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The constrained longest common subsequence (CLCS) problem was introduced as a specific 
measure of similarity between molecules. It is a special case of the constrained sequence 
alignment problem and of the longest common subsequence (LCS) problem, which are both 
well-studied problems in the scientific literature. Finding similarities between sequences 
plays an important role in the fields of molecular biology, gene recognition, pattern 
matching, text analysis, and voice recognition, among others. The CLCS problem in 
particular represents an interesting measure of similarity for molecules that have a putative 
structure in common. This paper proposes an exact A∗ search algorithm for effectively 
solving the CLCS problem. This A∗ search is guided by a tight upper bound calculation 
for the cost-to-go for the LCS problem. Our computational study shows that on various 
artificial and real benchmark sets this algorithm scales better with growing instance size 
and requires significantly less computation time to prove optimality than earlier state-of-
the-art approaches from the literature.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Strings are objects commonly used for representing 
DNA and RNA molecules. Finding similarities between 
molecular structures plays an important role for under-
standing biological processes that relate to these molecular 
structures. A frequently applied measure of similarity is 
given by considering the (length of) subsequences common 
to all given input strings. Hereby, a subsequence of a string 
s is any sequence obtained by deleting zero or more char-
acters from s. The well-known longest common subsequence
(LCS) problem [1] has been studied for more than fifty 
years in the literature: Given a set of at least two input 
strings, we seek for a longest string that is a subsequence 
of all these input strings. This LCS problem has numerous 
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applications, not only in molecular biology [2], but also in 
data compression [3], pattern recognition, file plagiarism 
checking, text editing, and voice recognition [4], to name 
some of the most prominent ones. Furthermore, the LCS 
problem is a special case of the also prominent sequence 
alignment problem. Aligning multiple sequences finds ap-
plication in many tasks such as studying gene regulation 
or inferring the evolutionary relationships of genes or pro-
teins [5].

A literature review shows that there are several well-
studied variants of the LCS problem. Examples include the 
repetition-free longest common subsequence (RFLCS) prob-
lem [6], the longest arc-preserving common subsequence
(LAPCS) problem [7], and the longest common palindromic 
subsequence (LCPS) problem [8]. These variants provide se-
quence similarity measures depending on the structural 
properties of the compared molecules. In this paper we 
study the constrained longest common subsequence (CLCS) 
problem [9,10], which is defined as follows. We are given 
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two input strings s1 and s2 and a so-called pattern string 
P . The goal of is to find the longest common subsequence 
of the two input strings that includes P as a subsequence. 
A possible application scenario of the CLCS problem con-
cerns the identification of homology between two biologi-
cal sequences which have a specific or putative structure in 
common [9]. A more concrete example is described in [11]. 
It deals with the comparison of seven RNase sequences so 
that the three active-site residues, HKH, form part of the 
solution.1 This pattern is responsible, in essence, for the 
main functionality of the RNase molecules such as catalyz-
ing the degradation of RNA sequences.

1.1. Preliminaries

Before we start outlining our approach, let us introduce 
essential notation. By |s| we denote the length of a string s
over a finite alphabet �, and by n we denote the length of 
the longer one among the two input strings s1 and s2, i.e., 
max(|s1|, |s2|). The j-th letter of a string s is denoted by 
s[ j], j = 1, . . . , |s|, and for j > |s| we define s[ j] = ε, where 
ε denotes the empty string. Moreover, we denote the con-
tiguous subsequence—that is, the substring—of s starting 
at position j and ending at position j′ by s[ j, j′], 1 ≤ j ≤
j′ ≤ |s|. If j > j′ , then s[ j, j′] = ε. Finally, let |s|a be the 
number of occurrences of letter a ∈ � in s.

2. Related work

The CLCS problem with two input strings s1 and s2 and 
a pattern string P was formally introduced by Tsai [9]. 
A first solution approach based on dynamic programming 
(DP), which runs in time O (|s1|2 · |s2|2 · |P |), was also pre-
sented in this work. Due to its large time complexity, this 
algorithm has no real practical relevance. Since then, sev-
eral more efficient algorithms were proposed. The most 
relevant ones are explained in more detail in Section 5. 
Chin et al. [12] proved that the CLCS problem is a special 
case of the constrained multiple sequence alignment (CMSA) 
problem. Moreover, they developed an alternative DP–
based approach that requires O (|s1| · |s2| · |P |) space and 
time. In fact, this algorithm can be regarded as the first 
practical algorithm for the CLCS problem. By modifying the 
recursion of Tsai [9], Arslan and Eğecioğlu [10] also ob-
tained a more efficient algorithm requiring O (|s1| · |s2| · |P |)
time. The approach of Chin et al. [12] further inspired the 
development of an algorithm suggested by Deorowicz [13]
with a time complexity of O (|P | · (|s1| · L + R) +|s2|), where 
L is the length of the LCS of the two strings and R is the 
number of pairs of matching positions between s1 and s2. 
Ideas by Hunt and Szymanski [14] were used to achieve 
this complexity. Some improvements of the performance 
of Deorowicz’s algorithm were introduced in a follow-up 
paper by Deorowicz and Obstoj [15] by utilizing so-called 
external-entry points (EEP) which were initially proposed 
in the context of the CMSA problem. Another approach 
was proposed by Iliopoulos and Rahman [16]. This algo-
rithm has a time complexity of O (|P | · R · log log n + n). It 

1 National Center of Biotechnology Information database, at http://
www.ncbi .nlm .nih .gov.
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makes use of a specialized bounded heap data structure. Ho 
et al. [17] proposed a method exploiting the idea that most 
corresponding CLCS lattice cells in a DP approach remain 
unchanged in two consecutive layers when |�| is small. 
This algorithm avoids corresponding redundant computa-
tions. To the best of our knowledge, the latest algorithm 
developed for the CLCS problem was proposed by Hung 
et al. [18]. It is based on the diagonal approach for the 
LCS problem by Nakatsu et al. [19]. The method requires 
O (|P | · L · (n − L)) time and O (|s1| · |P |) space, where L is 
the length of a CLCS. From the existing literature, the fol-
lowing conclusions can be drawn.

