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Abstract

Both rough and fuzzy set theory offer interesting tools for dealing with imperfect data: while the
former allows us to work with uncertain and incomplete information, the latter provides a formal
setting for vague concepts. The two theories are highly compatible, and since the late 1980s many
researchers have studied their hybridization. In this paper, we critically evaluate most relevant
fuzzy rough set models proposed in the literature. To this end, we establish a formally correct
and unified mathematical framework for them. Both implicator-conjunctor-based definitions and
noise-tolerant models are studied. We evaluate these models on two different fronts: firstly, we
discuss which properties of the original rough set model can be maintained and secondly, we
examine how robust they are against both class and attribute noise. By highlighting the benefits
and drawbacks of the different fuzzy rough set models, this study appears a necessary first step
to propose and develop new models in future research.

Keywords: fuzzy sets, rough sets, hybridization, lower and upper approximation,
noise-tolerance

1. Introduction

Rough set theory was originally proposed by Pawlak [47] in 1982 to deal with uncertainty
due to incompleteness and indiscernibility. The basic idea of rough set theory is that it provides
a lower and upper approximation of a concept with respect to a binary indiscernibility relation.
The lower approximation contains all the elements of the universe certainly belonging to the
concept, while the upper approximation contains the elements possibly belonging to the concept.
In the original model of Pawlak, an equivalence relation is used to model indiscernibility. Yet,
many authors have generalized Pawlak’s model by using binary non-equivalence relations (see
e.g. [48, 49] for a survey).
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Applications of rough set theory are widespread and are especially prominent in data analy-
sis [33, 35] and more specific in feature selection and classification [53]. However, since the
traditional rough set is designed to process qualitative (discrete) data, it faces important lim-
itations when dealing with real-valued data sets [31]. Fuzzy set theory proposed in 1965 by
Zadeh [68] is very useful to overcome these limitations, as it can deal effectively with vague
concepts and graded indiscernibility.

It was recognized early that both theories are complementary, rather than competitive. To that
end, rough set theory has been extended in two ways [14]. Rough fuzzy set theory discusses
the approximation of a fuzzy set by a crisp relation. If moreover the indiscernibility relation to
distinguish different objects is fuzzy as well, fuzzy rough set theory is considered. Since every
crisp relation can be seen as a special case of a fuzzy relation, all results obtained in fuzzy rough
set theory also hold for rough fuzzy set theory.

The vestiges of fuzzy rough set theory date back to the late 1980s, and originate from work
by Fariñas del Cerro and Prade [12], Dubois and Prade [13], Nakamura [45] and Wygralak [62].
From 1990 onwards, research on the hybridization between rough sets and fuzzy sets flourished.
The inspiration to combine rough and fuzzy set theory was found in different mathematical fields.
For instance, Lin [34] studied fuzzy rough sets using generalized topological spaces (Frechet
spaces) and Nanda and Majumdar [46] discussed fuzzy rough sets based on an algebraic ap-
proach. Moreover, Thiele [54] examined the relationship with fuzzy modal logic. Later on,
Yao [66] and Liu [39] used level sets to combine fuzzy and rough set theory.

This work focuses on fuzzy rough set models using fuzzy relations and fuzzy logical connec-
tives. The seminal papers of Dubois and Prade [14, 15] are probably the most important in the
evolution of these fuzzy rough set models, since they influenced numerous authors who used
different fuzzy logical connectives and fuzzy relations. Essential work was done by Morsi and
Yakout [44] who studied both constructive and axiomatic approaches and by Radzikowska and
Kerre [51] who defined fuzzy rough sets based on three general classes of fuzzy implicators:
S-, R- and QL-implicators. However, despite generalizing the fuzzy connectives, they still used
fuzzy similarity relations. A first attempt to use reflexive fuzzy relations instead of fuzzy sim-
ilarity relations was done by Greco et al. [22, 23]. Thereafter, Wu et al. [60, 61] were the first
to consider general fuzzy relations. Besides generalizing the fuzzy relation, Mi et al. [40, 41]
considered conjunctors instead of t-norms. Furthermore, Yeung et al. [67] discussed two pairs
of dual approximation operators from both a constructive and an axiomatic point of view. Hu
et al. [26, 28] for their part studied fuzzy relations based on kernel functions. In this work, we
consider all these different proposals within a general Implicator-Conjunctor (IC) based fuzzy
rough set model that encapsulates all of them, as discussed in Section 3.1.

However, the aforementioned models only consider the worst and best performing objects to
determine the fuzzy rough lower and upper approximations respectively. Consequently, these
approximations are sensitive to noisy and/or outlying samples. This, in turn, impacts the robust-
ness of data analysis applications based on them, such as attribute selection and classification.
To mitigate this problem in the crisp case, Ziarko [70] proposed the Variable Precision Rough
Set (VPRS) model in 1993. This model also served as a starting point for the design of several
noise-tolerant fuzzy rough set approaches, such as [5, 7, 17, 18, 24, 25, 42, 43, 65, 69], which
will be discussed in detail in Section 4.

In this paper, we critically evaluate most relevant fuzzy rough set models proposed in the
literature. To this end, we establish a formally correct and unified mathematical framework
for them. A structured and critical analysis of the current research of constructive methods
for fuzzy rough set models is presented. Note that we do not consider axiomatic approaches
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(see e.g. [36, 37, 41, 44, 50, 59–61, 67]). We review the definitions of noise-tolerant models,
generalizing them where appropriate and in some cases applying modifications to correct errors
in the original proposal. Where applicable, we also establish relationships between these models
and the corresponding IC based definitions, as well as Pawlak’s and Ziarko’s crisp approaches.
Furthermore, we examine which theoretical properties of traditional rough sets and IC fuzzy
rough sets can still be maintained for the noise-tolerant models; indeed, similarly as for Ziarko’s
VPRS model, providing mechanisms for making the approximations less strict usually involves
sacrificing some desirable properties. Finally, we evaluate whether the considered approaches
really live up to the claim of being more “robust” approximations, by performing a stability
analysis on four real datasets, and comparing them to the IC model. This will allow us to obtain
a comprehensive overview of the benefits and the drawbacks of the robust fuzzy rough set
models, in order to acquire the expertise for future research opportunities.

The remainder of this article is structured as follows: in Section 2, we summarize preliminary
definitions concerning fuzzy logical connectives, fuzzy sets and relations, and rough set theory.
In Section 3, we introduce the general IC based fuzzy rough set model, and review specific cases
of it studied in literature. We also establish sufficient conditions under which its approximations
satisfy the same theoretical properties as Pawlak’s model. In Section 4, we review the seven
most important noise-tolerant fuzzy rough set models introduced in the literature: Mieszkowicz-
Rolka and Rolka’s Variable Precision Fuzzy Rough Set model (VPFRS [42, 43]), Cornelis et
al.’s Vaguely Quantified Fuzzy Rough Set model (VQFRS, [5]), Hu et al.’s Soft Fuzzy Rough
Set model (SFRS, [24, 25]), Yao et al.’s Variable Precision Fuzzy Rough Set model based on
Fuzzy Granules (FG, [65]), Zhao et al.’s Fuzzy Variable Precision Rough Set model (FVPRS,
[69]), Fernández-Salido and Murakami’s β -Precision Fuzzy Rough Set model (β -PREC, [17,
18]) and Cornelis et al.’s Ordered Weighted Average based Fuzzy Rough Set model (OWA, [7]).
In Section 5, we test the robustness of these proposals and the IC model in the presence of class
and attribute noise, and in Section 6, we conclude and state future work. In the Appendix, we
give counterexamples for the properties that are not maintained in the different noise-tolerant
models. Finally, we mention that a small part of the results in this paper (pertaining only to the
IC model) has been published in a conference paper [10].

2. Preliminaries

In this section, we present basic notions related to fuzzy logical connectives, fuzzy sets and
relations, and the lower and upper approximation operators in rough set theory.

2.1. Fuzzy Logical Connectives

We start by recalling some important fuzzy logical connectives. First, we discuss conjunctors,
disjunctors and negators that are fuzzy extensions of the Boolean conjunctor, disjunctor and
negation.

• A conjunctor is a mapping C : [0,1]2→ [0,1] that is increasing in both arguments and that
satisfies the boundary conditions C (0,0) = C (0,1) = C (1,0) = 0 and C (1,1) = 1. It is
called a border conjunctor if for all x ∈ [0,1] it holds that C (1,x) = x. A commutative and
associative border conjunctor is called a t-norm and is denoted by T .
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Example 1. For x,y ∈ [0,1], the minimum t-norm or minimum operator TM is defined
by TM(x,y) = min(x,y), the product t-norm TP is defined by TP(x,y) = x · y and the
Łukasiewicz t-norm TL is defined by TL(x,y) = max(0,x+ y−1).

• A disjunctor is a mapping D : [0,1]2→ [0,1] that is increasing in both arguments and that
satisfies the boundary conditions D(1,1) = D(0,1) = D(1,0) = 1 and D(0,0) = 0. It is
called a border disjunctor if for all x ∈ [0,1] it holds that D(0,x) = x. A commutative and
associative border disjunctor is called a t-conorm and is denoted by S .

Example 2. For x,y ∈ [0,1], the maximum t-conorm or maximum operator SM is defined
by SM(x,y) = max(x,y), the probabilistic sum SP is defined by SP(x,y) = x+y−x ·y and
the Łukasiewicz t-conorm SL is defined by SL(x,y) = min(1,x+ y).

• A negator is a decreasing mapping N : [0,1]→ [0,1] that satisfies N (0) = 1 and N (1) =
0. A negator is called involutive if for all x ∈ [0,1] it holds that N (N (x)) = x.

Example 3. For x ∈ [0,1], the standard negator NS is defined by NS(x) = 1− x.

When we use an involutive negator, we can define a dual couple of a conjunctor and a disjunc-
tor with respect to the chosen negator. Given an involutive negator N , a conjunctor C and a
disjunctor D , the N -dual of C is a disjunctor DC ,N defined by

∀x,y ∈ [0,1] : DC ,N (x,y) = N (C (N (x),N (y)))

and the N -dual of D is a conjunctor CD ,N defined by

∀x,y ∈ [0,1] : CD ,N (x,y) = N (D(N (x),N (y))).

It can be verified that the N -dual of a t-norm is a t-conorm and vice versa.

Besides conjunctors, disjunctors and negators, we recall the notion of implicators. They
extend the Boolean implication to the fuzzy setting.

An implicator is a mapping I : [0,1]2→ [0,1] that is decreasing in the first and increasing in
the second argument and that satisfies the boundary conditions I (0,0) =I (0,1) =I (1,1) = 1
and I (1,0) = 0. It is called a border implicator if for all x ∈ [0,1] it holds that I (1,x) = x. It
satisfies the weak confinement principle if ∀x,y ∈ [0,1] : x ≤ y⇒ I (x,y) = 1. An implicator
that satisfies the weak confinement principle is called a WCP-implicator in this paper.

Let I be an implicator. The induced negator of I is the negator NI defined by

∀x ∈ [0,1] : NI (x) = I (x,0).

There are two important classes of implicators: S-implicators based on disjunctors and nega-
tors and R-implicators based on border conjunctors.

• Let D be a disjunctor and N a negator. The S-implicator ID ,N based on D and N is
defined by

∀x,y ∈ [0,1] : ID ,N (x,y) = D(N (x),y).
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• Let C be a border conjunctor. The R-implicator IC based on C is defined by

∀x,y ∈ [0,1] : IC (x,y) = sup{z ∈ [0,1] | C (x,z)≤ y}.

