
Information Processing Letters 166 (2021) 106041

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

An A∗ search algorithm for the constrained longest common

subsequence problem

Marko Djukanovic a,∗, Christoph Berger, Günther R. Raidl a, Christian Blum b

a Institute of Logic and Computation, TU Wien, 1040 Vienna, Austria
b Artificial Intelligence Research Institute (IIIA-CSIC), Campus of the UAB, Barcelona, 08193, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 June 2020
Received in revised form 13 October 2020
Accepted 13 October 2020
Available online 20 October 2020
Communicated by Marek Chrobak

Keywords:
Longest common subsequences
Constrained sequences
A∗ search
Combinatorial problems

The constrained longest common subsequence (CLCS) problem was introduced as a specific
measure of similarity between molecules. It is a special case of the constrained sequence
alignment problem and of the longest common subsequence (LCS) problem, which are both
well-studied problems in the scientific literature. Finding similarities between sequences
plays an important role in the fields of molecular biology, gene recognition, pattern
matching, text analysis, and voice recognition, among others. The CLCS problem in
particular represents an interesting measure of similarity for molecules that have a putative
structure in common. This paper proposes an exact A∗ search algorithm for effectively
solving the CLCS problem. This A∗ search is guided by a tight upper bound calculation
for the cost-to-go for the LCS problem. Our computational study shows that on various
artificial and real benchmark sets this algorithm scales better with growing instance size
and requires significantly less computation time to prove optimality than earlier state-of-
the-art approaches from the literature.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Strings are objects commonly used for representing
DNA and RNA molecules. Finding similarities between
molecular structures plays an important role for under-
standing biological processes that relate to these molecular
structures. A frequently applied measure of similarity is
given by considering the (length of) subsequences common
to all given input strings. Hereby, a subsequence of a string
s is any sequence obtained by deleting zero or more char-
acters from s. The well-known longest common subsequence
(LCS) problem [1] has been studied for more than fifty
years in the literature: Given a set of at least two input
strings, we seek for a longest string that is a subsequence
of all these input strings. This LCS problem has numerous

* Corresponding author.
E-mail address: djukanovic@ac.tuwien.ac.at (M. Djukanovic).
https://doi.org/10.1016/j.ipl.2020.106041
0020-0190/© 2020 Elsevier B.V. All rights reserved.
applications, not only in molecular biology [2], but also in
data compression [3], pattern recognition, file plagiarism
checking, text editing, and voice recognition [4], to name
some of the most prominent ones. Furthermore, the LCS
problem is a special case of the also prominent sequence
alignment problem. Aligning multiple sequences finds ap-
plication in many tasks such as studying gene regulation
or inferring the evolutionary relationships of genes or pro-
teins [5].

A literature review shows that there are several well-
studied variants of the LCS problem. Examples include the
repetition-free longest common subsequence (RFLCS) prob-
lem [6], the longest arc-preserving common subsequence
(LAPCS) problem [7], and the longest common palindromic
subsequence (LCPS) problem [8]. These variants provide se-
quence similarity measures depending on the structural
properties of the compared molecules. In this paper we
study the constrained longest common subsequence (CLCS)
problem [9,10], which is defined as follows. We are given

https://doi.org/10.1016/j.ipl.2020.106041
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2020.106041&domain=pdf
mailto:djukanovic@ac.tuwien.ac.at
https://doi.org/10.1016/j.ipl.2020.106041

M. Djukanovic, C. Berger, G.R. Raidl et al. Information Processing Letters 166 (2021) 106041
two input strings s1 and s2 and a so-called pattern string
P . The goal of is to find the longest common subsequence
of the two input strings that includes P as a subsequence.
A possible application scenario of the CLCS problem con-
cerns the identification of homology between two biologi-
cal sequences which have a specific or putative structure in
common [9]. A more concrete example is described in [11].
It deals with the comparison of seven RNase sequences so
that the three active-site residues, HKH, form part of the
solution.1 This pattern is responsible, in essence, for the
main functionality of the RNase molecules such as catalyz-
ing the degradation of RNA sequences.

1.1. Preliminaries

Before we start outlining our approach, let us introduce
essential notation. By |s| we denote the length of a string s
over a finite alphabet �, and by n we denote the length of
the longer one among the two input strings s1 and s2, i.e.,
max(|s1|, |s2|). The j-th letter of a string s is denoted by
s[j], j = 1, . . . , |s|, and for j > |s| we define s[j] = ε, where
ε denotes the empty string. Moreover, we denote the con-
tiguous subsequence—that is, the substring—of s starting
at position j and ending at position j′ by s[j, j′], 1 ≤ j ≤
j′ ≤ |s|. If j > j′ , then s[j, j′] = ε. Finally, let |s|a be the
number of occurrences of letter a ∈ � in s.

2. Related work

The CLCS problem with two input strings s1 and s2 and
a pattern string P was formally introduced by Tsai [9].
A first solution approach based on dynamic programming
(DP), which runs in time O (|s1|2 · |s2|2 · |P |), was also pre-
sented in this work. Due to its large time complexity, this
algorithm has no real practical relevance. Since then, sev-
eral more efficient algorithms were proposed. The most
relevant ones are explained in more detail in Section 5.
Chin et al. [12] proved that the CLCS problem is a special
case of the constrained multiple sequence alignment (CMSA)
problem. Moreover, they developed an alternative DP–
based approach that requires O (|s1| · |s2| · |P |) space and
time. In fact, this algorithm can be regarded as the first
practical algorithm for the CLCS problem. By modifying the
recursion of Tsai [9], Arslan and Eğecioğlu [10] also ob-
tained a more efficient algorithm requiring O (|s1| · |s2| · |P |)
time. The approach of Chin et al. [12] further inspired the
development of an algorithm suggested by Deorowicz [13]
with a time complexity of O (|P | · (|s1| · L + R) +|s2|), where
L is the length of the LCS of the two strings and R is the
number of pairs of matching positions between s1 and s2.
Ideas by Hunt and Szymanski [14] were used to achieve
this complexity. Some improvements of the performance
of Deorowicz’s algorithm were introduced in a follow-up
paper by Deorowicz and Obstoj [15] by utilizing so-called
external-entry points (EEP) which were initially proposed
in the context of the CMSA problem. Another approach
was proposed by Iliopoulos and Rahman [16]. This algo-
rithm has a time complexity of O (|P | · R · log log n + n). It

1 National Center of Biotechnology Information database, at http://
www.ncbi .nlm .nih .gov.
2

makes use of a specialized bounded heap data structure. Ho
et al. [17] proposed a method exploiting the idea that most
corresponding CLCS lattice cells in a DP approach remain
unchanged in two consecutive layers when |�| is small.
This algorithm avoids corresponding redundant computa-
tions. To the best of our knowledge, the latest algorithm
developed for the CLCS problem was proposed by Hung
et al. [18]. It is based on the diagonal approach for the
LCS problem by Nakatsu et al. [19]. The method requires
O (|P | · L · (n − L)) time and O (|s1| · |P |) space, where L is
the length of a CLCS. From the existing literature, the fol-
lowing conclusions can be drawn.

• The algorithm by Chin et al. [12] is effective for rather
short input strings or when |�| is small.

• The algorithm by Deorowicz [15] can be seen as the
state-of the-art algorithm for instances with large al-
phabet sizes.

• The algorithm by Hung et al. [18] was shown to be
one order of magnitude faster than the algorithm of
Deorowicz. Speed differences are especially noticeable
in the presence of a rather high similarity of the input
strings (> 70%) or a rather low similarity (< 20%).

