
Divide-and-Coordinate by Egalitarian Utilities:
Turning DCOPs into Egalitarian Worlds

Meritxell Vinyals,
J. A. Rodriguez-Aguilar

Artificial Intelligence Research Institute (IIIA)
Spanish Scientific Research Council (CSIC)

Campus UAB, Bellaterra, Spain
{meritxell,jar}@iiia.csic.es

Jesus Cerquides∗
WAI, Dep. Matemàtica Aplicada i Anàlisi

Universitat de Barcelona
Gran Via 585, Barcelona, Spain

cerquide@maia.ub.es

ABSTRACT
A Distributed Constraint Optimization Problem (DCOP) [7, 6] is a
formal framework that can model many cooperative multi-agents
domains. The Divide-and-Coordinate (DaC) framework [11] is
one of the few general frameworks for solving DCOPs that pro-
vides bounds on solution quality for incomplete algorithms. In this
paper, we formulate a novel DaC algorithm, the so-called Egalitar-
ian Utilities Divide-and-Coordinate (EU-DaC) algorithm. The in-
tuition behind EU-DaC is that agents would get closer to the agree-
ment, that is to the optimal solution in DaC, when they communi-
cate their local utilities for their decisions instead of their preferred
decisions. We empirically show how this new algorithm outper-
forms DaCSA [11], the other DaC algorithm proposed so far, in all
instances. We also show that it is very competitive when compared
with bounded MGM k-optimal algorithms [5, 4], eventually outper-
forming them on some problem topologies. Our results also show
how bounds provided by the DaC framework are much tighter than
2-optimal and 3-optimal bounds.

1. INTRODUCTION
In many cooperative multi-agents domains, such as sensor networks
[13], distributed scheduling [10], and the configuration of power
networks [10] a set of agents choose a set of individual actions
whose rewards are dependent on the actions of other agents. A
Distributed Constraint Optimization Problem (DCOP) [7, 6] is a
formal framework proposed to model these cooperative networks
where agents need to coordinate in a decentralized manner to find
the joint action that maximize their joint reward.

Since solving a DCOP is NP-Hard [7], complete algorithms that fo-
cus on obtaining optimal solutions (e.g. ADOPT [7], OptAPO [6])
are usually unsuitable for dynamic and/or large-scale problems due
∗This work has been funded by projects IEA (TIN2006-15662-
C02-01), Agreement Technologies (CONSOLIDER CSD2007-
0022, INGENIO 2010) and EVE (TIN2009-14702-C02-01,
TIN2009-14702-C02-02). Meritxell Vinyals is supported by the
Spanish Ministry of Education (FPU grant AP2006-04636). JAR
thanks JC2008-00337.

to their computational and communication costs. Because of the
unaffordable price of optimality, researchers have also formulated
incomplete algorithms (e.g. DSA [13], DBA [13], max-sum [3]),
which provide locally optimal solutions and only require a small
amount of computation and local communication per agent. How-
ever, although these algorithms scale very well to large networks,
they can converge to very poor solutions or even fail to converge.
Another limitation is that they do not provide any quality guaran-
tee on their solution, leaving agents with high uncertainty about
the goodness of their decisions. As argued in [11, 9], quality guar-
antees can make a significant difference on incomplete algorithms
because they allow agents to reason if it is worth investing more
resources on improving their current decisions, to trade-off quality
versus cost, by providing a bound on their maximum error. Some
works [9, 11] have started to make headway on this direction by
defining general frameworks that can provide quality guarantees
over DCOP solutions even for incomplete algorithms.

On the one hand, there is the k-optimality framework [9] which de-
fines quality guarantees for k-optimal solutions: solutions that can
not be improved by changing any group of k or fewer agents de-
cisions. The Maximum Gain Message algorithms [5, 4], namely
MGM-2 and MGM-3, are DCOP approximate algorithms that con-
verge to 2-optimal and 3-optimal solutions respectively.1 On the
other hand, Vinyals et al. [11] recently proposed the Divide-and-
Coordinate (DaC) framework. In DaC agents iteratively divide an
intractable DCOP into simpler local problems that can be individ-
ually solved by each agent and thereafter coordinate to reach an
agreement over their assigments. As shown in [11], the DaC frame-
work provides an upper bound on the quality of the optimal solu-
tion that agents can use to return per-intance quality guarantees.
The Divide-and-Coordinate Sugradient Algorithm (DaCSA) [11]
is a computational realization of the DaC framework, a bounded
approximate DCOP algorithm in which agents coordinate by ex-
changing their preferred decision. However, several works [3, 12]
have shown that communicating the utility of variables assignments
instead of only the preferred assignments can lead to benefits in
terms of solution quality.

It is this issue that we address in this paper, and to this end, we
present a novel DaC algorithm, the Egalitarian Utilities Divide and
Coordinate algorithm (EU-DaC). Agents running EU-DaC coordi-
nate by exchanging the local utilities of their variables assigments
with their neighbours. Concretely, this paper makes the following
contributions:

1MGM-1 is a k-optimal algorithm but no guarantees are given in
the k-optimal framework for k=1.

• We formulate a novel computational realization of the DaC
approach for which agents: (1) coordinate with their direct
neighbours by exchanging their local utilities for shared vari-
ables assignments; and (2) update their local problems with
the aim of getting closer to the utilities of their neighbours.

• We empirically evaluate the quality solutions of EU-DaC on
different network topologies against state-of-the-art algorithms
that provide quality guarantees (DaCSA, MGM-2 and MGM-
3). Our empirical results show how EU-DaC outperforms
DaCSA in all tested scenarios confirming the advantatges of
communicating utilities instead of simply decisions. More-
over, it also shows that EU-DaC is competitive when com-
pared with k-optimal algorithms (MGM-2 and MGM-3): EU-
DaC solutions quality is similar to k-optimal algorithms and
better on structured topologies.

