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Abstract— In [1] the authors considered finitely-valued modal
logics with Kripke style semantics where both propositions and the
accessibility relation are valued over a finite residuated lattice. Un-
fortunately, the necessity operator does not satisfy in general the nor-
mality axiom (K). In this paper we focus on the case of finite chains,
and we consider a different approach based on introducing a multi-
modal logic where the previous necessity operator is replaced with a
family, parametrized by truth values different from zero, of necessity
operators each one semantically defined using the crisp accessibility
relation given by the corresponding cut of the finitely-valued origi-
nal accessibility relation. This multimodal logic is somehow more
appealing than the original modal one because axiom (K) holds for
each necessity operator. In this paper we axiomatize this multimodal
logic and we prove that, in the case the starting residuated lattice is
a finite BL chain, the modal and the multimodal languages have the
same expressive power iff this algebra is an MV chain.

Keywords— many-valued modal logic, fuzzy modal logic,
Łukasiewicz modal logic, fuzzy logic.

1 Introduction

Fuzzy modal logics is a subfield of mathematical fuzzy logic
with growing interest. The interested reader is referred to [1]
and the references therein for recent developments. Indeed,
in [1] the same authors proposed a mathematical definition of
what a many-valued (uni)modal logic is. According to this
definition many-valued modal logics are sets1 of modal for-
mulas, denoted by Λ(K,A), arising naturally from the seman-
tics given by a complete residuated lattice A, whose support
A corresponds to the intended set of truth values, and a class
K of Kripke frames valuated over the set A.

In [1], due to simplicity reasons, the authors only consid-
ered modal formulas obtained enriching the propositional lan-
guage of residuated lattices with a necessity operator � (i.e.,
without a primitive possibility operator ♦). These modal for-
mulas may include or not canonical constants to talk about the
truth values. By adding canonical constants we mean to add
one constant a for every element a in the residuated lattice A
in such a way that each one of these constants is semantically
interpreted by its canonical interpretation (i.e., the very ele-
ment a). In the case that we allow canonical constants in the
modal language we use the notation Λ(K,Ac) to stress their

1Besides these sets in the same paper it is also considered the
consequence relations Λ(l, K,A) and Λ(g, K,A) corresponding to
the local and global many-valued modal consequence relations.

presence. In the present paper we will always assume that the
language has canonical constants.

An assumption that we consider throughout the present pa-
per is that A is a chain (to keep us inside the fuzzy realm) and
finite, i.e., A is a finite MTL chain. We remind the reader that
finiteness is crucial in the results obtained in [1], but linearity
is not required there. In the next paragraphs we point out some
of the results in [1] for the particular case of finite chains.

One of the main results in [1] is the presentation of a
complete calculus for the many-valued modal logic Λ(K,Ac)
when K is the class Fr of all frames valued over A, assuming
a complete calculus is already known for the non-modal logic
without canonical constants (denoted by Λ(A)). This axiom-
atization is shown in Table 1. It is worth pointing out that in
the case that A is a finite BL chain, it is known [1, Propo-
sitions 2.5 and 2.7] that there are axiomatizations of Λ(A)
based on only one rule, the Modus Ponens rule; but there are
examples of finite MTL chains where it is strictly necessary to
add more rules besides Modus Ponens.

Among the difficulties to find such an axiomatization is that
while the meet distributivity axiom

(�ϕ ∧ �ψ) ↔ �(ϕ ∧ ψ) (MD)

is valid (as in the classical modal case), in general this is not
the case in the many-valued modal setting for the normality
axiom

�(ϕ→ ψ) → (�ϕ→ �ψ) (K)

The normality axiom is indeed valid in Λ(Fr,Ac) iff the resid-
uated lattice is a Heyting algebra (i.e., the interpretation of the
strong conjunction coincides with the meet).