Moreover, we can identify the following weaknesses in the
computational studies of the approaches from the litera-
ture.

• Most of the benchmark instances used in [18,15] seem
rather easy to solve. In fact, most of the compared al-
gorithms were able to do so in a fraction of a second.
This makes it difficult to make well-founded claims
about the running times. Moreover, we remark that,
apart from the real benchmark instances, all other
benchmark instances from the literature are not pub-
licly available.

• The comparison of the two state-of-the-art algorithms
from Hung et al. and Deorowicz and Obstoj) in [18]
was limited to instances with a large fixed alphabet
size |�| = 256. Although it was shown that the algo-
rithm of Hung et al. is an order of magnitude faster
than the algorithm from [15] on these instances, the
observed differences in running times may not be sig-
nificant as they are mostly below 0.1 seconds.

2.1. Our contribution

Our contribution is twofold. First, we present a novel
A∗ search approach for the CLCS problem. This algorithm
works on a so-called state graph, which is a directed
acyclic graph whose nodes represent (partial) solutions.
Second, we re-implemented the leading algorithms from
the literature and compare our A∗ search with these on
a wide and diverse set of benchmark instances which is
made publicly available. By means of this comprehensive
comparison we are able to make, for the first time, well-
founded claims about the practical performance of the
considered methods and their individual pros and cons.
The obtained results in particular indicate the practical
efficiency of our A∗ algorithm. Running times of the A∗

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov

M. Djukanovic, C. Berger, G.R. Raidl et al. Information Processing Letters 166 (2021) 106041
search are in most cases significantly lower than those of
the competitors.

The remainder of this article is organized as follows. In
Section 3, we first present the state graph that will serve
as the environment for our A∗ search. Section 4 presents
the A∗ search algorithm, while further details about the re-
implemented competitors from the literature are given in
Section 5. The experimental comparison of the A∗ search
to other state-of-the-art methods is detailed in Section 6.
Finally, Section 7 offers conclusions and directions for fu-
ture work.

3. The state graph

In the following we introduce the state graph, whose
inner nodes are (meaningful) partial solutions, sink nodes
are complete solutions, and directed arcs represent (mean-
ingful) extensions of partial solutions. Note that this state
graph has similarities to the one that we already presented
for the general LCS problem in [20,21].

Henceforth, let S = (s1, s2, P , �) be the considered
problem instance. Let s be a string over � that is a subse-
quence of both input strings s1 and s2. Moreover, for i =
1, 2, let ps

i be the position in si such that si[1, ps
i −1] is the

minimal string among all strings si[1, x], x = 1, . . . , |si |,
that contains s as a subsequence. We call ps = (ps

1, p
s
2)

the position vector induced by s. Note that, in this way, s
induces a CLCS subproblem S[ps] that consists of strings
s1[ps

1, |s1|] and s2[ps
2, |s2|]. This is because s can only be

extended by potentially adding letters that appear both in
s1[ps

1, |s1|] and s2[ps
2, |s2|]. In this context, let substring

P [1, k′] of pattern string P be the maximal string among
all strings P [1, x], x = 1, . . . , |P |, such that P [1, k′] is a sub-
sequence of s. We then say that s is a valid (partial) solution
iff P [k′ + 1, |P |] is a subsequence of the strings in sub-
problem S[ps], that is, a subsequence of s1[ps

1, |s1|] and
s2[ps

2, |s2|].
The state graph G = (V , A) for our A∗ algorithm is

a directed acyclic graph, which—at any moment—is only
known partially by our A∗ approach. Each node v ∈ V (G)

stores a triple (pv , lv , uv), where pv is a position vector
that induces subproblem S[pv] = (s1[pv

1 , |s1|], s2[pv
2 , |s2|],

P [uv + 1, |P |],�), where lv is the length of the currently
best known valid partial solution that induces pv , and uv

is the length of the longest prefix string of pattern string P
that is contained as a subsequence in the best known par-
tial solution that induces node v . Moreover, there is an arc
a = (v, v ′) ∈ A(G) with label l(a) ∈ � between two nodes
v = (pv , lv , uv) and v ′ = (pv ′

, lv ′
, uv ′

) iff

• lv ′ = lv + 1 and
• Subproblem S[pv ′] is induced by the partial solution

that is obtained by appending letter l(a) to the partial
solution that induces v .

As remarked already above, we are only interested in
meaningful partial solutions, and our A∗ search builds the
state graph on the fly. In particular, for extending a node
v , the outgoing arcs—that is, the letters that may be used
to extend partial solutions that induce node v—are de-
termined as follows. First of all, these letters must ap-
3

pear in both strings from S[pv]; we call this subset of
the alphabet potential letters. In order to find the posi-
tion of the first (left-most) appearance of each poten-
tial letter in the strings from S[pv] we make use of a
successor data structure determined during preprocessing
that allows to retrieve each position in constant time. Let
this position of the first appearance of a potential let-
ter c in string si[pv

i , |si | be Succ[i, pv
i , c], i = 1, 2. More-

over, a potential letter should not be taken for extend-
ing v in case it is dominated by another potential letter:
We say that a letter c is dominated by a letter c′ �= c iff
Succ[i, pv

i , c] ≥ Succ[i, pv
i , c′], i = 1, 2. Note that a domi-

nated letter cannot lead to a better solution than when
taking the letter by which it is dominated instead. Hence-
forth, we denote the set of non-dominated potential letters
for extending a node v by �nd

v ⊆ �. However, in order to
generate only extensions of node v that correspond to fea-
sible partial solutions, we additionally have to filter out
those extensions that lead to subproblems whose strings
do not contain the remaining part of P as a subsequence.
These cases are encountered by introducing another data
structure that is set up during preprocessing: Embed[i, u]
stores for each si, i = 1, 2, and for each u = 1, . . . , |P |
the right-most position x of si such that P [u, |P |] is a
subsequence of si[x, |si|]. Thus, for each letter c ∈ �nd

v , if
c �= P [uv + 1] and Succ[i, pv

i , c] > Embed[i, uv + 1], letter
c cannot be used for extending a partial solution repre-
sented by v , and consequently it is removed from �nd

v . An
extension v ′ = (pv ′

, lv ′
, uv ′

) is generated for each remain-
ing letter c ∈ �nd

v , where pv ′
i = Succ[i, pv

i , c] +1 for i = 1, 2,
lv ′ = lv + 1 and uv ′ = uv + 1 in case c = P [uv + 1], respec-
tively uv ′ = uv otherwise.

The root node of the state graph is defined by r = (pr =
(1, 1), lr = 0, ur = 0). Sink nodes are all non-extensible
nodes and represent complete solutions (in contrast to
partial solutions). Consequently, a longest path from the
root node to a sink node in the state graph represents
an optimal solution to the CLCS problem. Finally, notice
that the definition of the state graph does not depend
on the number of input strings, and can therefore be
straightforwardly extended to an arbitrary number of in-
put strings. An example of the full state graph for prob-
lem instance ({s1 = bcaacbdba, s2 = cbccadcbbd}, P =
cbb, � = {a, b, c, d}) is shown in Fig. 1. The root node, for
example, can only be extended by letters b and c, because
letters a and d are dominated by the other two letters.
Furthermore, note that node ((6, 5), 3, 1) (induced by par-
tial solution bcc) can only be extended by letter b. Even
though letter d is not dominated by letter b, adding letter
d can only lead to infeasible solutions, because any possi-
ble solution starting with bccd will not have P = cbb as
a subsequence. Finally, the sequence of arc labels on the
longest path is bcacbb, which is therefore the (unique)
optimal solution to this example problem instance.

