϕo, then the normed operators EG

ϕo

and EU
ϕo are trivially falsified. This may occur when the system is inconsistent or

because normed temporal operators are nested and external operators do not ensure
compliance with norms considered by internal operators. While in the former case we
would conclude that our system is irrational, in the latter case we may get counter-
intuitive results. To avoid this, we can prefix internal operators with EX

ϕo , ensuring
that the initial state is not considered and only paths compliant with norms of internal
operators are taken into account. Despite this problem may be avoided by different def-
initions of normed temporal operators, we consider more relevant the fact that normed
and unnormed operators are evaluated over the same set of states and are expressed in
terms of the standard semantics of CTL [4, 3]. In doing so, if formula ϕo refers to an
empty set of obligations, then normed temporal operators are equivalent to their tempo-
ral counterpart (e.g., EG

falseϕ ≡ EGϕ), and EG
ϕo , EX

ϕo , and EU
ϕo constitute an

adequate set of operators, since we have the following equivalences:

– EF
ϕoϕ ≡ EtrueUϕoϕ;

– AG
ϕoϕ ≡ ¬EF

ϕo¬ϕ ∧EG
ϕotrue;

– AX
ϕoϕ ≡ ¬EX

ϕo¬ϕ ∧EX
ϕotrue;

– AψU
ϕoϕ ≡ ¬(E¬ϕU

ϕo(¬ϕ ∧ ¬ψ)) ∧ ¬EG
ϕo¬ϕ ∧EF

ϕoϕ;
– AF

ϕoϕ ≡ ¬EG
ϕo¬ϕ ∧EF

ϕoϕ;

It is worth observing that by definition, the consistency of norms represents a neces-
sary condition for the satisfaction of normed temporal operators universally quantified

COIN–187

over paths, otherwise they would be trivially satisfied by an inconsistent normative sys-
tem. In contrast with other specification languages characterized by a normative flavor
(e.g. [14, 16, 1]), which assume that the normative system is consistent (i.e., there ex-
ists a legal outward transition for every state) either by assuming axiom D [14] or as
an explicit hypothesis on the transition system [16, 1], in our approach the absence of
contradictory norms represents a desirable property that a rational institution ought to
satisfy and that can be verified by our model checker. To exemplify the use of normed
temporal operators, we modify Property (P.2) such that if holders respect all norms of
the institution and they perform action accept, then they will give their resources:

AG∀act : σaid∀rec : σaid∀res : σresources(happens(accept, act, rec, res)→

AF
∃h:σholder∃f :σsf (subject(h)=subject(f)∧ofStatus(o)=f)happens(give, act, rec, res))

(P.3)

We can also rewrite property (P.1) to investigate whether norm h1 is capable of direct-
ing the behavior of holders in such a way that when an agent has requested a good and
has received a positive answer, it will eventually become the holder of the good:

AG∀act : σaid∀rec : σaid∀res : σresources((happens(accept, act, rec, res)

→ AF
∃w:h1(w=o)∃h : holder(subject(h) = rec ∧ resource(h) = res))) (P.4)

To conclude this section we compare the expressiveness and the flexibility of our
approach to the specification languages proposed in [1] and [12]. In [1] the authors
proposed Normative Temporal Logic (NTL), a language similar to CTL with the ex-
ception that operators A and E are replaced byOη and Pη , which intuitively can be read
as “for all paths compliant with the normative system η” and “there exists a path com-
pliant with the normative system η”. Given the semantics provided in [1] and assuming
that η represents a set of norms, NTL operators are equivalent to normed temporal op-
erators characterized by a formula ϕη representing all individuals of sorts belonging to
η. For instance, formula O¤ηϕ of NTL corresponds to AX

ϕηAG
ϕηϕ, where ϕη is

defined as follows: ϕη ≡
∧
σn∈η

∃k : σn(k = o).
In [12] Lomuscio and Sergot presented a modal operator Oaϕ which expresses

the fact that ϕ holds over reachable states where agent a complies with its protocol.
Assuming that a is an agent,Oaϕ is equivalent to AX

∃f(ofStatus(o)=f∧subject(f)=a)ϕ.
WhileNTL does not provide any construct to reason about agents, in [12] it is possible
to investigate only the compliance of agents with the whole set of norms (described as a
protocol): instead, normed temporal operators allow us to reason about subsets of norms
and agents, and to express complex interdependencies among them as exemplified by
Property (P.3).

