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Abstract

Current computational models for the emergence of con-
ventions assume that there is no uncertainty regarding the
information exchanged between agents. However, in more
realistic MAS uncertainty exists, e.g. lies, faulty operation, or
communication through noisy channels. Hence, within these
settings conventions may fail to emerge. In this work we
propose the use of self-tuning capabilities to increase the
robustness of an emergence mechanism by allowing agents
to dynamically self-protect against unreliable information.

1. Introduction

It is commonly agreed that the spreading or propagation
of behaviors/knowledge is a main, driving factor in the emer-
gence of conventions. And yet there is a further issue that the
literature has not addressed. To the best of our knowledge, it
is commonly assumed that there is no uncertainty regarding
the information propagated/spread between agents. Hence,
each agent assumes that the information spread by other
agents is completely reliable. Thus, current models for
the emergence of conventions do not consider situations
where, for instance, some agents may deliberately lie about
the information they propagate, some agents unwillingly
propagate wrong information because of bad assessments
or misjudgments, or the information propagated contains
errors because of noisy communication channels. Therefore,
mechanisms for the emergence of conventions must deal
with such scenarios.

In this work we argue that propagation-based mechanisms
for the emergence of conventions can be extended to help
agents agree on conventions despite uncertainty in the in-
formation exchanged. Such extension consists in endowing
a mechanism with self-tuning capabilities that allow each
agent to dynamically adjust its local degree of acceptance
of incoming information: the more reliable (and therefore
valuable) the information in the past, the more prone to
accept it in the future. Through self-tuning agents are granted
certain level of self-protection against unreliable incoming
information.

Our approach is based on employing and extending the
infection-based mechanism (IBM) in [3] as the core conven-

tion emergence mechanism. The infection-based mechanism
uses its infection operator as a tool to spread behaviors
amongst agents. This is a key component in the process
of reaching global conventions. Hence, if the information
spread through infection is somehow unreliable, reaching a
global convention(s) may become impossible. The probabil-
ity of infection of each agent represents the agent’s ability
to resist an infection (to resist to incoming information).
Thus, the closer the probability to one, the less likely for the
agent to be infected. Therefore, by dynamically modifying
the infection rate (through the probability of infection,
pinfection) it is possible to deal with uncertainty.

The self-tuning component locally operates in each agent
by adjusting its infection rate by some factor related to its
performance. This adjustment is based on the dynamic non-
uniform mutation operator proposed by Michalewicz in [2].
The adjustment to the probability of infection for each agent
is computed as follows:
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where ∆(s, y) = y � (1 − r(1−s)3) is a function returning
a value within [0, y] such that ∆(s, y) approaches zero the
larger the trend (s) of the agent’s performance; X is a binary
random variable taking any of the two values with equal
probability; and LB and UB are the lower and upper bound
of the infection probability. Therefore, this update rule has
the property of performing smaller adjustments as the trend
becomes more steep and bolder adjustments as the trend
stagnates.

Through the self-tuning mechanism above each agent
tries to locally find an appropriate infection probability.
However, with this operator being related to an agent’s per-
formance,which is in turn related to the agent’s interactions,
it is possible that agents in the MAS tune to highly differing
infection probabilities. This would have a negative effect,
causing an overall MAS instability. We propose that the
infection parameter is also the subject of the infection so that
agents reach a consensus (agreement) on their probability of
infection, hence diminishing the likelihood of instability.



2. Empirical Evaluation

Agents in a MAS interact with each other through com-
munications modeled as language games [4]. Each inter-
action is a communication between an agent playing the
role of speaker, and another one playing the role of hearer,
relating to a certain concept o. To facilitate communication
among agents, each agent has a lexicon, Li, which assigns
an external representation (word) to the concepts it needs
to employ. Therefore, each agent uses the words in its
lexicon to build one-word messages that exchanges with its
neighboring agents. The recipient of an agent’s message may
understand a message or not. This directly depends on the
degree of agreement on the lexicons of sender and receiver.
To summarize, the mechanics of the game are as follows:
(1) agent s selects a concept, os ∈ Os; (2) agent s uses its
lexicon, Ls, to find the word, w, that refers to os; (3) agent
s communicates w to agent h; (4) agent h decodes w into
a concept oh ∈ Oh; (5) agent h responds according to its
understanding of oh; and (6) the game is successful if s is
satisfied by h’s response (i.e. if os = oh).

The purpose of our experiments is to verify if the
infection-based mechanism can be employed so that agents
can achieve a so-called perfect communication system [1]
under uncertainty. In other words, we pursue lexicons with
one-to-one mappings between words and concepts. Each
experiment consists of 50 discrete event simulations, each
one running up to 40000 time-steps (ticks). Each simulation
runs with 1000 agents over a small-world ( W<10>,0.1

1000 ) or
scale-free (S<10>,−3

1000 ) interaction topology. At the beginning
of each simulation, each agent uploads a randomly-generated
lexicon. During each simulation, at each time-step agents
interact through communications with a randomly selected
neighbor. Each agent employs her individual understanding,
measured as the number of times she has engaged in a
successful communication as a speaker, as her evaluation
function. This measure is reset after each incubation period
in the infection-based algorithm, namely once the interaction
period is over.

To simulate uncertainty, the lexicons exchanged by agents
during the infection phase of the IBM were randomly cor-
rupted with probability pcorruption = 0.5, where corruption
consists in changing the word assignments (in the lexicon)
of two (different) random objects prior to exchanging it.

Figure 1 shows that no common lexicon emerges when
using IBM without self-tuning on a small-world topology.
Moreover, the same behavior occurs in the scale-free case.
Thus, the IBM is not robust enough to deal with uncer-
tainty. Hence, the need to employ the self-tuning approach
proposed in section 1. Figure 2 depicts the results of using
IBM along with self-tuning. Observe that in the small-world
topology the self-tuning IBM reached a global lexicon con-
vention with one-to-one word mappings (100% specificity)
in ∼ 16000 ticks. To accomplish this the agents reach an
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Figure 1. IBM without self-tuning on a small-world.
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Figure 2. IBM with self-tuning and pcorruption = 0.5.

infection probability consensus which endows them with
a high infection resistance (a per tick pinfection ' 0.98
average). As for the scale-free topology, the self-tuning also
helps it reach a near global convention, but a longer time is
needed (∼ 40000 ticks).
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