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I. INTRODUCTION

This paper describes MILORD, an expert systems building tool containing a knowledge
elicitation module and two inference engines (forward and backward) with uncertain rea-
soning capabilities based on fuzzy logic. MILORD allows the user to express the degree of
certainty by means of expert-defined linguistic statements and provides the possibility to
choose among three different calculi of uncertainty comesponding to three different models
of the and. or and implication connectives.

The switching between the two engines is transparent to the user. MILORD has two
types of control strategies: one consists of a lookabead technique that allows the user to
detect, in advance, whether or not the linguistic certainty value of a conclusion will reach
a minimal threshold acceptance value. The other concems the selection of rules according
to several criteria. MILORD also contains a Jimited, but useful, explanation module as well
as 2 rule editor, not described in this chapter.

II. THE KNOWLEDGE REPRESENTATION

The knowledge base consists of facts and rules. The facts are LISP atoms associated
with a linguistic certainty value. A nonevaluated fact will have the value nil and, therefore,
is very fast to check if a given fact is known, i.e., if a certainty value has been assigned to
1.

Every rule has a set of conditions which, when evaluated with a certain degree of
linguistic certainty, leads to a conclusion whose degree of linguistic certainty depends on
the degrees of the conditions. The rules are externally represented as follows:

{Rule male — number (if conditions) [vc] (Then conclusions))

where {vc] is the linguistic certainty value of the rule.
In order to enable a fast access to the rules, MILORD translates the preceding list into
the following internal representation that uses the LISP property lists:

Rule-N — VAL[vc] IF (p,,...,py) THEN (c,,...,Co)

where VAL, [F, and THEN are properties of the atom rule. The access to the conditions
and conclusions of a rule is then an access to the properties of an atom.
The internal representation of the rules builds, for each conclusion, a property list which

is the list of rules that deduce this conclusion, together with the linguistic certainty value
of each rule, i.e.,

Conclusion — Rules ({rule, vc,)...(rule, vc,))

where the rules in this list are listed in decreasing order of their linguistic certainty values.
This ordering will be used by the lcokahead control strategy that will be described later.

HI. FORWARD, BACKWARD, AND THEIR COMBINATION

The forward reasoning starts with a set of given facts and its goal is to deduce a hypothesis
whose linguistic certainty value reaches a given acceptance threshold. If the forward rea-
soning gets to a hypothesis whose certainty value is below the threshold, the backward
reasoning is called in order to try to increase this certainty value by considering, through a

lookahead process, other rule-paths that would conclude the same hypothesis with a higher
certainty.
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A. THE LOOKAHEAD PROSPECTION TECHNIQUE

MILORD applies a prospection process from the hypothesis toward the external (non-
deducible) facts in such a way that at any time it checks if the certainty value of the hypothesis
can reach the acceptance threshold value. If not, it will consider a new hypothesis. Let us
now briefly describe such a process with the following default operators, and for the and,
or and — connectives, to perform the calcutus of uncertainty (although the lookahead process
is independent of the operators used):

v(A and B} = min(v(A),v(B))
V(CR] or CRZ) = M(V(Cnl)sv(cﬂz))
wWC) = min(v(R},v(P))

where A and B are conditions of a same premise, Cy, and C, represent the same conclusion
deduced by the two rules R1 and R2, and C is the conclusion of rule R whose premise is
P.

The preceding operators are uséd, respectively, in the evaluation of the satisfaction of
the premise, in the combination of several rules with the same conclusion, and in the
propagation of the uncertainty from the premise to the conclusion of a rule.

The lookahead process in the backward reasoning starts assuming that all the noneval-
uated conditions of the rules leading to the same conclusion, have the highest linguistic
certainty value among the ordered set of linguistic values defined by the expert. This allows
to compute the highest possible certainty value that this conclusion could reach. If this value
is higher than the acceptance threshold, the backward reasoning proceeds asking the user
to assign a linguistic certainty value to the nonevaluated, nondeducibile conditions one by
one. Each time a condition gets its value, it is propagated to the conclusion using the
preceding formula, and if its certainty value is still higher than the threshold, the process
proceeds asking for the value of the next nondeducible condition and so on until either the
certainty value of the conclusion falls below the threshold (in which case MILORD calls
back the forward reasoning mode to deduce another hypothesis), or all the nondeducible
conditions have been assigned a certainty value. As far as the deducible conditions are
concerned, the lockahead process is applied recursively to each one of them, as described,
and its certainty value is also propagated toward the conclusion in order to keep checking
if its certainty value is higher than the threshold, in which case the process resumes. If not,
the forward reasoning mode will try to deduce a new hypothesis.