• The algorithm by Chin et al. [12] is effective for rather 
short input strings or when |�| is small.

• The algorithm by Deorowicz [15] can be seen as the 
state-of the-art algorithm for instances with large al-
phabet sizes.

• The algorithm by Hung et al. [18] was shown to be 
one order of magnitude faster than the algorithm of 
Deorowicz. Speed differences are especially noticeable 
in the presence of a rather high similarity of the input 
strings (> 70%) or a rather low similarity (< 20%).

Moreover, we can identify the following weaknesses in the 
computational studies of the approaches from the litera-
ture.

• Most of the benchmark instances used in [18,15] seem 
rather easy to solve. In fact, most of the compared al-
gorithms were able to do so in a fraction of a second. 
This makes it difficult to make well-founded claims 
about the running times. Moreover, we remark that, 
apart from the real benchmark instances, all other 
benchmark instances from the literature are not pub-
licly available.

• The comparison of the two state-of-the-art algorithms 
from Hung et al. and Deorowicz and Obstoj) in [18]
was limited to instances with a large fixed alphabet 
size |�| = 256. Although it was shown that the algo-
rithm of Hung et al. is an order of magnitude faster 
than the algorithm from [15] on these instances, the 
observed differences in running times may not be sig-
nificant as they are mostly below 0.1 seconds.

2.1. Our contribution

Our contribution is twofold. First, we present a novel 
A∗ search approach for the CLCS problem. This algorithm 
works on a so-called state graph, which is a directed 
acyclic graph whose nodes represent (partial) solutions. 
Second, we re-implemented the leading algorithms from 
the literature and compare our A∗ search with these on 
a wide and diverse set of benchmark instances which is 
made publicly available. By means of this comprehensive 
comparison we are able to make, for the first time, well-
founded claims about the practical performance of the 
considered methods and their individual pros and cons. 
The obtained results in particular indicate the practical 
efficiency of our A∗ algorithm. Running times of the A∗
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search are in most cases significantly lower than those of 
the competitors.

The remainder of this article is organized as follows. In 
Section 3, we first present the state graph that will serve 
as the environment for our A∗ search. Section 4 presents 
the A∗ search algorithm, while further details about the re-
implemented competitors from the literature are given in 
Section 5. The experimental comparison of the A∗ search 
to other state-of-the-art methods is detailed in Section 6. 
Finally, Section 7 offers conclusions and directions for fu-
ture work.

3. The state graph

In the following we introduce the state graph, whose 
inner nodes are (meaningful) partial solutions, sink nodes 
are complete solutions, and directed arcs represent (mean-
ingful) extensions of partial solutions. Note that this state 
graph has similarities to the one that we already presented 
for the general LCS problem in [20,21].

Henceforth, let S = (s1, s2, P , �) be the considered 
problem instance. Let s be a string over � that is a subse-
quence of both input strings s1 and s2. Moreover, for i =
1, 2, let ps

i be the position in si such that si[1, ps
i −1] is the 

minimal string among all strings si[1, x], x = 1, . . . , |si |, 
that contains s as a subsequence. We call ps = (ps

1, p
s
2)

the position vector induced by s. Note that, in this way, s
induces a CLCS subproblem S[ps] that consists of strings 
s1[ps

1, |s1|] and s2[ps
2, |s2|]. This is because s can only be 

extended by potentially adding letters that appear both in 
s1[ps

1, |s1|] and s2[ps
2, |s2|]. In this context, let substring 

P [1, k′] of pattern string P be the maximal string among 
all strings P [1, x], x = 1, . . . , |P |, such that P [1, k′] is a sub-
sequence of s. We then say that s is a valid (partial) solution
iff P [k′ + 1, |P |] is a subsequence of the strings in sub-
problem S[ps], that is, a subsequence of s1[ps

1, |s1|] and 
s2[ps

2, |s2|].
The state graph G = (V , A) for our A∗ algorithm is 

a directed acyclic graph, which—at any moment—is only 
known partially by our A∗ approach. Each node v ∈ V (G)

stores a triple (pv , lv , uv), where pv is a position vector 
that induces subproblem S[pv ] = (s1[pv

1 , |s1|], s2[pv
2 , |s2|],

P [uv + 1, |P |],�), where lv is the length of the currently 
best known valid partial solution that induces pv , and uv

is the length of the longest prefix string of pattern string P
that is contained as a subsequence in the best known par-
tial solution that induces node v . Moreover, there is an arc 
a = (v, v ′) ∈ A(G) with label l(a) ∈ � between two nodes 
v = (pv , lv , uv) and v ′ = (pv ′

, lv ′
, uv ′

) iff

• lv ′ = lv + 1 and
• Subproblem S[pv ′ ] is induced by the partial solution 

that is obtained by appending letter l(a) to the partial 
solution that induces v .