3.1. Upper bounds for the CLCS problem

One of the essential ingredients of an A∗ search is an
admissible heuristic function for estimating the cost-to-go,
i.e., in our case the length of a CLCS for any subproblem
represented by a node of our state graph. In the context

M. Djukanovic, C. Berger, G.R. Raidl et al. Information Processing Letters 166 (2021) 106041

Fig. 1. Example showing the full state graph for the problem instance ({s1 = bcaacbdba, s2 = cbccadcbbd}, P = cbb, � = {a, b, c, d}). There are four
sink nodes representing non-extensible solutions (marked by light-gray color). The optimal solution is s = bcacbb of length 6 that corresponds to the
node v = (pv = (9, 10), lv = 6, uv = 3). The longest path that corresponds to the optimal solution is displayed by means of thick arrows.
of a maximization problem such as the CLCS problem, a
heuristic function is said to be admissible if it never under-
estimates the length of an optimal solution. We therefore
make use here of a typically tight upper bound function
that was originally developed for the LCS problem [20].
Note, in this context, that any valid upper bound for an
LCS problem instance is also an upper bound for a cor-
responding CLCS problem instance obtained by adding a
pattern string P to the LCS problem instance.

Given a node v of the state graph, the LCS upper bound
function proposed by Blum et al. [22] determines for each
letter an upper limit on the number of its occurrences in
any solution that contains the partial solution inducing v
as prefix string. Summing these values over all letters from
�, we obtain a valid upper bound on any complete solu-
tion that can be constructed starting from v:

UB1(v) =
∑

min
(|s1[pv

1 , |s1|]|a, |s2[pv
2 , |s2|]|a

)
(1)
a∈�

4

This bound is efficiently calculated in O (|�|) time by mak-
ing use of some data structures as detailed in [21].

An alternative DP–based upper bound function was in-
troduced by Wang et al. [23]. It makes use of the DP
recursion for the LCS problem with two input strings. A
scoring matrix M is generated where entry M[x, y], x =
1, . . . , |s1| + 1, y = 1, . . . , |s2| + 1 stores the length of the
LCS of s1[x, |s1|] and s2[y, |s2|]. Thus, an upper bound for
a given state graph node v is given by

UB2(v) = M[pv
1 , pv

2]. (2)

Neglecting the preprocessing step for generating M , this
bound can be efficiently retrieved in constant time. As nei-
ther of the two bounds dominate the other, we use here
the combination of both given by UB(v) := min{UB1(v),

UB2(v)}.

M. Djukanovic, C. Berger, G.R. Raidl et al. Information Processing Letters 166 (2021) 106041

1
2
3
4
5
6
7

8

9
10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
4. A∗ algorithm for the CLCS problem

A∗ is a so-called informed search algorithm that was
originally developed by Hart et al. [24] to find shortest
paths in weighted graphs. The search maintains a list of
open nodes, which is initialized with the root node, and
works in a best-first-search manner by expanding in each
iteration a most promising open node. In order to rank
open nodes, A∗ search makes use of a priority function
f (v) = g(v) + h(v), for v ∈ V (G), where, g(v) denotes the
length of a so far best path from the root node to v , and
h(v) is the heuristic estimate for the cost-to-go, i.e., the
length of an optimal further path from v to a goal node.
As the state graph in the case of the CLCS problem was
already outlined in Section 3, it remains to be mentioned
that for h(v) we will use the upper bound UB(v) from the
previous section, and g(v) := lv .

In order for the search process to be efficient, our im-
plementation maintains two data structures: (1) a hash-
map N storing all nodes that were encountered during
the search, and (2) the open list Q ⊆ N containing all not
yet expanded/treated nodes. More specifically, N is imple-
mented as a nested data structure of sorted lists within a
hash map. The position vector pv of a node v = (pv , lv , uv)

is mapped to a (linked) list storing pairs (lv , uv). This
structure allows for an efficient membership check, i.e.,
whether or not a node that represents subproblem a S[pv]
was already encountered during the search, and a quick
retrieval of the respective nodes.

Note that it might occur that several nodes representing
the same subproblem S[pv] are stored, as the following ex-
ample demonstrates: Consider the problem instance with
input strings s1 = bacxmnob, s2 = abcxmbno, and pat-
tern string P = b. The A∗ search might, at some time,
encounter node v1 = ((4, 4), 2, 1) induced by partial so-
lution bx, and—at some other time—it might encounter
another node v2 = ((4, 4), 3, 0) induced by partial solution
acx. Even though the path from the root node to node v1
is shorter than the path to node v2, the former still leads
to a better solution in the end (bxmno in comparison to
acxb). As the information which of the nodes leads to an
optimal solution is not known beforehand, both nodes are
stored.

Finally, the open list Q is realized by a priority queue
with priority values f (v) = lv + UB(v), for all v ∈ V . In
case of ties, nodes with larger lv -values are preferred. In
the case of further ties, nodes with larger uv -values are
preferred.

The search starts by inserting the root node of the state
graph into N and Q . Then, at each iteration, a node v
with highest priority is retrieved from Q and expanded
by considering all successor nodes for a ∈ �nd

v). If such an
extension leads to a new state, the corresponding node,
denoted by vext, is added to N and Q . Otherwise, vext is
compared to the nodes from set Nrel ⊆ N containing those
nodes that represent the same subproblem S[pv]. Domi-
nated nodes are identified in this way and dropped from
the search process, i.e., the dominated nodes are removed
from N and Q . If node vext is dominated by one of the
nodes from Nrel, it can simply be discarded. Otherwise, it
is added to N and Q . In this context, given v1, v2 ∈ Nrel
5

we say that v1 dominates v2 iff lv1 ≥ lv2 ∧ uv1 ≥ uv2 . We
would like to emphasize that detecting the domination in
Nrel was, on average, slightly faster when the elements of
the lists were sorted in decreasing order of their uv -values.
Therefore, we used this ordering in our implementation.

As the upper bound function UB() is admissible—that is,
it never underestimates the length of an optimal solution—
A∗ yields an optimal solution whenever the node selected
for expansion is a complete node [24]. Moreover, note that
UB() also is monotonic, which means that the upper bound
of any child node never overestimates the upper bound of
its parent node. This implies that no re-expansion of al-
ready expanded nodes become necessary [24]. In general,
A∗ search is known to be optimal in terms of the num-
ber of node expansions required to prove optimality w.r.t.
the upper bound and the tie–breaking criterion used. A
pseudocode of our A∗ search implementation for the CLCS
problem is provided in Algorithm 1.

N = Q = []
r = ((1,1),0,0)
N.insert(r)
Q .insert(r)
while(Q != []):

v = Q .pop()

Determine �nd
v

if �nd
v = []: # complete solution found
return the solution corresponds to v

else:

for c in �nd
v :

Generate child vext w.r.t. char. c
Nrel = N[pvext]
for vrel in Nrel:

if lvrel ≥ lvext and uvrel ≥ uvext:
insert = false
break # domination fulfilled

if lvext >= lvrel and uvext ≥ uvrel:
Remove node vrel from N, Q

if insert: #new state is non-dominated
N.insert(vext)

Q .insert(vext) # priritized acc. to UB
return ε if no feasible solution exists

Algorithm 1: A∗ search for the CLCS problem.