The situation is much more difficult in case that there are no
canonical constants in the language, and as far as the authors
are aware the only known axiomatizations for many-valued
modal logics of the form Λ(Fr,A), where A is not a Heyting
algebra, are the ones given in [1] for the case that A is a finite
MV chain. The main drawback of the axiomatization there
given is that it is rather artificial, and hence it is not absolutely
clear what are the basic principles of these many-valued modal
logics.

On the other hand, if one considers K as the class CFr of
crisp Kripke frames (i.e., those Kripke frames valuating the
accessibility relation over the set2 {0, 1}) then the problem

2It is worth pointing out that since A is a chain it holds that the
set {0, 1} coincides with the set {a ∈ A : 1 = a ∨ ¬a} of Boolean
elements of A.
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Table 1: Axiomatization of the set Λ(Fr,Ac) when A is a finite chain

• the set of axioms is the smallest set closed under substitutions containing

– the axiomatic basis for Λ(A),

– the witnessing axiom
∨

a∈A(ϕ↔ a)

– the bookkeeping axioms (a1 ∗ a2) ↔ a1 ∗ a2 (for every a1, a2 ∈ A and every ∗ ∈ {∧,∨,�,→}),

– �1, (�ϕ ∧ �ψ) → �(ϕ ∧ ψ) and �(a→ ϕ) ↔ (a→ �ϕ) (for every a ∈ A),

• the rules of the basis for Λ(A), the rule k ∨ ϕ � ϕ (where k is the coatom of A)
and the Monotonicity rule ϕ→ ψ � �ϕ→ �ψ.

resembles much more the one in the classical modal setting
since now the normality axiom is valid. It is known [1] that
Λ(CFr,Ac) is the set of modal formulas derivable in the cal-
culus given in Table 2. This table is, roughly speaking, saying
that we only need to add to Λ(Fr,Ac) the normality axiom
plus the axiom �(k∨ϕ) → (k∨�ϕ) (where k is the coatom of
A) in order to capture the logic of crisp frames. We point out
it is known that in general it is not enough to add the normality
axiom3 (cf. Remark 3.2); and we notice that the last axiom is
a particular case of the formulas �(a ∨ ϕ) → (a ∨ �ϕ) with
a ∈ A, all these formulas being valid in Λ(CFr,Ac). Notice
that in Table 2 we have replaced the Monotonicity rule by the
Necessity rule, but this is not important due to the presence of
the normality axiom.

The aim of this paper is to apply to the realm of many-
valued modal logics the well known [2] correspondence be-
tween

• a fuzzy binary relation over A (i.e., a function R : W ×
W −→ A), and

• an A\{0}-indexed and decreasing family of crisp binary
relations (i.e., a family {Ra : a ∈ A, a �= 0} such that if
a � b then Rb ⊆ Ra ⊆W ×W ).

This correspondence is given by the following identities

Ra = {(w1, w2) ∈W ×W : R(w1, w2) � a} (1)

R(w1, w2) = sup{a ∈ A : (w1, w2) ∈ Ra} (2)

The fact that A is a finite chain (in particular a complete lat-
tice) is crucial in order to see that the previous identities in-
duce a bijective correspondence.

In other words, the previous correspondence transforms a
Kripke frame into a family of crisp Kripke frames. This trans-
formation suggests to use a multimodal language (with one
modality �a for every element a ∈ A \ {0}) to describe prop-
erties of Kripke frames. The advantage of this method is that,
since the modalities �a’s are induced by crisp Kripke frames,
the normality axioms

�a(ϕ→ ψ) → (�aϕ→ �aψ)

are valid.
3In [1] it is proved that if we only add the normality axiom to

Λ(Fr,Ac) then we get an axiomatization for the modal logic given
by the class of idempotent frames (i.e., those Kripke frames valuating
the accessibility relation over the set {a ∈ A : a = a � a}).

The aim of the present paper is to pursue this research line.
To this purpose in Section 2 these multimodal logics are in-
troduced, in Section 3 a complete calculus is given for them,
and in Section 4 we compare the expressive power of the crisp
multimodal approach with the unimodal one from [1]. Finally,
in Section 5 the authors analyze what it is known about these
results when there are no canonical constants in the language.