Both S- and R-implicators are border implicators. R-implicators are also WCP-implicators.
A special class of R-implicators are IMTL-implicators, where IMTL stands for ‘Involutive
Monoidal T-norm based Logic’ [16, 21]: these R-implicators are based on a left-continuous
t-norm and have an involutive induced negator. A left-continuous t-norm of which the R-
implicator is an IMTL-implicator, is called an IMTL-t-norm.

Example 4. The Kleene-Dienes (KD) implicator IKD is an S-implicator defined by, for x,y ∈
[0,1], IKD(x,y) = max(1− x,y). The Łukasiewicz implicator IL is both an S-implicator and
R-implicator defined by, for x,y ∈ [0,1], IL(x,y) = min(1,1− x+ y).

Finally, we recall that we can construct conjunctors based on implicators and involutive nega-
tors. Given an involutive negator N and an implicator I , the induced conjunctor of I and N
is the conjunctor CI ,N defined by

∀x,y ∈ [0,1] : CI ,N (x,y) = N (I (x,N (y))),

which is not necessarily a t-norm.

2.2. Fuzzy Sets and Relations
In this section, we recall basic notions about fuzzy sets and fuzzy relations [68].

• A fuzzy set A in a non-empty universe U is a mapping A : U → [0,1]. The collection of all
fuzzy sets in U is denoted by F (U). If U is finite, the cardinality of A is defined by

|A|= ∑
x∈U

A(x).

The support of A is the crisp set supp(A) = {x∈U | A(x)> 0}. Given α ∈ [0,1], the α-level
set Aα of A in U is a crisp set in U such that x ∈ Aα if and only if A(x)≥ α .

• Given α ∈ [0,1], the constant (fuzzy) set α̂ in U is defined by

∀x ∈U : α̂(x) = α.

In the crisp case, the only constant sets in U are 0̂ = /0 and 1̂ =U .

• Let A,B ∈ F (U). Given a negator N , a conjunctor C and a disjunctor D , the N -
complement AN of A is given by

∀x ∈U : AN (x) = N (A(x)).

The C -intersection of A and B is the fuzzy set A∩C B defined by

∀x ∈U : (A∩C B)(x) = C (A(x),B(x)).

The D-union of A and B is the fuzzy set A∪D B given by

∀x ∈U : (A∪D B)(x) = D(A(x),B(x)).

For C = TM and D = SM , we shortly denote A∩B and A∪B.
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• A binary fuzzy relation R in U is a fuzzy set in U ×U . We define its inverse fuzzy relation
R′ by R′(x,y) = R(y,x) for x,y ∈ U . The relation R is called reflexive if for all x in U it
holds that R(x,x) = 1 and it is called serial if for all x ∈U : supy∈U R(x,y) = 1. We call the
relation symmetric if for all x,y ∈U , R(x,y) = R(y,x). It is obvious that for a symmetric
binary fuzzy relation R it holds that R = R′. Given a t-norm T , the relation R is called
T -transitive if for all x,y and z in U it holds that

T (R(x,y),R(y,z))≤ R(x,z).

Furthermore, the relation R is called T -euclidean if for all x,y and z in U it holds that

T (R(y,x),R(y,z))≤ R(x,z).

Every symmetric and T -transitive relation is T -euclidean. If a relation R is reflexive,
symmetric and T -transitive, it is called a (fuzzy) T -similarity relation. When T = TM ,
we also call it a similarity relation. Since the minimum operator is the largest t-norm, a
similarity relation is T -transitive for every t-norm T .

• Let R be a binary fuzzy relation and x ∈U , then the R-foreset of x is the fuzzy set Rx such
that for every y ∈U , Rx(y) = R(y,x). When R is a crisp binary relation, the R-foreset of x is
the crisp set {y ∈U | (y,x) ∈ R}.

2.3. Rough Sets
In this section, we recall the definition of the lower and upper approximation in a Pawlak

approximation space [47].

A classic or Pawlak approximation space is a couple (U,R) consisting of a non-empty universe
U and an equivalence relation R in U . The rough approximation of a crisp set A in U by R is the
pair of sets (apr

R
(A),aprR(A)) defined by, for x ∈U ,

x ∈ apr
R
(A) ⇔ (∀y ∈U)((y,x) ∈ R⇒ y ∈ A), (1)

x ∈ aprR(A) ⇔ (∃y ∈U)((y,x) ∈ R∧ y ∈ A). (2)

A pair (A1,A2) of sets in U is called a rough set in (U,R) if there is a set A in U such that
A1 = apr

R
(A) and A2 = aprR(A). A1 is called the lower approximation of A and A2 is its upper

approximation. A set A is definable when apr
R
(A) = A = aprR(A) holds.

We list the most important properties of the rough approximation in a Pawlak approximation
space in Table 1. The properties (D), (INC), (SM), (IU), (ID), (LU) and (UE) were already stated
in [47].

The idea of property (A) comes from the concept of a Galois connection [30, 56]: let U1 and
U2 be two universes and f : U1 →U2 and g : U2 →U1 two mappings between these universes.
We call ( f ,g) a Galois connection in (U1,U2) if for all x ∈U1 and y ∈U2 it holds that

f (x)≤2 y⇔ x≤1 g(y),

where≤i is an order relation in Ui. It is clear that if f and g are the upper and lower approximation
operator respectively, then they form a Galois connection in (F (U),F (U)) with ≤1=≤2=⊆.
In the special case that B = A in Table 1, the properties (A) and (INC) imply that

apr
R
(A) = A⇔ A = aprR(A).
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Finally, we add the (RM)-property since it is relevant in many applications of rough sets; in
particular, in the context of attribute selection in information systems [52, 53], R represents
an indiscernibility equivalence relation between objects based on their attribute values. When
attributes are omitted from the information system, the granularity imposed by the equivalence
relation becomes coarser and it is then desirable that the lower approximation does not increase,
and the upper approximation does not decrease.

Property Abbreviation Definition

Duality (D) apr
R
(A) = (aprR(A)

c)c

Adjointness (A) aprR(A)⊆ B⇔ A⊆ apr
R
(B)

Inclusion (INC) apr
R
(A)⊆ A⊆ aprR(A)

Set Monotonicity (SM) A⊆ B⇒
{

apr
R
(A)⊆ apr

R
(B)

aprR(A)⊆ aprR(B)

Relation Monotonicity (RM) R1 ⊆ R2⇒

{
apr

R1
(A)⊇ apr

R2
(A)

aprR1
(A)⊆ aprR2

(A)

Intersection (IU) apr
R
(A∩B) = apr

R
(A)∩ apr

R
(B)

and Union aprR(A∪B) = aprR(A)∪ aprR(B)

Idempotence (ID) apr
R
(apr

R
(A)) = apr

R
(A)

aprR(aprR(A)) = aprR(A)

Interaction Lower (LU) aprR(apr
R
(A)) = apr

R
(A)

and Upper apr
R
(aprR(A)) = aprR(A)

Universe (UE) apr
R
(U) =U = aprR(U)

and Empty Set apr
R
( /0) = /0 = aprR( /0)

Table 1: Properties of the lower and upper approximation in a Pawlak approximation space

A disadvantage of Pawlak’s model is that the lower and upper approximation operators are
fairly rigid: for instance, an element belongs to the lower approximation of a set A only if its
entire equivalence class is included in A. This makes the model less suitable for practical applica-
tions in data analysis, where some tolerance to noisy data is required. To mend this shortcoming,
Ziarko and Katzberg [32, 70] designed the Variable Precision Rough Set (VPRS) model, only
defined for finite universes U . They use the notion of the rough membership function RA of A,
given by

∀x ∈U : RA(x) =
|[x]R∩A|
|[x]R|

,

where R is an equivalence relation.
Now let 0≤ l < u≤ 1. The VPRS lower approximation apru

R
A of A is defined by

∀x ∈U : x ∈ apru
R

A⇔ RA(x)≥ u
7



and the VPRS upper approximation aprl
RA of A by

∀x ∈U : x ∈ aprl
RA⇔ RA(x)> l.

It is clear that when l = 0 and u = 1, Pawlak’s model is retrieved. When 0 < l < u < 1, the
VPRS model satisfies (SM) and (UE) and it satisfies (D) if 0≤ l < 0.5 and u = 1− l.

Pawlak’s original rough set model has been generalized in various other ways. In the remainder
of this paper, we study the case where A is a fuzzy set and R is a fuzzy relation.

3. Implicator-Conjunctor-Based Fuzzy Rough Set Model

Equations (1) and (2) of the lower and upper approximation operators in a Pawlak approxima-
tion space can be generalized in many ways. In this section, we consider a general fuzzy rough
set model based on a conjunctor, an implicator and a general binary fuzzy relation that encap-
sulates many existing definitions of fuzzy rough sets. We also study under which conditions the
properties of Pawlak’s model listed in Table 1 can be maintained by the extension.

3.1. Definition

For the remainder of the article, we consider a fuzzy approximation space (U,R). The couple
(U,R) consists of a non-empty universe U and a binary fuzzy relation R on U . We consider the
following general format for the approximation operators.

Definition 1. Let (U,R) be a fuzzy approximation space, A a fuzzy set in U, I an implicator
and C a conjunctor. The (I ,C )-fuzzy rough approximation of A by R is the pair of fuzzy sets
(aprI

R
(A),aprCR (A)) defined by, for x ∈U:

(aprI
R
(A))(x) = inf

y∈U
I (R(y,x),A(y)), (3)

(aprCR (A))(x) = sup
y∈U

C (R(y,x),A(y)). (4)

A pair (A1,A2) of fuzzy sets in U is called a fuzzy rough set in (U,R) if there is a fuzzy set A in
U such that A1 = aprI

R
(A) and A2 = aprCR (A). A fuzzy set A is called definable if aprI

R
(A) = A =

aprCR (A).

In the remainder of this work, we will refer to this model as the implicator-conjunctor-based
(fuzzy rough set) model or shortly, IC model.

When the fuzzy set we want to approximate is crisp and the relation R is a crisp equivalence
relation, this definition coincides with the lower and upper approximation operators in a Pawlak
approximation space:

(aprI
R
(A))(x) = 1 ⇔ ∀y ∈U : I (R(y,x),A(y)) = 1

⇔ ∀y ∈U : R(y,x) = 1⇒ A(y) = 1,
(aprCR (A))(x) = 1 ⇔ ∃y ∈U : C (R(y,x),A(y)) = 1

⇔ ∃y ∈U : R(y,x) = 1∧A(y) = 1.
8



Reference Conjunctor Implicator Fuzzy relation

[14, 15] Dubois & Prade, 1990 min KD-impl. TM-similarity
[44] Morsi & Yakout, 1998 left-cont. t-norm R-impl. T -similarity
[22, 23] Greco et al., 1998 t-norm S-impl. reflexive
[4] Boixader et al., 2000 cont. t-norm R-impl. T -similarity
[51] Radzikowska & Kerre, 2002 t-norm border impl. TM-similarity
[60, 61] Wu et al., 2003 min S-impl. general
[41] Mi & Zhang, 2004 conjunctor R-impl. general
[50] Pei, 2005 min S-impl. general
[59] Wu et al., 2005 cont. t-norm implicator general
[67] Yeung et al., 2005 left-cont. t-norm S-impl. general
[67] Yeung et al., 2005 conjunctor R-impl. general
[38] Liu, 2006 t-norm R-impl. general
[9] De Cock et al., 2007 t-norm border impl. general
[36] Liu, 2008 min S-impl. general
[40] Mi et al., 2008 cont. t-norm S-impl. general
[26, 28] Hu et al., 2010 left-cont. t-norm S-impl. Tcos-similarity
[26, 28] Hu et al., 2010 conjunctor R-impl. Tcos-similarity

Table 2: Overview of implicator-conjunctor-based fuzzy rough set model in literature

Definition 1 covers many fuzzy rough set models that have been proposed in literature, and
which emerge by choosing a specific conjunctor C , implicator I and binary fuzzy relation R.
We list these models in Table 2. Dubois and Prade [14] used the Kleene-Dienes implicator and
the minimum operator to replace the Boolean implication and conjunction respectively. Some
authors [28, 44, 67] require lower semicontinuity of T instead of left-continuity, but by a result
from [20] these two notions are equivalent for t-norms. Also, some papers [38, 40, 41, 59–61]
consider fuzzy relations in U ×W , with both U and W non-empty, finite universes, but here we
restrict ourselves to the case where U = W . As can be seen from Table 2, Greco et al. [22, 23]
were the first to consider reflexive binary fuzzy relations and Wu et al. [60, 61] were the first
to consider general binary fuzzy relations. Also note that Greco et al. used arbitrary t-norms
and t-conorms instead of the infimum and supremum operators. Mi and Zhang [41] initiated
the use of conjunctors that are not necessarily t-norms. Also note that the t-norm Tcos used
in [28] is defined, for x,y in [0,1], by Tcos(x,y) = max(xy−

√
(1− x2)(1− y2),0). Its use is

inspired by the fact that some commonly used kernel functions in machine learning are in fact
Tcos-similarity relations.