4.1. Time and space complexity of the A∗ search

In general, an upper bound for the worst-case perfor-
mance of A∗ search is O (bd), where b is the branching
factor—which, in our case, is the number of letters—and
d is the length of an optimal solution. In other words, the
runtime of A∗ search is, in general, exponential. Providing
a tighter bound is often hardly possible, as the practical
runtime strongly depends on the used guidance heuris-
tic [25]. In practice, however, it frequently happens that
A∗ search, when using a meaningful heuristic, is quite fast,
even in those cases in which nothing better than the ex-
ponential worst-case run time can be proven. Therefore,
respective publications typically focus more on empirically
observed run times or indicate the number of expand-
ed/visited nodes, for example, [23].

Nevertheless, it is possible to derive polynomial worst-
case time and space complexity bounds for our A∗ search

M. Djukanovic, C. Berger, G.R. Raidl et al. Information Processing Letters 166 (2021) 106041
from Algorithm 1 as follows. The number of visited
nodes is bounded by O (n2 · |P |). Since the used upper
bound function is monotonic, we can be sure that no re-
expansion of already expanded nodes is necessary, which
further implies that the outer while-loop of Algorithm 1 is
executed at most O (n2 · |P |) times. The pop() function in
Line 7 of Algorithm 1 needs a constant time to retrieve the
top node of Q . Afterwards, reorganizing the nodes in the
priority queue Q is done in O (log |Q |) = O (log(n · |P |) =
O (n) time. Determining the set of non-dominated nodes of
a node v is achieved in O (|�|2 · n) time by pairwise com-
parisons. For generating all child nodes of a node v and
then checking the domination among the nodes which re-
fer to the same subproblem (Lines 15-20), O (|�| · n · log n)

time is required in total. Note that the factor log(n) re-
flects the time required to check the domination of a single
node, which can be done via binary search. The code in
Lines 21–23 is executed in O (log(n · |P |)) = O (n) time.
Overall, to execute a single iteration of the main while-
loop, we need

O (log n + |�| · n · log n + |�|2 · n + log(n · |P |)) = (3)

O (|�| · n · log n + |�|2 · n)=O (n · |�| · (log n + |�|)) (4)

time. For executing the whole algorithm, the time is in

O (n · |�| · (log n + |�|) · O (n2 · |P |) = (5)

O (n3 · |P | · |�| · (log n + |�|)). (6)

Since |�|, in practice, represents a small constant number,
the time to execute our A∗ search is in

O (n3 · |P | · log n). (7)

Concerning the space complexity of the proposed A∗ algo-
rithm, the worst case corresponds to storing all nodes of
the state graph, and is thus in O (n2 · |P |).

5. Algorithms used for comparison

Algorithm by Chin et al. [12]. This method is based on dy-
namic programming. It uses a three-dimensional matrix M
to store the lengths of optimal solutions of subproblems
Si, j,k = (s1[1, i], s2[1, j], P [1, k], �) for i = 1, . . . , |s1|, j =
1, . . . , |s2|, k = 1, . . . , |P |. All these values are obtained
recursively on the basis of solutions to smaller subin-
stances for which optimal values are already known. In
essence, the recursive procedure distinguishes the follow-
ing cases and handles them appropriately: s1[i] = s2[j] =
P [k], s1[i] = s2[j] �= P [k], or s1[i] �= s2[j]. In this way, opti-
mal values of successor entries (representing larger sub-
problems) are determined in constant time. Due to its
simplicity, the algorithm is fast for problem instances of
small and medium size but its performance degrades for
longer sequences. In general, its time and space complex-
ity is O (|s1| · |s2| · |P |).

Algorithm by Arslan and Eğecioğlu [10]. This approach re-
places the matrix used in the original dynamic program-
ming algorithm of Tsai [9] by multiple three-dimensional
6

matrices in order to realize some calculations of the ap-
proach of Tsai more efficiently. In particular, the recurrence
used by Tsai was simplified. In the end, this results in an
algorithm with the same time complexity as the algorithm
of Chin et al., however with a memory requirement that is
by a factor of three higher.

Algorithm by Iliopoulos and Rahman [16]. This method is
based on a modification of the dynamic programming for-
mulation from [10]. To perform the matrix calculations of
each iteration efficiently, the authors make use of a so-
called bounded heap data structure [26] that was realized
by means of Van Emde Boas (vEB) trees [27]. This data
structure allows to calculate intermediate results more ef-
ficiently in O (log log n) time, leading to a total time com-
plexity of O (|P | · R · log log n + n), where R is the number
of ordered pairs of positions at which input strings s1 and
s2 match.

Algorithm by Hung et al. [18]. This method is a more recent
development that is particularly suited for input strings
that are highly similar. It was developed on the basis
of the so-called diagonal concept for the LCS problem
by Nakatsu et al. [19]. In general it can be said that
the efficiency of the algorithm grows with the length of
an optimal CLCS solution. The algorithm uses a table D
of dimension |P | × L, where L is an upper bound for
the CLCS length. Each cell Di,l stores a triple associated
with a partial solution. At each iteration of the algorithm
some of the cells are filled with information such that
for any triple (i′, j, k) ∈ Di,l , where i′ = 1, . . . , i, the re-
lation |CLCS(s1[1, i′], s2[1, j], P [1, |P | − k])| ≥ l holds. The
elements belonging to Di,l are determined by extending
all the partial solutions from Di−1,l−1, to which all the
partial solutions of Di−1,l are added, and by filtering out
dominated pairs. If (i′, j, 0) ∈ Di,l and there is no other
(i′′, j′′, 0) ∈ Di,l with i′ �= i′′ and j �= j′′ , it implies that
|CLCS(s1[1, i′], s2[1, j], P)| = l. In this way an optimal so-
lution is found for the specific subproblem.

Algorithm by Deorowicz [13]. Just like the previous ap-
proach, this algorithm is a so-called sparse approach. The
matrix utilized for the calculations is processed for each
level k = 0, . . . , |P | in a row-wise manner and an ordered
list is maintained to store for each rank (representing the
assumed length of an optimal solution) the lowest possi-
ble column number. Furthermore, a two-dimensional ma-
trix T is used to store computed values from the current
and previous levels. For each row i and column j where
s1[i] = s2[j], the list entries are recalculated. If s1[i] =
s2[j] �= P [k], then the value for the match at (i, j) is cal-
culated from the highest rank in the list with a column
number lower than j. Otherwise, if s1[i] = s2[j] = P [k],
the value is calculated from matrix T . On completion, the
highest rank in the list corresponds to the length of an op-
timal solution.

Improvements of Deorowicz’s algorithm were intro-
duced by Deorowicz and Obstoj [15]. They utilize so–called
external–entry points (EEP) [28] initially proposed for the
pairwise sequence alignment problem, for omitting those

M. Djukanovic, C. Berger, G.R. Raidl et al. Information Processing Letters 166 (2021) 106041
cells in the lists that do not contribute to optimal solu-
tions.

6. Experimental results

All algorithms were implemented in C++ with g++ 7.4
and the experiments were conducted in single-threaded
mode on a machine with an Intel Xeon E5-2640 processor
with 2.40 GHz and a memory limit of 32 GB. The maxi-
mum computation time allowed for each run was limited
to one hour.

We aimed to re-implement all algorithms from the lit-
erature in the way in which they are described in the orig-
inal articles as the respective code could not be obtained.
In a few cases, due to a lack of sufficient details, we had
to make our own specific implementation decisions. This
was in particular the case for the algorithm of Iliopoulos
and Rahman [16]: The bounded heap data structure has to
be initialized for different indices, and it remains unclear
how this can be done efficiently. The authors were con-
tacted with this issue but we did not receive a response.
Our implementation creates a new bounded heap for a new
index by copying the content from the bounded heap of the
previous index. This is the most time-demanding part of
the algorithm, which is in particular noticed in the context
of instances with large values of n. Unfortunately, the orig-
inal article does not contain any computational study that
could serve as a comparison but just focuses on asymptotic
runtimes from a theoretical point-of-view.