2 Defining the multimodal systems
Throughout this paper we assume that A is a fixed finite resid-
uated lattice whose underlying order is a chain. We remind
the reader that a residuated lattice is an algebra A such that:

• 〈A,∧,∨, 0, 1〉 is a bounded lattice with a linear associ-
ated order �,

• 〈A,�, 1〉 is a commutative monoid with the unit 1,

• x� z � y ⇔ z � x→ y (the law of residuation).

In the literature these algebras are well known under differ-
ent names: residuated lattices, integral, commutative residu-
ated monoids, FLew-algebras, etc. [3, 4, 5]. We stress that
finite MTL-algebras [6], finite BL-algebras [7] and finite MV-
algebras [8] are particular cases satisfying our assumption.

We stress that the algebraic language of A is given by
〈∧,∨,�,→, 1, 0〉 (with arities 〈2, 2, 2, 2, 0, 0〉). The multi-
modal language is the one obtained by enriching the previ-
ous one with canonical constants and a unary operator �a for
every a ∈ A \ {0}. We remind the reader that in this pa-
per (see p. 1) with the term modal language we denote the
language obtained enriching 〈∧,∨,�,→, 1, 0〉 with canonical
constants and one unary operator �. In case we are inter-
ested in the expansion having simultaneously, besides canoni-
cal constants, the operators �a’s and � we will use the expres-
sion full modal language. Of course we adopt the analogous
convention to talk about multimodal formulas, modal formu-
las and full modal formulas.

A Kripke frame is a pair F = 〈W,R〉 where W is a non
empty set (whose elements are called worlds) and R is a bi-
nary relation valued in A (i.e., R : W × W −→ A) called
accessibility relation. F is said to be crisp in case that the
range of R is included in {0, 1}. The classes of Kripke frames
and crisp Kripke frames will be denoted, respectively, by Fr
and CFr.

A Kripke model is a 3-tuple M = 〈W,R, V 〉 where 〈W,R〉
is a Kripke frame and V is a map, called valuation, assigning
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Table 2: Axiomatization of the set Λ(CFr,Ac) when A is a finite chain

• the set of axioms is the smallest set closed under substitutions containing

– the axiomatic basis for Λ(A),

– the witnessing axiom
∨

a∈A(ϕ↔ a)

– the bookkeeping axioms (a1 ∗ a2) ↔ a1 ∗ a2 (for every a1, a2 ∈ A and every ∗ ∈ {∧,∨,�,→}),

– �1, (�ϕ ∧ �ψ) → �(ϕ ∧ ψ) and �(ϕ→ ψ) → (�ϕ→ �ψ)

– �(a→ ϕ) ↔ (a→ �ϕ) (for every a ∈ A) and �(k ∨ ϕ) → (k ∨ �ϕ) (where k is the coatom of A),

• the rules of the basis for Λ(A), the rule k ∨ ϕ � ϕ (where k is the coatom of A) and the Necessity rule ϕ � �ϕ.

to each propositional variable and each world inW an element
of A (i.e., V : Var ×W −→ A where Var is the set of propo-
sitional variables). In such a case we say that M is based on
the Kripke frame 〈W,R〉.

If M = 〈W,R, V 〉 is a Kripke model, then the map V can
be uniquely extended to a map V ′ assigning to each full modal
formula (in particular also multimodal and modal formulas)
and each world inW an element ofA (i.e., V ′ : Fm×W −→
A) satisfying that:4

• V ′ is an algebraic homomorphism, in its first component,
for the connectives ∧,∨,�,→, 1 and 0,

• V ′(a,w) = a for every a ∈ A.

• V ′(�ϕ,w) =
∧

{R(w,w′) → V ′(ϕ,w′) : w′ ∈W}.

