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Abstract—Sensor networks (SN) have arisen as one of the
most promising monitoring technologies. The recent emergence
of small and inexpensive sensors ease the development and
proliferation of this kind of networks in a wide range of actual-
world applications.1 So far the majority of SN deployments
have assumed that sensors can be configured prior to their
deployment because the area and events to monitor are well
known at design time. Nevertheless, when the purpose of an
SN is to monitor the events of an environment such that
the distribution and nature of its events is uncertain, we
cannot longer assume that sensors can be configured at design
time. Instead, sensors must be endowed with the capacity
of autonomously reconfiguring and coordinating in order to
maximize the amount of information they perceive over time.
In this paper, we propose a low cost (in terms of energy
and computation) collective distributed algorithm, the so-called
collective search diffusion (CDS) algorithm, which allows the
sensors in an SN to collaboratively search for the configurations
that maximise the information that they perceive based only
on their local knowledge. We empirically show that the CDS
algorithm helps an SN efficiently monitor environments where
various dynamic events occur while showing high degrees of
resilience to sensor failures. Both features make the CDS
algorithm a suitable tool for monitoring remote and/or hostile
uncharted environments.
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I. INTRODUCTION

As technology continuously improves, it is becoming
apparent that sensor networks (SN) are a powerful and
versatile tool [3]. They have been employed by numerous
applications on domains of a wide range of characteristics.
Nevertheless, many of these applications rely on static sensor
configurations (i.e pre-configured at design time), which
can be detrimental. It has been argued that in real-world
deployments the complexity, diversity, and dynamicity of the
sensing requirements is a major issue that cannot be tackled
through static configurations.

In particular, many of the events to sense have a dynamic
nature. They may continuously expand or shrink (diffuse
events), or move over the environment (moving events) [4].
Examples of these events are wildfires, glacier movements,
gas plumes, and warm water currents, among others. Within

1We refer the interested reader to [1] and [2] for surveys of a wealth of
applications of SNs.

such dynamic settings, it is necessary that sensors are
configurable. Thus, sensors must be allowed to change their
configurations to vary the content, resolution and accuracy of
their observations to maximise, in an energy-efficient man-
ner, the information gathered over time. Therefore, an SN
must count on active sensing capabilities[3]: ”the capacity of
autonomously reconfiguring and coordinating its sensors in
order to maximise the amount of information perceived over
time”. Henceforth, we consider a sensor’s configuration as
a schedule of (parameterized) actions the sensor must take
to monitor/control/track some particular event. For instance,
to monitor a wildfire, a sensor needs to measure the heat
levels, humidity, look for carbon monoxide, and/or detect
smoke.

Moreover, it has been noted that in large environments
various distinct events are prone to occur at once. In other
words, there is a spatial distribution of concurrent events.
Hence, a sensor’s configuration depends on the event(s)
present on its geographic location (a sensor must be able
to adopt as many configurations as events are possible). In
these cases, it is likely that neighboring (close-by) sensors
experience the same event(s), consequently making them
require similar (the same) configurations. Collective active
sensing [3] strategies are investigated for SNs whose sensors
need to coordinate to collectively perform some sensing
task. Regarding the settings above, a collective sensing
strategy would be necessary to have sensors requiring similar
configurations coordinate and cooperate towards a common
goal (discovering the most useful configuration).

Collective active sensing strategies in dynamic environ-
ments have recently spurred research. On the one hand,
according to the dynamic region theory (DRT) [5] sensors
can select their configurations from a pre-defined set of
configurations by identifying their spatial locations (regions)
and their neighbors. Notice that this approach relies on the
fact that the sensing requirements of each possible event
and location are known at design time. In other words, it
requires a thorough study of the deployment environment
and a deep knowledge of its possible events. On the other
hand, coalition formation based approaches have been also
employed for active sensing. Sims et. al [6] attempt to find
the coalition of sensors to perform each task out of a set
of available (sub)tasks in such a manner that some utility



is maximized. Likewise DRT, this coalition-based approach
also depends on a through knowledge (at design time) of
the tasks or subtasks to perform. Additionally, the approach
assumes that the sensors have (near-) complete information
of the other sensors (or at least of a subgroup).

To summarise, the common assumption of previous works
in the literature is that the deployment environment has been
well studied, and thus that the sensor designers and the
sensors themselves can make use of the available domain
knowledge for configuration purposes. Nevertheless, this
may not always be the case. It has been argued that sensor
networks can be particularly useful in remote or hostile
environments that have rarely been studied due to their
inaccessibility [7]. Therefore, how to employ some collective
active sensing in these uncharted environments remains an
open issue that we address in this paper.