6 Sanction Mechanisms

To guarantee that those agents that follow norms are not damaged by those who do not,
institutions should provide rules that describe what kind of sanctions are applied when

COIN–188

agents violate norms. According to [17], the imposition of status functions constitutes
a necessary condition for the application of sanctions, since “with that new status come
the appropriate punishment” [17, pag. 50]. Such status functions not only may provide
new powers and new obligations (prohibitions), but may also revoke or change existing
powers or norms: for instance, the exclusion of an agent from an interaction ruled by an
institution (e.g., an auction) means that powers and norms defined by such institution
have been revoked. Analogously, officials can apply sanctions only if they have the
necessary powers, and certain obligations (prohibitions) may further regulate how such
powers ought to be exerted. Therefore, given that sanctions modify the powers and
norms of agents, we propose to model sanction mechanisms as rules that impose or
revoke status functions when a norm is violated. In our framework sanction mechanisms
are defined according to the following grammar:

sanction ::= "sanction" symbol "pre" expression ";" "eff" effect
("," effect)* ";" ;

precondition ::= expression;
effect ::= (var ("," var)* "(" expression ")" "-X->")?
var ("assign"|"revoke") "(" term "=" term ("," term"=" term)* ")";

For instance, the following sanction mechanism describes that when a norm h1 is
violated, then the resource is assigned to the agent that has requested the good and
powers and obligations associated to status function requested are revoked:

sanction h1
pre true;
eff r2:σrequested revoke (reqRes(r2)=resource(f)),

r1:σrequested res:σresources a:σaid(res=resource(f)∧reqRes(r1)=res
∧ a=requester(r1)) -X->
r2:σholder assign(resource(r2)=res,subject(r2)=a)

Sanction mechanisms do not induce any new sort: instead, each of them introduces
two predicates, presani and effsani , which respectively represent a condition that must
be satisfied before a violated obligation activates the i-th sanction mechanism, and its
effects. Predicates presani (and analogously predicates effsani) are determined by the
obligation sort that must be sanctioned (σsymbol) and the status function that defines it
(σs). Furthermore, predicate presani must satisfy the following axiom schema:

AG∀o∀f(presani(o, f)↔ preconditioni) (A.7)

where ξ(o) = σsymbol and ξ(f) = σs. Similarly, each sanction mechanism instantiates
the following axiom schema which defines what status functions are imposed or revoked
when a sanction mechanism is activated:

AG∀o∀f(effsani(o, f)↔ (

Ki∧

k=0

∀ski(expressionki → X∃tki(

[¬]assigned(tki) ∧

Nki∧

l=1

termki,l,1 = termki,l,2)))) (A.8)

where variables ski is a set of variables defined by the k-th effect expression of the
i-th sanction mechanism and tki represents status functions that will be assigned or

COIN–189

revoked. Finally, the following axiom schema states that the i-th sanction mechanism
brings about its effects when it is activated by the violation of an obligation and its
preconditions are met:

AG∀o∀f((ofStatus(o) = f ∧ presani(o, f) ∧Xviolated(o))→ effsani(o, f))
(A.9)

Axiom Schema (A.9) suggests that, as institutional events, also sanction mechanisms
concur to the definition of predicate modified, which ensures that a status is not as-
signed (revoked) when no institutional event or sanction mechanism affects it (see Sec-
tion 3). Moreover, Axiom Schema (A.9) describes the main difference among institu-
tional events and sanction mechanisms: while the former happen because other events
occur and certain conditions are satisfied (see Axiom (A.2)), the latter are fired only by
violations. To some extend, we can interpret Axiom Schema (A.9) as defining a single
convention for the activation of any sanction mechanism.

Properties (P.1) and (P.2) can be regarded as two different interpretations of the
human norm “when agents accept to give a resource, then requesters ought to become
the new holders”, where the latter property explicitly refers to the actor and the action
that ought to be performed. Norm h1 introduced in Section 4 reflects such rule and the
introduction of a sanction mechanism for norm h1 changes the set of constitutive rules
in such a way that Property (P.1) is satisfied by the Resource Management institution.
Observing Figure 1, we can notice that the violation of norm h1 forces the effects of
action give, but not the performance of the action itself: therefore, we can expect that
Property (P.2) still does not hold, which is confirmed by our model checker. As it has
been formulated and unless we introduce a convention such that accept counts as give
(which may be incompatible with the rules of a human institution), we think that it is
impossible to devise a mechanism to satisfy Property (P.2), since it would mean that we
are capable of forcing an autonomous agent to act.