A variant of the IC model was proposed in [29] by Inuiguchi: the lower approximation
aprI,I

R∗
(A) of A by a fuzzy relation R∗ in U is given by, for x in U ,

(aprI,I
R∗

(A))(x) = min(A(x), inf
y∈U

I (R∗(y,x),A(y))),

while the upper approximation aprI,C
R∗ (A) of A by R∗ is given by, for x in U ,

(aprI,C
R∗ (A))(x) = max(A(x),sup

y∈U
C (R∗(x,y),A(y))).
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Note that this model can be seen as a special case of the IC model if in Definition 1 a border
implicator I and a border conjunctor C are chosen and if the relation R defined by

∀x,y ∈U : R(x,y) = max(R∗(x,y), Id(x,y)),

is symmetric, where Id is defined by

∀x,y ∈U : Id(x,y) =

{
1 x = y,
0 otherwise.

3.2. Properties
In this section, we consider the properties of the IC model. In particular, we discuss which

properties of Pawlak’s rough set model are always maintained, and which conditions need to be
imposed in order for the remaining ones to hold.

In Table 3, we list the adaptation of the properties in Table 1 to a fuzzy approximation space,
and provide references to the papers where those properties have been considered. Since most of
these properties have been studied extensively in literature in one form or another, and the proofs
for the IC model emerge by small modifications of existing results, we do not provide detailed
proofs in this section.

Note that in generalizing the adjointness condition to a fuzzy approximation space, we have
replaced R in the right hand side of the equivalence by its inverse fuzzy relation R′. Clearly, if
R is symmetric, this modification is redundant. Also note that the constant set property (CS)
emerges by extending (UE) to every constant fuzzy set α̂ for α ∈ [0,1]. If (CS) is satisfied, then
a priori (UE) also holds.

In the following, we assume that (U,R), (U,R1), (U,R2) are fuzzy approximation spaces, I
an implicator, C a conjunctor and N an involutive negator.

Proposition 1. If C is the induced conjunctor of I and N , i.e., C = CI ,N , then (D) holds.

Corollary 1. Let D be the N -dual disjunctor of C . If the pair (I ,C ) consists of the S-
implicator ID ,N and the conjunctor C , then (D) holds.

Corollary 2. Let T be an IMTL-t-norm such that NIT
=N . If the pair (I ,C ) consists of the

R-implicator IT and the t-norm T , then (D) holds.

To see Corollary 2, note that CIT ,N =T holds (see e.g. [56]): for x,y in [0,1], CIT ,N (x,y)=
N (IT (x,N (y))) = N (IT (x,IT (y,0))) = N (IT (T (x,y),0)) = N (N (T (x,y))) =
T (x,y).

Proposition 2. If the pair (I ,C ) consists of the R-implicator IT and the left-continuous t-
norm T , then (A) holds.

Note that Proposition 2 does not hold for S-implicators:

Example 5. Let U = {x,y}, R the similarity relation with R(x,y) = 0.5 and A the fuzzy set
such that A(x) = 0.3 and A(y) = 0.4. Let T be the minimum t-norm and I the Kleene-Dienes
implicator. Then it holds that A = aprI

R
(A), but since (aprTR (A))(x) = 0.4, it does not hold that

aprTR (A)⊆ A.
10



Property Definition References

(D) aprI
R
(A) = (aprCR (A

N ))N [4, 29, 36, 40, 41, 50, 51, 59–61, 67]

(A) aprCR (A)⊆ B⇔ A⊆ aprI
R′
(B) [26, 44], for B = A

(INC) aprI
R
(A)⊆ A⊆ aprCR (A) [4, 9, 26, 28, 29, 36, 40, 41, 44, 51]

[59–61, 67]

(SM) A⊆ B⇒
{

aprI
R
(A)⊆ aprI

R
(B)

aprCR (A)⊆ aprCR (B)
[4, 9, 29, 36, 40, 44, 50, 51, 59–61]

(RM) R1 ⊆ R2⇒

{
aprI

R1
(A)⊇ aprI

R2
(A)

aprCR1
(A)⊆ aprCR2

(A)
[28, 50]

(IU) aprI
R
(A∩B) = aprI

R
(A)∩ aprI

R
(B) [4, 26, 28, 29, 36, 38, 40, 41, 44, 50]

aprCR (A∪B) = aprCR (A)∪ aprCR (B) [51, 59–61, 67]

(ID) aprI
R
(aprI

R
(A)) = aprI

R
(A) [4, 26, 28, 29, 36, 40, 41, 44, 50, 51]

aprCR (aprCR (A)) = aprCR (A) [59–61, 67]

(LU) aprCR (aprI
R
(A)) = aprI

R
(A) [29, 44, 50, 51, 59–61, 67]

aprI
R
(aprCR (A)) = aprCR (A)

(CS) aprI
R
(α̂) = α̂ [4, 38, 40, 44, 51, 59–61]

aprCR (α̂) = α̂

(UE) aprI
R
(U) =U = aprCR (U) [29, 36, 50]

aprI
R
( /0) = /0 = aprCR ( /0)

Table 3: Properties of the lower and upper approximation in a fuzzy approximation space

Proposition 3. If R is reflexive, I is a border implicator and C is a border conjunctor, then
(INC) holds.

Corollary 3. Let T be a t-norm and S its N -dual t-conorm. If R is reflexive, and (I ,C ) =
(IS ,N ,T ) or (I ,C ) = (IT ,T ), then (INC) holds.

Proposition 4. The properties (SM), (RM) and (IU) always hold.

Proposition 5. If R is a T -transitive relation, where T is a left-continuous t-norm and the
pair (I ,C ) consists of the R-implicator IT and the t-norm T , or (I ,C ) consists of the S-
implicator IS ,N based on the N -dual t-conorm of T with respect to an involutive negator N
and the t-norm T , then (ID) holds.

Proposition 6. Let T be a left-continuous t-norm. If R is a reflexive and T -euclidean relation,
or if R is a T -similarity relation, and the pair (I ,C ) consists of the R-implicator IT and the
t-norm T , then (LU) holds.

Proposition 6 does not hold for S-implicators.

Example 6. Let U = {x,y}, R the similarity relation with R(x,y) = 0.5 and A the fuzzy set
such that A(x) = 0.2 and A(y) = 0.6. Let T be the minimum t-norm and I the Kleene-
Dienes implicator. Then it holds that (aprI

R
(A))(x) = 0.2 and (aprI

R
(A))(y) = 0.5, but since

11



(aprTR (aprI
R
(A)))(x) = 0.5, it does not hold that aprTR (aprI

R
(A)) = aprI

R
(A). Moreover, by du-

ality, it does not hold that aprI
R
(aprTR (A)) = aprTR (A).

Proposition 7. If R is reflexive, I a border implicator and C a border conjunctor, then (CS)
and (UE) hold.

Corollary 4. Let T be a t-norm and S its N -dual t-conorm. If R is reflexive, and (I ,C ) =
(IS ,N ,T ) or (I ,C ) = (IT ,T ), then (CS) and (UE) hold.

Summarizing, in order to satisfy all properties in Table 3, C should be an IMTL-t-norm T
and I its R-implicator, while R needs to be at least reflexive, T -transitive and T -euclidean or
symmetric:

Proposition 8. Let C be an IMTL-t-norm T and I its R-implicator, and R a reflexive and
T -transitive relation. If R is either T -euclidean or symmetric, then all the properties listed in
Table 3 hold.

It is interesting to observe that Dubois and Prade’s original fuzzy rough set model [14] satisfies
all properties except (A) and (LU).

4. Robust Fuzzy Rough Set Models

The fuzzy rough set models encapsulated by Definition 1 allow for a lot of flexibility in terms
of the choice of logical connectives and the fuzzy relation. However, the use of the inf- and
sup-operators in formulas (3) and (4) limits their practical use, in a similar way as the ∀- and
∃-quantifiers restrict the application potential of Pawlak’s original rough set model.

The core of the problem is that the result of the approximations is determined by a single
best (sup) or worst (inf) element. This can be a disadvantage in a data analysis context, since
data samples may be erroneous. Such noisy data can perturb the approximations and therefore
weaken the machine learning algorithms that invoke them [27].

To address this problem, many authors have defined robust alternatives for the lower and upper
approximation operators in fuzzy rough set theory, in a similar way as the VPRS model provides
a noise-tolerant alternative for Pawlak’s rough set definition. In this section and the next one,
we critically examine existing robust fuzzy rough set models, from both theoretical and practical
point of view.

Different alternatives for robust fuzzy rough set models have been constructed. There are
models which are frequency-based, analogous to the VPRS model of Ziarko [5, 24, 25, 42, 43,
65]. Another model adjusts the set which is approximated [69]. Moreover, some models use
other aggregation operators than the infimum and supremum operators [7, 18]. To the best of our
knowledge, the seven models we discuss here are the most widely used robust fuzzy rough set
models [27, 65].

In this section we discuss for each considered model the specific criteria it uses for harnessing
the approximations against noise. We generalize, correct or simplify its definition, without
harming the original ideas it is based on. We reveal relationships that exist between the
models, and also evaluate which properties of Pawlak’s rough set model can be maintained;
similarly as for VPRS, making the models more flexible towards noise typically involves
sacrificing some of the desirable properties they satisfy. In such cases, we will construct explicit
counterexamples, which are gathered in the Appendix. In Section 5, we will evaluate the claim

12



that the noise-tolerant models are more robust than the IC model from a practical perspective,
by examining how stable their approximations are when the data are contaminated by noise.

Throughout this section, unless specified otherwise, we assume that A is a fuzzy set in a fuzzy
approximation space (U,R), with U finite and R an arbitrary binary fuzzy relation in U . The
restriction to finite universes is not a real limitation, since the number of data samples (elements
of U) in a real information system is always finite.

4.1. Noise-Tolerant Models based on Frequency
We start with discussing frequency-based fuzzy rough set models. Models of this type are

the Variable Precision Fuzzy Rough Set model of Mieskowicz-Rolka and Rolka [42, 43], the
Vaguely Quantified Fuzzy Rough Set model of Cornelis et al. [5], the Soft Fuzzy Rough Set
model of Hu et al. [24, 25] and the Variable Precision Fuzzy Rough Set model based on Fuzzy
Granules of Yao et al. [65]. The idea behind this type of robust models is that only a subset of the
R-foreset of an object x is taken into account when computing the lower and upper approximation
in x, which is similar to the Variable Precision Rough Set model of Ziarko [70].

We start with the model of Mieskowicz-Rolka and Rolka.