We emphasize that in general, we did our best to
achieve efficient re-implementations of the approaches
from literature for the experimental comparison.

6.1. Benchmark instances

First of all, the benchmark instances are available
at https://www.ac .tuwien .ac .at /files /resources /instances /clcs /
2d -clcs .zip

With the aim of creating a diverse set of problem
instances, for each combination of n ∈ {100, 500, 1000}
(length of the input strings), |�| ∈ {4, 12, 20} (alphabet
size), p′ = |P |

n ∈ { 1
50 , 1

20 , 1
10 , 1

4 , 1
2

}
(length of the pattern

string), ten problem instances were randomly generated.
This results in a total of 450 instances. The following pro-
cedure was used for generating each instances. First, a
pattern string P was created uniformly at random, that
is, each character from � has an equal chance to be cho-
sen for each position of P . Second, two input strings of
equal length n were generated as follows. First, |P | differ-
ent positions were randomly chosen in each input string.
Then, characters P [1], . . . , P [|P |] are placed (in this order)
from left to right at these positions. Finally, the remaining
characters of each input string were set to letters chosen
uniformly at random from the alphabet �. This procedure
ensures that at least one feasible CLCS solution exists for
each benchmark instances. Unfortunately, none of the arti-
ficial benchmarks from [15] and [18] were provided to us,
although the respective authors were contacted with this
concern.

In addition to these artificially generated instances, we
use a benchmark suite from [15] based on strings repre-
7

Table 1
Benchmark suite Real from [15].

Data set Number of
sequences

Sequence length
(min, med, max)

|�| Origin

ds0 7 (111, 124, 134) 20 [11]
ds1 6 (124, 149, 185) 20 [11]
ds2 6 (131, 142, 160) 20 [11]
ds3 5 (189, 277, 327) 20 [11]
ds4 6 (98, 114, 123) 20 [29]

senting real biological sequences.2 This benchmark set is
henceforth called Real. It has its origins in experimen-
tal studies on the constrained multiple sequence alignment
(CMSA) problem considered in [29,11]. Each possible pair
of sequences from this data set, together with a pattern
string, was used in [15] to define a problem instance for
the CLCS problem. Properties of the input strings, together
with their origins, are provided in Table 1. In particu-
lar, Chin et al. [11] provided four sets of strings contain-
ing RNase sequences with lengths from 111 to 327. In
contrast, set ds4—containing aspartic acid protease fam-
ily sequences—was provided by Lu and Huang [29], also
in the context of the CMSA problem. Overall, benchmark
set Real consists of 121 problem instances.

6.2. Results

We compare our A∗ search from Section 4 with our
re-implementations of the following state-of-the-art algo-
rithms from the literature.

• Chin: Algorithm by Chin et al. [12];
• Deo: Algorithm by Deorowicz [13];
• AE: Algorithm by Arslan and Eğecioğlu [10];
• IR: Algorithm by Iliopoulos and Rahman [16];
• Hung: Algorithm by Hung et al. [18].

The source code of this project is accessible at https://
www.ac .tuwien .ac .at /files /resources /software /clcs .zip.

In general, all algorithms could find optimal solutions
and prove their optimality for all instances. However,
the required runtimes differ sometimes substantially. Ta-
bles 2–7 show these runtimes for each re-implemented al-
gorithm as well as our A∗ search in seconds averaged over
each group of instances. Results for the artificial instance
sets are subdivided into five different subclasses w.r.t. the
value of p′ , which determines the length of pattern string
P . Concerning benchmark suite Real, the average running
times refer to all those instances that belong to the respec-
tive data set in combination with a pattern P , cf. Table 7.
For each instance group (line), the lowest runtimes among
the competing algorithms are shown in bold font. The first
two columns present the properties of the instance group,
while the third column |s| lists the average length of the
optimal solutions for the respective problem instances.

The following observations can be drawn from these re-
sults.

2 Available at http://sun .aei .polsl .pl /~sdeor /pub /do09 -ds .zip.

https://www.ac.tuwien.ac.at/files/resources/instances/clcs/2d-clcs.zip
https://www.ac.tuwien.ac.at/files/resources/instances/clcs/2d-clcs.zip
https://www.ac.tuwien.ac.at/files/resources/software/clcs.zip
https://www.ac.tuwien.ac.at/files/resources/software/clcs.zip
http://sun.aei.polsl.pl/~sdeor/pub/do09-ds.zip

M. Djukanovic, C. Berger, G.R. Raidl et al. Information Processing Letters 166 (2021) 106041

Table 2
Instances with p′ = |P |

n = 1
50 : Average runtimes in seconds.

|�| n |s| Chin Deo AE IR Hung A∗

4 100 60.9 0.2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
4 500 319.3 < 0.1 0.1 0.2 6.5 0.1 < 0.1
4 1000 646.3 0.2 1 1.3 86.4 0.5 < 0.1

12 100 40.1 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 216.0 < 0.1 0.1 0.2 2.9 0.2 < 0.1
12 1000 435.5 0.3 0.5 1.4 39.4 1 0.1

20 100 33.5 < 0.1 0.1 < 0.1 < 0.1 < 0.1 < 0.1
20 500 175.7 < 0.1 0.1 0.2 2.2 0.2 < 0.1
20 1000 355.4 0.3 0.5 1.4 26.6 1.1 < 0.1

Table 3
Instances with p′ = |P |

n = 1
20 : Average runtimes in seconds.

|�| n |s| Chin Deo AE IR Hung A∗

4 100 61.9 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
4 500 323.0 0.1 0.5 0.4 15.7 0.2 < 0.1
4 1000 645.9 0.9 1.8 3.4 215.5 1.2 0.1

12 100 41.0 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 215.3 0.1 0.2 0.4 5.3 0.3 < 0.1
12 1000 437.0 0.9 1.1 3.4 69.2 2.2 0.2

20 100 32.2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
20 500 170.9 0.1 0.2 0.3 3.3 0.2 < 0.1
20 1000 348.4 1 1.1 3.5 40.6 1.7 0.2

Table 4
Instances with p′ = |P |

n = 1
10 : Average runtimes in seconds.

|�| n |s| Chin Deo AE IR Hung A∗

4 100 62.6 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
4 500 320.9 0.3 0.6 0.9 26.8 0.4 < 0.1
4 1000 646.4 1.8 3.5 9.2 331.2 3.3 < 0.1

12 100 40.5 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 207.1 0.2 0.3 0.9 7.3 0.3 < 0.1
12 1000 419.0 2.1 2.2 8.3 91.1 2.7 0.2

20 100 31.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
20 500 157.4 0.2 0.3 0.9 5.3 0.2 < 0.1
20 1000 317.9 1.8 2.1 8.4 68.1 2 < 0.1

Table 5
Instances with p′ = |P |

n = 1
4 : Average runtimes in seconds.

|�| n |s| Chin Deo AE IR Hung A∗

4 100 63.2 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
4 500 320.1 0.6 1.4 2.7 34.8 0.5 < 0.1
4 1000 642.5 5 6.6 113.6 436.6 4.5 0.1

12 100 39.9 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 203.0 0.6 0.7 3 18.7 0.3 < 0.1
12 1000 413.2 5.3 5.7 112 213.2 3.2 < 0.1

20 100 35.7 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
20 500 175.5 0.6 0.6 3.3 14.4 0.3 < 0.1
20 1000 351.1 5.2 5.9 105.4 154.8 1.8 0.1
• The small instances (where n = 100) are easy to solve
and all competitors require only a fraction of a second
for doing so.