• V ′(�aϕ,w) =
∧

{Ra(w,w′) → V ′(ϕ,w′) : w′ ∈
W} =

∧
{V ′(ϕ,w′) : w′ ∈W,R(w,w′) � a}.

Although V and V ′ are different mappings there is no prob-
lem, since one is an extension of the other, to use the same
notation V for both. As usual we say that two formulas ϕ
and ψ are equivalent (in symbols ϕ ≡ ψ) iff for every Kripke
model M it holds that V (ϕ) = V (ψ).

Definition 2.1. The local (many-valued) full modal logic
FΛ(l,Fr,Ac) is the consequence relation obtained by defin-
ing, for all sets Γ ∪ {ϕ} of full modal formulas,

• Γ �FΛ(l,Fr,Ac) ϕ, iff

• For every Kripke model 〈W,R, V 〉 and w ∈ W , if
V (γ,w) = 1 for every γ ∈ Γ , then V (ϕ,w) = 1.

And the global (many-valued) full modal logic FΛ(g,Fr,Ac)
is the one given by defining

• Γ �FΛ(g,Fr,Ac) ϕ, iff

• For every Kripke model 〈W,R, V 〉, if V (γ,w) = 1 for
every γ ∈ Γ and every w ∈ W , then V (ϕ,w) = 1 for
every w ∈W .

In the case that we restrict our attention to multimodal
formulas or modal ones we will analogously use the no-
tations MΛ(l,Fr,Ac), MΛ(g,Fr,Ac), Λ(l,Fr,Ac) and

4The infimun of the empty set is taken, as usual, equal to 1.

Λ(g,Fr,Ac). A formula is valid iff it is a theorem of the
local (or the global) consequence relation. We will write
MΛ(Fr,Ac), FΛ(Fr,Ac) and Λ(Fr,Ac) to denote the set of
valid formulas in the corresponding language.

From this definition it is obvious that all these local and
global consequence relations are conservative expansions of
the non-modal consequence relations with and without canon-
ical constants, denoted respectively by Λ(Ac) and Λ(A).

3 Completeness of the multimodal systems
In this section we give an sketch of the proof of the following
completeness theorem.

Theorem 3.1 (Completeness). Let A be a finite MTL chain.

1. The consequence relation MΛ(g,Fr,Ac) is the conse-
quence relation axiomatized by the axioms and rules
given in Table 3.

2. The set MΛ(Fr,Ac) is the set of modal formulas deriv-
able in the calculus given in Table 3.

3. The consequence relation MΛ(l,Fr,Ac) is axiomatized
by (i) MΛ(Fr,Ac) as the set of axioms, and (ii) the rules
of the basis for Λ(A) together with the rule k ∨ ϕ � ϕ
(where k is the coatom of A).

We notice that the behaviour of the �b operators given in
this axiomatization (Table 3) is the same one that was given
for � in the case of crisp Kripke frames (cf. Table 2), plus the
addition of some axioms telling that the �b’s are somehow
nested.

Remark 3.2. Before explaining the proof it is worth pointing
out that if we delete the axioms �b(k∨ϕ) → (k∨�bϕ) from
Table 3 then we get an incomplete system. This fact can be
checked using an standard matrix argument. Let us consider
the Gödel algebra G3 with three elements {0, 0.5, 1}, and ex-
pand it with canonical constants (i.e., 0.5 = 0.5) and with the
connectives �0.5 and �1 being interpreted by the unary func-
tion f : G3 −→ G3 defined by f(x) := 0.5 → x. Then,
this algebra enriched with the set {1} of designated elements
is a matrix that is a model of all axioms and rules given in Ta-
ble 3 except for the ones of the form �b(k∨ϕ) → (k∨�bϕ).
It is not a model of these last axioms because for example
�1(0.5 ∨ 0) → (0.5 ∨ �10) = 0.5.
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Table 3: Axiomatization of the set MΛ(Fr,Ac) when A is a finite chain