4.1.1. Variable Precision Fuzzy Rough Set Model
The Variable Precision Fuzzy Rough Set (VPFRS) model was proposed by Mieszkowicz-

Rolka and Rolka [42] in 2004, and later appeared in slightly revised form in [43]. They intended
to design a robust fuzzy rough set model that covers both the seminal fuzzy rough set approach
of Dubois and Prade [14, 15] and the VPRS model of Ziarko [32, 70]. We start by recalling the
definition of the model as it was introduced by Mieszkowicz-Rolka and Rolka, and then show a
simpler expression for computing the approximations.

Definition 2. [43] Given a WCP-implicator I , a t-norm T and fuzzy sets A,B in U. The
implication-based inclusion set InclI (A,B) of A in B is defined by1

∀x ∈U : InclI (A,B)(x) = I (A(x),B(x))

and the t-norm-based inclusion set2 InclT (A,B) of A in B is defined by

∀x ∈U : InclT (A,B)(x) = T (A(x),B(x)).

Definition 3. [43] Given a WCP-implicator I , a t-norm T , a non-empty fuzzy set A and a fuzzy
set B in U, and α ∈ [0,1]. The lower α-inclusion error eα of A in B is given by

eα(A,B) = 1− |A∩ (InclI (A,B))α |
|A|

1In [43], the authors defined InclI as follows:

InclI (A,B)(x) =

{
I (A(x),B(x)) A(x)> 0
0 A(x) = 0.

However, the special treatment of the case A(x) = 0 is not necessary to properly define the VPFRS model, hence our
simplified definition of InclI .

2Note that the name ‘inclusion set” is slightly misleading because this definition is not actually related to fuzzy
inclusion. However, we adopt the terminology of [43].

13



and the upper α-inclusion error ēα of A in B is given by

ēα(A,B) = 1− |A∩ ((InclT (A,B))NS)α |
|A|

.

For the empty set /0, we define the inclusion errors by3

eα( /0,B) = ēα( /0,B) = 0.

Below is the definition of the VPFRS model. Mieszkowicz-Rolka and Rolka worked with a
T -similarity relation, which is generalized here to an arbitrary binary fuzzy relation.

Definition 4. [43] Given a WCP-implicator I , a t-norm T and 0≤ l < u≤ 1. The (u, l)-fuzzy
rough approximation of A by R is the pair of fuzzy sets (aprI ,u

R
(A),aprT ,l

R (A)) defined by, for x
in U,

(aprI ,u
R

(A))(x) = inf
y∈Sx,u

InclI (Rx,A)(y),

(aprT ,l
R (A))(x) = sup

y∈Sx,l

InclT (Rx,A)(y),

with
Sx,u = supp(Rx)∩

(
(InclI (Rx,A))αx,u

)
= {y ∈U | R(y,x)> 0 and (InclI (Rx,A))(y)≥ αx,u},

αx,u = sup{α ∈ [0,1] | eα(Rx,A)≤ 1−u}

Sx,l = supp(Rx)∩
(
((InclT (Rx,A))NS)αx,l

)
= {y ∈U | R(y,x)> 0 and (InclT (Rx,A))(y)≤ 1−αx,l},

αx,l = sup{α ∈ [0,1] | ēα(Rx,A)≤ l}.

Remark 1. Note that when Rx = /0, Sx,u and Sx,l are empty and αx,u = αx,l = 1. In this case, we
obtain that (aprI ,u

R
(A))(x) = 1 and (aprT ,l

R (A))(x) = 0.

The VPFRS model excludes certain elements from the inf and sup computations. In this sense,
aprI

R
(A)⊆ aprI ,u

R
(A) and aprT ,l

R (A)⊆ aprTR (A) always hold. In order to get more insight in this
element exclusion process, we show that the approximations of Definition 4 can be simplified.
To do this, we first obtain a simpler expression for αx,u and αx,l .

Lemma 1. Given a WCP-implicator I , a t-norm T and 0 ≤ l < u ≤ 1. For x ∈U such that
Rx , /0, it holds that

αx,u = max
{

α ∈ {I (R(y,x),A(y)) | y ∈U} | |Rx∩ (InclI (Rx,A))α |
|Rx|

≥ u
}
,

αx,l = max
{

α ∈ {1−T (R(y,x),A(y)) | y ∈U} | |Rx∩ ((InclT (Rx,A))NS)α |
|Rx|

≥ 1− l
}
.

3In [43], Mieszkowicz-Rolka and Rolka only defined the inclusion errors for a non-empty fuzzy set A. We extend
their definition to include the empty set, in order to allow the use of a general binary fuzzy relation R in Definition 4.
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Proof. Take x in U such that Rx is not empty. Since U is finite, we can number and rename its
elements such that U = {z1, . . . ,zn} and

InclI (Rx,A)(z1)≥ InclI (Rx,A)(z2)≥ . . .≥ InclI (Rx,A)(zn).

Define Fx : [0,1]→ [0,1] such that, for α ∈ [0,1],

Fx(α) =
|Rx∩ (InclI (Rx,A))α |

|Rx|
.

Then Fx is a decreasing mapping in α . We have the following expression for αx,u:

αx,u = sup{α ∈ [0,1] | Fx(α)≥ u}.

We prove that we only need to consider the values InclI (Rx,A)(y) to compute αx,u, that is,

sup{α ∈ [0,1] | Fx(α)≥ u}= sup{α ∈ {I (R(y,x),A(y)) | y ∈U} | Fx(α)≥ u}.

Take α∗ ∈ [0,1] such that α∗ < {I (R(y,x),A(y)) | y ∈U}. We prove that this α∗ does not
influence the supremum. First, assume that α∗ is such that

InclI (Rx,A)(zi)> α
∗

for i ∈ {1, . . . ,n}, then Fx(α
∗) = Fx(InclI (Rx,A)(zi)). Since InclI (Rx,A)(zi) > α∗, we do not

need to take α∗ into account when we compute the supremum of {α ∈ [0,1] | Fx(α) ≥ u}. On
the other hand, if α∗ > InclI (Rx,A)(z1), then (InclI (Rx,A))α∗ = /0, hence Fx(α

∗) = 0. Since
we assume u > 0, it holds that

α
∗ < {α ∈ [0,1] | Fx(α)≥ u}.

In both cases we conclude that α∗ will not influence the supremum. Hence, we obtain that

αx,u = sup{α ∈ [0,1] | Fx(α)≥ u}
= sup{α ∈ {I (R(y,x),A(y)) | y ∈U} | Fx(α)≥ u}
= max{α ∈ {I (R(y,x),A(y)) | y ∈U} | Fx(α)≥ u},

since U is finite.
The proof for αx,l is analogous.

Proposition 9. Given a WCP-implicator I , a t-norm T and 0≤ l < u≤ 1. It holds that, for x
in U,

(aprI ,u
R

(A))(x) = αx,u,

(aprT ,l
R (A))(x) = 1−αx,l .

Proof. By definition of Sx,u, it holds that

(aprI ,u
R

(A))(x) = inf
y∈Sx,u

I (R(y,x),A(y))≥ αx,u.

By Lemma 1, let y∗ be the element in U such that αx,u = I (R(y∗,x),A(y∗)).
15



• If R(y∗,x)> 0, then y∗ ∈ Sx,u and hence (aprI ,u
R

(A))(x)≤I (R(y∗,x),A(y∗)) = αx,u.

• If R(y∗,x) = 0, then it holds that αx,u = I (0,A(y∗)) = 1 and thus, (aprI ,u
R

(A))(x) = 1.

In both cases, we conclude that (aprI ,u
R

(A))(x) = αx,u.

In an analogous way, by definition of Sx,l , we know that (aprT ,l
R (A))(x) ≤ 1− αx,l . By

Lemma 1, let z∗ be the element in U such that αx,l = 1−T (R(z∗,x),A(z∗)).

• If R(z∗,x)> 0, then z∗ ∈ Sx,l and hence (aprT ,l
R A)(x)≥T (R(z∗,x),A(z∗)) = 1−αx,l .

• If R(z∗,x) = 0, then it holds that αx,l = 1−T (0,A(z∗)) = 1 and thus, (aprT ,l
R (A))(x) = 0.

Hence, we conclude that (aprT ,l
R (A))(x) = 1−αx,l .

The above results give more insight into how the VPFRS model operates. The fuzzy set(
Rx∩ (InclI (Rx,A))InclI (Rx,A)(y)

)
can be seen as the R-foreset of x with those elements z

excluded, for which I (R(z,x),A(z)) < I (R(y,x),A(y)). If the cardinality of this restricted
R-foreset is at least a fraction u of that of the entire R-foreset, and there is no smaller such fuzzy
set satisfying this condition, then the VPFRS lower approximation equals I (R(y,x),A(y)). An
analogous interpretation can be given to the VPFRS upper approximation.

In the following propositions, we examine the conditions under which the VPFRS model
coincides with the IC model and the VPRS model, respectively.

First, when u = 1 and l = 0, we derive a specific case of the IC model.

Proposition 10. Given a WCP-implicator I and a t-norm T . It holds that, for x in U,

(aprI ,1
R

(A))(x) = inf
y∈U

I (R(y,x),A(y)),

(aprT ,0
R (A))(x) = sup

y∈U
T (R(y,x),A(y)).

Proof. Note that when Rx is empty, both equalities hold trivially.
Now take x ∈U such that Rx is not empty. With u = 1, we obtain that

αx,1 = sup{α ∈ [0,1] | ∀y ∈U : R(y,x)> 0⇒I (R(y,x),A(y))≥ α}.

If R(y,x) = 0, then I (R(y,x),A(y)) = 1≥ α for any α ∈ [0,1], so we obtain that

αx,1 = inf
y∈U

I (R(y,x),A(y)).

On the other hand, with l = 0, we derive that

αx,0 = sup{α ∈ [0,1] | ∀y ∈U : R(y,x)> 0⇒ 1−T (R(y,x),A(y))≥ α}.

If R(y,x) = 0, then 1−T (R(y,x),A(y)) = 1≥ α for any α ∈ [0,1], so it holds that

αx,0 = inf
y∈U

(1−T (R(y,x),A(y)))

= 1− sup
y∈U

T (R(y,x),A(y)).

The proof now follows from Proposition 9.
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Furthermore, when A is a crisp set and R is a crisp equivalence relation, the VPFRS model
coincides with the VPRS model of Ziarko.

Proposition 11. Given a WCP-implicator I , a t-norm T and 0 ≤ l < u ≤ 1. Let A be a crisp
subset of U and R a crisp equivalence relation on U. For x in U it holds that

(aprI ,u
R

(A))(x) = (apru
R
(A))(x),

(aprT ,l
R (A))(x) = (aprl

R(A))(x).

Proof. Take x in U arbitrary. Since A and R are crisp, αx,u and αx,l are either 1 or 0.
First, note that, for y ∈U ,

y ∈ [x]R∩ (InclI ([x]R,A))1⇔ R(y,x) = 1 and A(y) = 1⇔ y ∈ [x]R∩A.

For αx,u we derive that

αx,u = 1 ⇔ |[x]R∩ (InclI ([x]R,A))1|
|[x]R|

≥ u

⇔ |[x]R∩A|
|[x]R|

≥ u

⇔ (apru
R
(A))(x) = 1.

On the other hand, since

y ∈ [x]R∩ ((InclT ([x]R,A))NS)1⇔ R(y,x) = 1 and A(y) = 0⇔ y ∈ [x]R∩Ac,

we obtain for αx,l that

αx,l = 1 ⇔ |[x]R∩ ((InclT ([x]R,A))NS)1|
|[x]R|

≥ 1− l

⇔ |[x]R∩Ac|
|[x]R|

≥ 1− l

⇔ |[x]R∩A|
|[x]R|

≤ l

⇔ (aprl
R(A))(x) = 0.