If the user initially gives a set of hypotheses, instead of a set of facts, MILORD calls
the backward reasoning mode with one of the hypotheses and tries to validate it with a
linguistic certainty vatue higher than the threshold, using exactly the same process described

previously. If it fails, it tries another hypothesis, and so on until either one of them succeeds
or all of them fail.

B. THE RULE SELECTION CRITERIA

The set of criteria to select rules has to be easily modifiable because the efficiency of
any criterion depends on each particular application. in MILORD it is very easy for the user
to modify or introduce criteria. The selection among a given set of criteria can, in some
cases, be done automatically. For example, if a knowledge base only contains rules which
have a single conclusion, any criterion based on the number of conclusions would not be
considered. The criteria that, in addition to metarules, are available in MILORD are

I.  The order of the rules
2. The linguistic certainty values
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The number of conditions

The number of conclusions

The rule most recently used

The rule containing the most recently deduced fact in its premise

A

Furthermore, the user can combine several criteria according to a given priority. For example:

R1: Condition,, condition, = [absolutely-true]| conclusion,
R2: Condition,, condition, = [almost-true] conclusion,
R3: Condition, = [quite-true] conclusion,

The exireme values corresponding to the following ordered criteria are

. Maximum certainty value: absolutely-true
2. Maximum number of conclusions: 1
3. Minimum number of conditions; 1

In this case the system will try to select a rule, among the applicable ones, having a certainty
value equal to ‘‘absolutely-true”’, and having one condition and one conclusion. If there is
no rule satisfying these criteria, it will drop the last one (number of conditions) and so on
until one or more rules are obtained. If several rules have been obtained, the user can use

the rest of the criteria to end up with only one rule. In our example, after dropping the last
criterion, the selected rule is R1{.

IV. THE MANAGEMENT OF UNCERTAIN REASONING

The numerical approaches to the representation of uncertainty imply hypotheses of
independence, mutual exclusiveness, etc. about the information they deal with. On the other
hand, they oblige the expert and the user to be unrealistically precise and consistent in the
assignment of such numerical values to rules and facts. Furthermore, these approaches are
computationally expensive,

Our approach is based on a linguistic characterization of the uncertainty and follows the
work of Bonissone.® The linguistic certainty values are terms defined by the expert. The
internal representation of each term is a fuzzy number on the interval [0,1] characterized
by a parametric representation for computational reasons.

MILORD has been parametrized in order to perform three different calculi of uncertainty
operating on the expert defined term set of linguistic certainty values.

A, THE CALCULUS OF UNCERTAINTY

It can be shown® that triangular norms (t-norms) and triangular conorms (t-conorms) are
the most general families of two-place functions from {0,1} X [0,1] to [0,1], that satisfy
the requirements of conjunction and disjunction operators, respectively.

A t-norm T(p.q) performs a conjunction operator, on the degrees of certainty of two or
more conditions in the same premise, satisfying the following properties:

TOMH =0
Tp.1) = T(l,py = p
T(p.g) = T(q,p)
Tp =Trs)ifp=randq =s
T(p.T(q,)) = T(T(p,q).0)
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A t-conorm S(p,q) computes the degree of certainty of a conclusion derived from two
or more rules. Tt is a disjunction operator satisfying the following properties:

51,1y =1
S(O»P) = S(p$0) =p
S(p.a) = S(q,p)
S(pg) =S(rsyifp=randg=s
8(p.5(q.r)) = S{S(p.q).1)

The propagation function P(p,r), giving the certainty value of the conclusion of a rmle
as a function of the certainty value of the premise and the certainty vaiue of the rule itself,
satisfies the properties of a t-norm.

For suitable negation operators N(x)'*, t-norms and t-conorms are dual in the sense of
DeMorgan’s law.

Some usual pairs of dual t-norms and t-conorms are

T xy) = { gxin(x.y) if...etc. - Solog) = [ :tnax(x,y) if...etc.