• the set of axioms is the smallest set closed under substitutions containing

– the axiomatic basis for Λ(A),

– the witnessing axiom
∨

a∈A(ϕ↔ a)

– the bookkeeping axioms (a1 ∗ a2) ↔ a1 ∗ a2 (for every a1, a2 ∈ A and every ∗ ∈ {∧,∨,�,→}),

– �b1, (�bϕ ∧ �bψ) → �b(ϕ ∧ ψ) and �b(a→ ϕ) ↔ (a→ �bϕ) (for every a ∈ A and b ∈ A \ {0}),

– �b(ϕ→ ψ) → (�bϕ→ �bψ) and �b(k ∨ ϕ) → (k ∨ �bϕ) (for every b ∈ A \ {0}) (where k is the coatom of A),

– �b1ϕ→ �b2ϕ (for every b1, b2 ∈ A \ {0} such that b1 � b2),

• the rules of the basis for Λ(A), the rule k ∨ ϕ � ϕ (where k is the coatom of A) and
the Necessity rules ϕ � �bϕ (for every b ∈ A \ {0}).

Next we give some hints on the proof of Theorem 3.1. To
this purpose for the rest of this section we will use the sym-
bol L to denote the set of modal formulas derivable from the
calculus given in Table 3, and the symbol �L to denote the con-
sequence relation axiomatized by L as set of axioms and the
rules of the basis for Λ(A) together with the rule k ∨ ϕ � ϕ
(where k is the coatom of A). The completeness theorem can
be proved using two steps: (i) a reduction of the multimodal
completeness problem to the already known strong complete-
ness of the non-modal logic Λ(Ac), and (ii) a Truth Lemma
based on a canonical Kripke model construction. Next we
briefly sketch the proofs of each one of these steps in the com-
pleteness proof.

The first step is based on the fact that �L is strongly com-
plete by definition with respect to Λ(A), and hence by [1,
Corollary 2.16] we know that it is also strongly complete with
respect to Λ(Ac). We point out that the rule k∨ϕ � ϕ plays a
remarkable role in the proof of [1, Corollary 2.16]. Therefore,
we get the following trivial consequence.

Lemma 3.3 (Non-Modal Reduction). Let Γ ∪ {ϕ} be a set of
multimodal formulas. Then

• Γ �L ϕ, iff

• Γ �Λ(Ac) ϕ, i.e., for every homomorphism h from the
algebra of multimodal formulas5 into the algebra Ac, if
h[Γ ] ⊆ {1} then h(ϕ) = 1.

On the other hand, the second step consists on a canonical
Kripke model construction. The definition of this construction
is the following one.

Definition 3.4. The multi canonical Kripke model Mmcan is
the Kripke model 〈Wmcan, Rmcan, Vmcan〉 where

• the set Wmcan is the set of non-modal homomorphisms
v : Fm −→ Ac (we point out that the algebra Fm is the
one given by multimodal formulas) such that v[L] = {1}.

• the accessibility relation Rmcan is defined by6

Rmcan(v1, v2) :=
∨

{b ∈ A\{0} : ∀ϕ(v1(�bϕ) � v2(ϕ))}.
5When we look at the multimodal formulas as non-modal ones

we are thinking that {�aϕ : a ∈ A \ {0}, ϕ multimodal formula}
are the variables of this non-modal language.

6The supremum of the empty set is taken, as usual, equal to 0.

• the valuation map is defined by Vmcan(p, v) := v(p) for
every variable p.

It is obvious that for every b ∈ A \ {0}, it holds that
b � Rmcan(v1, v2) iff v1(�bϕ) � v2(ϕ) for every multi-
modal formula ϕ.

Lemma 3.5 (Truth Lemma). The multi canonical Kripke
model Mmcan satisfies that Vmcan(ϕ, v) = v(ϕ) for every
multimodal formula ϕ and world v.