• We experimentally compare the quality guarantees given by
the different benchmarked algorithms: DaC quality bounds
(EU-DaC and DaCSA) and k-optimal quality bounds (3-optimal
for MGM-3 and 2-optimal for MGM-2). Results show that
the bounds provided by EU-DaC are much tighter than k-
optimal bounds, which for k = 2 and k = 3 are very loose.

This paper is structured as follows. In section 2 we give an overview
of DCOPs and of the DaC framework. Next, in section 3 we de-
scribe our decentralised coordination algorithm, the EU-DaC al-
gorithm. In section 4 we present our empirical evaluation of EU-
DaC with respect to other state-of-the-art approximate algorithms
with quality guarantees. Finally, we draw some conclusions and set
paths to future work in section 5.

2. DCOP AND DIVIDE-AND-COORDINATE
2.1 DCOP Definition
A Constraint Optimization Problem (COP) consists of a set of vari-
ables, each one taking on a value out of a finite discrete domain.
Each constraint (or relation) in this context determines the utility of
every combination of values taken by the variables in its domain.
The goal of a COP algorithm is to assign values to these variables
so that the total utility is maximized.

Let X = {x1, . . . , xn} be a set of variables over domains
D1, . . . ,Dn. A utility relation is a function r : Dr → R+ with
domain variables {xi1 , . . . , xiq} in Dr = Di1 × . . . × Diq , that
assigns a utility value to each combination of values of its domain
variables. Formally, a COP is a tuple Φ = 〈X ,D,R〉 where: X is
a set of variables; D is the joint domain space for all variables; and
R is a set of utility relations. The objective function f is described
as an aggregation over the set of relations. Formally:

f(d) =
X
r∈R

r(dr) (1)

where d is an element of the joint domain space D and dr is an
element of Dr.

The goal is to assess a configuration d∗ with utility f∗ that max-
imizes the objective function in equation 1. A DCOP [7, 6] is a
distributed version of a COP where: (1) variables are distributed
among a set of agents A; and (2) each agent receives knowledge
about all relations that involve its variable(s). Although an agent
can be in charge of one or more variables, hereafter, we assume
that each agent ai is assigned a single variable xi. Moreover, we

focus on binary DCOPs (those whose utility relations involve at
most two variables). Therefore, we will refer to unary constraints
involving variable xi ∈ X as ri, and to binary constraints involving
variables xi, xj ∈ X as rij .

X1

X2 X3

a1

a2 a3

r12

r23

r13

xi xj rij
0 0 0
0 1 10
1 0 10
1 1 10

Reward table of
binary constraints

x1 r1
0 0
1 -5

x2 r2
0 0
1 -10

x3 r3
0 0
1 -2

Figure 1: Example of a DCOP constraint graph .

DCOPs are usually represented by their constraint graphs, where
nodes stand for variables and edges link variables that have some
direct dependency (appear together in the domain of some relation).
Figure 1 shows an example of a binary DCOP in which agents
choose values from {0, 1} represented by its constraint graph. For
instance, note that relation r12 is known by agent a1, that controls
variable x1, and agent a2, that controls variable x2. In this context,
the neighbours of some agent a are those that share some constraint
with a. Thus, in figure 1, a2 and a3 are neighbours of a1 because
a1 shares relation r12 with a2 and relation r13 with a3. Each rela-
tion shows its rewards in a table. Thus, agent 3 has a reward of -2
to set its variable to 1 and each pair of agents have a reward of 10
when they set at least one of their variables to 1.

2.2 Divide-and-Coordinate framework
This section defines the Divide-and-Coordinate (DaC) framework,
first introduced elsewhere [11]. The DaC framework is an approach
that allows agents to distributedly solve a DCOP by exploiting the
concept of agreement. The key idea behind the DaC approach is
the following: since solving a DCOP is NP-Hard, we can think
of dividing this intractable problem into simpler subproblems that
can be individually solved by each agent. Therefore, in the DaC
framework, agents start with the so-called divide stage in which
they distributedly break the original problem into subproblems and
individually solve them. Figure 2 shows an initial division in which
each agent creates its local subproblem from its local relations. If
a relation is shared among multiple agents, they split the relation
by dividing the rewards in equal parts. Thus, the local problem of
agent a1 is composed of its local relation over its variable x1 and all
binary relations that include its variable, namely r12 and r23 with
splitted rewards (table on the left shows rewards for binary rela-
tions). Naturally, when solving individual subproblems agents may
assign different values to their sharing variables getting in conflict
about their values. For instance, in the example of figure 2 variable
x1 is assigned by the three agents independently getting in conflict
agent a1 and a2 over the value of its assignment.

Thus, agents proceed to coordinate, in the so-called coordinate
stage, by exchanging some coordination information, namely {Ψ}
about their disagreements with their neighbours. Agents subse-
quently employ such information to update their underlying local
subproblems to create a new division, in the next divide step, that
brings them closer to an agreement. Thus, in example of figure
2, when coordinating agents a1 and a2 will exchange information

about their conflict over x1 that will use to update their local sub-
problems.

X1

X2 X3

x1 r1

a1

xi xj rij
0 0 0
0 1 5
1 0 5
1 1 5

0 0
1 -5

r13r12
X2

X1 X3

x2 r2

a2

0 0
1 -10

r23r12
X3

X1 X2

x3 r3

a3

0 0
1 -2

r23r13
Reward table
of binary
constraints

x1=0, x2=1, x3=1

f1 = 10

x1=1, x2=0, x3=1

f2 = 10

x1=1, x2=1, x3=0

f3 = 10* *
*

Local
Solutions

Solution values

Figure 2: Subproblems for the DCOP in figure 1, divide step
(t = 0) .