• The first algorithm that starts losing efficiency with
growing input string length is IR. Already starting
with n = 500, the computation times start to grow
8

substantially in comparison to the other approaches,
which is most likely due to the complexity of the
utilized data structures. We remark that our specific
implementation decision concerning the initialization
of the bounded heap may have a significant impact, as
mentioned already in Section 5.

M. Djukanovic, C. Berger, G.R. Raidl et al. Information Processing Letters 166 (2021) 106041

Table 6
Instances with p′ = |P |

n = 1
2 : Average runtimes in seconds.

|�| n |s| Chin Deo AE IR Hung A∗

4 100 63.9 < 0.1 < 0.1 < 0.1 0.2 < 0.1 < 0.1
4 500 325.5 1.4 1.5 22.5 60.6 0.4 < 0.1
4 1000 652.5 19.1 12.6 336.5 739.4 3.6 < 0.1

12 100 54.6 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 276.5 1.4 1.4 23.9 34.2 0.2 < 0.1
12 1000 544.3 17.8 11.3 347.5 362.2 2.4 0.1

20 100 53.0 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
20 500 264.9 1.2 1.3 21.5 30.6 0.2 < 0.1
20 1000 524.5 18.8 11.1 341 278.8 1.5 0.1

Table 7
Benchmark set Real: Average runtimes in seconds.

data set P |s| Chin Deo AE IR Hung A∗

ds0 HKH 60.62 0.012 0.015 0.012 0.026 0.017 0.011
ds1 HKH 64.00 0.012 0.017 0.013 0.032 0.019 0.015
ds1 HKSH 63.93 0.011 0.021 0.017 0.033 0.017 0.011
ds1 HKSTH 63.87 0.016 0.022 0.019 0.043 0.024 0.012
ds2 HKSH 79.60 0.015 0.020 0.016 0.030 0.052 0.012
ds2 HKSTH 77.87 0.013 0.018 0.016 0.030 0.051 0.013
ds3 HKH 103.90 0.018 0.026 0.019 0.138 0.188 0.014
ds4 DGGG 43.87 0.012 0.022 0.014 0.023 0.049 0.012
• Algorithm Chin clearly outperforms Deo when |�| is
small. With growing |�|, as already noticed in earlier
studies [13], Deo becomes more efficient. In fact, the
two approaches perform similarly for |�| = 20. The
advantages of Deo over Chin are noticed in partic-
ular for higher p′; see Table 5.

• Algorithm Hung generally performs better than Deo
and Chin. This confirms the conclusions from the
computational study in Hung et al. [18].

• With increasing p′ and thus an increasing length of
P , all approaches degrade in their performance, except
for A∗ and Hung, which still remain highly efficient.

• A general conclusion for the artificial benchmark set
is that A∗ search is in most cases about one order
of magnitude faster than Hung, which is overall the
second-best approach.

• Concerning the results for benchmark set Real (see
Table 7), we can conclude that all algorithms only re-
quire short times as the input strings are rather short.
Nevertheless we can also see here that the A∗ search
is almost consistently fastest.

• Fig. 2 shows the influence of the instance length on
the algorithms’ runtimes for |�| = 4 and |�| = 20.
Note that IR is not included here since it was obvi-
ously the slowest among the competitors. It can be
noticed that the performance of A∗ is the only one
that does not degrade much with increasing n.

• Fig. 3 shows the influence of the length of P on the
algorithms’ runtimes for n = 500 and n = 1000 (in log-
scale). It can be noticed again that A∗ does not suffer
much from an increase of the length of P . This also
holds for Hung but not the other competitors, whose
performance degrades with increasing |P |.

Finally, we also compare the amount of work done by
the algorithms in order to reach the optimal solutions. In
9

the case of A∗ , this amount of work is measured by the
number of generated nodes of the state graph. In the case
of Deo, this refers to the number of different keys (i, j, k)

generated during the algorithm execution. Finally, in the
case of Hung, this is measured by the amount of newly
generated nodes in each Di,l (which corresponds to the
amount of non-dominated extensions of the nodes from
Di−1,l−1). Let us call this measure the amount of created
nodes for all three algorithms. This measure is shown in
log-scale in Fig. 4 for the instances with n = 500. The x-
axis of these graphics varies over different ratios p′ = |P |

n .
The curve denoted by Max (see legends) is the theoreti-
cal upper bound on the number of created nodes, which is
|s1| × |s2| × |P | for an instance (s1, s2, P , �). The graphics
clearly show that A∗ creates the fewest nodes in compari-
son to the other approaches. The difference becomes larger
with an increasing length of P , which correlates with an
increase in the similarity between the input strings. For
those instances with strongly related input strings, the up-
per bound UB used in the A∗ search is usually tighter,
which results in fewer node expansions. The amount of
created nodes in A∗ decreases with an increasing length
of P after some point, because the search space becomes
more restricted; see Fig. 4 and |�| = 4 from p′ ≥ 1

4 onward
and |�| = 20 from p′ ≥ 1

20 onward.

6.3. Additional experimental evaluation and findings

From a more practical point of view our results suggest
that, the more misleading the heuristic function used by
our A∗ for a specific problem instance is, the higher will be
its running time. More specifically, the heuristic employed
in our A∗ algorithm seems more misleading when the in-
put strings are rather similar. In order to verify this im-
pression, we conducted an additional set of experiments.
First, we generated an additional set of problem instances

M. Djukanovic, C. Berger, G.R. Raidl et al. Information Processing Letters 166 (2021) 106041

Fig. 2. Average computation times of the algorithms for p′ = 1
20 .

Fig. 3. Average computation times of the algorithms for |�| = 20.

Fig. 4. Average amount of created nodes by the algorithms for n = 500.
with different degrees of similarity in the input strings.
For example, a similarity of θ = 0.3 means that, on av-
erage, 30% of the positions in the two input strings have
the same character. We generated 10 problem instances
with input string length n = 100 for each similarity degree
θ ∈ {0.1, 0.2, 0.5, 0.8, 0.9} and an alphabet size of |�| = 12.
Moreover, the same pattern string P = abbbcbcbdb was
used for all instances.

Running times of our A∗ algorithm are shown in com-
parison to algorithm Chin in Table 8. Results indeed con-
firm our observation from above. That is, when the degree
of similarity is rather low, our A∗ search is faster (see the
results for θ ∈ {0.1, 0.2, 0.5}). On the other side, when the
degree of similarity is rather high (θ ∈ {0.8, 0.9}), Chin
is faster. This is because in the case of instances with a
10
rather high θ -value, a significant amount of time of the
overall running time of A∗ is spent to calculate the upper
bound values of the generated nodes. However, as shown
in our main experimental evaluation, the A∗ search can be
expected to outperform the competitor algorithms in most
other cases, especially the harder ones.

7. Conclusions and future work

In this paper we considered the constrained longest
common subsequence (CLCS) problem. The problem is well
studied in the literature, which offers algorithms based
on dynamic programming as well as sparse approaches.
In contrast, we presented an A∗ search for this problem,
which is guided by tight upper bound function for the

M. Djukanovic, C. Berger, G.R. Raidl et al. Information Processing Letters 166 (2021) 106041
Table 8
Results for instances with different degrees
of similarity (θ) of the input strings. The
similarity of the input strings grows with
an increasing value of θ .