7 Discussion and Conclusions

In this paper we have extended FIEVeL with new constructs to model normative as-
pects of institutions and we have introduced a flexible specification language to define
properties regarding paths that are compliant with norms. We have also exemplified
how an institution can be developed by using our approach, verifying that it satisfies
certain requirements and modifying its constitutive and regulative rules to comply with
them. We have also shown that when properties stem from norms of human institutions
that artificial institutions should reflect, it is not always possible to satisfy them, at least
under certain interpretations of the human institutions.

In [9] Grossi et al. presented an overview of the role of norms and sanctions in insti-
tutions. According to [9] it seems that every norm can be either regimented or enforced,
while we think that the viability of such mechanisms depends on the meaning attributed
by designers to norms. As we have seen, certain interpretations may exclude the possi-
bility of regimenting them and, generally speaking, regimentation of norms regarding
institutional aspects can be achieved only by converting regulative rules into constitu-
tive rules. More precisely, prohibitions can be regimented by revoking powers [6, 7]

COIN–190

while obligations can be enforced by changing the interpretation of certain terms. For
instance, norm “all yes/not questions should be answered” can be trivially regimented
by assuming that silence counts as a positive (negative) answer. Instead, assuming that
only a message sent by an agent counts as a communicative act (like in [7]) it is impos-
sible to regiment such norm.

In [6] sanctions are considered only as rules which create new obligations (commit-
ments) and powers, while in this paper we have claimed that sanctions may also delete
obligations and powers by revoking status functions. Moreover, the approach discussed
in [6] is based on an intuitive semantics, which does not allow the development of a
framework to verify properties guaranteed by institutions. Analogously, the correctness
of protocols modelled in terms of institutional concepts by Artikis et al. [2, 15] is only
guaranteed by systematic executions. Despite the terminologies used in this paper and
in [2] are quite similar, in [2] physical actions can be performed only by agents playing
a specific role, suggesting that such actions are actually institutional. Furthermore, the
formalism used in [2, 15] does not provide any abstraction to describe that every insti-
tutional action must be empowered in order to be successfully executed. Instead, the
authors have to specify this fact for every single action and for every role.

In [8] a rule language is introduced to model norms and to represent the effects of
concurrent events. The author proposed the notion of enforcing events, which means
that obligatory events are considered as if they were executed even when agents do not
perform them. In our opinion, events’ enforcement transforms regulative rules into con-
stitutive rules, by defining when time events count as obligatory events, and represents
an effective mechanism to describe automatic updates of institutions. In general, we be-
lieve that it is not possible to enforce all kinds of events, especially those (like actions)
that can only be performed by autonomous agents.

The constructs presented in Section 4 constitute a high-level description of norms,
and our tool automatically classifies transitions and states as compliant with each norm
of the system. In this respect, our approach is similar to the one presented in [18]. In-
stead, the input language of the model checker described in [16] requires designers to
explicitly list the set of states that each agent may reach, and to classify them as red
(an agent violates the protocol) or green. Although red states are such only because
they violate a protocol [12, 16], such classification is not inferred from the protocol but
must be manually provided independently from it: therefore designers may introduce
discrepancies among the protocol and the classification of states. Similarly, in [1] sys-
tems are described with a low-level language which requires to associate a name to
each transition, and norms can be defined only by listing under what conditions a set of
transitions is considered legal.

In the future we plan to define a translation of axioms stemming from our meta-
model and from FIEVeL models into Prolog, providing a single framework for the def-
inition, verification, and monitoring of institutions.

References

1. T. Ågotnes, W. van der Hoek, J. A. Rodrı́guez-Aguilar, C. Sierra, and M. Wooldridge. On
the logic of normative systems. In Proceedings of the 20th International Joint Conference
on Artificial Intelligence, pages 1175–1180, 2007.

COIN–191

2. A. Artikis, L. Kamara, J. Pitt, and M. J. Sergot. A Protocol for Resource Sharing in Norm-
Governed Ad Hoc Networks. In Declarative Agent Languages and Technologies II, volume
3476 of LNCS, pages 221–238. Springer, 2005.

3. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
4. E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: on branching

versus linear time temporal logic. Journal of the ACM, 33(1):151–178, 1986.
5. M. Esteva, J. A. Rodrı́guez-Aguilar, C. Sierra, P. Garcia, and J. L. Arcos. On the Formal

Specification of Electronic Institutions. In Agent Mediated Electronic Commerce, The Euro-
pean AgentLink Perspective, pages 126–147. Springer, 2001.