Proof. The proof is done by induction on the multimodal for-
mula. The only non trivial case is when this formula starts
with a necessity operator �b. By the inductive hypothesis it is
clear that it is enough to prove that

∧
{v′(ϕ) : v′ ∈Wmcan, b � Rmcan(v, v′)} = v(�bϕ)

where v is a world. And indeed the only non trivial inequality
is �. Hence, let us consider a :=

∧{v′(ϕ) : v′ ∈Wmcan, b �
Rmcan(v, v′)} and try to prove that a � v(�bϕ).

First of all we claim that

L ∪ {d→ ψ : ψ ∈ Fm, d = v(�bψ) ∈ A} �Λ(Ac) a→ ϕ.

Why? Let us consider a homomorphism h from the algebra of
multimodal formulas into the algebra Ac such that h[L∪{d→
ψ : ψ ∈ Fm, d = v(�bψ) ∈ A}] = {1}. We have to prove
that h(a → ϕ) = 1, i.e., a � h(ϕ). The assumptions on h
imply that h ∈ Wmcan, and that v(�bψ) � h(ψ) for every
ψ. Hence, b � Rmcan(v, h). Using the definition of a we get
that a � h(ϕ). This finishes the proof of this first claim.

Hence, using that Λ(Ac) is a finitary logic (because A
is finite) we get from the previous claim that there is some
m ∈ ω, some multimodal formulas ψ1, . . . , ψm and some el-
ements d1, . . . , dm ∈ A such that di = v(�bψi) for every
i ∈ {1, . . . ,m} and

L ∪ {d1 → ψ1, . . . , dm → ψm} �Λ(Ac) a→ ϕ.

From here it is clear7 that L �Λ(Ac) ((d1 → ψ1)∧. . .∧(dm →
ψm)) → (k ∨ (a → ϕ)). Using Lemma 3.3 we get from the

7The trick used here is a particular case of the following more
general statement:

Γ, γ �Λ(Ac) ϕ iff Γ �Λ(Ac) γ → (k ∨ ϕ).

This statement is a consequence of the fact that k is the coatom of A.
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previous claim that L �L ((d1 → ψ1)∧ . . .∧ (dm → ψm)) →
(k ∨ (a → ϕ)). Thus, ((d1 → ψ1) ∧ . . . ∧ (dm → ψm)) →
(k ∨ (a→ ϕ)) ∈ L. Therefore, �b((d1 → ψ1)∧ . . .∧ (dm →
ψm)) → �b(k ∨ (a → ϕ)) ∈ L by the Monotonicity Rule.
Thus, ((d1 → �bψ1) ∧ . . . ∧ (dm → �bψm)) → (k ∨ (a →
�bϕ)) ∈ L using some of the axioms in Table 3. Finally, using
that v(d1 → �bψ1) = . . . = v(dm → �bψm) = 1 and that
k �= 1, we obtain that v(a → �bϕ) = 1, i.e., a � v(�bϕ).
This finishes the proof.

Remark 3.6. In the calculus given in Table 3 we have in-
cluded for each one of the �b modalities the meet distribu-
tivity axiom, the normality axiom, the Monotonicity rule and
the Necessity rule. Checking the details of the proof of
Lemma 3.5 the reader can realize that among the previous
four axioms/rules it is enough to include the meet distribu-
tivity axiom and the Monotonicity rule in order to get com-
pleteness. And the same is also true if we only include the
normality axiom and the Necessity rule, but this time the ar-
gument is slightly different (just replace ∧ with � in the proof
of Lemma 3.5).

4 Comparing Expressive Power
The aim of this section is to compare the expressive power of
the multimodal language with the one of the modal language.
To this purpose we introduce the following concepts.

Definition 4.1. Given two pointed8 Kripke models 〈M, w〉
and 〈M′, w′〉, we will say that they are modally equivalent,
in symbols 〈M, w〉 ≡ 〈M′, w′〉, in the case that V (ϕ,w) =
V ′(ϕ,w′) for every modal formula ϕ. Analogously we will
talk about multimodally equivalent and full modally equiva-
lent, in symbols ≡M and ≡F, in the case we focus, respec-
tively, on multimodal formulas or full modal formulas.