The DaC framework allows agents to distributedly provide bounded
solutions for DCOPs by making use of the following two properties
(described in [11]):

(Proposition 1) the sum of the solutions of individual agents’ sub-
problems is always an upper bound on the quality of the global
(optimal) DCOP solution.

(Proposition 2) if all agents reach an agreement on a joint solu-
tion when optimizing their local subproblems, such a solution is
the optimal one.

Thus, to solve a DCOP by DaC, agents update their local subprob-
lems by exchanging information with their neighbours, exploring
the space of valid divisions, to find a division such that the solution
of individual subproblems agree (since they know by proposition 2
that this will be the solution of the DCOP). However, even when
agents do not agree on their assignments, they can provide with
bounded anytime solutions by generating assignments closer to the
agreement (that are expected to be better than randomly generated)
bounded by the upper bound on its quality of proposition 1.

The DaC framework is an abstract approach that can result in dif-
ferent bounded approximate algorithms for DCOPs because the in-
formation that is exchanged among agents in the coordinate step
and how agents use such information to update their problems in
the divide step is not specified. The DaC framework only requires
that after each agent updates each underlying problem the set of
problems still are a original division of the DCOP. Thus, in [11],
Vinyals et al. formulated the first DaC algorithm, the Divide-and-
Coordinate Subgradient algorithm (DACSA) where agents coordi-
nate by exchanging their preferred decisions on a formalism based
on Lagrangian dual decomposition and subgradient methods.

Next, we will formulate a novel particular computational realiza-
tion of the DaC approach.

3. EGALITARIAN UTILITIES DIVIDE-AND-
COORDINATE

In this section we formulate the so-called Egalitarian Utilities Di-
vide and Coordinate algorithm (EU-DaC), a novel computational
realisation of the DaC approach where agents coordinate by ex-
changing their max-marginal utilities to set their shared decision
variables to particular values. Several work in optimization [3, 12]

have shown that agents lead to better solutions when they explic-
itly communicate their utilities for taking particular decisions than
when they simply exchange their preferred decisions.

In the DaC algorithm proposed so far, DaCSA [11], agents coordi-
nate by communicating their preferred decisions. Here we propose
a new DaC algorithm, EU-DaC, that has each agent: (1) exchanges
its local utilities for its shared variables with its neighbours (co-
ordinate stage); and (2) updates its local problem with the aim of
approaching its local utilities for its shared variables to its neigh-
bours’ utilities (divide stage) .

The intuition behind the EU-DaC is the following: when agents
have the same utilities for setting their shared variables to particular
values, they agree on their local assignments2. As explained in
section 2.2, in the DaC framework this agreement situation also
implies that they have found a DCOP solution.

In EU-DaC agents will start by exchanging their max-marginal util-
ities over their shared variables with their neighbours. The max-
marginal utilities of an agent as to set some decision variables to
particular values is the best utility given by its local subproblem Φs
when restricted to assignments that satisfy this condition. More for-
mally, the max-marginal utility of an agent as for setting a subset
of decision variables Xρ ⊆ Xs to some values dρ ∈ Dρ, namely
Usρ(dρ), is defined as:

Usρ(dρ) = max
d∈DXs\Xρ

fs(dρ; d) (2)

where fs is the local objective function of as. Take as example
figure 3(a) that shows agents’ utilities exchanged during these co-
ordinate step given subproblems of figure 2. Observe that agent
a1 exchanges with its neighbour a2 a message that contains its lo-
cal utilities for their shared variables, namely x1 and x2. In the
example, agent a1 assesses its local max-marginal utilities for its
variable x1 as:

U1
1 (0) = max

d∈D23
r1(0) + r12(0, d) + r13(0, d) = 10

U1
1 (1) = max

d∈D23
r1(1) + r12(1, d) + r13(1, d) = 5

Hence, agent a1 reports a local max-marginal utility of 10 when
setting its variable x1 to 0 and a local max-marginal utility of 5
when setting it to 1.

Once received these max-marginal utilities, agents proceed to use
these information to update its local subproblems in order to get
utilities closer to those reported by their neighbours. Thus, agents
aim to finding a division of subproblems {Φ1, . . . ,Φm} such that
the set of local max-marginal utilities {Us=1,...,m} for shared vari-
ables among the different agents are equal. Formally:

U ii (k) = Uvi (k) ∀xi ∈ X ∀k ∈ Di ∀xv ∈ N(xi) (3)

Thus, with the aim of satisfying equation 3, each agent as proceeds
to update its max-marginal utilities for shared variables by adding
the difference between its own local utilities {Us} and the max-
marginal utilities reported by each of its neighbour av ∈ N(as),
namely {Uv}. Thus, each agent as updates its max-marginal utili-

2This statement is subject to having no ties in agents’ local utilities:
agent’s local utilities to set its shared variables to particular values
in their domain are all different.

a1 a2 a3

U1 = [10 5], U2 = [5 10]
1 1

U1 = [10 5], U3 = [5 10]
1 1

U1 = [5 10], U2 = [10 0]
2 2

U2 = [10 0], U3 = [5 10]
2 2

U2 = [8 10], U3 = [10 8]
3 3

U1 = [8 10], U3 = [10 8]
3 3

(a) Coordination step (t = 0)