Here we propose a collective approach to monitor un-
charted environments where only (at most) partial domain
knowledge is available to the sensors in an SN. In our
approach, we embed in an SN a distributed algorithm that:
i) has a low computational overhead and a low energy
consumption; ii) employs diffusion search to collectively
find/construct the most useful sensor configurations for the
occurring events; iii) promptly reconfigures the sensors in
response to dynamicity of the events; and iv) works when
the sensor cannot rely on the available domain knowledge
(uncharted environment).

This paper is organized as follows. Firstly, we describe
and formalize the problem to solve. Next, we present the
algorithm used to solve the problem. Finally, we empirically
evaluate our algorithm and draw some conclusions.

II. PROBLEM DESCRIPTION

Our objective is to employ an SN to act in an uncharted
environment, where acting refers to monitoring, controlling
or tracking events. By uncharted environment we mean a
location of which we only have partial domain knowledge.
In other words, unlike in most current SN applications, we
are not aware of the kind of events that may occur, nor of
their possible locations in the environment.

An event stands as some phenomenon (of interest) that oc-
curs in some geographic area of the environment. Moreover,
in large environments various distinct events are likely to oc-
cur at the same time in different areas. Figure 1.a illustrates
an environment where four different events occur simulta-
neously (each color represents a distinct event). Observe
that the presence of multiple, spatially-distributed events
has the effect of partitioning the environment. However, in
uncharted environments the events (and thus its partitioning)
may not be known at design time. Therefore, sensors need
to be capable of configuring themselves according to events
occurring in each location in such a manner that their
selected configurations allow each of them to efficiently
monitor/control/track the events.

Figure 1. a) Distribution of four different events in an environment, (each
color signifies a distinct event); b) state of the environment after the (diffuse)
events expand and/or shrink; c) state of the environment if all previous
events disappear, and new distinct ones take their place.

Furthermore, in real-world situations, events usually
change over time (i.e they are dynamic, with a diffuse or
moving nature). For example, figures 1.a and 1.b depict the
transition of four diffuse events (by expanding or shrinking);
whereas the differences between figures 1.a and 1.c show a
harsher transition in which the four events disappear and
five new ones take their place (the new colors in figure 1
represent the new events). Hence, the sensors also need to
adapt their configuration to cope with changes.

Before formalizing our problem, we need to detail some
working assumptions.

A. Assumptions

Firstly, we assume that a large number of sensors may
be deployed in a non-deterministic manner (e.g they are
dropped from a helicopter) over a large environment. Thus,
only those events that are geographically available to the
sensors’ locations will be monitored [6]. We also assume
that the sensors are technologically capable of monitoring
many different types of events (i.e for any event there exists
a sensor configuration capable of monitoring it).

Following [5], we consider that collections of neighbor-
ing sensors are likely to reside on the same environment
partition. Hence, experiencing the same event for periods of
time during the operation of an SN. Therefore, they are also
likely to require similar configurations.

Moreover, the uncharted nature of the environment means
that the possible events are not catalogued (identified).
Neither are the geographic areas where events may occur.
In other words, a mapping between regions (locations) and
events is not available. Consequently, the sensors need to
have at their disposal a large set of possible configurations
to cope with a large variety of possible dynamic events (i.e
the sensors are highly configurable).



Moreover, we assume that each sensor has a preference
structure [8] that expresses the satisfaction of any particular
configuration when faced with a choice between different
alternatives. Thus, a preference structure brings together all
possible alternatives and represents a sensor’s preferences
over the set of possible configurations. In order to value
a configuration, we assume that each sensor can measure
the value of the information (observations) collected. This
approach is similar to the one taken in [9], and in general it
is a common in the data fusion and the tracking literature.

Finally, the sensors may need to be some period of
time in the environment to find their proper configurations.
Therefore, even though sensors can be added or removed at
any point in time, the sensor population does not fluctuate
wildly [6].

B. Formalization

It is time to formalize the monitoring problem faced
by sensors considering the assumptions in section II-A. At
any time t there is a fixed set of sensors in the network
S = {s1, . . . , sn} and a variable number of spatially-
distributed events Et. Henceforth, we shall refer to E as
the set of all events over time. Let r : E → S be a
function that maps each diffuse event to the sensors spatially
situated in the same region. We assume that all sensors are
homogeneous and there is a finite set of configurations K for
them. By configuration we mean a schedule of parameterized
operations (e.g. measurements: heat, water level, presence
of gas; processing information, processing, sleeping). Let
us : K×E → R be a sensor utility function that allows each
sensor to assess the utility of a given configuration. Based
on this definition, given some event ei ∈ E we can assess
the utility of the configurations of the sensors situated in
the very same region as ei as ue(ei) =

∑
s∈r(ei) us(κs, ei),

where κs stands for some configuration of sensor s. Now we
can readily derive the utility of the configuration of a whole
sensor network, the network utility uN , for a distribution
of events Et as uN (Et) =

∑
ei∈Et ue(ei). Finally, we can

pose the problem faced by the sensors in the network as that
of finding at each time t the configuration K∗ that maximizes
the network utility such that:

K∗ = argmax
K∈Kn

∑
ei∈Et

∑
s∈r(ei)

us(κs, ei) (1)

where Kn stands for the n-ary Cartesian product over the
set of configurations K, and hence K = κ1× . . .×κn stands
for a joint configuration of the sensors in the network.