As remarked already above, we are only interested in 
meaningful partial solutions, and our A∗ search builds the 
state graph on the fly. In particular, for extending a node 
v , the outgoing arcs—that is, the letters that may be used 
to extend partial solutions that induce node v—are de-
termined as follows. First of all, these letters must ap-
3

pear in both strings from S[pv ]; we call this subset of 
the alphabet potential letters. In order to find the posi-
tion of the first (left-most) appearance of each poten-
tial letter in the strings from S[pv ] we make use of a 
successor data structure determined during preprocessing 
that allows to retrieve each position in constant time. Let 
this position of the first appearance of a potential let-
ter c in string si[pv

i , |si | be Succ[i, pv
i , c], i = 1, 2. More-

over, a potential letter should not be taken for extend-
ing v in case it is dominated by another potential letter: 
We say that a letter c is dominated by a letter c′ �= c iff 
Succ[i, pv

i , c] ≥ Succ[i, pv
i , c′], i = 1, 2. Note that a domi-

nated letter cannot lead to a better solution than when 
taking the letter by which it is dominated instead. Hence-
forth, we denote the set of non-dominated potential letters 
for extending a node v by �nd

v ⊆ �. However, in order to 
generate only extensions of node v that correspond to fea-
sible partial solutions, we additionally have to filter out 
those extensions that lead to subproblems whose strings 
do not contain the remaining part of P as a subsequence. 
These cases are encountered by introducing another data 
structure that is set up during preprocessing: Embed[i, u]
stores for each si, i = 1, 2, and for each u = 1, . . . , |P |
the right-most position x of si such that P [u, |P |] is a 
subsequence of si[x, |si|]. Thus, for each letter c ∈ �nd

v , if 
c �= P [uv + 1] and Succ[i, pv

i , c] > Embed[i, uv + 1], letter 
c cannot be used for extending a partial solution repre-
sented by v , and consequently it is removed from �nd

v . An 
extension v ′ = (pv ′

, lv ′
, uv ′

) is generated for each remain-
ing letter c ∈ �nd

v , where pv ′
i = Succ[i, pv

i , c] +1 for i = 1, 2, 
lv ′ = lv + 1 and uv ′ = uv + 1 in case c = P [uv + 1], respec-
tively uv ′ = uv otherwise.

The root node of the state graph is defined by r = (pr =
(1, 1), lr = 0, ur = 0). Sink nodes are all non-extensible 
nodes and represent complete solutions (in contrast to 
partial solutions). Consequently, a longest path from the 
root node to a sink node in the state graph represents 
an optimal solution to the CLCS problem. Finally, notice 
that the definition of the state graph does not depend 
on the number of input strings, and can therefore be 
straightforwardly extended to an arbitrary number of in-
put strings. An example of the full state graph for prob-
lem instance ({s1 = bcaacbdba, s2 = cbccadcbbd}, P =
cbb, � = {a, b, c, d}) is shown in Fig. 1. The root node, for 
example, can only be extended by letters b and c, because 
letters a and d are dominated by the other two letters. 
Furthermore, note that node ((6, 5), 3, 1) (induced by par-
tial solution bcc) can only be extended by letter b. Even 
though letter d is not dominated by letter b, adding letter 
d can only lead to infeasible solutions, because any possi-
ble solution starting with bccd will not have P = cbb as 
a subsequence. Finally, the sequence of arc labels on the 
longest path is bcacbb, which is therefore the (unique) 
optimal solution to this example problem instance.

3.1. Upper bounds for the CLCS problem

One of the essential ingredients of an A∗ search is an 
admissible heuristic function for estimating the cost-to-go, 
i.e., in our case the length of a CLCS for any subproblem 
represented by a node of our state graph. In the context 
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Fig. 1. Example showing the full state graph for the problem instance ({s1 = bcaacbdba, s2 = cbccadcbbd}, P = cbb, � = {a, b, c, d}). There are four 
sink nodes representing non-extensible solutions (marked by light-gray color). The optimal solution is s = bcacbb of length 6 that corresponds to the 
node v = (pv = (9, 10), lv = 6, uv = 3). The longest path that corresponds to the optimal solution is displayed by means of thick arrows.
of a maximization problem such as the CLCS problem, a 
heuristic function is said to be admissible if it never under-
estimates the length of an optimal solution. We therefore 
make use here of a typically tight upper bound function 
that was originally developed for the LCS problem [20]. 
Note, in this context, that any valid upper bound for an 
LCS problem instance is also an upper bound for a cor-
responding CLCS problem instance obtained by adding a 
pattern string P to the LCS problem instance.

Given a node v of the state graph, the LCS upper bound 
function proposed by Blum et al. [22] determines for each 
letter an upper limit on the number of its occurrences in 
any solution that contains the partial solution inducing v
as prefix string. Summing these values over all letters from 
�, we obtain a valid upper bound on any complete solu-
tion that can be constructed starting from v:

UB1(v) =
∑

min
(|s1[pv

1 , |s1|]|a, |s2[pv
2 , |s2|]|a

)
(1)
a∈�

4

This bound is efficiently calculated in O (|�|) time by mak-
ing use of some data structures as detailed in [21].

An alternative DP–based upper bound function was in-
troduced by Wang et al. [23]. It makes use of the DP 
recursion for the LCS problem with two input strings. A 
scoring matrix M is generated where entry M[x, y], x =
1, . . . , |s1| + 1, y = 1, . . . , |s2| + 1 stores the length of the 
LCS of s1[x, |s1|] and s2[y, |s2|]. Thus, an upper bound for 
a given state graph node v is given by

UB2(v) = M[pv
1 , pv

2 ]. (2)

Neglecting the preprocessing step for generating M , this 
bound can be efficiently retrieved in constant time. As nei-
ther of the two bounds dominate the other, we use here 
the combination of both given by UB(v) := min{UB1(v),

UB2(v)}.
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4. A∗ algorithm for the CLCS problem

A∗ is a so-called informed search algorithm that was 
originally developed by Hart et al. [24] to find shortest 
paths in weighted graphs. The search maintains a list of 
open nodes, which is initialized with the root node, and 
works in a best-first-search manner by expanding in each 
iteration a most promising open node. In order to rank 
open nodes, A∗ search makes use of a priority function 
f (v) = g(v) + h(v), for v ∈ V (G), where, g(v) denotes the 
length of a so far best path from the root node to v , and 
h(v) is the heuristic estimate for the cost-to-go, i.e., the 
length of an optimal further path from v to a goal node. 
As the state graph in the case of the CLCS problem was 
already outlined in Section 3, it remains to be mentioned 
that for h(v) we will use the upper bound UB(v) from the 
previous section, and g(v) := lv .