The proof now follows from Proposition 9.

Finally, we prove that (SM) holds for the VPFRS model. The other properties do not hold (see
Appendix, Example 9).

Proposition 12. The VPFRS model satisfies (SM).

Proof. Let A,B be fuzzy sets in U such that A⊆ B. Due to Proposition 9, we have to prove that
αA

x,u ≤ αB
x,u and αA

x,l ≥ αB
x,l for every x in U .

Take x ∈U arbitrary. We reorder the elements of U such that U = {z1, . . . ,zn} and

I (R(z1,x),A(z1))≥I (R(z2,x),A(z2))≥ . . .≥I (R(zn,x),A(zn)).
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By Lemma 1, there exists an m ∈ {1, . . . ,n} such that αA
x,u = I (R(zm,x),A(zm)). Now, for every

i ∈ {1, . . . ,n} it holds that I (R(zi,x),B(zi))≥I (R(zi,x),A(zi)) and thus for all i ∈ {1, . . . ,m},

I (R(zi,x),B(zi))≥ α
A
x,u.

By definition of αA
x,u, it holds that

∑
z∈U :

I (R(z,x),A(z))≥αA
x,u

R(z,x)≥ u ·∑
z∈U

R(z,x)

and thus it also holds that

∑
z∈U :

I (R(z,x),B(z))≥αA
x,u

R(z,x)≥ u ·∑
z∈U

R(z,x).

In other words,
α

A
x,u ∈ {α ∈ [0,1] | eα(Rx,B)≤ 1−u}

Hence, αA
x,u ≤ αB

x,u.
In an analogous way, we obtain that

α
B
x,l ∈ {α ∈ [0,1] | ēα(Rx,A)≤ l} ,

and thus, αB
x,l ≤ αA

x,l .

We continue with Cornelis et al.’s Vaguely Quantified Fuzzy Rough Set model.

4.1.2. Vaguely Quantified Fuzzy Rough Set Model
In 2007, Cornelis et al. [5] introduced the Vaguely Quantified Fuzzy Rough Set (VQFRS)

model. In contrast to the other fuzzy rough set approaches, they did not make use of implicators
and conjunctors, but they worked with fuzzy quantifiers to extend Ziarko’s VPRS model.

Definition 5. [5] A regularly increasing fuzzy quantifier is an increasing mapping Q : [0,1]→
[0,1] that satisfies Q(0) = 0 and Q(1) = 1.

The VQFRS model is then defined based on two such regularly increasing fuzzy quantifiers.

Definition 6. [5] Given a couple (Qu,Ql) of regularly increasing fuzzy quantifiers, the
(Qu,Ql)-vaguely quantified fuzzy rough approximation of A by R is the pair of fuzzy sets
(aprQu

R
(A),aprQl

R (A)) defined by, for x ∈U:

(aprQu
R
(A))(x) =

{
Qu

(
|Rx∩A|
|Rx|

)
Rx , /0

1 Rx = /0,

(aprQl
R (A))(x) =

{
Ql

(
|Rx∩A|
|Rx|

)
Rx , /0

1 Rx = /0.
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In [5], the interpretation of this model is as follows: x belongs to the lower approximation
if “most” of the elements related to x belong to A and x belongs to the upper approximation
if “at least some” elements related to x belong to A; the linguistic quantifiers “most” and “at
least some” generalize the crisp ∀- and ∃-quantifiers, and are modeled by means of the fuzzy
quantifiers Qu and Ql , respectively. In [5], as a specific example, the authors put Qu = Q(0.2,1)
and Ql = Q(0.1,0.6), where Q(α,β ) with α,β ∈ [0,1] is defined by

∀x ∈ [0,1] : Q(α,β )(x) =


0 x≤ α

2(x−α)2

(β−α)2 α ≤ x≤ α+β

2

1− 2(x−β )2

(β−α)2
α+β

2 ≤ x≤ β

1 β ≤ x.

As pointed out in [5], the VQFRS model has Pawlak’s model and Ziarko’s VPRS model as
specific cases when A is a crisp set and R is a crisp equivalence relation. In the former case,
Qu = Q∀ and Ql = Q∃, where

∀x ∈ [0,1] : Q∀(x) =

{
0, x < 1
1, x = 1,

∀x ∈ [0,1] : Q∃(x) =

{
0, x = 0
1, x > 0.

In the case of the VPRS model, Qu = Q≥u and Ql = Q>l , where

∀x ∈ [0,1] : Q≥u(x) =

{
0, x < u
1, x≥ u,

∀x ∈ [0,1] : Q>l(x) =

{
0, x≤ l
1, x > l.

There is no connection between the VQFRS model and the IC model, i.e., we cannot find fuzzy
quantifiers Qu and Ql such that ∀A ∈F (U): aprQu

R
(A) = aprI

R
(A) and aprQl

R (A) = aprCR (A).
It can be verified that for the VQFRS model, (SM) holds and (UE) holds if R is serial. Other

properties do not hold (see Appendix, Example 10).

Proposition 13. The VQFRS model satisfies (SM).

Proof. This follows from the monotonicity of regularly increasing fuzzy quantifiers.

Proposition 14. If R is a serial fuzzy relation, (UE) holds.

Proof. For every x in U , Rx is not empty and Qu(0) = Ql(0) = 0 and Qu(1) = Ql(1) = 1.

Next, we discuss Hu et al.’s Soft Fuzzy Rough Set model.
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4.1.3. Soft Fuzzy Rough Set Model
Inspired by soft margin Support Vector Machines [8], Hu et al. [24] proposed in 2010 the Soft

Fuzzy Rough Set (SFRS) model as a new robust fuzzy rough set model.
An important ingredient of the model is the so-called soft distance between an element x and

a crisp set A of U , defined as follows in [25]:

SD(x,A) = argd(x,y) max
y∈A
{d(x,y)−δmx,y},

where d is a distance funtion, δ > 0 is a penalty factor and

mx,y = |{z ∈U | d(x,z)< d(x,y)}|.

However, we may encounter a problem with this definition due to the use of the function
argd(x,y): when the value of the maximum is reached for different values of y, it is not clear
which y should generate the soft distance. The following example illustrates this.

Example 7. Let U = {x,y1,y2,y3}, A = {y1,y2,y3}, δ = 0.1 and

d(x,x) = 0,d(x,y1) = 0.2,d(x,y2) = 0.3,d(x,y3) = 0.4.

Because d(x,y1)−δmx,y1 = d(x,y2)−δmx,y2 = d(x,y3)−δmx,y3 = 0.1, SD(x,A) could be either
0.2, 0.3 or 0.4.

Based on the soft distance, the authors define the SFRS model with a distance function d
determined by d(x,y) = 1−R(y,x) for all x,y ∈U . However, since the use of the arg function
leads to ambiguity as illustrated above, we introduce a slightly adapted definition of the model.

Definition 7. Given an implicator I , a conjunctor C and a penalty factor δ > 0. The soft fuzzy
rough approximation of A by R is the pair of fuzzy sets (aprI ,δ

R
(A),aprC ,δ

R (A)) defined by, for x
in U,

(aprI ,δ
R

(A))(x) = NI

(
min
y∈Ωx

R(y,x)
)
,

(aprC ,δ
R (A))(x) = min

y∈Πx
R(y,x),

with

Ωx =
{

z ∈U | A(z)≤ µx and

(∀z′ ∈U)(A(z′)≤ µx⇒ R(z′,x)+δmx,z′ ≥ R(z,x)+δmx,z)
}
,

µx = max{A(z) | z ∈U and I (R(z,x),A(z)) = σx},
σx = inf

z∈U
I (R(z,x),A(z)),

mx,z = |{w ∈U | A(w)≤ µx and R(w,x)> R(z,x)}|

and

Πx =
{

z ∈U | A(z)≥ νx and

(∀z′ ∈U)(A(z′)≥ νx⇒ R(z′,x)+δnx,z′ ≥ R(z,x)+δnx,z)
}
,

νx = min{A(z) | z ∈U and C (R(z,x),A(z)) = τx},
τx = sup

z∈U
C (R(z,x),A(z)),

nx,z = |{w ∈U | A(w)≥ νx and R(w,x)> R(z,x)}|.
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We briefly explain the intuition behind the lower approximation; the explanation for the upper
approximation is then analogous. First, we identify those elements z in U for which the value
of the infimum considered in the IC lower approximation, σx = (aprI

R
(A))(x), is reached. As

there may be several of them, we consider the one that has the highest membership to A; we
denote this membership degree by µx. To obtain Ωx, we look for z in U such that A(z)≤ µx and
R(z,x)+δmx,z is minimal, where mx,z counts the number of elements w in U such that A(w)≤ µx
and R(w,x) > R(z,x). Among all the y ∈ Ωx, we choose the one that has the smallest value of
R(y,x). Finally, to compute the lower approximation in x, we take the negation of that value
R(y,x).

By tuning the penalty factor δ , we may allow for more or less noise tolerance. If δ is
sufficiently large, the result will be determined by the largest value of R(z,x) (or equivalently,
the smallest value of mx,z) among the considered z, since other elements will not satisfy the
minimality condition. For small values of δ , more noise tolerance is allowed. In this case, the
largest values of R(z,x) are overlooked, and consequently the membership degree to the lower
approximation gets larger.

Next, we discuss the properties of the SFRS model. When NI is involutive, (D) holds.

Proposition 15. Let I be an implicator and C the conjunctor induced by I and NI . If NI

is involutive, the SFRS model satisfies (D) with respect to NI .

Proof. Let x ∈U . Note that since NI is involutive, it is continuous (see [2], Corollary 1.4.6).
We compute (aprC ,δ

R (ANI ))NI (x):

τ
ANI
x = sup

z∈U
C (R(z,x),NI (A(z)))

= sup
z∈U

NI (I (R(z,x),A(z)))

= NI

(
inf
z∈U

I (R(z,x),A(z))
)

= NI (σA
x ),

ν
ANI
x = min

{
NI (A(z)) | z ∈U and C (R(z,x),NI (A(z))) = τ

ANI
x

}
= min

{
NI (A(z)) | z ∈U and NI (I (R(z,x),A(z))) = NI (σA

x )
}

= NI

(
max{A(z) | z ∈U and I (R(z,x),A(z)) = σ

A
x }
)

= NI (µA
x ).

Furthermore, we have for every z ∈U that

nANI
x,z = |{w ∈U |NI (A(w))≥ ν

ANI
x ∧R(w,x)> R(z,x)}|

= |{w ∈U |NI (A(w))≥NI (µA
x )∧R(w,x)> R(z,x)}|

= |{w ∈U | A(w)≤ µ
A
x ∧R(w,x)> R(z,x)}|

= mA
x,z.
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Hence,

Π
ANI
x =

{
z ∈U |NI (A(z))≥ ν

ANI
x and

(∀z′ ∈U)(NI (A(z′))≥ ν
ANI
x ⇒ R(z′,x)+δnANI

x,z′ ≥ R(z,x)+δnANI
x,z )

}
,

=
{

z ∈U |NI (A(z))≥NI (µA
x ) and

(∀z′ ∈U)(NI (A(z′))≥NI (µA
x )⇒ R(z′,x)+δmA

x,z′ ≥ R(z,x)+δmA
x,z)
}
,

=
{

z ∈U | A(z)≤ µ
A
x and

(∀z′ ∈U)(A(z′)≤ µ
A
x ⇒ R(z′,x)+δmA

x,z′ ≥ R(z,x)+δmA
x,z)
}
,

= Ω
A
x .