Solution
values

Local
Solutions

X1

X2 X3a1

r13r12
X2

X1 X3a2

r23r12
X3

X1 X2a3

r23r13

r1 +γ⋅
x1 ∆1
0 -7
1 10

γ⋅
x2 ∆2
0 5
1 -10

γ⋅

x3 ∆3
0 5
1 -2

r2 +γ⋅
x2 ∆2
0 -7
1 20

r3 +γ⋅
x3 ∆3
0 -10
1 4

γ⋅

x2 ∆2
0 2
1 -10

γ⋅

x1 ∆1
0 2
1 -5

γ⋅

x1 ∆1
0 5
1 -5

γ⋅

x3 ∆3
0 5
1 -2

1

2 3

2

2 2

3

3 3

γ= 0.12

x1=0, x2=1, x3=1 x1=1, x2=0, x3=1 x1=0, x2=0, x3=1

f1 = 7.72* f2 = 8.32* f3 = 8.96*

(b) Divide step (t = 1)

Figure 3: EU-DaC execution

ties {Us} using the following equation:

{Us} = {Us}+
X

av∈N(as)

[{Us} − {Uv}] (4)

Each agent problem Φs can be reparameterized in terms of a set
of max-utilities over its variables, namely {Us}.3 Concretely, in
the particular case of a binary subproblem Φs = 〈X s,Ds,Rs〉
with a tree topology (as the ones shown in figure 2) they can be
represented in function of its max-marginal utilities over single and
pairwise variables as follows:

fs(d) =
X
xi∈Xs

Usi (d) +
X

rsij∈R
s

ˆ
Usij(d)− Usi (d)− Usj (d)

˜
Thus, in the example of figure 2 agent a1 can represent its objec-
tive function as f1(d1, d2, d3) = U1

1 (d1) + U1
2 (d2) + U1

3 (d3) +
U1

12(d1, d2)−U1
1 (d1)−U1

2 (d2)+U1
13(d1, d3)−U1

1 (d1)−U1
3 (d3).

Notice that, using this representation, max-marginal utilities over
single variables appear at least once in each problem where the vari-
able is included. Therefore, at each iteration t, each agent as up-
dates each subproblem by adding, for each variable in its subprob-
lem xi ∈ X s, the (weighted) difference between its max-marginal
utilities and those reported by agents with which it shares such vari-
able. Hence, the agent objective function is updated as:

f ts(d) = f t−1
s (d) + γ ·

24∆s,t
s +

X
xi∈Ns

∆s,t
i

35 (5)

3This can be proved by the junction tree theorem[2], that states that
any distribution F compiled into a junction tree can be reparame-
terized in function of the gains (max-marginals) of its cliques {C}
and separators {S}

where ∆s,t
s is the coordinator parameter related to its variable xs:

∆s,t
s =

P
xi∈Ns

ˆ
U i,ts (d)− Us,ts (d)

˜
, (6)

∆s,t
i is the coordinator parameter related to variable xi ∈ N(xs) :

∆s,t
i = U i,ti (d)− Us,ti (d), (7)

and γ ∈ (0, 1] is a damping parameter that weighs the change over
the subproblem.

Next, we describe in detail the phases that agents execute during
the EU-DaC algorithm.

3.1 Algorithm description
In this section we fully describe the EU-DaC algorithm, a bounded
anytime DCOP algorithm that computationally realises and inter-
leaves the divide and coordinate stages. On the one hand, during
each divide stage, each agent updates its local problem by adding
the difference between its local max-marginals utilities with those
of its neighbours according to equation 5. Then, each agent solves
its updated local problem to update its preferred assignments and its
assignments value. On the other hand, during the coordinate stage,
each agent exchanges its local max-martinal utilities over single
variables shared with its neighbours. In order to provide anytime
solutions even in the case of disagreement, each agent generates at
each iteration what is called a candidate solution for its variable in
the exactly the same way as in DaCSA.

Algorithm 1 presents the pseudocode for EU-DaC. In what follows
we describe the main stages of EU-DaC using the trace in figure 3
of a run over the DCOP in figure 1.

Initialization stage (lines 1-2). At the beginning of the algorithm
each agent ai creates its local problem Φ̄0

i using its local relations.
Relations shared with its neighbours (binary relations) are split in
equal parts. Notice that for binary DCOPs, these are always tree-
structured problems (acyclic). An example of these initial division
for the DCOP of figure 1 is given in figure 2.

Divide stage (lines 4-6). During a divide stage, each agent up-
dates its current local problem Φ̄ti with coordination information
to subsequently solve it. Firstly, each agent ai updates its local
subproblem by using the coordination information gathered dur-
ing the last coordinate stage, namely Ψt

i , using equation 5 (line
5,implemented in method modifySubproblem). These coordi-
nation messages contain the local max-marginal utilities of their
neighbours over their shared variables. Secondly, each agent ai
solves the acyclic COP that composes its local subproblem to ob-
tain its optimal assignments, d∗i , its value f∗i and its max-marginal
utilities to have their individual variables in each particular state,
{U i} using the max-sum solver [3] (line 6, implemented in method
solveSubproblem) 4. Notice that in the very first iteration, agent
do not have coordination information and therefore they solve the
very initial subproblem. Figure 2 shows agents’ local solutions and
their values for the initial subproblems. Observe that each agent
ai prefers to set its variable xi to 0 and the rest of variables to
1 reporting an individual utility fi of 10. Figure 3(b) shows the
same example but in the next divide step, where agents have coor-
dination information to update their local subproblems. Thus, for
instance, agent a1 creates a new subproblem that is composed of
4Although one can use other solvers such that can solve acyclic
problems performing a linear number of operations, max-sum is
useful because it returns at the same time the max-marginal utilities
over single variables

Algorithm 1 EU-DaC(Φ, γ)

Each agent ai runs:
1: bound ← ∞; {Ψ0

i }, {∆i,0}, solution,Ci ← ∅;
bestV alue← −∞;