C. Challenges

The main challenges of the problem originate from the
lack of a priori information in an uncharted environment.
Because neither the possible events nor the environment
characteristics are known beforehand (at design time), a
region identification algorithm cannot be used to select the

Figure 2. Diffusion state transition.

appropriate configurations (unlike [5]). Hence, the sensors
must search for their proper configurations in a likely large
configuration space.

Additionally, although we assume that neighboring sen-
sors are likely to experience the same event (thus requiring
similar configurations), this may not always be the case.
Sensors close to the frontier of two (or more) different
events can have neighbors that require completely different
configurations.

Moreover, there are also challenges related to the (tech-
nological) capabilities of sensors. Even though sensors are
becoming more and more computationally powerful they
are still somewhat limited. Therefore, any approach used
to solve the problem should not take a significant amount
of processing power away from the sensor duties. In other
words, a low computational overhead is desired. Further-
more, it is well known that sensors are quite restricted
energy-wise. Hence, the algorithms employed by the sensors
must be as energy efficient as possible.

III. A COLLECTIVE APPROACH

In this section we propose an approach to solve the
problem described in section II, namely for sensors to
dynamically find the most useful configurations required to
monitor the dynamic events occurring in their geographical
location. The proposed approach is designed to function in
uncharted environments (where only partial domain knowl-
edge is available) using the sensors’ local feedback.

As stated before, it has been argued [5] that in environ-
ments with spatial events (e.g diffuse events) it is safe to
assume that neighboring sensors may require the same (or a
similar) configuration since they are prone to be monitoring
the same event. Therefore, it is reasonable for sensors to
collectively coordinate and cooperate to discover the most
useful configurations, hence solving the problem in equation
1.

In situations where the sensors are deployed to an un-
charted environment, it may be the case that the only avail-
able useful information is the one provided by the sensors’



own feedback function. Under such circumstances, coop-
eration becomes necessary since sensors can improve their
partial domain knowledge (regarding the configurations) by
sharing their local experiences. Moreover, the number of
possible configurations may be very large, thus it may be
unfeasible for the sensors to individually search for their
configurations. Furthermore, cooperation and coordination
are also useful computationally speaking, because even
though sensors are becoming more powerful, their resources
(e.g CPU) are still constrained. Hence, if multiple sensors
search for the same configuration, they can save time and
power by searching together. Once a sensor finds a good
configuration, it can be promptly shared with its searching
peers.

To that aim, we designed the collective diffusion search
(CDS) as an algorithm based on the collective sharing
of configurations amongst neighboring sensors. The state
machine of the CDS (as implemented by each sensor) is
shown in figure 2. In what follows we describe the main
components of CDS and their rationale.

A. Diffusion

We opt to employ diffusion as the component in charge
of sharing the configurations since we regard it as an effi-
cient (computation-wise) mechanism. In a sensor, diffusion
consists in a broadcast (to its close-range neighbors) of
its configuration. However, sending a broadcast (message)
requires energy consumption. Hence, if a sensor’s priority
was to save as much energy as possible, then it is in its
best interest to reduce its number of broadcasts. With that
aim, a sensor’s likelihood of sending a broadcast can be
regulated through a probability of diffusion (pdiffusion). The
higher the value of this probability, the most likely a sensor
is to broadcast its configuration. From a computational
perspective, diffusion has a low overhead on the transmitting
(sensor) side, since it amounts to sending a message without
caring who will receive it. Nonetheless, receiving various
broadcasts raises an issue, because a receiving sensor needs
to decide what to do with these received configurations

B. Culling

Attaching in each broadcast the utility of a configuration
effectively provides a receiving sensor with the means to
decide how to deal with multiple incoming configurations.
This new information allows each receiving sensor to im-
plement a culling component to dismiss useless (received)
configurations. For instance, we implement this through a
filter that selects the best received configuration and only if
it is better than the sensors own.

Through diffusion and culling, groups of sensors that are
close by and that experience the same event will adopt the
same configuration. What is more, this has the effect of
emerging of a common configuration per event partition,
since a configuration is only diffused to where it is useful.

