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This paper is a contribution to the theory of substructural logics. We introduce the notions
of (MP)-based and almost (MP)-based logics (w.r.t. a special set of formulae D), which leads
to an alternative proof of the well-known forms of the local deduction theorems for prominent
substructural logics (FL, FLe, FLew , etc.). Roughly speaking, we decompose the proof of the
local deduction theorem into the trivial part, which works almost classically, and the non-trivial
part of determining with respect to which set (if any) the logic is almost (MP)-based. We can
also show connection of (almost) (MP)-based condition and the proof by cases properties for
generalized disjunctions and the description of (deductive) filters generated by some elements of
a given algebra.

In order to provide as general theory as possible, i.e., to cover more logics than the usual Ono’s
definition of substructural logics [6] (i.e. axiomatic extensions of the logic of pointed residuated
lattices) we propose a more general notion of substructural logic based on a very weak system
lacking not only structural rules, but also associativity of multiplicative conjunction, and consider
all its (even non-axiomatic) extensions, expansions (by new connectives), and well-behaved frag-
ments thereof. This defines a wide family of logical systems containing pretty much all prominent
substructural logics.

Our basic logic will be the non-associative variant for the Full Lambek Calculus [6, 7], here
denoted as SL. Its language, LSL, consists of residuated conjunction &, right % and left $ residual
implications,1 lattice conjunction ∧ and disjunction ∨, and truth constants 0, 1. The logic SL is
given by the following axiomatic system:

⊢ φ%φ φ,φ%ψ ⊢ ψ φ ⊢ (φ%ψ)%ψ φ%ψ ⊢ (ψ%χ)%(φ%χ) ψ%χ ⊢ (φ%ψ)%(φ%χ)

⊢ φ % ((ψ $ φ) % ψ) φ % (ψ % χ) ⊢ ψ % (χ $ φ) ψ $ φ ⊢ φ % ψ
⊢ φ ∧ ψ % φ ⊢ φ ∧ ψ % ψ φ,ψ ⊢ φ ∧ ψ ⊢ (χ % φ) ∧ (χ % ψ) % (χ % φ ∧ ψ)

⊢ φ%φ∨ψ ⊢ ψ%φ∨ψ ⊢ (φ%χ)∧ (ψ%χ)% (φ∨ψ%χ) ⊢ (χ$φ)∧ (χ$ψ)% (χ$φ∨ψ)

⊢ ψ % (φ % φ& ψ) ψ % (φ % χ) ⊢ φ& ψ % χ
⊢ 1 ⊢ 1 % (φ % φ) ⊢ φ % (1 % φ)

Definition 1 A logic L in a language L containing % is a substructural logic if

• L is the expansion of the L ∩ LSL-fragment of SL.

• for each n, i < n, and each n-ary connective c ∈ L \ LSL holds:

φ % ψ, p % φ ⊢L c(χ1, . . . χi, φ, . . . , χn) % c(χ1, . . . χi, ψ, , . . . , χn)

Note that the first condition implies that the second condition holds for connectives from LSL.
Any substructural logic is finitely equivalential [5], order algebraizable [9], weakly implicative [2, 3],
and algebraizable in the sense of Blok and Pigozzi [1] in the presence of either ∨ or ∧ in its language.
The class of substructural logics as just defined contains:
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• substructural logics Ono’s sense, including e.g. monoidal logic, uninorm logic, psBL, GBL,
BL, Intuitionistic logic, (variants of) relevance logics,  Lukasiewicz logic;

• expansion of the mentioned logics by additional connectives, e.g. (classical) modalities, ex-
ponentials in (variants of) Linear Logic and Baaz delta in fuzzy logics;

• fragments of the mentioned logics to languages containing implication, e.g. BCK, BCI,
psBCK, BCC, hoop logics, etc.;

• non-associative logics recently developed by Buszkowski, Farulewski, Galatos, Ono, Halaš,
Botur, etc.