2: Φ
0
i ← createSubproblem(〈X i,Di,Ri〉);

3: repeat
4: /* Divide stage */
5: Φ

t
i ← modifySubproblem(Φ

t−1
i , {∆i,t}, γ);

6: (d∗,ti , f∗,ti , {U i})← solveSubproblem(Φ
t
i);

7: /* Coordinate stage */
8: for xv ∈ N(xi) do
9: Ψv

i ← makeCoordInfo(d∗,ti , f∗,ti , 〈U iv,U ii 〉, Ct−1
i , {Ψ});

10: Ψi
v ← exchangeCoordInfo(Ψv

i);
11: end for
12: {∆t+1

i } ←updateCoordParams({Ψt
i});

13: Cti ← selectCandidateSolutions(xi, Ct−1
i);

14: if betterBoundAvailable({Ψ}, bound) then
15: Update bound.
16: end if
17: if betterSolAvailable({Ψ}, bestV alue) then
18: Update solution and bestV alue.
19: end if
20: until any termination condition satisfied
21: return 〈solution, bestV alue, bound〉

its initial relations r1. r12 and r13 along with a weighted coordi-
nation parameter ∆1

i (weighted by a damping factor γ) for each
one of its variables xi ∈ X 1. Using a damping factor γ = 0.12,
agent a3 changes its optimal solution respect to the first iteration.
Moreover all agents get a lower value for their local solution than
respect to the first iteration. Notice that getting lower utilities for
subproblems’ solutions is a good indicator because their addition is
an upper bound on the optimal solution. Thus, in the DaC frame-
work when agents report lower solution values, their values and
their solutions are closer to the optimal ones.

Coordinate stage. During a coordinate stage, each agent exchanges
coordination information with its neighbours and updates its co-
ordination parameters trying to balance the disagreement among
them. Before updating the coordination parameters, each agent
ai exchanges a message Ψv

i with each one of its neighbours av
that contains its max-marginal utilities for their common variables,
namely xi and xv (lines 8-11). Figure 3(a) shows the max-marginal
utilities that are exchanged among agents during the first coordina-
tion stage in the example of figure 2. Thus, for example, agent a1

sends to a2 the max-marginal utility over its variable x1, namely
[U1

1 (0) = 10,U1
1 (1) = 5], and the max-marginal utility over x2,

namely [U1
2 (0) = 5,U1

2 (1) = 10]. Next, each agent a1 uses
the max-marginal utilities received from its neighbours to update
the coordination parameters {∆i} following the updates in equa-
tions 6 and 7 (line 12). Thus, in the example of figure 3(a), agent
a1 assesses the coordination parameters ∆1

1(0) as the difference
between the local utility of a2, U2

1 (0) = 5, and its local gain,
U1

1 (0) = 10, plus the difference between the local utility of a3,
U3

1 (0) = 8, and its local utility: ∆1
1(0) = (5− 10) + (8− 10) =

−7.

Also, in each coordinate stage, each agent ai selects what is called
a candidate solution for its decision variable xi (line 13). This
value, namely ci, does not have to be the same as the preferred

assignment of ai for xi because to generate candidate solutions
agents use the coordinate information received from its neighbours
in addition to their local assignment. Although agents can use dif-
ferent strategies to generate their candidate solutions, the intuition
is to generate assignments, in presence of disagreement, as much
close to the agreement as they can. For example, a typical strategy
is that each agent ai selects the solution ci for its variable xi that
most agents agree on. Following this strategy, in the example of
figure 2, each agent ai assigns ci to 1 as a candidate solution for
its variable xi because all neighbours assigned xi to 1 except from
ai that set it to 0. Thus, the global candidate solution selected is
c1, c2, c3 = 1. In contrast, in the next coordination step agents a1

and a2 will select as candidate solutions c1 = c2 = 0 (see figure
3(b)), two of the three agents assigned x1 and x2 to 0. One can
use different strategies simultaneously to generate the selected val-
ues. That is why we use Ci to note the set of candidate solutions
(one for each strategy) for variable xi. Finally, each agent commu-
nicates the candidate solution for its variable to its neighbours as a
coordination information using the messages exchanged during the
next coordinate stage (line 9-10).

Calculate bound and anytime solutions. In order to allow agents
to return bounded anytime solutions from the optimal we need to
provide agents with a protocol that allows them to distributedly
evaluate their candidate solutions and assess the bound. By any-
time we mean that agents in EU-DaC hold the best assignment that
was generated throughout the search. However it does not mean
that solutions will always increment their quality or that the opti-
mal solution will be found if is given more time because EU-DaC
can converge to a local optimum. In a distributed environment, each
agent ai only knows for each iteration its local solution f∗i and the
local value for the candidate solution fi({C}i). Thus, in the exam-
ple of figure 2, agent a1 only knows for the first iteration the value
of its local solution, namely f∗,11 = 10, and its local value for the
candidate solution, namely f1(c1 = 1, c2 = 1, c3 = 1) = 5.
Thus, agents need a protocol that allows them to distributedly as-
sess the value of the candidate solution, defined as the sum of
all local candidate solutions values, and the bound, defined as the
sum of the optimal value of all subproblems. With that purpose,
as in DaCSA, EU-DaC implements the protocol detailed in [14]
that allows agents to calculate these aggregations of data and syn-
chronize their bound and anytime solutions updates. This proto-
col requires no additional network load (it uses the coordination
messages Ψ already exchanged during the coordination stage to
propagate their data) and small (linear) additional space. When
all agents have received the coordination information related to the
aggregated data for an iteration, they use it to update the bound
(lines 14-16) and the anytime solution (lines 17-19), if applies.
Thus, in the example of figure 2, agents will have, after a num-
ber of propagation cycles, the value of the candidate solution for
the first iteration f(c1 = 1, c2 = 1, c3 = 1) = 13 and the value
of the bound bound = 30. Thus, agents will update to solution
[c1 = 1, c2 = 1, c3 = 1] with a quality guarantee that the current
solution has at least 13/30 · 100 = 43.33% of the quality of the
optimal solution. In the next iteration (see figure 3(b)), agents re-
ceives the value of the candidate solution for the second iteration
f(c1 = 0, c2 = 0, c3 = 1) = 18 and a bound = 25. Thus, agents
update their best solution to [c1 = 0, c2 = 0, c3 = 1] with a quality
guarantee of 18/25 · 100 = 75%.