In order for the search process to be efficient, our im-
plementation maintains two data structures: (1) a hash-
map N storing all nodes that were encountered during 
the search, and (2) the open list Q ⊆ N containing all not 
yet expanded/treated nodes. More specifically, N is imple-
mented as a nested data structure of sorted lists within a 
hash map. The position vector pv of a node v = (pv , lv , uv)

is mapped to a (linked) list storing pairs (lv , uv ). This 
structure allows for an efficient membership check, i.e., 
whether or not a node that represents subproblem a S[pv ]
was already encountered during the search, and a quick 
retrieval of the respective nodes.

Note that it might occur that several nodes representing 
the same subproblem S[pv ] are stored, as the following ex-
ample demonstrates: Consider the problem instance with 
input strings s1 = bacxmnob, s2 = abcxmbno, and pat-
tern string P = b. The A∗ search might, at some time, 
encounter node v1 = ((4, 4), 2, 1) induced by partial so-
lution bx, and—at some other time—it might encounter 
another node v2 = ((4, 4), 3, 0) induced by partial solution
acx. Even though the path from the root node to node v1
is shorter than the path to node v2, the former still leads 
to a better solution in the end (bxmno in comparison to
acxb). As the information which of the nodes leads to an 
optimal solution is not known beforehand, both nodes are 
stored.

Finally, the open list Q is realized by a priority queue 
with priority values f (v) = lv + UB(v), for all v ∈ V . In 
case of ties, nodes with larger lv -values are preferred. In 
the case of further ties, nodes with larger uv -values are 
preferred.

The search starts by inserting the root node of the state 
graph into N and Q . Then, at each iteration, a node v
with highest priority is retrieved from Q and expanded 
by considering all successor nodes for a ∈ �nd

v ). If such an 
extension leads to a new state, the corresponding node, 
denoted by vext, is added to N and Q . Otherwise, vext is 
compared to the nodes from set Nrel ⊆ N containing those 
nodes that represent the same subproblem S[pv ]. Domi-
nated nodes are identified in this way and dropped from 
the search process, i.e., the dominated nodes are removed 
from N and Q . If node vext is dominated by one of the 
nodes from Nrel, it can simply be discarded. Otherwise, it 
is added to N and Q . In this context, given v1, v2 ∈ Nrel
5

we say that v1 dominates v2 iff lv1 ≥ lv2 ∧ uv1 ≥ uv2 . We 
would like to emphasize that detecting the domination in 
Nrel was, on average, slightly faster when the elements of 
the lists were sorted in decreasing order of their uv -values. 
Therefore, we used this ordering in our implementation.

As the upper bound function UB() is admissible—that is, 
it never underestimates the length of an optimal solution—
A∗ yields an optimal solution whenever the node selected 
for expansion is a complete node [24]. Moreover, note that 
UB() also is monotonic, which means that the upper bound 
of any child node never overestimates the upper bound of 
its parent node. This implies that no re-expansion of al-
ready expanded nodes become necessary [24]. In general, 
A∗ search is known to be optimal in terms of the num-
ber of node expansions required to prove optimality w.r.t. 
the upper bound and the tie–breaking criterion used. A 
pseudocode of our A∗ search implementation for the CLCS 
problem is provided in Algorithm 1.

N = Q = []
r = ((1,1),0,0)
N.insert(r)
Q .insert(r)
while(Q != []):

v = Q .pop()

Determine �nd
v

if �nd
v = []: # complete solution found
return the solution corresponds to v

else:

for c in �nd
v :

Generate child vext w.r.t. char. c
Nrel = N[pvext ]
for vrel in Nrel:

if lvrel ≥ lvext and uvrel ≥ uvext:
insert = false
break # domination fulfilled

if lvext >= lvrel and uvext ≥ uvrel:
Remove node vrel from N, Q

if insert: #new state is non-dominated
N.insert(vext)

Q .insert(vext) # priritized acc. to UB
return ε if no feasible solution exists

Algorithm 1: A∗ search for the CLCS problem.

4.1. Time and space complexity of the A∗ search

In general, an upper bound for the worst-case perfor-
mance of A∗ search is O (bd), where b is the branching 
factor—which, in our case, is the number of letters—and 
d is the length of an optimal solution. In other words, the 
runtime of A∗ search is, in general, exponential. Providing 
a tighter bound is often hardly possible, as the practical 
runtime strongly depends on the used guidance heuris-
tic [25]. In practice, however, it frequently happens that 
A∗ search, when using a meaningful heuristic, is quite fast, 
even in those cases in which nothing better than the ex-
ponential worst-case run time can be proven. Therefore, 
respective publications typically focus more on empirically 
observed run times or indicate the number of expand-
ed/visited nodes, for example, [23].