For example, imagine an environment partitioned by two
different events (e1 and e2) and consider a sensor, s1,
located on the e1 partition but with at least a neighbor,
s2, on the e2 side. Now assume that sensor s1 knows
the best configuration for its event (it has a high utility),
which it will broadcast to its neighbors. Sensor s2 on the
e2 partition receives the broadcast containing this highly
valuated configuration, thus its culling will make the sensor
adopt it. Nonetheless, since this configuration is not useful
for event e2, when employed by s2 it will be valuated poorly.
Therefore, even though sensor s2 will still broadcast it to its
neighbors in the e2 partition, their culling filter will dispose
it, halting the diffusion of the configuration on that side.

C. Intermixing

Notice that diffusion and culling do not have searching
capabilities, at most they will establish the best configuration
known by any of the sensors (per event). Thus, some
searching needs to be incorporated since its unlikely to
expect that some sensor knows its most useful configuration
a priori. A low-overhead search method, consists in inter-
mixing (combining) two configurations (the selected through
culling and the sensor’s current one) to create a new one.
This can be regarded as using someone else’s experience
without completely forgetting your own. For instance, we
implement this by combining a part of selected configu-
ration with part of the sensor’s current one (the parts are
randomly decided), in such a manner that new configuration
is constructed. Nevertheless, sensors cannot always depend
on the usefulness of their neighbors configurations (e.g if all
the neighboring sensors have the same configuration and it
is not useful).

D. Local improvement

This component makes each sensor capable of searching
for new configurations without depending on its neighbors.
Moreover, this not only helps to improve the existing
configurations, it is particularly necessary in environments
with dynamic events since the events can disappear or ap-
pear unexpectedly. Local improvement can be accomplished
(without expending much processing power) by introducing
a random change to a sensor’s configuration with some
probability (pimprovement). Various disciplines have shown
this to be effective [10].

E. Collective Diffusion Search

Altogether, in collective diffusion search each sensor
continuously attempts to propagate its configuration while
trying to improve it at the same time. The sensor receives
some broadcasts which are then filtered through culling in
an attempt to determine if there is a better configuration.
In case there is, the sensor’s configuration and the selected
one are combined in an attempt to create a new (and ideally
better) configuration. Afterwards (or if culling fails to select



a configuration), local improvement can be used to continue
the search for the best configuration. Once this is over, the
sensors configuration is used and its utility valuated (act and
evaluate in figure 2) through the feedback generated by the
performed actions. Lastly (is a matter of perspective) the
sensor wraps its configuration along with its utility into a
message for broadcasting. An execution of the state machine
shall hereafter be referred as a communication cycle.

Overall, this approach can be regarded as a distributed
evolutionary process, since configurations evolve through
time as a consequence of the constant application of diffu-
sion, combination and local improvements. Once the config-
urations cannot evolve anymore, the end result is a stabilized
set of useful configurations.

To summarize, collective diffusion search is a low over-
head, but powerful distributed algorithm that when embed-
ded in each sensor empowers them to dynamically find the
most useful (utility-wise) configurations even when only
partial domain knowledge is available (uncharted environ-
ments). The algorithm can be easily implemented in a
sensor, since its formed of four lightweight/low overhead
components: diffusion, culling, intermixing
and local improvement.

IV. EXPERIMENTAL RESULTS

The aim of our experiments is to verify two hypotheses,
if through collective diffusion search: i) the sensors can find
the configurations that maximize their utility according to
the events that occur in their location; and ii) the sensors can
reconfigure themselves in the response to dynamic events.

To that end, we designed three types of experiments:
1) event recognition (figure 1.a): recently deployed sensors
must find the configurations needed to monitor the events oc-
curring in the environment; 2) sensor reconfiguration against
smooth event changes (transition from figure 1.a to 1.b): the
existing events’ area of covering changes over time (diffuse
events); and 3) sensor reconfiguration against bold event
changes (transition from figure 1.a to 1.c): existing events
disappear and completely new events (different covering and
features) take their place.

It is important to understand that in real-like situations
dynamic events may change slowly through time. However,
in our experiments we opt to make it harder for the sensors
by introducing the changes in a more abrupt manner. In a
real deployment such abruptness may actually occur from
a sensor’s perspective, since the sensors may sleep for long
intervals. Thus, every time a sensor awakens the events may
have different features.

A. Empirical settings

Each of our experiments consists of 50 discrete event
simulations, each one up to 5000 ticks. Our simulation
environment is formed by a 100 x 100 grid initially covered
by four distinct events. Figure 1.a depicts with different
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Figure 3. Results of convergence after the initial deployment. The black
dots mark when the best configurations were found.

colors the form of each event at start up. Observe that
all events are different from each other in area, shape,
and borders. During a simulation a set of 1500 sensors is
randomly deployed unto this environment. However, because
we are evaluating their self-configuration capability in an
uncharted environment, none of the sensors is aware of the
environment partitioning nor of the possible dynamic events.
Hence, each sensor starts with a random configuration.