Tx.y) = max(dx +y — 1) $,(x,y) = min{l.x + ¥} (Luckasiewicz)
Tisx,y) = w92 — (x + ¥y — xy)] 31y = (x + y¥(1 + xy}

T, (x.y) = xy S)x.y) = x + y — ay (Probabilistic)
Tosfxy) = Xy/x + ¥y — xy) S.a(xy) = (x +y — 2xy(l - zy)
Ty(x.¥) = min{x,y) 5(x,y) = max(x,y) (Zadeh)

[t can be shown that they are ordered as follows:

TO = TI.S = T! = TZ.S = TJ

SS = SZ.S = SI = Sl.5 = Sl SSO

In MILORD we have implemented the pairs (T,,S,), (T,,S,), and (T4,S,), following the
experimental results obtained by Bonissone,® which consisted of applying nine t-norms to
three different term sets. Bonissone analyzed the sensitivity of each operator with respect
to the granularity (number of elements) in the term sets and concluded that only the t-norms
T,, T,, and T, generated sufficiently different results for term sets that do not have more
than nine elements, On the other hand, according to the results of Miiler® concerning the
span of absolute judgment, it is unlikely that any expert or user would consistently qualify
uncertainty using more than nine different terms.

V. THE LINGUISTIC CERTAINTY VALUES

MILORD allows the expert to define the term set of linguistic certainty vaiues which
constitutes the verbal scale that he and the users will use to express their degree of confidence
in the rules and facts, respectively. Recent psychological studies' have shown the feasibility
of such verbal scales. ** . . . A verbal scale of probability expressions is a compromise
between people’s resistance to the use of numbers and the necessity to have a common
numerical scale,” according to Beyth-Marom.' ** . . . People asked to give numerical es-
timations on a common-day situation err most of the time and in a nonconsistent way.
Furthermore, they are unable to appreciate their judgment imprecision (errors are by far
bigger than the maximum error accepted as possible by the subjects themselves). Never-
theless, judgments embodied in linguistic descriptors appear consistent in this same situa-
tion.'"®

Each linguistic value is represented internally by a fuzzy interval (fuzzy number), i.e.,
the membership function of a fuzzy set on the real line, or, more precisely, on the truth
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FIGURE 1. The trapezoidal function.
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FIGURE 2. Five elements representation.

space represented by the interval {0,1]. These membership functions can be interpreted as
the meanings of the terms in the term set. The conjunction and disjunction operators applied
to these functions will produce another membership function, as a result that will have to
be matched to a term in the term set, in order to keep the term set closed. This can be done
by a linguistic approximation process that will be described later (see Bonissone for an
extensive study of the linguistic approximation process).

A. A DEFAULT TERM SET AND ITS REPRESENTATION

Although the expert can define its own term set together with its internal representation,

MILORD provides the following default term set:

{False, almost-false, maybe, almost-true, true}

Each term T, is represented by a membership function p,(x), for x in the interval [0,1].
For computational reasons, each membership function is represented by four parameters

T, = (a,b,c;,d), corresponding to the following trapezoidal function:

The five element default term set has the following representation:

False = (0,0,0,0)
Almost-false = (0,0,.25,.40}
Maybe = (.25,.40,.60,.75)
Almost-true = (.60,.75,1,1}

True = (1,1,1,1)

corresponding to the following functions in Figure 2.

o iRt
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In order to be able to evaluate the t-norms T,.T,.T, and the t-conorms §,,5,,5, on the
elements of the term set, we have applied the following formulas according to the arithmetic
ruies on fuzzy numbers,

Given two fuzzy intervals | = (a,b,c,d) and I’ = (a’,b’,c’,d"), we have the following:

i

i+1
-t

{at+a’" b+b,c+c d+d)
{a—d".b—c¢c’,c—b',d—a")

1*¥ = {aa’,bb’,cc’,dd")
Min(l.1'y = (min(a,a"),min(b,b’},min{c,c’),min(d,d’))
Max(Ll') = (max(a,a’),max(b,b’),max(c,c’),max(d,d’'}}

i

B. THE LINGUISTIC APPROXIMATION

A linguistic approximation process is performed in order to find a term (linguistic value)
in the term set whose ‘‘meaning”’ (membership function) is the closest (according to a given
metric) to the *‘meaning’” (membership function) of the result of the conjunction eor dis-
junction operation performed on any two linguistic values of the term set. This allows us
to maintain, closed, the operations for any t-norm and t-conorm. The problem is, therefore,
that of computing a distance between two trapezoidal membership functions. In order to do
0, we have adopted a simple solution consisting of the compwtation of a weighted Euclidean
distance of two features of the functions: the first moment and the area under the function.
The next figure shows the results obtained with the selected t-norms T,, T;, and T, on the
default term set of Figure 2.