We conclude that

(aprC ,δ
R (ANI ))NI (x) = NI

(
min

y∈ΠANI
x

R(y,x)

)

= NI

(
min
y∈ΩA

x

R(y,x)
)

= (aprI ,δ
R

(A))(x).

In particular, Proposition 15 holds if the pair (I ,C ) consists of an S-implicator based on a
t-conorm and its NI -dual t-norm, or if it consists of an IMTL-t-norm and its R-implicator.

Other properties do not hold for this model (see Appendix, Examples 11, 12, 13, 14 and 15).
In [24], the authors claimed that (IU) holds for the Kleene-Dienes implicator, the minimum
operator and a similarity relation. However, below we show that this claim is false.

Example 8. Let U = {x,y,z} and A,B fuzzy sets in U such that A(x)= 0.4, A(y)= 0.8, A(z)= 0.2
and B(x) = 0.8, B(y) = 0.5, B(z) = 0.8. Let I be the Kleene-Dienes implicator, C the minimum
operator, R the similarity relation such that R(x,y) = 0.8, R(x,z) = 0.4, R(y,z) = 0.4 and δ = 0.1.

We obtain the following results:

(aprI ,δ
R

(A))(x) = 1−R(z,x) = 0.6,

(aprI ,δ
R

(B))(x) = 1−R(y,x) = 0.2,

(aprI ,δ
R

(A∩B))(x) = 1−R(z,x) = 0.6.

We conclude that
aprI ,δ

R
(A)∩ aprI ,δ

R
(B) , aprI ,δ

R
(A∩B).

For the upper approximations we derive that

(aprC ,δ
R (A))(x) = R(y,x) = 0.8,

(aprC ,δ
R (B))(x) = R(z,x) = 0.4,

(aprC ,δ
R (A∪B))(x) = R(z,x) = 0.4.
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We conclude that
aprC ,δ

R (A)∪ aprC ,δ
R (B) , aprC ,δ

R (A∪B).

To end this subsection, we study Yao et al.’s Variable Precision Fuzzy Rough Set model based
on Fuzzy Granules.

4.1.4. Variable Precision Fuzzy Rough Set Model based on Fuzzy Granules
The last model we discuss based on frequency is proposed in 2014 by Yao et al. [65] and is

a granule-based fuzzy rough set model instead of an element-based one. This means that the
lower and upper approximation operators are defined by means of a union, resp. intersection, of
certain elementary fuzzy sets which are called fuzzy granules. In this approach, called FG model
henceforth, the authors work with a left-continuous t-norm T , its NS-dual t-conorm S and a
T -similarity relation R.

The relationship between fuzzy granules and fuzzy rough set theory was discussed for the first
time by Degang et al. in [11]. In traditional set theory, a set is determined by the elements it
contains. In fuzzy set theory, a fuzzy point plays a similar role: a non-empty fuzzy set is the
union of certain fuzzy points. Fuzzy granules can then be constructed around these fuzzy points.

Definition 8. [11] Let x ∈U, λ ∈ (0,1]. A fuzzy point is a fuzzy set xλ in U defined by

∀y ∈U : xλ (y) =

{
λ y = x
0 y , x.

Definition 9. [11] Let x∈U, λ ∈ [0,1] and R a binary fuzzy relation. Let T be a left-continuous
t-norm and S its NS-dual t-conorm. The fuzzy information granules [xλ ]

T
R and [xλ ]

S
R are

defined by:

∀y ∈U : [xλ ]
T
R (y) = T (R(y,x),λ ),

∀y ∈U : [xλ ]
S
R (y) = S (1−R(y,x),1−λ )

= 1−T (R(y,x),λ ).

Degang et al. proved that the IC approximation operators aprI
R
(A) and aprCR (A) can be ex-

pressed using fuzzy granules for (I ,C ) = (IT ,T ). Note that R needs to be T -transitive for
this proposition to hold.

Proposition 16. [11, 65] Let T be a left-continuous t-norm, S its NS-dual t-conorm and R a
fuzzy T -similarity relation. Then it holds that

aprIT
R

(A) =
⋃{

[xλ ]
T
R | x ∈U,λ ∈ [0,1], [xλ ]

T
R ⊆ A

}
,

aprTR (A) =
⋂{

[xλ ]
S
R | x ∈U,λ ∈ [0,1],A⊆ [xλ ]

S
R

}
.

Now, instead of considering the fuzzy granules [xλ ]
T
R and [xλ ]

S
R such that for all y ∈ U

[xλ ]
T
R (y) ≤ A(y), resp. A(y) ≤ [xλ ]

S
R (y), Yao et al. consider the fuzzy granules such that for

“many” elements y these inequalities hold. This is controlled by a parameter γ ≤ 1 that is recom-
mended to be chosen very close to 1. Although in [65] the relation R is a T -similarity relation,
we consider the model for arbitrary binary fuzzy relations.
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Definition 10. [65] Let T be a left-continuous t-norm, S its NS-dual t-conorm and R a binary
fuzzy relation. Let γ ∈ [0,1]. The fuzzy rough approximation of A by R based on fuzzy granules
is the pair of fuzzy sets (aprT ,γ

R
(A),aprS ,γ

R (A)) defined by, for x ∈U,

(aprT ,γ
R

(A))(x) = sup
{
[zλ ]

T
R (x) | z ∈U,λ ∈ [0,1],

|{y ∈U | [zλ ]
T
R (y)≤ A(y)}|
|U |

≥ γ

}
,

(aprS ,γ
R (A))(x) = inf

{
[zλ ]

S
R (x) | z ∈U,λ ∈ [0,1],

|{y ∈U | A(y)≤ [zλ ]
S
R (y)}|

|U |
≥ γ

}
.

If γ = 1 and R is a T -similarity relation, this model coincides with the IC model for the
couple (IT ,T ) as shown in Proposition 16. For general γ ∈ [0,1], aprIT

R
(A)⊆ aprT ,γ

R
(A) and

aprS ,γ
R (A)⊆ aprTR (A).

In [65], another characterisation of the FG model was proposed. It is proven that for a T -
similarity relation R, the supremum, resp. the infimum, is reached in x, when computing the
lower, resp. the upper approximation in x.

Proposition 17. [65] Let T be a left-continuous t-norm, S its NS-dual t-conorm and R a fuzzy
T -similarity relation. Let γ ∈ [0,1]. It holds, for x ∈U, that

(aprT ,γ
R

(A))(x) = sup
{
[xλ ]

T
R (x) | λ ∈ [0,1],

|{y ∈U | [xλ ]
T
R (y)≤ A(y)}|
|U |

≥ γ

}
,

(aprS ,γ
R (A))(x) = inf

{
[xλ ]

S
R (x) | λ ∈ [0,1],

|{y ∈U | A(y)≤ [xλ ]
S
R (y)}|

|U |
≥ γ

}
.

Note that it suffices that R is reflexive and T -transitive for Proposition 17 to hold.
We continue with discussing the properties of this model. As was proven in [65], (D) and

(SM) hold.

Proposition 18. [65] The FG model satisfies (D) with respect to the standard negator.

Proposition 19. [65] The FG model satisfies (SM).

Although it was not mentioned in [65], (RM) holds under conditions:

Proposition 20. Let T be a left-continuous t-norm and S its NS-dual t-conorm. If R1 and R2
are reflexive and T -transitive fuzzy relations, then the FG model satisfies (RM).

Proof. Assume R1 ⊆ R2 and γ ∈ [0,1]. We introduce the notation λ i
x for x ∈U and i = 1,2:

λ
i
x = sup

{
λ ∈ [0,1] |

|{y ∈U | [xλ ]
T
Ri
(y)≤ A(y)}|

|U |
≥ γ

}
.

Due to Proposition 17 and the left-continuity of T , we have for x ∈U and i = 1,2:

(aprT ,γ
Ri

(A))(x) = sup

{
[xλ ]

T
Ri
(x) | λ ∈ [0,1],

|{y ∈U | [xλ ]
T
Ri
(y)≤ A(y)}|

|U |
≥ γ

}
= [xλ i

x
]TRi

(x)

= T (Ri(x,x),λ i
x)

= λ
i
x.
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Now, since R1 ⊆ R2, it holds for all x ∈U and λ ∈ [0,1] that

[xλ ]
T
R1
⊆ [xλ ]

T
R2
.

Hence λ 2
x ≤ λ 1

x for all x ∈U and thus,

aprT ,γ
R2

(A)⊆ aprT ,γ
R1

(A).

By duality, it also holds that
aprS ,γ

R1
(A)⊆ aprS ,γ

R2
(A).

Hence, the FG model satisfies (RM).

Other properties do not hold for the FG model (see Appendix, Examples 16, 17 and 18).
Next, we discuss the Fuzzy Variable Precision Rough Set model proposed by Zhao et al.,

where a level of uncertainty is introduced in the approximated set.

4.2. Fuzzy Variable Precision Rough Set Model
Another model designed to make approximation operators more robust, is the Fuzzy Variable

Precision Rough Set (FVPRS) model, proposed by Zhao et al. [69] in 2009. It introduces a
level α of uncertainty into the IC model. Below, we recall the definition of the approximation
operators in this model4.

Definition 11. [69] Given an implicator I , a conjunctor C , an involutive negator N , a dis-
junctor D , its N -dual conjunctor CD ,N and α ∈ [0,1). The α-variable precision fuzzy rough
approximation of A by R is the pair of fuzzy sets (aprI ,α

R
(A),aprC ,α

R (A)) defined by, for x ∈U:

(aprI ,α
R

(A))(x) = inf
y∈U

I (R(y,x),D(α,A(y))),

(aprC ,α
R (A))(x) = sup

y∈U
C (R(y,x),CD ,N (N (α),A(y))).

In this way, elements with very small membership degrees to A are smoothed with an un-
certainty level α to limit their impact on the lower approximation, while the opposite hap-
pens for the upper approximation. For this reason, it is clear that aprI

R
(A) ⊆ aprI ,α

R
(A) and

aprC ,α
R (A)⊆ aprCR (A) always hold.

In general, α will be chosen close to 0. Note that if α is equal to 0 and D is a border
disjunctor, we derive the IC model as a special case of the FVPRS model.

On the other hand, we can also interpret the FVPRS model as a specific instance of the IC
model. Indeed, if we define the fuzzy sets B1 and B2 in U by, for x ∈U ,

B1(x) = D(α,A(x)),

B2(x) = CD ,N (N (α),A(x)),

then it is clear that aprI ,α
R

(A) = aprI
R
(B1) and aprC ,α

R (A) = aprCR (B2).
Based on this relationship, it is now easy to see that (SM), (RM) and (IU) always hold for the

FVPRS model, and that (D) and (ID) hold under the same conditions as for the IC model.

4We note that in [69] the following logical connectives are used: for a lower semicontinuous t-norm T and a involu-
tive negator N , (I ,C ) is either (IT ,CI ,N ) or (IS ,T ) with S the N -dual t-conorm of T . For the disjunctor D ,
the maximum operator is used.
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Proposition 21. The FVPRS model satisfies (SM), (RM) and (IU).

Proposition 22. If C is the induced conjunctor of I and N , i.e., C = CI ,N , then the FVPRS
model satisfies (D).

We remark that a restricted version of Propositions 21 and 22 was proven in [69]. Note also
that we do not have to assume that CD ,N and CI ,N are the same conjunctors.

Proposition 23. If R is a T -transitive relation, where T is a left-continuous t-norm and the pair
(I ,C ) consists of the t-norm T and its R-implicator, or (I ,C ) consists of the S-implicator
based on the N -dual t-conorm of T with respect to an involutive negator N and the t-norm
T , then (ID) holds.

(A) holds under certain conditions, which are stricter than for the IC model.

Proposition 24. Let (I ,C ) be a pair consisting of an IMTL-t-norm T and its R-implicator I
and let D = S be the NI -dual of T , then (A) holds.