Nevertheless, it is possible to derive polynomial worst-
case time and space complexity bounds for our A∗ search 
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from Algorithm 1 as follows. The number of visited 
nodes is bounded by O (n2 · |P |). Since the used upper 
bound function is monotonic, we can be sure that no re-
expansion of already expanded nodes is necessary, which 
further implies that the outer while-loop of Algorithm 1 is 
executed at most O (n2 · |P |) times. The pop() function in 
Line 7 of Algorithm 1 needs a constant time to retrieve the 
top node of Q . Afterwards, reorganizing the nodes in the 
priority queue Q is done in O (log |Q |) = O (log(n · |P |) =
O (n) time. Determining the set of non-dominated nodes of 
a node v is achieved in O (|�|2 · n) time by pairwise com-
parisons. For generating all child nodes of a node v and 
then checking the domination among the nodes which re-
fer to the same subproblem (Lines 15-20), O (|�| · n · log n)

time is required in total. Note that the factor log(n) re-
flects the time required to check the domination of a single 
node, which can be done via binary search. The code in 
Lines 21–23 is executed in O (log(n · |P |)) = O (n) time. 
Overall, to execute a single iteration of the main while-
loop, we need

O (log n + |�| · n · log n + |�|2 · n + log(n · |P |)) = (3)

O (|�| · n · log n + |�|2 · n)=O (n · |�| · (log n + |�|)) (4)

time. For executing the whole algorithm, the time is in

O (n · |�| · (log n + |�|) · O (n2 · |P |) = (5)

O (n3 · |P | · |�| · (log n + |�|)). (6)

Since |�|, in practice, represents a small constant number, 
the time to execute our A∗ search is in

O (n3 · |P | · log n). (7)

Concerning the space complexity of the proposed A∗ algo-
rithm, the worst case corresponds to storing all nodes of 
the state graph, and is thus in O (n2 · |P |).

5. Algorithms used for comparison

Algorithm by Chin et al. [12]. This method is based on dy-
namic programming. It uses a three-dimensional matrix M
to store the lengths of optimal solutions of subproblems 
Si, j,k = (s1[1, i], s2[1, j], P [1, k], �) for i = 1, . . . , |s1|, j =
1, . . . , |s2|, k = 1, . . . , |P |. All these values are obtained 
recursively on the basis of solutions to smaller subin-
stances for which optimal values are already known. In 
essence, the recursive procedure distinguishes the follow-
ing cases and handles them appropriately: s1[i] = s2[ j] =
P [k], s1[i] = s2[ j] �= P [k], or s1[i] �= s2[ j]. In this way, opti-
mal values of successor entries (representing larger sub-
problems) are determined in constant time. Due to its 
simplicity, the algorithm is fast for problem instances of 
small and medium size but its performance degrades for 
longer sequences. In general, its time and space complex-
ity is O (|s1| · |s2| · |P |).

Algorithm by Arslan and Eğecioğlu [10]. This approach re-
places the matrix used in the original dynamic program-
ming algorithm of Tsai [9] by multiple three-dimensional 
6

matrices in order to realize some calculations of the ap-
proach of Tsai more efficiently. In particular, the recurrence 
used by Tsai was simplified. In the end, this results in an 
algorithm with the same time complexity as the algorithm 
of Chin et al., however with a memory requirement that is 
by a factor of three higher.

Algorithm by Iliopoulos and Rahman [16]. This method is 
based on a modification of the dynamic programming for-
mulation from [10]. To perform the matrix calculations of 
each iteration efficiently, the authors make use of a so-
called bounded heap data structure [26] that was realized 
by means of Van Emde Boas (vEB) trees [27]. This data 
structure allows to calculate intermediate results more ef-
ficiently in O (log log n) time, leading to a total time com-
plexity of O (|P | · R · log log n + n), where R is the number 
of ordered pairs of positions at which input strings s1 and 
s2 match.

Algorithm by Hung et al. [18]. This method is a more recent 
development that is particularly suited for input strings 
that are highly similar. It was developed on the basis 
of the so-called diagonal concept for the LCS problem 
by Nakatsu et al. [19]. In general it can be said that 
the efficiency of the algorithm grows with the length of 
an optimal CLCS solution. The algorithm uses a table D
of dimension |P | × L, where L is an upper bound for 
the CLCS length. Each cell Di,l stores a triple associated 
with a partial solution. At each iteration of the algorithm 
some of the cells are filled with information such that 
for any triple (i′, j, k) ∈ Di,l , where i′ = 1, . . . , i, the re-
lation |CLCS(s1[1, i′], s2[1, j], P [1, |P | − k])| ≥ l holds. The 
elements belonging to Di,l are determined by extending 
all the partial solutions from Di−1,l−1, to which all the 
partial solutions of Di−1,l are added, and by filtering out 
dominated pairs. If (i′, j, 0) ∈ Di,l and there is no other 
(i′′, j′′, 0) ∈ Di,l with i′ �= i′′ and j �= j′′ , it implies that 
|CLCS(s1[1, i′], s2[1, j], P )| = l. In this way an optimal so-
lution is found for the specific subproblem.

Algorithm by Deorowicz [13]. Just like the previous ap-
proach, this algorithm is a so-called sparse approach. The 
matrix utilized for the calculations is processed for each 
level k = 0, . . . , |P | in a row-wise manner and an ordered 
list is maintained to store for each rank (representing the 
assumed length of an optimal solution) the lowest possi-
ble column number. Furthermore, a two-dimensional ma-
trix T is used to store computed values from the current 
and previous levels. For each row i and column j where 
s1[i] = s2[ j], the list entries are recalculated. If s1[i] =
s2[ j] �= P [k], then the value for the match at (i, j) is cal-
culated from the highest rank in the list with a column 
number lower than j. Otherwise, if s1[i] = s2[ j] = P [k], 
the value is calculated from matrix T . On completion, the 
highest rank in the list corresponds to the length of an op-
timal solution.

Improvements of Deorowicz’s algorithm were intro-
duced by Deorowicz and Obstoj [15]. They utilize so–called 
external–entry points (EEP) [28] initially proposed for the 
pairwise sequence alignment problem, for omitting those 
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cells in the lists that do not contribute to optimal solu-
tions.