Termination conditions. At each iteration, each agent checks if
some termination condition is satisfied. Typical termination condi-
tions for EU-DaC are: (1) the gap between the bound and the value

of the anytime solution is lower than a threshold; (2) max-marginal
utilities are equal across agents (equation 3 is satisfied); or (3) the
number of current iterations exceeds a maximum. Notice that un-
like DaCSA, in EU-DaC agents can detect convergence even in the
case when they have not found the solution. Thus, if condition (2)
is satisfied it means that the max-marginal utilities are equal across
agents but contains ties, so EU-DaC will not be able to improve
after that point.

4. EMPIRICAL EVALUATION
In this section we provide an empirical evaluation of EU-DaC on
different network topologies where agents have highly-coupled de-
pendencies. Moreover we benchmark EU-DaC against other DCOP
algorithms that can also provide quality guarantees: DaCSA [11]
and bounded k-optimal Maximum-Gain-Message (MGM) algorithms
[5, 4], namely MGM-2 and MGM-3 5, by comparing their solution
quality over time and the accurancy of their quality guarantees.

Firstly, we describe the different network topologies and how we
generate the relations’ weights in section 4.1. Next, we analyze our
empirical results over these datasets in section 4.2.

4.1 Problem generation
Following [11], we perform our comparison on different network
topologies where agents have highly-coupled dependencies. Thus,
in our experiments we analyze three network topology alternatives:

Regular grids The constraint graphs are created following a rect-
angular grid where each agent is connected to its four closer
neighbors.

Small-world We generate constraint graphs that show the small-
world effect using the model proposed in [8]. The graphs
are created by starting from a ring, where each node its con-
nected to its two closer neighbours and adding a small num-
ber of random edges. In particular, for each node we use a
probability p = 0.3 of adding a new edge that connects it to
another random node.

Random networks The constraint graphs are created by randomly
adding three links for each variable.

As in [11], we are interested in evaluating our algorithm on the
presence of strong dependencies among agents. Therefore we also
generate constraint values by using mixed Ising model weights [1].
Following an Ising model, the weight of each binary relation rij , is
determined by first sampling a value κij from a uniform distribu-
tion U [−β, β] and then assigning

rij(xi, xj) =

(
κij xi = xj

−κij xi 6= xj

Note that the constraint pushes both variables to be similar when
κij is positive and forces them to be different when κij is negative.
The β parameter controls the average strength of interactions. In
our experiments we set β to 1.6. The weight for each unary con-
straint ri is determined by sampling κi from a uniform distribution
U [−0.05, 0.05] and then assigning ri(0) = κi and ri(1) = −κi.
5MGM-1 is excluded of the comparative because it is a 1-optimal
algorithm and no bound can be provided with k = 1 (see [9])

4.2 Results
Next, we provide details on the particular parameters selected for
EU-DaC, MGM-{2,3}6 and DaCSA in these experiments.

For MGM-2 and MGM-3 we set the probability q of being an of-
ferer to .9, a value that is shown to reach the highest average so-
lution quality on the experiments reported in [5]. Regarding DaC
algorithms (EU-DaC and DaCSA), we must specify the strategy
used by agents to generate configurations at each pair of divide
and coordinate stages. We use the same two strategies proposed
in [11]: (1) each agent assigns to its variable the value in which
more agents agree on; and (2) each agent assigns to its variable the
value in which more agents agree on when the remaining variables
in its subproblem are given by the values selected by the candidate
solution in the previous iteration. For EU-DaC we set the value of
the damping parameter γ to .5. Finally for DaCSA we used the
same step-size for the subgradient step as the one reported in [11],
also using a constant step-size of .001 during the first steps when
agents do not know any subgradient value.

4.2.1 EU-DaC solution quality
Firstly, we compare these algorithms based on the solution obtained
in a number of message cycles. The number of message cycles is a
commonly used measure for algorithm efficiency in the DCOP lit-
erature [9, 7, 6]. It is specially adequate to our case because all the
algorithms benchmarked are low-overhead algorithms. To normal-
ize plots, instead of using the mean of the quality of the solutions
we plot the percent gain of EU-DaC respect each benchmarked al-
gorithm. The percent gain of EU-DaC with respect to an algorithm
A at iteration t is assessed as 100 · (qD−qA

qA
) where qD is the value

of the solution of EU-DaC algorithm and qA is the value of the
solution of A algorithm. Thus positive values in graphs represent
positive gains of EU-DaC respect to other algorithm (higher is bet-
ter).

Figures 4 (a) (b) and (c) show the results for networks of 100 agent
networks on a small-world, regular grid and random topology re-
spectively. Each graph shows the mean among 25 instances of the
percent gain of EU-DaC respect to DaCSA, MGM-2 and MGM-3
when varying the number of message cycles.