A sensor configuration is given by an ordered sequence
of 5 actions selected from a pool of 20 possible actions (
i.e ‖K‖ = 205). Following the assumption in section II-A,
our environmental feedback function valuates if the actions
in the configuration are useful or not.

B. CDS settings

The parameters for the diffusion component were set to
(unless otherwise indicated): a broadcast range of 4 cell
and ∼ 20% likelihood of broadcast per sensors at a given
point in time (pdiffusion = 0.20). Whereas in the local
improvement, each action in the configuration has a 0.0008
probability of randomly changing.

C. Metrics

To measure the usefulness of the CDS approach described
in section III, we counted the number of sensors that found
the configuration needed to monitor the event in their loca-
tion. The counts of each simulation in the experiment were
then aggregated using the inter-quartile mean. From here on,
configuration 1,2,3... refers to configuration employed by the
majority of the sensors located in the area of event 1,2,3....
Furthermore we used communication cycles (also defined in
section III) as a time scale for the measurements.

D. Initial Deployment

The event recognition experiments aim to verify if col-
lective diffusion search allows recently deployed sensors to
find and adopt their most useful (utility-wise) configurations
required by their location. Moreover, we are interested
in measuring: i) how fast these configurations are found
and adopted by sensors; and ii) how much energy (as a
consequence of the transmitted messages) it requires.



Figure 3 shows that CDS is quite effective in finding
the most useful configurations for almost all the sensors.
Observe that once the configurations are found (black dots
in the figure) the sensors promptly adopt them. These
configurations are found at ∼ 20,∼ 30,∼ 40 and ∼ 60
communication cycles for each of the four events respec-
tively. Figure 4 shows in more detail (for a single sim-
ulation and for the sensors in event 3) the search and
adoption of the most useful configuration. Firstly, there is
an initial variety of different configurations (initial spike in
the standard deviation ). Next, as a result of the diffusion
and culling components collectives of sensors adopt similar
(not so bad) configurations. The adopted configuration is
then improved (through intermixing and local improvement)
at each communication cycle, and with each improvement
(observable in the average utility) more sensors start to adopt
it (shown by the decrease in the deviation). This continues
until the configuration that provides the highest utility is
found and consequently adopted by most of the sensors.

However, observe that even though the average utility
stabilizes (∼ 1.0), the standard deviation still indicates
that not all sensors adopt same configuration. On the one
hand, this occurs because at any point in time the local
improvement component causes a small number of sensors
to try new configurations. On the other hand, because a
sensor broadcasts its configuration to all its neighbors, the
sensors in the frontiers (near the geographic border of two or
more different events) may receive conflicting configurations
from their neighbors (similar to the example in section III).

Moreover, notice that depending on features of the event,
some configurations require more time to be adopted by
sensors. This appears to be related to the dimension of
the area occupied by the event, and thus by the number
of sensors that require the same configuration. Event 4 is
a particularly pronounced example of this effect (sensors
localized in the region of this event take the longest to
find the best configuration and thus to adopt it: ∼ 60).
Event 4 encompasses the smallest area and has the lowest
number of sensors by far, which seem to give empirically
credence to the idea that the number of sensors influence
how fast a configuration can be found and adopted. From the
algorithmic point of view, this is reasonable in a collective
approach because fewer sensors are looking for the same
configuration. Although there may be another factor to
consider, the location of the event. Observe that event 4
is completely surrounded by the other events, which means
that sensors in that area are constantly receiving conflicting
configurations from their neighbors. Additionally, because of
its small dimensions a broadcast originated in its frontiers
may cover a significant area of the event. In other words,
sensors as far as the center of the event may receive
conflicting configurations.

To summarize, from these experiments we conclude that:
i) through CDS sensors can find the most useful configura-
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tion for the events in their locations; and ii) the dimensions
and location of the events affect how promptly such config-
uration is found and adopted.

E. Collective vs Individual Search

The results of the previous section have shown that
collective search is an effective self-configuration approach.
However, it is not clear if our approach provides an advan-
tage against individual search. Therefore, in this section we
experiment with sensors that employ an individual search
mechanism instead of a collective one.

It is not hard to see that the CDS shares various similar-
ities with evolutionary algorithms (EAs)[11], to the point
that it could be considered a distributed EA. Hence, it
makes sense to employ a classic EA as the individual search
approach to compare with.

To that end, for the experiments in this section we
endowed each sensor with an EA to help it find its best
configuration. The chosen EA was a classic genetic algo-
rithm [12] with a population of 20 configuration (per sensor).
In other words, to complete an iteration of the algorithm
each sensor needs to evaluate 20 configurations. This is
significantly higher from the CDS which only requires one
evaluation per iteration.