6. Experimental results

All algorithms were implemented in C++ with g++ 7.4 
and the experiments were conducted in single-threaded 
mode on a machine with an Intel Xeon E5-2640 processor 
with 2.40 GHz and a memory limit of 32 GB. The maxi-
mum computation time allowed for each run was limited 
to one hour.

We aimed to re-implement all algorithms from the lit-
erature in the way in which they are described in the orig-
inal articles as the respective code could not be obtained. 
In a few cases, due to a lack of sufficient details, we had 
to make our own specific implementation decisions. This 
was in particular the case for the algorithm of Iliopoulos 
and Rahman [16]: The bounded heap data structure has to 
be initialized for different indices, and it remains unclear 
how this can be done efficiently. The authors were con-
tacted with this issue but we did not receive a response. 
Our implementation creates a new bounded heap for a new 
index by copying the content from the bounded heap of the 
previous index. This is the most time-demanding part of 
the algorithm, which is in particular noticed in the context 
of instances with large values of n. Unfortunately, the orig-
inal article does not contain any computational study that 
could serve as a comparison but just focuses on asymptotic 
runtimes from a theoretical point-of-view.

We emphasize that in general, we did our best to 
achieve efficient re-implementations of the approaches 
from literature for the experimental comparison.

6.1. Benchmark instances

First of all, the benchmark instances are available 
at https://www.ac .tuwien .ac .at /files /resources /instances /clcs /
2d -clcs .zip

With the aim of creating a diverse set of problem 
instances, for each combination of n ∈ {100, 500, 1000}
(length of the input strings), |�| ∈ {4, 12, 20} (alphabet 
size), p′ = |P |

n ∈ { 1
50 , 1

20 , 1
10 , 1

4 , 1
2

}
(length of the pattern 

string), ten problem instances were randomly generated. 
This results in a total of 450 instances. The following pro-
cedure was used for generating each instances. First, a 
pattern string P was created uniformly at random, that 
is, each character from � has an equal chance to be cho-
sen for each position of P . Second, two input strings of 
equal length n were generated as follows. First, |P | differ-
ent positions were randomly chosen in each input string. 
Then, characters P [1], . . . , P [|P |] are placed (in this order) 
from left to right at these positions. Finally, the remaining 
characters of each input string were set to letters chosen 
uniformly at random from the alphabet �. This procedure 
ensures that at least one feasible CLCS solution exists for 
each benchmark instances. Unfortunately, none of the arti-
ficial benchmarks from [15] and [18] were provided to us, 
although the respective authors were contacted with this 
concern.

In addition to these artificially generated instances, we 
use a benchmark suite from [15] based on strings repre-
7

Table 1
Benchmark suite Real from [15].

Data set Number of 
sequences

Sequence length 
(min, med, max)

|�| Origin

ds0 7 (111, 124, 134) 20 [11]
ds1 6 (124, 149, 185) 20 [11]
ds2 6 (131, 142, 160) 20 [11]
ds3 5 (189, 277, 327) 20 [11]
ds4 6 (98, 114, 123) 20 [29]

senting real biological sequences.2 This benchmark set is 
henceforth called Real. It has its origins in experimen-
tal studies on the constrained multiple sequence alignment 
(CMSA) problem considered in [29,11]. Each possible pair 
of sequences from this data set, together with a pattern 
string, was used in [15] to define a problem instance for 
the CLCS problem. Properties of the input strings, together 
with their origins, are provided in Table 1. In particu-
lar, Chin et al. [11] provided four sets of strings contain-
ing RNase sequences with lengths from 111 to 327. In 
contrast, set ds4—containing aspartic acid protease fam-
ily sequences—was provided by Lu and Huang [29], also 
in the context of the CMSA problem. Overall, benchmark 
set Real consists of 121 problem instances.

6.2. Results

We compare our A∗ search from Section 4 with our 
re-implementations of the following state-of-the-art algo-
rithms from the literature.

• Chin: Algorithm by Chin et al. [12];
• Deo: Algorithm by Deorowicz [13];
• AE: Algorithm by Arslan and Eğecioğlu [10];
• IR: Algorithm by Iliopoulos and Rahman [16];
• Hung: Algorithm by Hung et al. [18].

The source code of this project is accessible at https://
www.ac .tuwien .ac .at /files /resources /software /clcs .zip.

In general, all algorithms could find optimal solutions 
and prove their optimality for all instances. However, 
the required runtimes differ sometimes substantially. Ta-
bles 2–7 show these runtimes for each re-implemented al-
gorithm as well as our A∗ search in seconds averaged over 
each group of instances. Results for the artificial instance 
sets are subdivided into five different subclasses w.r.t. the 
value of p′ , which determines the length of pattern string 
P . Concerning benchmark suite Real, the average running 
times refer to all those instances that belong to the respec-
tive data set in combination with a pattern P , cf. Table 7. 
For each instance group (line), the lowest runtimes among 
the competing algorithms are shown in bold font. The first 
two columns present the properties of the instance group, 
while the third column |s| lists the average length of the 
optimal solutions for the respective problem instances.

The following observations can be drawn from these re-
sults.