¥

FALSE
ALMOST-FALSE

| MAYBE

ALMOST-TRUE

TRUE

VL. THE KNOWLEDGE ELICITATION MODULE OF EXPERTISE
TRANSFER

This section describes elicit-analyze-refine (EAR), a system and ancillary methodology
for aiding knowledge engineers in the early phases of knowledge base design. That is to
say, we focus on the top half of Figure 3 because we are convinced that much of the difficulty
in knowledge acquisition lies in the fact that the expert cannot casily describe how he views
a problem, because he may not distinguish between the facts or beliefs and the factors which
influence his decision making. Much of the expertise lies in the way an experienced person
views the problem, and this is a psychological issue that can be dealt in terms of the personal

P
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FIGURE 3. Knowledge acquisition stages.

construct psychology. The psychology of Kelly’ views a human as a scientist classifying
and theorizing about his world and basing his theory on the hypothesis that everybody has
his own model of the world made up of personal constructs.

Based on this claim, the system conducts a dialogue with a domain expert eliciting
relevant constructs and interactively detecting constructs poorly or ambiguously defined.
Such constructs are fed back to the dialoguing expert for further refining. In this way, the
expert is forced to investigate how he thinks about the problem at hand. This process builds
up a repertory grid relating domain constructs with domain elements to which they apply.
These relations are expressed by a contrastive set of linguistic labels, and are represented
by possibility distributions, e.g., are of the form: E; is Q% C,, where E, is an element, <
is a construct pole, and Q¥j is the linguistic labe! relating them.

In the second stage, a logical analysis of the repertory grid shows the implication strength
between the constructs and this allows us to generate an initial set of fuzzy rules, forming
an inference network. This network is then presented to the expert who points out his
disagreements and enters a refining stage that uses several techniques of the personal construct

Fs bt o o
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theory (PCT). The elicitation dialogue is also based on the PCT and on recent implementations
of psychological analysis systems.*'%-12

EAR produces a validated rule set for knowledge base building through the following
three-stage cycle:

1. Interactive elicitation and analysis (EINA) is a program to assist in the conceptualization
by building a repertory grid through a guided dialogue.

2. Subjective inference logical analysis (ALIS) is a program that generates a ientative
rule-set represented as an inference network.

3. Inference validation and refining environment (EVR) is a program containing several
techniques for disagreement resolution (laddering, concrete explanations, etc.). At this
point if disagreement remains, it is possible to go back to point 1. If no disagreement
remains, the cyclic process ends.

A. ELICITATION

To enter the elicitation stage the expert must characterize the context with a minimal
set of elements (i.e., cases, examples, diagnostics, etc.) pertaining to the domain of expertise.
Next, the elicitation process builds up groups of elements according to their similarities and
dissimilarities with respect to the constructs already present.

The refining mode carries out two indistinguishability analyses: one over the domain
elements and another over the already elicited constructs. Its main feature is that the inter-
active analysis is fed back to the expert in such a way that the incremental building of the
repertory grid, and the validation/refinement of the repertory grid are the same process.
Construct analysis shows the expert the most similar consirucis, and he may point out his
disagreements. If two constructs are similar, it means that they structure similarly the domain
elements, and if they had to be more different than the domain context, they should be
enlarged with new elements that are still missing. Therefore, the expert is asked to supply
a concrete expianation of his disagreement, i.¢., a counterexample embodied in a new clement
that will increase the construct distinction, as well as the representativeness of the domain
context with regard to the real expertise domain.

Element analysis shows the most similar elements and, if disagreement arises, the expert
is requested to supply a new concrete explanation, i.e., a new construct that distinguishes
these too-similar elements. Undue indistinguishability between elements reveals a poor
discrimination power of the set of elicited constructs.