The first remark comparing expressive powers is that in ev-
ery finite residuated lattice A (here it is not needed the chain
assumption) it holds that

�ϕ ≡
∧

{a→ �aϕ : a ∈ A \ {0}} (3)

Therefore, the modality � is explicitly definable using the
modalities �a’s (and these last ones have the advantage that
satisfy the normality axiom). In other words, the expressive
power of the modal language is smaller than the one of the
multimodal one. Thus, Λ(Fr,Ac) can be seen as a fragment of
MΛ(Fr,Ac). It is obvious that if two pointed Kripke models
are multimodally equivalent then they are also modally equiv-
alent.

What about the converse direction in the statements from
last paragraph? That is, (i) is it possible to explicitly define the
modalities �a’s in the modal language?, and (ii) are modally
equivalent pointed Kripke models also multimodally equiva-
lent? In the rest of the section we will discuss these two ques-
tions. It is worth pointing out that as far as the authors are
aware there is no general result in the many-valued modal set-
ting relating these last two questions: an study of Beth defin-
ability in this setting has not been undertaken (cf. [9, p. 277]).
As a matter of fact it is necessary to distinguish between hav-
ing an empty set Var of propositional variables or not.

8By a pointed Kripke model we mean a Kripke model together
with a distinguished point.

Proposition 4.2 (Case Var = ∅). Let A be a finite MTL chain.
Then, if two pointed Kripke models are modally equivalent
then they are also multimodally equivalent.

Proof. First of all we point out that it is enough to prove that
if 〈M, w〉 ≡ 〈M′, w′〉, w0 ∈ W and R(w,w0) � a �= 0,
then there is some w′

0 ∈ W ′ such that R′(w′, w′
0) � a and

〈M, w0〉 ≡ 〈M′, w′
0〉. The proof finishes by realizing that the

previous statement is true because for every a ∈ A \ {0}, it
holds that V (�pred(a), w) �= 1 iff there is some w0 such that
R(w,w0) � a. The notation pred(a) refers to the predecessor
of element a.

Therefore, it is obvious that if Var = ∅ then two pointed
Kripke models are modally equivalent iff they are multi-
modally equivalent. It is still open whether the modalities
�a’s are explicitly definable or not when there are no propo-
sitional variables.

In the case that there is some propositional variable then the
situation is quite different as next proposition shows. We will
see later in Theorem 4.5 that the assumption in this proposition
is also a necessary condition for the case of finite BL chains.

Proposition 4.3 (Case Var �= ∅). Let A be the ordinal sum
A1 ⊕ A2 of two finite MTL chains such that A1 and A2

are non trivial (i.e., min{|A1|, |A2|} � 2). Then, there are
two pointed Kripke models that are modally equivalent but
not multimodally equivalent.

Proof. Let us define a ∈ A as the minimum element of
A2 (i.e., a is the idempotent element separating both com-
ponents). Since Ai’s are non trivial it is obvious that a �∈
{0A, 1A}, and also that for every b ∈ A, a � b = a ∧ b.
Next we consider the two Kripke models given9 in Fig. 1.
It is obvious that for every modal formula ϕ it holds that
V (ϕ,w1) = V ′(ϕ,w′

1). On the other hand, by induction on
the length of formulas the reader can easily prove10 that for
every modal formula ϕ (we remind that canonical constants
are allowed), it holds both that

• a � V ′(ϕ,w′
1) iff a � V ′(ϕ,w′

2),

• if a �� V ′(ϕ,w′
1) then V ′(ϕ,w′

1) = V ′(ϕ,w′
2).