2 Available at http://sun .aei .polsl .pl /~sdeor /pub /do09 -ds .zip.

https://www.ac.tuwien.ac.at/files/resources/instances/clcs/2d-clcs.zip
https://www.ac.tuwien.ac.at/files/resources/instances/clcs/2d-clcs.zip
https://www.ac.tuwien.ac.at/files/resources/software/clcs.zip
https://www.ac.tuwien.ac.at/files/resources/software/clcs.zip
http://sun.aei.polsl.pl/~sdeor/pub/do09-ds.zip
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Table 2
Instances with p′ = |P |

n = 1
50 : Average runtimes in seconds.

|�| n |s| Chin Deo AE IR Hung A∗

4 100 60.9 0.2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
4 500 319.3 < 0.1 0.1 0.2 6.5 0.1 < 0.1
4 1000 646.3 0.2 1 1.3 86.4 0.5 < 0.1

12 100 40.1 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 216.0 < 0.1 0.1 0.2 2.9 0.2 < 0.1
12 1000 435.5 0.3 0.5 1.4 39.4 1 0.1

20 100 33.5 < 0.1 0.1 < 0.1 < 0.1 < 0.1 < 0.1
20 500 175.7 < 0.1 0.1 0.2 2.2 0.2 < 0.1
20 1000 355.4 0.3 0.5 1.4 26.6 1.1 < 0.1

Table 3
Instances with p′ = |P |

n = 1
20 : Average runtimes in seconds.

|�| n |s| Chin Deo AE IR Hung A∗

4 100 61.9 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
4 500 323.0 0.1 0.5 0.4 15.7 0.2 < 0.1
4 1000 645.9 0.9 1.8 3.4 215.5 1.2 0.1

12 100 41.0 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 215.3 0.1 0.2 0.4 5.3 0.3 < 0.1
12 1000 437.0 0.9 1.1 3.4 69.2 2.2 0.2

20 100 32.2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
20 500 170.9 0.1 0.2 0.3 3.3 0.2 < 0.1
20 1000 348.4 1 1.1 3.5 40.6 1.7 0.2

Table 4
Instances with p′ = |P |

n = 1
10 : Average runtimes in seconds.

|�| n |s| Chin Deo AE IR Hung A∗

4 100 62.6 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
4 500 320.9 0.3 0.6 0.9 26.8 0.4 < 0.1
4 1000 646.4 1.8 3.5 9.2 331.2 3.3 < 0.1

12 100 40.5 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 207.1 0.2 0.3 0.9 7.3 0.3 < 0.1
12 1000 419.0 2.1 2.2 8.3 91.1 2.7 0.2

20 100 31.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
20 500 157.4 0.2 0.3 0.9 5.3 0.2 < 0.1
20 1000 317.9 1.8 2.1 8.4 68.1 2 < 0.1

Table 5
Instances with p′ = |P |

n = 1
4 : Average runtimes in seconds.

|�| n |s| Chin Deo AE IR Hung A∗

4 100 63.2 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
4 500 320.1 0.6 1.4 2.7 34.8 0.5 < 0.1
4 1000 642.5 5 6.6 113.6 436.6 4.5 0.1

12 100 39.9 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 203.0 0.6 0.7 3 18.7 0.3 < 0.1
12 1000 413.2 5.3 5.7 112 213.2 3.2 < 0.1

20 100 35.7 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
20 500 175.5 0.6 0.6 3.3 14.4 0.3 < 0.1
20 1000 351.1 5.2 5.9 105.4 154.8 1.8 0.1
• The small instances (where n = 100) are easy to solve 
and all competitors require only a fraction of a second 
for doing so.

• The first algorithm that starts losing efficiency with 
growing input string length is IR. Already starting 
with n = 500, the computation times start to grow 
8

substantially in comparison to the other approaches, 
which is most likely due to the complexity of the 
utilized data structures. We remark that our specific 
implementation decision concerning the initialization 
of the bounded heap may have a significant impact, as 
mentioned already in Section 5.
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Table 6
Instances with p′ = |P |

n = 1
2 : Average runtimes in seconds.

|�| n |s| Chin Deo AE IR Hung A∗

4 100 63.9 < 0.1 < 0.1 < 0.1 0.2 < 0.1 < 0.1
4 500 325.5 1.4 1.5 22.5 60.6 0.4 < 0.1
4 1000 652.5 19.1 12.6 336.5 739.4 3.6 < 0.1

12 100 54.6 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 276.5 1.4 1.4 23.9 34.2 0.2 < 0.1
12 1000 544.3 17.8 11.3 347.5 362.2 2.4 0.1

20 100 53.0 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
20 500 264.9 1.2 1.3 21.5 30.6 0.2 < 0.1
20 1000 524.5 18.8 11.1 341 278.8 1.5 0.1

Table 7
Benchmark set Real: Average runtimes in seconds.

data set P |s| Chin Deo AE IR Hung A∗

ds0 HKH 60.62 0.012 0.015 0.012 0.026 0.017 0.011
ds1 HKH 64.00 0.012 0.017 0.013 0.032 0.019 0.015
ds1 HKSH 63.93 0.011 0.021 0.017 0.033 0.017 0.011
ds1 HKSTH 63.87 0.016 0.022 0.019 0.043 0.024 0.012
ds2 HKSH 79.60 0.015 0.020 0.016 0.030 0.052 0.012
ds2 HKSTH 77.87 0.013 0.018 0.016 0.030 0.051 0.013
ds3 HKH 103.90 0.018 0.026 0.019 0.138 0.188 0.014
ds4 DGGG 43.87 0.012 0.022 0.014 0.023 0.049 0.012
• Algorithm Chin clearly outperforms Deo when |�| is 
small. With growing |�|, as already noticed in earlier 
studies [13], Deo becomes more efficient. In fact, the 
two approaches perform similarly for |�| = 20. The 
advantages of Deo over Chin are noticed in partic-
ular for higher p′; see Table 5.

• Algorithm Hung generally performs better than Deo
and Chin. This confirms the conclusions from the 
computational study in Hung et al. [18].

• With increasing p′ and thus an increasing length of 
P , all approaches degrade in their performance, except 
for A∗ and Hung, which still remain highly efficient.

• A general conclusion for the artificial benchmark set 
is that A∗ search is in most cases about one order 
of magnitude faster than Hung, which is overall the 
second-best approach.