θ |s| Chin A∗

0.1 41.3 0.060 0.050
0.2 43.8 0.070 0.050
0.5 55.0 0.061 0.052
0.8 73.2 0.050 0.055
0.9 82.5 0.050 0.075

LCS problem. The effectivity of this approach was demon-
strated by comparing it to several other so far leading
algorithms from the literature. The A∗ search is able to
solve all artificially generated benchmarks as well as the
real benchmark instances in a fraction of a second. More
specifically, the running times required by A∗ are about an
order of magnitude smaller than those of the second-best
algorithm. Interestingly, the performance of A∗ does not
degrade much with an increase of the instance size, which
is not the case for the other algorithms from the litera-
ture. We conclude that A∗ search is a tool that has a great
potential to be used for the study of similarities between
sequences. In fact, our A∗ search is the new state-of-the-
art method for the CLCS problem.

In future work, we plan extend this A∗ search towards
the general CLCS problem with an arbitrary number of in-
put strings, which is an NP–hard problem. Moreover, we
consider the A∗ search also a promising framework for
solving related LCS problem variants such as the restricted
LCS (RLCS) problem [30,31]. For those instances where A∗
search might fail to prove optimality (e.g., due to exceeding
a memory limit), the A∗ framework might be turned into
an anytime algorithm [32] in order to obtain high-quality
heuristic solutions already early during the search process.

Declaration of competing interest

We wish to confirm that there are no known conflicts
of interest associated with this publication and there has
been no significant financial support for this work that
could have influenced its outcome.

Acknowledgements

We gratefully acknowledge the financial support of
this project by the Doctoral Program “Vienna Graduate
School on Computational Optimization” funded by the Aus-
trian Science Foundation (FWF) under contract no. W1260-
N35. Christian Blum acknowledges the financial support by
project CI-SUSTAIN funded by the Spanish Ministry of Sci-
ence and Innovation (PID2019-104156GB-I00).

References

[1] D. Maier, The complexity of some problems on subsequences and
supersequences, J. ACM 25 (2) (1978) 322–336.

[2] T. Jiang, G. Lin, B. Ma, K. Zhang, A general edit distance between RNA
structures, J. Comput. Biol. 9 (2) (2002) 371–388.

[3] J. Storer, Data Compression: Methods and Theory, Computer Science
Press, MD, USA, 1988.
11
[4] J.B. Kruskal, An overview of sequence comparison: time warps, string
edits, and macromolecules, SIAM Rev. 25 (2) (1983) 201–237.

[5] K.-M. Chao, L. Zhang, Sequence Comparison – Theory and Methods,
Springer, London, UK, 2009.

[6] S.S. Adi, M.D. Braga, C.G. Fernandes, C.E. Ferreira, F.V. Martinez, M.-F.
Sagot, M.A. Stefanes, C. Tjandraatmadja, Y. Wakabayashi, Repetition-
free longest common subsequence, Discrete Appl. Math. 158 (12)
(2010) 1315–1324.

[7] T. Jiang, G.-H. Lin, B. Ma, K. Zhang, The longest common subse-
quence problem for arc-annotated sequences, in: Annual Symposium
on Combinatorial Pattern Matching, Springer, 2000, pp. 154–165.

[8] S.R. Chowdhury, M. Hasan, S. Iqbal, M.S. Rahman, et al., Computing a
longest common palindromic subsequence, Fundam. Inform. 129 (4)
(2014) 329–340.

[9] Y.T. Tsai, The constrained longest common subsequence problem, Inf.
Process. Lett. 88 (4) (2003) 173–176.

[10] A.N. Arslan, Ö. Eğecioğlu, Algorithms for the constrained longest
common subsequence problems, Int. J. Found. Comput. Sci. 16 (06)
(2005) 1099–1109.

[11] F.Y. Chin, N. Ho, T. Lam, P.W. Wong, M. Chan, Efficient constrained
multiple sequence alignment with performance guarantee, J. Bioin-
form. Comput. Biol. 3 (1) (2005) 1–8.

[12] F.Y. Chin, A. De Santis, A.L. Ferrara, N. Ho, S. Kim, A simple al-
gorithm for the constrained sequence problems, Inf. Process. Lett.
90 (4) (2004) 175–179.

[13] S. Deorowicz, Fast algorithm for constrained longest common subse-
quence problem, Theor. Appl. Inf. 19 (2) (2007) 91–102.

[14] J.W. Hunt, T.G. Szymanski, A fast algorithm for computing longest
common subsequences, Commun. ACM 20 (5) (1977) 350–353.

[15] S. Deorowicz, J. Obstój, Constrained longest common subsequence
computing algorithms in practice, Comput. Inform. 29 (3) (2012)
427–445.

[16] C.S. Iliopoulos, M.S. Rahman, New efficient algorithms for the LCS
and constrained LCS problems, Inf. Process. Lett. 106 (1) (2008)
13–18.

[17] W.C. Ho, K.S. Huang, C.B. Yang, A fast algorithm for the constrained
longest common subsequence problem with small alphabet, in: Pro-
ceedings of the 34th Workshop on Combinatorial Mathematics and
Computation Theory, Taichung, Taiwan, 2017, pp. 13–25.

[18] S.-H. Hung, C.-B. Yang, K.-S. Huang, A diagonal-based algorithm for
the constrained longest common subsequence problem, in: Proceed-
ings of ICS 2018 – the 23rd International Computer Symposium,
Springer, Singapore, 2019, pp. 425–432.

[19] N. Nakatsu, Y. Kambayashi, S. Yajima, A longest common subsequence
algorithm suitable for similar text strings, Acta Inform. 18 (2) (1982)
171–179.

[20] M. Djukanovic, G. Raidl, C. Blum, A beam search for the longest com-
mon subsequence problem guided by a novel approximate expected
length calculation, in: Proceedings of LOD 2019 – the 5th Interna-
tional Conference on Machine Learning, Optimization, and Data Sci-
ence, Springer International Publishing, 2019, pp. 154–167.

[21] M. Djukanovic, G.R. Raidl, C. Blum, A heuristic approach for solving
the longest common square subsequence problem, in: R. Moreno-
Díaz, F. Pichler, A. Quesada-Arencibia (Eds.), Computer Aided Sys-
tems Theory – EUROCAST 2019, EUROCAST 2019, in: Lecture Notes
in Computer Science, vol. 12013, Springer, Cham, 2020, pp. 429–437.

[22] C. Blum, M.J. Blesa, M. López-Ibáñez, Beam search for the longest
common subsequence problem, Comput. Oper. Res. 36 (12) (2009)
3178–3186.

[23] Q. Wang, M. Pan, Y. Shang, D. Korkin, A fast heuristic search al-
gorithm for finding the longest common subsequence of multiple
strings, in: Proceedings of AAAI 2010 – the 24th AAAI Conference
on Artificial Intelligence, 2010, pp. 1287–1292.

[24] P. Hart, N. Nilsson, B. Raphael, A formal basis for the heuristic deter-
mination of minimum cost paths, IEEE Trans. Syst. Sci. Cybern. 4 (2)
(1968) 100–107.

[25] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 2002.
[26] G.S. Brodal, M. Kutz, K. Kaligosi, I. Katriel, Faster algorithms for com-

puting longest common increasing subsequences, J. Discret. Algo-
rithms 9 (4) (2011) 314–325.

[27] P.v.E. Boas, Preserving order in a forest in less than logarithmic time
and linear space, Inf. Process. Lett. 6 (3) (1977) 80–82.