Proof. For the sake of notation, we write I instead of IT . First note that (see e.g. [56]):

∀a,b ∈ [0,1] : I (NI (a),b) = NI (T (NI (a),NI (b))) = S (a,b).

Take x,y ∈U and let A and B be fuzzy sets in U . Then it holds for all x,y ∈U that

T (R(y,x),T (NI (α),A(y)))≤ B(x) ⇔ T (T (R(y,x),NI (α)),A(y))≤ B(x)

⇔ A(y)≤I (T (R(y,x),NI (α)),B(x))

⇔ A(y)≤I (R(y,x),I (NI (α),B(x)))

⇔ A(y)≤I (R′(x,y),S (α,B(x))),

where we first use the associativity of T , then the residuation condition between T and I and
in the last step a property of T and I that is due to the fact that T is an IMTL-t-norm (see [56],
Proposition 13). In other words, aprT ,α

R (A)⊆ B⇔ A⊆ aprIT ,α
R

(B).

The properties (INC), (LU), (CS) and (UE) do not hold for the FVPRS model (see Appendix,
Examples 19 and 20).

In the last subsection, we discuss robust fuzzy rough set models which make use of other
aggregation operators then the infimum and supremum operators.

4.3. Noise-Tolerant Models based on Aggregation Operators

A drawback of the IC model is its use of the infimum and supremum operators. The lower,
respectively upper, approximation is fully determined by the worst, respectively best, value. To
overcome this problem, fuzzy rough set models based on other aggregation operators have been
defined. Models of this type are the β -Precision Fuzzy Rough Set model of Fernández-Salido
and Murakami [18] and the Ordered Weighted Average based Fuzzy Rough Set model proposed
by Cornelis et al. [7]. We start with the former one.

26



4.3.1. β -Precision Fuzzy Rough Set Model
The oldest noise-tolerant fuzzy rough set model is due to Fernández-Salido and Mu-

rakami [18], who proposed the β -Precision Fuzzy Rough Set (β -PREC) model in 1993. They
tackle the noise problem by replacing the infimum and supremum operators by less strict aggre-
gation operators, which are recalled first.

Definition 12. [17, 18] Given a t-norm T , a t-conorm S , β ∈ [0,1] and n ∈ N \ {0,1}, the
corresponding β -precision quasi-t-norm Tβ and β -precision quasi-t-conorm Sβ of order n are
[0,1]n→ [0,1] mappings such that for all x = (x1, . . . ,xn) in [0,1]n,

Tβ (x) = T (y1, . . . ,yn−m),

Sβ (x) = S (z1, . . . ,zn−p),

where yi is the ith greatest element of x and zi is the ith smallest element of x, and

m = max

{
i ∈ {0, . . . ,n} | i≤ (1−β )

n

∑
j=1

x j

}
,

p = max

{
i ∈ {0, . . . ,n} | i≤ (1−β )

n

∑
j=1

(1− x j)

}
.

When β = 1, we obtain the original t-norm T and t-conorm S . The β -PREC model is then
defined as follows:

Definition 13. [18] Let T be a t-norm, S a t-conorm and β ∈ [0,1]. Given an implicator I
and a conjunctor C , the β -precision fuzzy rough approximation of A by R is the pair of fuzzy

sets (apr
I ,Tβ

R (A),apr
C ,Sβ

R (A)), defined by, for x ∈U:

(apr
I ,Tβ

R (A))(x) = Tβ

y∈U
〈I (R(y,x),A(y))〉,

(apr
C ,Sβ

R (A))(x) = Sβ

y∈U
〈C (R(y,x),A(y))〉.

Controlled by β , the smallest elements are omitted in the calculation of the lower approxima-
tion. Analogously, the largest elements will not influence the upper approximation. Therefore,
when T = TM and S = SM , the approximation operators of the β -PREC model satisfy

aprI
R
(A) ⊆ apr

I ,Tβ

R (A) and apr
T ,Sβ

R (A) ⊆ aprTR (A). On the other hand, the use of t-norms
and t-conorms other than the minimum and maximum operator allows for more interaction
among the arguments to be aggregated. When β = 0, all elements smaller than the average
I (R(y,x),A(y)) value (resp., higher than the average C (R(y,x),A(y)) value) are ignored. If
β = 1, T = TM and S = SM , we derive the IC model. Fernández-Salido and Murakami
recommended to choose β very close to 1.

Below, we evaluate the properties of the β -PREC model.

Proposition 25. Let T be a t-norm and and S its NS-dual t-conorm. Let β ∈ [0,1]. If the pair
(I ,C ) consists of an implicator I and the conjunctor induced by I and NS, i.e., C = CI ,NS ,
then (D) holds.
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Proof. We will prove that Tβ and Sβ are dual with respect to the standard negator NS. Let us
take (x1, . . . ,xn) ∈ [0,1]n and σ the permutation on {1, . . . ,n} such that xσ(i) is the ith biggest
element of (x1, . . . ,xn). Define m as:

m = max

{
i ∈ {0, . . . ,n} | i≤ (1−β ) ·

n

∑
j=1

x j

}
.

Now, since

m≤ (1−β ) ·
n

∑
j=1

x j⇔ m≤ (1−β ) ·
n

∑
j=1

1− (1− x j),

we omit m values to calculate Tβ and we omit m values to calculate Sβ . Hence,

NS(Tβ (x1, . . . ,xn)) = 1−
(
T (xσ(1), . . . ,xσ(n−m))

)
= S (1− xσ(1), . . . ,1− xσ(n−m))

= Sβ (1− x1, . . . ,1− xn)

= Sβ (NS(x1), . . . ,NS(xn)).

The rest of the proof now follows from Proposition 1.

In particular, Proposition 25 holds if the pair (I ,C ) consists of an S-implicator IS ,NS and
the NS-dual t-norm of S , or if it consists of an IMTL-t-norm T and its R-implicator, assuming
that the induced negator of the R-implicator is the standard negator, i.e., NIT

= NS.
We note that duality only holds with respect to the standard negator NS. Indeed, if S is the

N -dual t-conorm of a t-norm T for an involutive negator N ,NS, then N (Tβ (x1, . . . ,xn)) is
not necessarily equal to Sβ (N (x1), . . . ,N (xn)).

Proposition 26. The β -PREC model satisfies (SM) and (RM).

Proof. This follows from the monotonicity of conjunctors, implicators and β -precision t-norms
and t-conorms.

None of the other properties holds for this model (see Appendix: Examples 21, 22 and 23).
To end this subsection, we discuss Cornelis et al.’s Ordered Weighted Average based Fuzzy

Rough Set model.

4.3.2. Ordered Weighted Average based Fuzzy Rough Set Model
In 2010, Cornelis et al. [7] constructed a fuzzy rough set model in which they replaced the

infimum and supremum operators of the IC model by Ordered Weighted Average (OWA) aggre-
gation operators, which are recalled first:

Definition 14. [63] Given a sequence D of n scalar values and a weight vector W = 〈w1, . . . ,wn〉
of length n (henceforth called an OWA weight vector of length n), such that for all i ∈ {1, . . . ,n},
wi ∈ [0,1], and

n
∑

i=1
wi = 1. Let σ be the permutation on {1, . . . ,n} such that dσ(i) is the ith largest

value of D. The OWA operator acting on D yields the value

OWAW (D) =
n

∑
i=1

widσ(i).
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The OWA operator allows to consider a wide variety of aggregation strategies. For instance,
the weight vectors 〈0, . . . ,0,1〉 and 〈1,0, . . . ,0〉 represent the minimum and the maximum, re-
spectively. Using other OWA weight vectors, it is possible to soften the lower and upper approx-
imation such that not only the smallest, resp. largest element contribute to the result. In order to
assure that the obtained operators still behave sufficiently like the minimum and the maximum,
the orness and andness degree of the weight vector are used.

Definition 15. [63] Let W be an OWA weight vector of length n. The orness and andness degree
of W are defined by

orness(W ) =
1

n−1

n

∑
i=1

((n− i) ·wi),

andness(W ) = 1−orness(W ).

Definition 16. [7] Given an implicator I , a conjunctor C and OWA weight vectors W1 and W2
of length n, with n = |U | and such that andness(W1) > 0.5 and orness(W2) > 0.5, the (W1,W2)-
fuzzy rough approximation of A by R is the pair of fuzzy sets (aprI ,W1

R
(A),aprC ,W2

R (A)) defined
by, for x ∈U:

(aprI ,W1
R

(A))(x) = OWAW1
y∈U

〈I (R(y,x),A(y))〉,

(aprC ,W2
R (A))(x) = OWAW2

y∈U
〈C (R(y,x),A(y))〉.

By varying the OWA weight vectors, different fuzzy rough set models can be maintained.
Clearly, for the weight vectors W1 = 〈0, . . . ,0,1〉 and W2 = 〈1,0, . . . ,0〉, we obtain the IC model.
If other OWA weight vectors are used, more weight will be given to higher, resp. lower values,
so it always holds that aprI

R
(A)⊆ aprI ,W1

R
(A) and aprC ,W2

R (A)⊆ aprCR (A).

We note that the OWA model also has the robust nearest neighbor fuzzy rough approximation
operators, proposed in 2012 by Hu et al. [27], as special cases. For instance, with the k-trimmed
minimum operator, the authors consider a variation on the IC lower approximation, in which
the k smallest implication values I (R(y,x),A(y)) are omitted in the infimum computation;
clearly, this approach can be modeled by using the OWA weight vector in which the element on
position n− k is equal to 1 and the remaining values are 0. In Table 4, we show for each robust
nearest neighbor fuzzy rough approximation proposed in [27] its corresponding OWA weight
vector. Note that the first three correspond to lower approximations, and the last three to upper
approximations.

Next, we consider the properties of the OWA model. Duality holds under conditions on the
weight vectors W1 and W2. Let W1 be a weight vector such that andness(W1)> 0.5, then it holds
that

1− n
n−1

·1+ 1
n−1

n

∑
i=1

i · (W1)i > 0.5

and thus
1

n−1

n

∑
i=1

i · (W1)i >
n

n−1
−0.5.
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Operator OWA weight vector

k-trimmed minimum wi =

{
1 if i = n− k
0 otherwise

k-mean minimum wi =

{ 1
k if i > n− k
0 otherwise

k-median minimum wi =

 1 if k odd, i = n− k−1
2

1
2 if k even, i = n− k

2 or i = n− k−2
2

0 otherwise

k-trimmed maximum wi =

{
1 if i = k+1
0 otherwise

k-mean maximum wi =

{ 1
k if i < k+1
0 otherwise

k-median maximum wi =

 1 if k odd, i = k+1
2

1
2 if k even, i = k

2 or i = k
2 +1

0 otherwise

Table 4: Correspondence between robust nearest neighbor fuzzy rough approximation operators and OWA weight vectors

If we define W2 as (W2)i = (W1)n−i+1 for i ∈ {1, . . . ,n}, then it holds that

orness(W2) =
1

n−1

n

∑
i=1

(n− i).(W2)i

=
1

n−1

n

∑
i=1

(n− i).(W1)n−i+1

=
1

n−1

n

∑
j=1

(n− (n− j+1)).(W1) j

=
1

n−1

n

∑
j=1

( j−1).(W1) j

=
1

n−1

n

∑
j=1

j.(W1) j−
1

n−1

>
n

n−1
−0.5− 1

n−1
= 1−0.5
= 0.5.

Hence, if andness(W1)> 0.5, then orness(W2)> 0.5. We can now prove the duality property.

Proposition 27. Let W1 be a weight vector such that andness(W1) > 0.5. If the pair (I ,C )
consists of an implicator I and the conjunctor induced by I and NS, i.e., C = CI ,NS , and W2
is the weight vector defined by (W2)i = (W1)n−i+1 for i ∈ {1, . . . ,n} then (D) holds with respect
to NS.