• Concerning the results for benchmark set Real (see 
Table 7), we can conclude that all algorithms only re-
quire short times as the input strings are rather short. 
Nevertheless we can also see here that the A∗ search 
is almost consistently fastest.

• Fig. 2 shows the influence of the instance length on 
the algorithms’ runtimes for |�| = 4 and |�| = 20. 
Note that IR is not included here since it was obvi-
ously the slowest among the competitors. It can be 
noticed that the performance of A∗ is the only one 
that does not degrade much with increasing n.

• Fig. 3 shows the influence of the length of P on the 
algorithms’ runtimes for n = 500 and n = 1000 (in log-
scale). It can be noticed again that A∗ does not suffer 
much from an increase of the length of P . This also 
holds for Hung but not the other competitors, whose 
performance degrades with increasing |P |.

Finally, we also compare the amount of work done by 
the algorithms in order to reach the optimal solutions. In 
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the case of A∗ , this amount of work is measured by the 
number of generated nodes of the state graph. In the case 
of Deo, this refers to the number of different keys (i, j, k)

generated during the algorithm execution. Finally, in the 
case of Hung, this is measured by the amount of newly 
generated nodes in each Di,l (which corresponds to the 
amount of non-dominated extensions of the nodes from 
Di−1,l−1). Let us call this measure the amount of created 
nodes for all three algorithms. This measure is shown in 
log-scale in Fig. 4 for the instances with n = 500. The x-
axis of these graphics varies over different ratios p′ = |P |

n . 
The curve denoted by Max (see legends) is the theoreti-
cal upper bound on the number of created nodes, which is 
|s1| × |s2| × |P | for an instance (s1, s2, P , �). The graphics 
clearly show that A∗ creates the fewest nodes in compari-
son to the other approaches. The difference becomes larger 
with an increasing length of P , which correlates with an 
increase in the similarity between the input strings. For 
those instances with strongly related input strings, the up-
per bound UB used in the A∗ search is usually tighter, 
which results in fewer node expansions. The amount of 
created nodes in A∗ decreases with an increasing length 
of P after some point, because the search space becomes 
more restricted; see Fig. 4 and |�| = 4 from p′ ≥ 1

4 onward 
and |�| = 20 from p′ ≥ 1

20 onward.

6.3. Additional experimental evaluation and findings

From a more practical point of view our results suggest 
that, the more misleading the heuristic function used by 
our A∗ for a specific problem instance is, the higher will be 
its running time. More specifically, the heuristic employed 
in our A∗ algorithm seems more misleading when the in-
put strings are rather similar. In order to verify this im-
pression, we conducted an additional set of experiments. 
First, we generated an additional set of problem instances 
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Fig. 2. Average computation times of the algorithms for p′ = 1
20 .

Fig. 3. Average computation times of the algorithms for |�| = 20.

Fig. 4. Average amount of created nodes by the algorithms for n = 500.
with different degrees of similarity in the input strings. 
For example, a similarity of θ = 0.3 means that, on av-
erage, 30% of the positions in the two input strings have 
the same character. We generated 10 problem instances 
with input string length n = 100 for each similarity degree 
θ ∈ {0.1, 0.2, 0.5, 0.8, 0.9} and an alphabet size of |�| = 12. 
Moreover, the same pattern string P = abbbcbcbdb was 
used for all instances.

Running times of our A∗ algorithm are shown in com-
parison to algorithm Chin in Table 8. Results indeed con-
firm our observation from above. That is, when the degree 
of similarity is rather low, our A∗ search is faster (see the 
results for θ ∈ {0.1, 0.2, 0.5}). On the other side, when the 
degree of similarity is rather high (θ ∈ {0.8, 0.9}), Chin
is faster. This is because in the case of instances with a 
10
rather high θ -value, a significant amount of time of the 
overall running time of A∗ is spent to calculate the upper 
bound values of the generated nodes. However, as shown 
in our main experimental evaluation, the A∗ search can be 
expected to outperform the competitor algorithms in most 
other cases, especially the harder ones.

7. Conclusions and future work

In this paper we considered the constrained longest 
common subsequence (CLCS) problem. The problem is well 
studied in the literature, which offers algorithms based 
on dynamic programming as well as sparse approaches. 
In contrast, we presented an A∗ search for this problem, 
which is guided by tight upper bound function for the 
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Table 8
Results for instances with different degrees 
of similarity (θ ) of the input strings. The 
similarity of the input strings grows with 
an increasing value of θ .

θ |s| Chin A∗

0.1 41.3 0.060 0.050
0.2 43.8 0.070 0.050
0.5 55.0 0.061 0.052
0.8 73.2 0.050 0.055
0.9 82.5 0.050 0.075

LCS problem. The effectivity of this approach was demon-
strated by comparing it to several other so far leading 
algorithms from the literature. The A∗ search is able to 
solve all artificially generated benchmarks as well as the 
real benchmark instances in a fraction of a second. More 
specifically, the running times required by A∗ are about an 
order of magnitude smaller than those of the second-best 
algorithm. Interestingly, the performance of A∗ does not 
degrade much with an increase of the instance size, which 
is not the case for the other algorithms from the litera-
ture. We conclude that A∗ search is a tool that has a great 
potential to be used for the study of similarities between 
sequences. In fact, our A∗ search is the new state-of-the-
art method for the CLCS problem.

In future work, we plan extend this A∗ search towards 
the general CLCS problem with an arbitrary number of in-
put strings, which is an NP–hard problem. Moreover, we 
consider the A∗ search also a promising framework for 
solving related LCS problem variants such as the restricted
LCS (RLCS) problem [30,31]. For those instances where A∗
search might fail to prove optimality (e.g., due to exceeding 
a memory limit), the A∗ framework might be turned into 
an anytime algorithm [32] in order to obtain high-quality 
heuristic solutions already early during the search process.
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