As to the actual results of the experiments, each sensor
needs around 2000 iterations to individually find its best
configuration. In other words, 4 × 105 configurations are
evaluated per sensor. This is extremely high when compared
to the CDS, which needs around 60 (in the worst case) to
find the best configuration for all sensors.

Hence, we can conclude that collective search can be
considered as the more appropriate choice for sensors self-
configuration.

F. The Role of Diffusion

In section III, it was stated that a sensor can save energy
by reducing its number of broadcasts, and that this is
regulated by the probability of diffusion. Moreover, the
experiments in the previous subsection showed that even
though at any given time only ∼ 20% of the sensors
were broadcasting the best configuration was still found and
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Figure 5. Communication cycles required by sensors to adopt the best
configuration using different diffusion probabilities.

shared in a reasonable amount of time (∼ 70 communication
cycles). Therefore, next we aim to understand how different
probability values affect the CDS.

To that end we repeated the experiment from the previous
scenario for different probabilities of diffusion (pdiffusion ∈
{1.0, 0.9, 0.8, 0.6, 0.5, 0, 4, 0.3, 0.2, 0.1}). Figure 5 summa-
rizes the experimental results by showing the number of
communication cycles required for the sensors (at least 90%)
to find and adopt the most useful configuration (according to
their localization). Observe that for most events the higher
the diffusion probability (the larger the number of sensors
broadcasting) the faster the most useful configurations are
adopted.

However, small (area-wise) events do not follow this
trend. With a high diffusion probability, sensors also require
more time to find and adopt the most useful configuration.
Such effect occurs because (almost) constant diffusion di-
minishes the search capabilities of the CDS in small areas,
which were already reduced because of the low number of
sensors in the event.

Although, at first glance it may appear desirable to use a
somewhat high probability of diffusion, one needs to con-
sider what such probability means energy-wise. For instance,
when using the highest probability of diffusion a sensor
broadcasts its configuration at every communication cycle,
which requires considerable energy consumption. Overall,
the number of transmitted messages (broadcast) used by the
sensors to reach their best configurations (for the four events)
is of ∼ 167500 (or ∼ 110 messages per sensor). Whereas
using a low value (0.2) may slightly increase the number of
communication cycles needed by most sensors to adopt their
configuration but the reduction in the number of messages
is quite significative ( ∼ 18000 overall, or ∼ 12 per sensor).

Finally, we can conclude that the probability of diffusion
represents a straightforward parameter that controls the trade
off between the time needed to find the proper configura-
tions and the energetic consumption (as a product of the
transmitted messages).
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Figure 6. Reconfiguration after smooth environmental change. The vertical
dashed line (300 cycles) marks the environment change.

G. Dynamic Events

The previous experiments have shown that CDS allows
recently deployed sensors to configure themselves according
to the existing environmental events. However, as stated in
section II events are usually dynamic, i.e they change over
time (e.g expand, shrink, appear, disappear). Therefore, the
purpose of this section is to verify if sensors with CDS can
reconfigure themselves in response to dynamic events. In
what follows, we present the two different types of dynamic
events against which we tested the CDS.

Smooth event changes
In these experiments some time (300 cycles) after the

initial deployment, the area covered by each of the events
expands or shrinks (diffuse events), but the most useful con-
figuration required by each event stays the same (transition
between figures 1.a and 1.b). Therefore, in such situations
the sensors should reconfigure themselves by redistributing
the existing configurations amongst themselves (i.e there is
no need to search for new configurations). The CDS can
accomplish this purely through the diffusion and culling
components. Figure 6 shows that through CDS sensors
respond promptly to changes in the environment (marked
by the vertical line). The sensors, for which the event in
their location changes, smoothly transition to their newly
required configurations by adopting them from their stable
neighbors. For instance, the sensors monitoring event 1
(the blue circle line of configuration 1) suffer the most
complicated transition since the region of the event shrinks
from one side and expands from another. The configuration
redistribution for these events is observable in figure 6
(between the 300−400 communication cycles) by the sudden
decline of the sensors with configuration 1 followed by a
sudden increment.

Moreover, events may be very dynamic and thus change
continuously. Therefore, to validate the CDS we constructed
a scenario that continuously transition back and forth be-
tween figures 1.a and 1.b. The results of the experiment
are illustrated on figure 7 (only the configurations of the
event 2 and 4 are shown since they are most affected).
Notice that every time the smooth changes occurs the sensors
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Figure 7. Reconfiguration when smooth changes occur continuously.
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Figure 8. Reconfiguration after a bold environmental change. The vertical
dashed line (300 cycles) marks the environment change.

react promptly to adopt their new configuration (∼ 30
communication cycles).