What seems to be left aside is e.g. the logic BCK∧ of BCK-semilattices [8] (because it does
not satisfy one of our axioms, namely: (χ % φ) ∧ (χ % ψ) % (χ % φ ∧ ψ)). This observation calls
for a comment on the postulative nature of our definition: when we claim that some logic is
substructural and it has a connective c ∈ LSL we postulate how this connective should behave.
Thus BCK∧ in the language {%,∧} is not a substructural logic (∧ does not behave as it should) but
(!) if we would formulate BCK∧ in the language {%,∧} it would indeed be a substructural logic
(because then the only SL connective present in its language, implication, behaves as it should).

Definition 2 ((MP)-based substructural logic) A substructural logic is (MP)-based if it has
a presentation where (MP) is the only deduction rule.

In substructural logics with & and 1 in the language we can introduce the following notation:
φ0 = {1}, φ1 = {φ}, φn+1 = {φ & ψ,ψ & φ | ψ ∈ φn} for every n ≥ 1; note that if the logic is
associative, we can identify φn just with any of its elements. The presence of 1 (or &) could be
avoided at the price of more cumbersome formulations of the theorems (in case of & also we would
also need to assume, implicationally expressed, associativity). The proof of the next theorem is
almost trivial:

Theorem 3 (Implicational deduction theorem) Let L be a substructural logics with & and
1 in the language. Then: L is (MP)-based iff L is finitary and for each set Γ∪ {φ,ψ} of formulae
the following holds:

Γ, φ ⊢L ψ iff Γ ⊢L χ % ψ for some n ≥ 0 and χ ∈ φn.

Clearly FLew is an example of (MP)-based logic, thus we have just shown that it enjoys this
form of deduction theorem (and obviously the same holds for its axiomatic extensions). On the
other hand, we can use the previous theorem to show that FLe is not (MP)-based: indeed, φ ⊢ φ∧1
would entail provability of the theorem φn % φ ∧ 1 for some n which can be refuted by a simple
semantical counterexample.

Our next aim is to obtain some form of deduction theorem for FLe, FL, and other substructural
logics. To this end, we need to introduce three auxiliary notions. First, given a set S of formulae,
we denote by

∏
S the smallest set of formulae containing S ∪ {1} and closed under & (it can be

seen as the free groupoid with unit generated by S). Second, we introduce a notion of (MP)-based
companion for a given logic:

Definition 4 (Logic L(MP)) Let L be a substructural logic. By L(MP) we denote the logic axiom-
atized by all theorems of L and modus ponens as the only inference rule.2

Note that L is (MP)-based iff L = L(MP) and that L(MP) need not be a substructural logic in
the sense of Definition 1. Not withstanding this, we are able to easily prove a deduction theorem
for L(MP) (we formulate already it in a stronger form needed for the next corollary), which in turn
will allow to obtain a deduction theorem for L.

2Example: if L is the global variant of a normal modal logic, then L(MP) is its local variant.



Lemma 5 Let L be a substructural logic with & and 1 in its language. Then:

Γ, S ⊢L(MP) ψ iff Γ ⊢L(MP) φ̂ % ψ for some φ̂ ∈
∏

S.

The third auxiliary, but crucial, notion is that of almost (MP)-based substructural logic:

Definition 6 (Almost (MP)-based substructural logic) A substructural logic L is almost (MP)-
based if there is a subset D(v, p⃗) ⊆ ThL(v) (v is a variable and p⃗ are possibly present parameters)
such that

Γ ⊢L φ iff
∪

{D(ψ, p⃗) | ψ ∈ Γ} ⊢L(MP) φ.

Notice that each (MP)-based logic is almost (MP)-based (with D = {v}) and that without
loss of generality we can assume that v ∈ D (unless explicitly said otherwise). Also notice that
any axiomatic extension of an almost (MP)-based logic is almost (MP)-based too. Finally, note
that each almost (MP)-based logic can be axiomatized with (MP) as the only non-unary rule, the
question whether the converse is true as well seems to be open. The previous lemma allows us to
straightforwardly extend the scope of the implicational deduction theorem to almost MP-based
logics.

Corollary 7 (Deduction theorem and almost (MP)-based substructural logics) Let L be
a substructural logic with & and 1 in the language and D(v, p⃗) ⊆ ThL(v). Then: L is almost (MP)-
based w.r.t. the set D(v, p⃗) if, and only if, for each set Γ ∪ {φ,ψ} of formulae holds:

Γ, φ ⊢L ψ iff Γ ⊢L φ̂ % ψ for some φ̂ ∈
∏

D(φ, p⃗).