[28] D. He, A.N. Arslan, A space-efficient algorithm for the constrained
pairwise sequence alignment problem, Genome Inform. 16 (2) (2005)
237–246.

http://refhub.elsevier.com/S0020-0190(20)30128-9/bib9FBBDAA412BE964D2CBDD49B1E2DD43Es1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib9FBBDAA412BE964D2CBDD49B1E2DD43Es1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib093870DAD5FA923D12EAA30250A36032s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib093870DAD5FA923D12EAA30250A36032s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibFA4706E87FF8401B9039D48AEB7FBFBCs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibFA4706E87FF8401B9039D48AEB7FBFBCs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib98AD4B305E6556BE4BAC0BB808B25194s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib98AD4B305E6556BE4BAC0BB808B25194s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibD02F6C60C91E46C07216B416A944BB9Ds1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibD02F6C60C91E46C07216B416A944BB9Ds1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib3D0A3CEE118810D4F89439685B7C33B7s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib3D0A3CEE118810D4F89439685B7C33B7s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib3D0A3CEE118810D4F89439685B7C33B7s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib3D0A3CEE118810D4F89439685B7C33B7s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibCDA0EE49917FF3106A3991D1F6F6DBC9s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibCDA0EE49917FF3106A3991D1F6F6DBC9s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibCDA0EE49917FF3106A3991D1F6F6DBC9s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib0FE77DF4DB1187CB2B5775B4F4F44808s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib0FE77DF4DB1187CB2B5775B4F4F44808s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib0FE77DF4DB1187CB2B5775B4F4F44808s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib8EDA800915AB71ED6A1C4160C3055942s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib8EDA800915AB71ED6A1C4160C3055942s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib80F38921C1C273D1E1E2417C9540065Fs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib80F38921C1C273D1E1E2417C9540065Fs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib80F38921C1C273D1E1E2417C9540065Fs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib4BD7307D38B30BC06D53B7173A4C24B3s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib4BD7307D38B30BC06D53B7173A4C24B3s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib4BD7307D38B30BC06D53B7173A4C24B3s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib04CB86F5D037C0ECA1A1055074370A40s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib04CB86F5D037C0ECA1A1055074370A40s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib04CB86F5D037C0ECA1A1055074370A40s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibA2AE7709C932E3FA739FD15B624EFCEBs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibA2AE7709C932E3FA739FD15B624EFCEBs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib971E04244B2D3345C1FC8A51CADB54B1s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib971E04244B2D3345C1FC8A51CADB54B1s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib70874C8D984C8CB3834C8EECFF92B847s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib70874C8D984C8CB3834C8EECFF92B847s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib70874C8D984C8CB3834C8EECFF92B847s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib6FF24D312AFBC29460AA5FF8EF6DF8A4s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib6FF24D312AFBC29460AA5FF8EF6DF8A4s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib6FF24D312AFBC29460AA5FF8EF6DF8A4s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibDF79A9D5A976D5658F34AC5A8E69BBABs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibDF79A9D5A976D5658F34AC5A8E69BBABs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibDF79A9D5A976D5658F34AC5A8E69BBABs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibDF79A9D5A976D5658F34AC5A8E69BBABs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib2FADFE88FC5C5501416336158E49A206s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib2FADFE88FC5C5501416336158E49A206s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib2FADFE88FC5C5501416336158E49A206s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib2FADFE88FC5C5501416336158E49A206s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib52B6DFA7B14D79FC9D4821D299780E82s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib52B6DFA7B14D79FC9D4821D299780E82s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib52B6DFA7B14D79FC9D4821D299780E82s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibC79D3B16C8F2A46364C89589C9A596AEs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibC79D3B16C8F2A46364C89589C9A596AEs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibC79D3B16C8F2A46364C89589C9A596AEs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibC79D3B16C8F2A46364C89589C9A596AEs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibC79D3B16C8F2A46364C89589C9A596AEs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib991ED42EEE0AD492452ABFE716A4650Es1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib991ED42EEE0AD492452ABFE716A4650Es1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib991ED42EEE0AD492452ABFE716A4650Es1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib991ED42EEE0AD492452ABFE716A4650Es1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib991ED42EEE0AD492452ABFE716A4650Es1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibCDB676B5586EE66E3170E895CC179BDDs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibCDB676B5586EE66E3170E895CC179BDDs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibCDB676B5586EE66E3170E895CC179BDDs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib1BA22CB3B8165D306B1C52BD3569BB67s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib1BA22CB3B8165D306B1C52BD3569BB67s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib1BA22CB3B8165D306B1C52BD3569BB67s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib1BA22CB3B8165D306B1C52BD3569BB67s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibA2622D5E1B62A434B5D1F301F89E5498s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibA2622D5E1B62A434B5D1F301F89E5498s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibA2622D5E1B62A434B5D1F301F89E5498s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib8400AF5DB3EE4108137608B2388E9E73s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib173AF9169DC50D59101048F39A5C603Fs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib173AF9169DC50D59101048F39A5C603Fs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib173AF9169DC50D59101048F39A5C603Fs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibAE7E5B68CE04F9EE564F78B03FC433BCs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibAE7E5B68CE04F9EE564F78B03FC433BCs1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib35B8D3A158DB7A7E29F11F9A2664078As1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib35B8D3A158DB7A7E29F11F9A2664078As1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib35B8D3A158DB7A7E29F11F9A2664078As1

M. Djukanovic, C. Berger, G.R. Raidl et al. Information Processing Letters 166 (2021) 106041
[29] C.L. Lu, Y.P. Huang, A memory-efficient algorithm for multiple se-
quence alignment with constraints, Bioinformatics 21 (1) (2005)
20–30.

[30] Z. Gotthilf, D. Hermelin, G.M. Landau, M. Lewenstein, Restricted LCS,
in: Proceedings of SPIRE 2010 – the 17th International Sympo-
sium on String Processing and Information Retrieval, Springer, 2010,
pp. 250–257.

[31] Y.-C. Chen, K.-M. Chao, On the generalized constrained longest com-
mon subsequence problems, J. Comb. Optim. 21 (3) (2011) 383–392.

[32] S. Zilberstein, Operational rationality through compilation of anytime
algorithms, AI Mag. 16 (2) (1995) 79.
12

http://refhub.elsevier.com/S0020-0190(20)30128-9/bibAC65D99EF04573DDA3CBECD7C5742408s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibAC65D99EF04573DDA3CBECD7C5742408s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibAC65D99EF04573DDA3CBECD7C5742408s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib58A605EC562A98B833FEF50EB0C60A09s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib58A605EC562A98B833FEF50EB0C60A09s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib58A605EC562A98B833FEF50EB0C60A09s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib58A605EC562A98B833FEF50EB0C60A09s1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibF756E1219F63DBF4D5AEE40394B8A73As1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bibF756E1219F63DBF4D5AEE40394B8A73As1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib953242D4A87CBE50059E697BB6E0AE7As1
http://refhub.elsevier.com/S0020-0190(20)30128-9/bib953242D4A87CBE50059E697BB6E0AE7As1

	An A∗ search algorithm for the constrained longest common subsequence problem
	1 Introduction
	1.1 Preliminaries

	2 Related work
	2.1 Our contribution

	3 The state graph
	3.1 Upper bounds for the CLCS problem

	4 A∗ algorithm for the CLCS problem
	4.1 Time and space complexity of the A∗ search

	5 Algorithms used for comparison
	6 Experimental results
	6.1 Benchmark instances
	6.2 Results
	6.3 Additional experimental evaluation and findings

	7 Conclusions and future work
	Declaration of competing interest
	Acknowledgements
	References