First, observe that in all experimented topologies EU-DaC outper-
forms DaCSA, the other DaC algorithm. These results show that in-
deed when agents explicitly communicate their max-marginal util-
ities to be in a particular state instead of their decisions and try to
get balanced on them they get better results closer to an agreement.
Observe that while EU-DaC obtain higher gains, around 40− 60%
respect to DaCSA on structured topologies (small-world and ran-
dom networks, figures 4 (a)(b)) when increasing messages cycles
these gains quickly reduce to around 10%. In random networks (4
(c)), however, the gains of EU-DaC respect to DaCSA are initially
lower (around 30%) but remain more constant when increasing the
number message cycles (around 20− 30%).

Secondly, when comparing with MGM algorithms (MGM-2 and
MGM-3) we observe that EU-DaC outperforms MGM-2 in all the
scenarios and the same applies to MGM-3 on structured topolo-
gies. The gains of EU-DaC respect to MGM-2 and MGM-3 are
lower than respect to DaCSA (around 5−10%). In random topolo-
gies EU- DaC get even negative gains respect to MGM-3 on the

6For MGM-2 and MGM-3 we use the code provided in
http://teamcore.usc.edu/dcop/

gain w.r..t DaCSA gain w.r..t MGM-2, q=.9 gain w.r..t MGM-3, q=.9

50 100 150 200 250 300
−10

0

10

20

30

40

50

60

 message cycles

p
e

rc
e

n
t
g

a
in

(a) Small world 100 variables

50 100 150 200 250 300
−10

0

10

20

30

40

50

60

 message cycles
p

e
rc

e
n

t
g

a
in

(b) Regular grids 100 variables

50 100 150 200 250 300
−10

0

10

20

30

40

50

60

 message cycles

p
e

rc
e

n
t
g

a
in

(c) Random 100 variables

Figure 4: Graphs showing the percent gain of EU-DaC with respect to DaCSA, MGM-2 and MGM-3 when varying the number of
message cycles over different topologies and with mixed Ising weights β = 1.6

long run. Thus, we can conclude that EU-DaC is very competitive
when compared with MGM-2 and MGM-3 getting similar results
and even outperforming them on some problem topologies.

4.2.2 EU-DaC bound quality
In this section we compare the quality guarantees of EU-DaC with
those of DaCSA, MGM-2 and MGM-3 by plotting the percent bound
quality of their solution when varying the number of message cy-
cles. The percent bound quality of an algorithm A is assessed as
100 · qA

ubA
where qA is the value of the solution of A algorithm and

ubA is an upper bound on the value of the optimal solution. Intu-
itively, a percent bound quality of y says that the current algorithm
solution has at least a y percent of the quality of the optimal.

Before analysing the results we should make some comments over
the quality guarantees provided by each algorithm. One the one
hand, the quality guarantees of EU-DaC and DaCSA are those
given by the DaC framework. As explained in section 2.2, DaC al-
gorithms can explicitly calculate an upper bound on the quality of
the optimal solution defined as the sum of all individual subprob-
lems solutions in a division. Then, agents assess the percent bound
quality using the value of the best evaluated candidate solution so
far and the lower upper bound among all tested divisions. Hence,
DaC quality guarantees are what are called instance-per-basis qual-
ity guarantees which depend on the specific problem instance, are
known on runtime and vary along the execution of the algorithm.
Furthermore, since agents are able to calculate the upper bound in
an explicit manner, they can give quality guarantees for every solu-
tion generated by the algorithm.

On the other hand the quality guarantees given by MGM algorithms
are those of the k-optimal framework: a worst-case bound over
k-optimal solutions. Two different quality guarantees have been
formulated for k-optimal solutions [9]: (1) general quality guar-
antees that only depend on the number of variables and number of
relations of the problem; and (2) graph-based quality guarantees
that use the knowledge of the topology to obtain tighter guaran-
tees. In our experiments, we always plot the graph-based quality
guarantees which are assured to be better than the general ones.
To assess graph-based quality guarantees agents need to solve a
linear-fractional problem. That MGM algorithms quality guaran-

tees are worst-case bounds on k-optimal solutions implies that : (a)
they have a fixed quality guarantee for any of their converged solu-
tions which can be calculated offline; and (b) they can only provide
quality guarantees for solutions generated on convergence (MGM
algorithms only achieve a k-optimal solution on convergence).

Figure 5 shows the mean of percent bound qualities provided by
DaC algorithms (EU-DaC and DaCSA) and the graph-based guar-
antees of MGM-2 and MGM-3 over their converged solutions when
varying the number of message cycles on the different topologies.
First observe that topology influences the quality guarantee of all
tested algorithms. In all cases, quality guarantees are higher on
small-world topologies than on regular grids than on random topolo-
gies. Secondly, results show that the DaC bounds are significantly
higher than k-optimal bounds. Moreover, the bounds provided by
EU-DaC are always higher (5-10%) than those provided by DaCSA.
It is not surprising since DaC quality guarantees use the quality
of the best solution, which is higher for EU-DaC, to calculate the
bound. For small-world topologies, EU-DaC gives a mean of per-
cent bound of around 85% whereas those of MGM-2 and MGM-3
are around 15% and 30% respectively. For regular grids, EU-DaC
gives a mean of percent bound of around 70%, a meaningful bound
when compared with those of MGM-2 and MGM-3 of around 15%
and 20% respectively. Finally, for random instances EU-DaC gives
a mean of percent bound of around 55% whereas those of MGM-2
and MGM-3 are around 5% and 10% respectively.

Therefore, from these empirical results we can conclude that: (1)
EU-DaC bounds (and in general DaC bounds) are meaningful enough
to provide agents with an awareness of the quality of their solution
and to trade-off quality vs resources; and (2) k-optimal guarantees
for k=2 and k=3 are very loose and considerably underestimates
the solution provided by MGM-2 and MGM-3 on the experiments
(results on solution quality show how the value of MGM-2 and
MGM-3 solutions are close to those of EU-DaC but the latter gives
much higher quality guarantees).