Thus the proof of the deduction theorem in a given logic was rather effortlessly reduced to the
proof that the logic is almost (MP)-based. Recall the footnote 2 and observe that the well-known
connection of global and local variants of modal logic K can, in our terminology, be formulated
as ‘global K is almost (MP)-based with the D(v) = {v,�v,��v, . . . }’, which immediately give
us the deduction theorem of K. We show that the logics FLe and FL (and so all their axiomatic
extensions) are almost (MP)-based and determine the corresponding set D. As we can see, even
the proof of the most complicated case is rather simple:

Theorem 8

• The logic FLe is almost (MP)-based with the set DFLe = {v ∧ 1}.

• The logic FL is almost (MP)-based with the following set:

DFL = {γ(v) | γ(v) an iterated conjugate}.

Proof: We know that FL can be axiomatized by (MP) and rules (conl) and (conr): φ ⊢ λα(φ)
and φ ⊢ ρα(φ).

Let us denote the set
∪
{D(χ, p⃗) | χ ∈ Γ} as Γ̂. We show that for each ψ in the proof of Γ ⊢FL φ

we have Γ̂ ⊢FL(MP) γ(ψ), for each iterated conjugate γ. The claim then follow from taking γ = λ1
and the trivial fact that ⊢FL φ ∧ 1 % φ.

If ψ is an axiom or an element of Γ, the claim is trivial. Assume that ψ was proved using the
rule (conl). Then ψ = λα(χ) for some formula χ appearing the proof before ψ. The induction
assumption will give us Γ̂ ⊢FL(MP) γ(χ) for each iterated conjugate γ. Thus, in particular, for each

iterated conjugate γ′ we have Γ̂ ⊢FL(MP) γ′(λα(χ)). The proof for (conr) is completely analogous.
Finally, assume that Γ ⊢FL χ and Γ ⊢FL χ % ψ. Thus, by the induction assumption, for each

iterated conjugate γ: Γ̂ ⊢FL(MP) γ(χ) and Γ̂ ⊢FL(MP) γ(χ%ψ). The fact that ⊢FL γ(φ%ψ)% (γ(φ)%
γ(ψ)) and modus ponens complete the proof.

Interestingly enough, these deductions theorems yield a connection with a variant of the clas-
sical proof by cases property. Recall that classical logic enjoys the following metarule:



Γ, φ ⊢ χ Γ, ψ ⊢ χ
Γ, φ ∨ ψ ⊢ χ

We will see now how a similar property can be obtained for associative substructural logics
with a more complex form of disjunction built from the sets D(v, p⃗) used to show that these logics
are almost (MP)-based.

Theorem 9 Let L be an associative substructural logic with & and 1 in the language such that L
is almost (MP)-based w.r.t. the set D(v, p⃗). Then each set Γ ∪ {φ,ψ, χ} of formulae holds:

Γ, φ ⊢ χ Γ, ψ ⊢ χ
Γ ∪ {α ∨ β | α ∈ D(φ, p⃗), β ∈ D(ψ, p⃗)} ⊢ χ

Corollary 10 The following meta-rule holds in FL:

Γ, φ ⊢ χ Γ, ψ ⊢ χ
Γ ∪ {γ1(φ) ∨ γ2(ψ) | γ1(v), γ1(v) iterated conjugates} ⊢ χ

The following meta-rule holds in FLe:

Γ, φ ⊢ χ Γ, ψ ⊢ χ
Γ, (φ ∧ 1) ∨ (ψ ∧ 1) ⊢ χ

The following meta-rule holds in FLew :

Γ, φ ⊢ χ Γ, ψ ⊢ χ
Γ, φ ∨ ψ ⊢ χ

There is also a clear relation of almost (MP)-basedness and the description of the (deductive)
filters generated by a set (which is exactly what the deduction theorem says for filters in the
Lindebaum algebra (theories), taking in account that implication defined the order). However due
to the lack of space we will not go into details here.
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