6. N. Fornara and M. Colombetti. Specifying and Enforcing Norms in Artificial Institutions. In
Proceedings of the 4th European Workshop on Multi-Agent Systems, 2006.

7. N. Fornara, F. Viganò, and M. Colombetti. Agent Communication and Artificial Institutions.
Autonomous Agents and Multi-Agent Systems, 14(2):121–142, 2007.

8. A. Garcı́a-Camino. Ignoring, Forcing and Expecting Concurrent Events in Electronic Institu-
tions. In Proceedings of the AAMAS Workshop on Coordination, Organization, Institutions,
and Norms in agent systems, 2007.

9. D. Grossi, H. Aldewereld, and F. Dignum. Ubi lex, ibi poena: Designing norm enforcement
in e-institutions. In Coordination, Organizations, Institutions, and Norms in Multi-Agent
Systems II, volume 4386 of LNCS, pages 110–124. Springer, 2007.

10. A. Jones and M. J. Sergot. On the characterization of law and computer systems: The nor-
mative systems perspectives. In Deontic Logic in Computer Science: Normative Systems
Specification, pages 275–307, 1993.

11. A. Jones and M. J. Sergot. A formal characterisation of institutionalised power. Journal of
the IGPL, 4(3):429–445, 1996.

12. A. Lomuscio and M. Sergot. A formulation of violation, error recovery, and enforcement in
the bit transmission problem. Journal of Applied Logic, 1(2):93–116, 2002.

13. M. Manzano. Introduction to many-sorted logic. In Many-sorted logic and its applications,
pages 3–86. John Wiley & Sons, 1993.

14. J.-J. Meyer and R. J. Wieringa. Deontic Logic: A Concise Overview. In Deontic Logic
in Computer Science: Normative Systems Specification, pages 3–16. John Wiley and Sons,
1993.

15. J. Pitt, L. Kamara, M. Sergot, and A. Artikis. Formalization of a voting protocol for virtual
organizations. In Proceedings of the 4th Conference on Autonomous agents and Multi-Agent
Systems, pages 373–380, 2005.

16. F. Raimondi and A. Lomuscio. Automatic Verification of Deontic Interpreted Systems by
Model Checking via OBDD’s. In Proceedings of the 16th Eureopean Conference on Artifi-
cial Intelligence, pages 53–57, 2004.

17. J. R. Searle. The construction of social reality. Free Press, New York, USA, 1995.
18. M. J. Sergot and R. Craven. The Deontic Component of Action Language nC+. In Deontic

Logic and Artificial Normative Systems, volume 4048 of LNCS, pages 222–237. Springer,
2006.

19. F. Viganò and M. Colombetti. Specification and Verification of Institutions through Status
Functions. In Coordination, Organizations, Institutions, and Norms in Multi-Agent Systems
II, volume 4386 of LNCS, pages 125–141. Springer, 2007.

20. F. Viganò and M. Colombetti. Symbolic Model Checking of Institutions. In Proceedings of
the 9th International Conference on Electronic Commerce, 2007. To appear.

COIN–192

Author Index

Barber, Fernando, 83
Bhatnagar, Raj, 137
Boissier, Olivier, 119
Bou, Eva, 1

Caire, Patrice, 13
Carlos da Rocha Costa, António, 37
Cliffe, Owen, 25
Colombetti, Marco, 175

De Vos, Marina, 25
Debenham, John, 95
Dellunde, Pilar, 49
Dignum, Frank, 161

Fred Hubner, Jomi, 119

Garcı́a-Camino, Andres, 59
Gómez, Mario, 71
Grimaldo, Francisco, 83

Harbers, Maaike, 95

Joseph, Sindhu, 107

Kitio, Rosine, 119

López-Sánchez, Maite, 1
Lozano, Miguel, 83

Matson, Eric, 137
Meyer, John-Jules Ch., 161

Neef, Martijn, 161

Padget, Julian, 25
Pereira Dimuro, Graçaliz, 37
Perreau de Pinninck, Adrian, 149
Plaza, Enric, 71

Ricci, Alessandro, 119
Rodrı́guez-Aguilar, Joan-Antoni, 1, 59

Schorlemmer, Marco, 107, 149
Sierra, Carles, 95, 107, 149

Vasconcelos, Wamberto, 59
van der Vecht, Bob, 161
Verbrugge, Rineke, 95
Viganó, Francesco, 175