5. CONCLUSIONS AND FUTURE WORK
Our contribution in this paper is twofold. Our first contribution is a
novel DaC algorithm, the so-called Egalitarian Utilities Divide and
Coordinate (EU-DaC) algorithm. The DaC framework [11] is one
of the few general DCOP frameworks that can provide bounds on

EU-DaC bound, y=.5 DaCSA bound 2-optimal bound 3-optimal bound

50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

 message cycles

b
o
u
n
d

g
u
a
r
a
n
t
e
e

(b) Small world 100 variables

50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

 message cycles

b
o
u
n
d

g
u
a
r
a
n
t
e
e

(c) Regular grids 100 variables

50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

 message cycles

b
o
u
n
d

g
u
a
r
a
n
t
e
e

(d) Random 100 variables

Figure 5: Graphs showing the percent bound qualities when varying the number of message cycles over different topologies and with
mixed Ising weights β = 1.6

DCOP solutions on incomplete algorithms. Unlike DaCSA [11],
the other DaC algorithm proposed so far, in EU-DaC agents coor-
dinate by communicating their local max-marginal utilities for the
different values of their decisions, instead of only their preferred
decisions. Our empirical results show how our novel algorithm
outperforms DaCSA in all experimented scenarios.

Our second contribution is to provide the first empirical compari-
son between the bounds provided by the DaC framework and those
provided by the k-optimal framework [9]. Experiments show that
DaC bounds improve the accuracy of k-optimal bounds: whereas
DaC algorithms get bounds between around 55% and 85%(varying
on the scenario), 2-optimal and 3-optimal bounds never go above
15% and 30% respectively in any scenario. Despite of these results,
as argued in [9, 4], one advantage of k-optimal bounds, not shared
by DaC bounds, is that allows to provide an offline trade-off quality
versus time.7 However, as shown in our experiments, 2-optimal and
3-optimal bounds may very loose and you may be wasting a lot of
resources when using this criteria. Therefore, it is reasonable to ar-
gue that it may be better for agents to know at runtime the bounds
on the maximum-error of their current solution instead of offline
bounds that overestimates the error of their converged solution.

As future work we plan to study some unexplored aspects of the
DaC framework to allow a broad applicability of this class of algo-
rithms. Firstly, we would like to study the privacy aspects of the
DaC framework. Although privacy aspects do not limit DaC algo-
rithms to be applied to domains in which distribution has reasons of
parallelism, communication costs and/or robustness (e.g sensor net-
works, traffic control or the configuration of power networks[10])
we still do not know its applicability to some domains, such as
distributed scheduling [10], where privacy is the main issue. Sec-
ondly, we aim at designing versions of DaC algorithms that adapts
to changes so that it can be applied to dynamic environments.

Acknowledgements. The authors would like to thank Zhengyu
Yin, Manish Jain and Milind Tambe to answer our questions about
k-optimality and to provide the code for MGM algorithms and graph-
based k-bounds to run our experiments.

6. REFERENCES
7Assuming that problem structure is known beforehand (k-optimal
bounds are reward independent)

[1] R. Baxter. Exactly Solved Models in Statistical Mechanics.
Academic Press, London, 1982.

[2] R. G. Cowell, S. L. Lauritzen, A. P. David, and D. J.
Spiegelhalter. Probabilistic Networks and Expert Systems.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[3] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings.
Decentralised coordination of low-power embedded devices
using the max-sum algorithm. In AAMAS, May 2008.

[4] H. Katagishi and J. P. Pearce. Kopt: Distributed dcop
algorithm for arbitrary k-optima with monotonically
increasing utility. In Ninth DCR Workshop (CP-07), 2007.

[5] R. T. Maheswaran, J. P. Pearce, and M. Tambe. Distributed
algorithms for dcop: A graphical-game-based approach. In
ISCA PDCS, pages 432–439, 2004.

[6] R. Mailler and V. R. Lesser. Solving distributed constraint
optimization problems using cooperative mediation. In
AAMAS, pages 438–445, 2004.

[7] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. Adopt:
asynchronous distributed constraint optimization with
quality guarantees. Artif. Intell., 161(1-2):149–180, 2005.

[8] M. Newman and D. Watts. Renormalization group analysis
of the small-world network model. Phys. Lett. A.,
263:341–346, 1999.

[9] J. P. Pearce and M. Tambe. Quality guarantees on k-optimal
solutions for distributed constraint optimization problems. In
IJCAI, pages 1446–1451, 2007.

[10] A. Petcu and B. Faltings. Distributed constraint optimization
applications in power networks. International Journal of
Innovations in Energy Systems and Power, 3(1), 2008.

[11] M. Vinyals, M. Pujol, J. A. Rodriguez-Aguilar, and
J. Cerquides. Divide and Coordinate: solving DCOPs by
agreement. In AAMAS, 2010. To appear.
http://www.iiia.csic.es/publications/list/author/278.

[12] M. J. Wainwright, T. Jaakkola, and A. S. Willsky. Map
estimation via agreement on (hyper)trees: Message-passing
and linear programming. CoRR, abs/cs/0508070, 2005.

[13] W. Zhang, G. Wang, Z. Xing, and L. Wittenburg. Distributed
stochastic search and distributed breakout: properties,
comparison and applications to constraint optimization
problems in sensor networks. Artif. Intell., 161(1-2):55–87,
2005.

[14] R. Zivan. Anytime local search for distributed constraint
optimization. In AAMAS, pages 1449–1452, 2008.