Bold event changes
For these experiments we model a more extreme dynamic

event: the sudden disappearance of the existing events and
the sudden appearance of completely new ones (transition
between figures 1. a and 1.c). Thus, unlike in the smooth
change, the sensor need to search (again) for the most useful
configurations required by the new events. Furthermore,
since most of the sensors had (previously) stable configu-
rations (that now are completely useless) there is an overall
lack of configurations diversity (most sensors have one of the
4 previous configurations). Hence, during this stage diffusion
and intermixing does not provide much help, and its up to the
local improvement component to increase the configuration
diversity (once there is some diversity intermixing speeds
up the search).

Figure 8 shows the results of the simulations. Observe
that after the bold change (the vertical line at 300 cycles) the
sensors start to diversify their configurations (the number of
sensors with the same configuration declines). Once some
sensor(s) find some useful configurations they begin to
collectively improve it until the most useful ones are found.
However, unlike during the initial deployment, it takes
longer (∼ 600 cycles) to find the most useful configurations
for all the five events. On the one hand this is caused
by the above-mentioned lack of diversity at the moment
of the change. On the other hand, like the experiments in
subsection IV-D the dimensions and frontiers of the events

affect how fast the configurations are found and adopted. For
instance, after the bold change four of the five regions are
considerably small (consequently there is a low number of
sensors located in the event), which slows down the search.
Furthermore, notice that even though the new event 1 covers
a large area and its most useful configuration is (relatively)
promptly found (∼ 100 cycles) it take some time for most
sensors located on the event to adopt it (∼ 200 cycles). The
reason behind this, is that the region of event 1 has a lot
of frontiers which as we conclude before (subsection IV-D)
affect the effectiveness of diffusion.

To summarize, from these experiments we conclude that:
i) through CDS sensors can reconfigure themselves in re-
sponse to both smooth and bold environmental changes;
ii) the diffusion component makes the CDS particularly
effective against smooth changes; iii) local improvement is
a key component to accomplish reconfiguration if a sudden
event where to appear; and iv) the speed of the search
and adoption of configurations are indeed affected by the
dimensions and frontiers of the events.

H. Fault Resilience

The experimental results so far have shown that CDS
allows a collective of sensors to successfully (re)configure
themselves over uncharted environments. However, our ex-
periments have failed to consider that hazardous conditions
are frequently a reason why such environments are un-
charted. Thus, sensors may be more prone to failures, e.g
because of the deployment impact (sensors may be thrown
from an helicopter), fire or extreme heat and animal or
vehicular accidents [13]. Therefore, in this section we show
the fault-resilience capabilities of the CDS.

One could naively assume that the worst failure case
would be if some sensors cease to function completely.
Nonetheless, this type of failure is meaningless for CDS,
since it is a collective approach that relies on the exis-
tence of multiple sensors. The actual worst failure cases
are malfunctioning reception and/or malfunctioning sensing
(measuring). The former, mainly refers to a lack of capability
in receiving communications from other sensors, whereas
the latter refers to measuring errors resulting from either
damaged or badly calibrated equipment. Therefore, we can
say that the CDS is fault resilient if it is capable of dealing
with such kind of (worst case scenario) failures.

To that end we designed two sets of failure experiments
to evaluate the CDS :
• a malfunctioning reception scenario; and
• a malfunctioning reception and sensing scenario.

Malfunctioning Reception
These experiments model a scenario where during the

initial deployment some sensors (with probability pfailure)
become incapable of receiving communications, thus making



Event 3 Event 1 Event 2 Event 4
Failure Best # Non-failing Best # Non-failing Best # Non-failing Best # Non-failing

probability configuration sensors configuration sensors configuration sensors configuration sensors
None 98.54 % 291 99.42 % 540.432 98.28 % 535 98.47 % 133

Medium 96.66 % 236 99.54 % 429 97.57 % 428 94.03 % 106
High 85.84 % 147 84.29 % 270 91.87 % 271 62.43 % 66

Very High 19.64 % 87 22.05 % 165 19.74 % 159 19.37 % 39

Table I
PERCENTAGE OF WORKING (NON-FAILING) SENSORS WITH THE BEST CONFIGURATION FOR DIFFERENT RECEPTION FAILURE PROBABILITIES.

Event 3 Event 1 Event 2 Event 4
Failure Best # Non-failing Best # Non-failing Best # Non-failing Best # Non-failing

probability configuration sensors configuration sensors configuration sensors configuration sensors
None 98.54 % 291 99.42 % 540 98.28 % 536 98.47 % 132
Low 97.68 % 262 97.81 % 486 97.81 % 481 90.33 % 120

Medium 93.33 % 235 90.71 % 429 96.589 % 428 25.13 % 106
High 03.43 % 202 11.90 % 378 04.26 %2 375 05.57 % 93

Table III
PERCENTAGE OF WORKING (NON-FAILING) SENSORS WITH THE BEST CONFIGURATION FOR DIFFERENT RECEPTION/MEASURING PROBABILITIES.