By defining a new construct, the expert introduces a new distinction over the context
elements in a process to build an opposite characterization of the set of domain elements
for the task at hand. Both interaction modes form the incremental constructing process of
the repertory grid. The set of fuzzy relations between domain elements and constructs
constitutes the fuzzy repertory grid and the set of fuzzy predicates applying to a construct;
for example, a type 2 fuzzy set constitutes the representation of the construct.!'

B. INFERENCE ANALYSIS

In the second stage, ALIS elucidates the implicational relationship holding between
constructs. As constructs are represented by type 2 fuzzy sets, we apply a type 2 semantic
entailment (an extension of ordinary fuzzy set entailment) to model subjective inferences.
The analysis outcome is an inference network, a digraph where nodes stand for construct
poles and weighted arcs stand for implicational strength. The inference network is fed back
to the expert for validation in the EVRI stage.
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C. INFERENCE VALIDATION AND REFINING ENVIRONMENT

This stage implements a set of techniques and aids for validation and refining founded
in PCT. The EVRI environment is the turnover of the developmental EAR cycle, for it
focuses on disagreement resofution. Expert disagreements about the inference network may
arise for different reasons {ambiguous or polysemic constructs, insufficient elements char-
acterization, domain context incompleteness), and they are handled in different ways:

Counterexample proposal — Disagreement with a rule is justified by the expernt stating
a counterexample that is incorporated in the repertory grid as a new concrete explanation.
As before, concrete explanation has a global repercussion and may modify other rules in
addition to the intended one. Counterexample§ may be new elements, in the case of lack of
represeatativeness of the current context, or new constructs, in the case of insufficient clement
characterization.

Revision of assignment values — The expert may have used different criteria in
estimating the linguistic evaluations, applying constructs to elements, in a nonconsistent
way. This is solved by editing the repertory grid to revise the assignment linguistic values.

Revision of contrastive sets — Disagreements may also arise for inappropriate or poorly
discriminating contrastive sets. Contrastive sets can then be drastically changed or augmented
with new linguistic labels in order to achieve a finer discrimination over the domain. A
revision of the linguistic values of the associated constructs is finally conducted.

Laddering techniques — Concept ambiguity is resolved splitting a construct into two
or more constructs by asking how and why questions. These new constructs are added to
the repertory grid. Why questions lead to superordinate, more abstract constructs whereas
how questions lead to subordinate, more concrete constructs.

VII. CONCLUDING REMARKS

We have described some aspects of the MILORD system and, in particular, its man-
agement of uncertainty. The most relevant features of our approach are the representation
of uncertainty by means of expert-defined linguistic statements and the use of the certainty
values to guide the search tree by means of a lookahead prospection technique.

The main advantage of this approach is that once the Jinguistic values have been defined
by the expert, the system computes and stores the matrices corresponding to the different
conjunction and disjunction operations on all the pairs of terms in the term set. Later, when
MILORD is run on a particular application, the propagation and combination of uncertainty
is performed by simply accessing these precomputed matrices.

The gain in speed, with respect to the most common numerical approaches, is remarkable;
for example, a rule with N conditions in its premise will need N-1 accesses o a matrix to
obtain the linguistic certainty value of the premise, and one additional access to combine
this value with that of the rule itself in order to obtain the linguistic certainty value of the
conclusion.

The easiness for the expert and the user in expressing linguistically their confidence in
the rules and Facts is also a remarkable feature.

The EAR cycle facilitates the knowledge engincering process, decoupling knowledge
acquisition from implementation, and sticks to systematic refinement, requiring concrete
explanations for the resolution of disagreements. The decoupling is obtained creating a
refinement cycle prior to knowledge base implementation and prototype testing. This de-
coupling also allows a structured way in which a group of experts may develop their individual
perspectives and, furthermore, using scveral content-free conversational procedures, engage
in a process of discussion and negotiation for reaching a meaningful consensus. The system
is being used for designing a knowledge base medical diagnosis system. In this experience,
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we have cited the insight provided by the different perspectives of the elicited data, the
easiness in eliciting the individual conceptual repertoires, and generating tentative inference
networks.

In the near future, the resuiting knowiedge base will be submitted to other experts for
a final validation, and research has to be done in order to be able to implement a consensus
process on a second stage over the inference network.

13.
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