These last two properties guarantees that for every modal for-
mula ϕ, it holds that V ′(ϕ,w′

1) � a → V ′(ϕ,w′
2); and so

V ′(�ϕ,w′
0) = V ′(ϕ,w′

1). Once we know this last fact, it be-
comes easy to show by an straightforward induction that for
every modal formula ϕ, it holds that V (ϕ,w0) = V ′(ϕ,w′

0).
Thus, 〈M, w0〉 and 〈M′, w′

0〉 are modally equivalent. Finally,
using that V (�ap, w0) = 1 �= a = V ′(�ap, w

′
0) we get that

〈M, w0〉 and 〈M′, w′
0〉 are not multimodally equivalent.

Lemma 4.4. Let A be the finite MV chain of cardinal n.
Then, for every a ∈ A \ {0} it holds that11

�aϕ ≡
∧ {(

a→ ¬�¬((ϕ↔ b)n−1)
)n−1 → b : b ∈ A

}

9The convention here adopted about presenting Kripke models as
diagrams is the same one stated in [1, Convention 3.6].

10In this inductive proof it plays a crucial role the definition of
ordinal sum.

11Notice that ϕn−1 only takes crisp values (i.e., in {0, 1}). Indeed,
ϕn−1 takes value 1 when ϕ takes value 1, and ϕn−1 takes value 0
elsewhere. Hence, ϕn−1 takes the same value than ∆ϕ where ∆ is
the well-known operator used in fuzzy logic (see [7]).
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M = 〈W,R, V 〉 M′ = 〈W ′, R′, V ′〉
Figure 1: Two interesting Kripke models

Proof. Let us introduce the abbreviations ♦ϕ := ¬�¬ϕ and
∆ϕ := ϕn−1. Then, the statement says that

�aϕ ≡
∧ {

∆
(
a→ ♦∆(ϕ↔ b)

) → b : b ∈ A
}

In this proof we will use the notation

f(w,ϕ, b) :=
∨

{R(w,w′) : w′ ∈W,V (ϕ,w′) = b}.

The reader can easily check the following steps.

V (♦∆(ϕ ↔ b), w) = f(w, ϕ, b)

V (∆(a → ♦∆(ϕ ↔ b)), w) =


1, if a � f(w, ϕ, b)
0, if not

V (∆(a → ♦∆(ϕ ↔ b)) → b, w) =


b, if a � f(w, ϕ, b)
1, if not

Then, it easily follows that V (
∧ {

∆
(
a → ♦∆(ϕ ↔ b)

) →
b : b ∈ A

}
, w) =

∧{V (ϕ,w′) : w′ ∈ W,R(w,w′) � a} =
V (�aϕ,w). This finishes the proof.

Theorem 4.5 (Case Var �= ∅). Let A be a finite BL chain.
Then, the following statements are equivalent.

1. A is a finite MV chain (i.e., the only idempotent elements
of A are 0 and 1),

2. The modalities �a’s are explicitly definable12 in the
modal language.

3. Two pointed Kripke models are modally equivalent iff
they are multimodally equivalent,

Proof. For the case that |A1| � 2 it is trivial that these state-
ments are equivalent. Hence, we only have to deal with the
case that |A1| � 3; and this case is a consequence of Propo-
sition 4.3 and Lemma 4.4 together with the decomposition of
BL chains as ordinal sums.

5 Concluding Remarks
As it has been stressed in this paper, and also in [1], the
role played by canonical constants is crucial in several of the
proofs given above. For example, it is unknown to the authors
whether there is a general method for converting an axiom-
atization of Λ(A) (and so without canonical constants) into

12That is, there is some modal formula ϕ such that ϕ ≡ �ap. We
remind that p refers to a propositional variable.

one of Λ(CFr,A). One of the few statements that we know
that remains true when we remove canonical constants from
the language is Theorem 4.5. That is, for finite MV chains it
is possible to find a modal formula (and so using �) without
canonical constants that is equivalent to �ap. The proof of
this stronger version of Theorem 4.5 is completely different
and is based on a combinatorial analysis of all possibilities; it
is a rather involved proof and due to space limitations has not
been included in this paper.
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