Failure Event 3 Event 1 Event 2 Event 4
probability

None 52 54 46 70
Medium 79 79 66 148

High 321 347 154 >350

Table II
COMMUNICATION CYCLES NEEDED FOR DIFFERENT RECEPTION

FAILURE PROBABILITIES.

them incapable of actually adopting their proper configura-
tion. However, since they are still capable of transmitting
they will constantly send useless communications (their ini-
tial random configuration) to their neighboring sensors. We
ran experiments where the failure probability was medium
(∼ 20% of the sensors fail), high medium (∼ 50% of the
sensors fail) and very high (∼ 70% of the sensors fail).

Table I shows the percentage of the functioning sensors
that found the best configuration for their event. Observe
that even when around 20% of the sensors fail, almost all of
the remaining functional ones are able to find and adopt the
best configuration. However, as the number of sensors that
fail increases the number of sensors that can establish the
best configuration decreases. For instance, in the unrealistic
case of 70% failure probability, very few of the remaining
functional sensors can establish their needed configuration.
This is to be expected since the number of failing sensors
sending useless configurations is very high. Moreover, from
the event 4 results we can once again observe that the
size of the event (specifically the number of sensors in the
event) can affect the CDS. This is reasonable since failing
sensors means even less sensors searching for the solution.
Nevertheless, overall the level of resilience shown by the
CDS for this type of failure is very high.

Regarding how failure affects the convergence time, table

II shows the number of communication cycles needed so
that 90% of the sensors establish the best configuration.
As expected, the higher the failure probability the more
communication cycles that are needed. In particular, the
sensors over the smallest event region (event 4) are the most
affected.

Malfunctioning Sensing and Reception
Next we model a more extreme failure situation. Besides

being incapable of receiving incoming communications,
failing sensors also suffer from sensing errors. Moreover,
for our experiments we specifically model the worst kind
of sensing error. That is to say, that a failing sensor (for
some reason or another) will always valuate its configuration
as the best, regardless of its actual usefulness In other
words, these sensors will constantly mislead their non-failing
neighbors by broadcasting their configurations as if it were
the best. The experiments were ran with a duration of 400
communication cycles and the following failure probabilities
where employed: low (∼ 10% of the sensors fail), medium
(∼ 20% of the sensors fail) and high (∼ 30% of the
sensors fail). Notice that these probabilities are lower that
those in the previous section because this type of failure is
considerably worst than the one employed there.

We observe from table III that the CDS has a good
resilience against a failure probability of 10%. For almost
all events more than 97% of the sensors reach their best
configurations, and it is only event 4 (the event with the
smallest region) the one that reaches just 90%. Furthermore,
observe that sensors sensing event 4 are those that suffer the
most when the failure rate increases. This is not surprising
since its low number of sensors makes the non-failing
sensors more prone to succumb to the misleading config-
urations broadcasted from the failing sensors. Nevertheless,



Failure Event 3 Event 1 Event 2 Event 4
probability

none 52 54 46 70
low 92 103 89 291

medium 266 299 215 0

Table IV
CONVERGENCE TIME TO THE BEST CONFIGURATION FOR DIFFERENT

RECEPTION/MEASURING PROBABILITIES.

the resilience shown by the CDS for the other event regions
is very good (∼ 90 %), specially for this kind of failure.

As for the convergence time (see table IV) it is not
surprising to observe that more communication cycles are
needed for this type of failure. However, the number of
cycles is still low enough to make the CDS practical (in
particular when compared to an individual search IV-E).

Overall, the experiments show that the collective diffusion
search mechanism has a considerable good resilience against
sensor failures. These results are encouraging since failures
are more prone to occur in uncharted environments.

V. CONCLUSIONS

In this paper we presented collective diffusion search
(CDS) as a low overhead distributed algorithm that em-
powers sensors in a sensor network to collectively find
the configurations needed to monitor the events occurring
in an uncharted environment. Moreover, our empirical ex-
periments showed that through this algorithm sensors not
only are capable of configuring themselves, they can also
reconfigure themselves in response to various levels of
dynamic changes in the events. Furthermore, our results
indicate that CDS is quite efficient energy-wise since the
number of message transmissions required by the sensors’
self-configuration is quite low. Additionally, the CDS has
shown to be considerably resilient against sensors failures.
These are all highly desirable properties for any sensor’s
algorithm.

Finally, even though CDS accomplished its purpose in all
of our experimental scenarios, we observed that the number
of sensors, and the dimensions and locations (frontiers) of
the event affect the speed of the sensors’ re-configurations.
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