Proof. Let x ∈U . Since U is finite, we can rename the elements of U such that U = {z1, . . . ,zn}
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and
I (R(z1,x),A(z1))≤ . . .≤I (R(zn,x),A(zn)).

As C = CI ,NS , it holds for every zi ∈U that

1−C (R(zi,x),1−A(zi)) = I (R(zi,x),A(zi)).

Hence,
C (R(z1,x),1−A(z1))≥ . . .≥ C (R(zn,x),1−A(zn)).

We now compute (aprC ,W2
R (ANS))NS(x):

(aprC ,W2
R (ANS))NS(x) = 1−

n

∑
i=1

(W2)i ·C (R(zi,x),1−A(zi))

= 1−
n

∑
i=1

(W1)n−i+1 · (1−I (R(zi,x),A(zi)))

= 1−

(
1−

n

∑
i=1

(W1)n−i+1 ·I (R(zi,x),A(zi))

)
= (W1)n ·I (R(z1,x),A(z1))+ . . .+(W1)1 ·I (R(zn,x),A(zn))

= (aprI ,W1
R

(A))(x),

where the last step holds, since I (R(z1,x),A(z1))≤ . . .≤I (R(zn,x),A(zn)).

In particular, Proposition 27 holds if the pair (I ,C ) consists of an S-implicator IS ,NS and
the NS-dual t-norm of S , or if it consists of an IMTL-t-norm T and its R-implicator, assuming
that the induced negator of the R-implicator is the standard negator, i.e., NIT

= NS.
Set and relation monotonicity also hold for this model, as was stated in [7].

Proposition 28. [7] The OWA model satisfies (SM) and (RM).

None of the remaining properties is satisfied (see Appendix, Examples 24, 25 and 26).

4.4. Summary
We summarize the properties of the IC model discussed in Section 3 and the robust fuzzy

rough set models discussed in Section 4 in Table 5. If a property holds, we denote this with X; if
a property does not hold, we indicate this by 7 and if a property holds under certain conditions,
we write P.

The most important conclusion seems to be that none of the noise-tolerant models is able to
retain all the properties of Pawlak’s original model and its implicator-conjunctor-based extension,
even when R is a similarity relation. FVPRS is the model that satisfies most theoretical properties;
incidentally, this is also the model that adheres most closely to the IC model.

Note that none of the noise-tolerant models satisfies (INC), a defect they share with the crisp
VPRS model. This is quite remarkable, since intuitively one would expect the lower and upper
approximations to be positioned on either side of the fuzzy set they are supposed to approximate.

Furthermore, the properties (SM) and (RM) are important from the application perspective.
The fact that SFRS does not satisfy (SM), not even for crisp subsets of U (see Appendix, Exam-
ple 13), makes its practical application very problematic; for instance, in a classification problem,
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Property IC VPFRS VQFRS SFRS FG FVPRS β -PREC OWA

(D) P 7 7 P P P P P
(A) P 7 7 7 7 P 7 7

(INC) P 7 7 7 7 7 7 7
(SM) X X X 7 X X X X
(RM) X 7 7 7 P X X X
(IU) X 7 7 7 7 X 7 7
(ID) P 7 7 7 7 P 7 7
(LU) P 7 7 7 7 7 7 7
(CS) P 7 7 7 7 7 7 7
(UE) P 7 P 7 7 7 7 7

Table 5: Evaluation of properties for different fuzzy rough set models

one would expect that when a decision class gets larger, so do its approximations. On the other
hand, the violation of (RM) has its own consequences for applications, like attribute selection,
that consider different levels of granulation of data: indeed, when the granulation of the data im-
posed by the fuzzy relations R becomes finer, we expect the lower approximation not to shrink.
Some attribute selection methods even rely on (RM), e.g., the QuickReduct algorithm [6] as-
sumes that the lower approximation of classes increases when attributes are added, since adding
attributes means that the membership values of the fuzzy relation increase. If the (RM) property
is not satisfied, the QuickReduct algorithm could get stuck in an infinite loop. In this sense, the
fuzzy rough set models of FG, FVPRS, β -PREC and OWA are prefered over the other ones.

The other seven properties we have discussed are less important for practical applications,
and are mainly interesting from a theoretical perspective. If a pair of operators satisfies (D), then
there is an interaction between the lower and upper approximation operator: one can be defined
by the other. The property (A) comes from the concept of a Galois connection. However, in
many data analysis applications only the lower approximation is used and thus, the properties
(D) and (A) are less important from a practical point of view. The property (IU) is very intuitive,
since it states that the membership degrees of an element to the intersection A∩B and the union
A∪ B are fully determined by its membership degrees to A and B. The properties (ID) and
(LU) express that approximating once gives immediately all the information. Furthermore, the
property (CS) expresses that no extra information is gained by approximating a constant set.
Moreover, the property (UE) states that the universe contains all information, and that the empty
set contains none.

In the following section, we empirically analyze the robustness of the different models con-
sidered in this paper.

5. Robustness of Fuzzy Rough Set Models: Experimental Evaluation

To evaluate the robustness of the previously discussed fuzzy rough set models, we set up an
experiment involving four real-world data sets. Each data set can be considered as a decision
system (U,A ∪{d}) where U is the finite set of instances that are described by the attributes in
A (also called conditional attributes) and one decision attribute d <A . The value of an instance
x ∈U for a certain attribute a ∈A ∪{d} is denoted by a(x).
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A common task in machine learning is to predict the value of the decision attribute of an
instance, given the other attributes of that instance and previously labeled training data. To this
end, many fuzzy rough set applications of machine learning (see e.g. [6, 57]), use the so-called
positive region, defined as follows:

∀x ∈U : POS(x) = sup
y∈U

(apr
R
(Rdy))(x)

In this formula, apr
R

refers to one of the lower approximation operators considered in the
previous sections, and R and Rd are fuzzy relations in U that represent approximate equality
between instances based on the conditional attributes, and on the decision attribute, respectively.
They are assumed to be (at least) reflexive and symmetric. In this paper, we use the following
definition for R:

∀x,y ∈U : R(x,y) =
∑

a∈A
1− |a(x)−a(y)|

range(a)

|A |
where range(a) equals the difference between the maximum value of the attribute a and its mini-
mum value. The fuzzy relation Rd is defined as follows when d is a categorical (discrete) decision
attribute:

∀x,y ∈U : Rd(x,y) =
{

1 d(x) = d(y)
0 otherwise

and as follows for a continuous decision attribute:

∀x,y ∈U : Rd(x,y) = 1− |d(x)−d(y)|
range(d)

.

For a robust fuzzy rough set model, we would like that the positive region does not change
drastically when small changes in the data occur. This should hold both when the conditional
attributes are affected by noise (attribute noise), as well as when the decision attribute contains
errors (class noise). Given a certain noise level n∈ [0,100], we define the altered decision system
(U,A n ∪{d}) as the decision system where each attribute a has a n% chance of having their
values altered to other attribute values in the range of a. To that end, the attribute values of all
instances in the decision system are considered separately. For each attribute and each instance,
a random number r ∈ [0,1] is generated. If this number r is lower than n%, the attribute value of
the instance is changed to a random value in the range of a. This means that in the asymptotic
case of an infinite amount of data, n% of the attribute values is altered. Analogously, we can
define an altered decision system (U,A ∪{dn}) where each decision value has an n% chance of
being altered to a value in the range of d. That is, for each x ∈U , we generate a random number
r ∈ [0,1] and if this value is lower than n%, the value d(x) is altered to a random value in the
range of d.

In order to evaluate the robustness of the fuzzy rough models, we therefore carry out the
following procedure for each data set, modeled as a decision system (U,A ∪{d}):

1. Calculate the positive regions POS(x) of all instances x ∈U using the specified fuzzy rough
set model.

2. For noise levels n = 1,2, . . . ,30, calculate the positive regions POSa
n(x) of all instances,

now on the altered decision system (U,A n ∪{d}) where each attribute value a(x) has an
n% chance of being altered to an attribute value in the range of a.
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# instances # features

Appendicitis 106 7
Iris 150 4
Diabetes 43 2
CPU 209 6

Table 6: Data sets used in the experimental evaluation

3. For noise levels n = 1,2, . . . ,30, calculate the positive regions POSd
n(x) of all instances,

now on the altered decision system (U,A ∪{dn}) where each decision value d(x) has an
n% chance of being altered to an attribute value in the range of d.

4. For each noise level, calculate the average distances between the original positive regions
and the altered positive regions:

errora
n =

∑
x∈U
|POS(x)−POSa

n(x)|

|U |
,

errord
n =

∑
x∈U
|POS(x)−POSd

n(x)|

|U |
.

5. Repeat steps 1 through 4 ten times and report the average errors over ten runs.

These errors express to what extent the fuzzy rough set model changes when a certain level of
attribute or class noise is imposed on the data.

We carry out this procedure for four data sets from the KEEL5 data set repository; their
properties are listed in Table 6. Note that the first two data sets, ‘Appendicitis’ and ‘Iris’6, have
a categorical decision attribute (classification problems), while the last two, ‘Diabetes’ and
‘CPU’, have a continuous decision attribute (regression problems).

The specific parameters that we used for the different fuzzy rough set models are described
in Table 7. We followed the parameter suggestions of the authors for their models in the
corresponding papers. In some cases, multiple parameter settings were suggested, in which
case we tested all of them and report the results of the models with the most stable parameter
setting, highlighted in bold in Table 7. For the IC model, we use the Łukasiewicz implicator to
calculate the lower approximation, and we maintain this choice for the other models to make the
evaluation implicator independent.

In Figures 1 and 2, we show the results of the experiment. In each case, the X-axis shows
the noise level, while the corresponding error can be seen on the Y -axis. Therefore, the less the
increase of a curve, the better the corresponding model performs. It can be seen that the OWA
model always outperforms the IC model and is in most cases the most robust model, both for
attribute and class noise. The VQFRS model also performs well for most of the data sets, but
it is mostly outperformed by the OWA model. The VPFRS model performs remarkably bad for

5www.keel.es
6Also available at the UCI Machine Learning Repository [1], http://archive.ics.uci.edu/ml
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Figure 1: Robustness of the Fuzzy Rough Set models to Attribute Noise
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Figure 2: Robustness of the Fuzzy Rough Set models to Class Noise
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Model Parameters

IC -
VPFRS u : 0.80,0.85,0.90
VQFRS Q(0.2,1)
SFRS δ : 0.10,0.15,0.20
FG γ : 0.80,0.85,0.90
FVPRS α : 0.10,0.15,0.20
β -PREC β : 0.97,0.98,0.99

Aggregation: minimum operator
OWA Exponential weights,

Yager weights [64] based on Q(0.2,1)

Table 7: Parameter settings for the fuzzy rough set models

the Appendicitis data set, where it is even less robust than the IC model. On the other hand, the
VPFRS model is one of the most robust models for the Iris and CPU data sets. For all data sets,
the FVPRS model and the FG model are more or less equally robust as the IC model. The β -
PREC model is more robust than the IC model but is mostly outperformed by other models such
as the OWA model or VQFRS. Finally, the SFRS model performs better than the OWA model
for the Iris data set, but performs badly for the other data sets. Overall, the OWA model is the
most robust against attribute and class noise.

6. Conclusion and Future Work

In this article, we have established a unified framework for fuzzy rough set models. We
have compared the approximation operators corresponding to a general implicator-conjunctor
(IC) fuzzy rough set model with those used in a number of existing noise-tolerant fuzzy rough
set approaches. We have adapted the definition of the Variable Precision Fuzzy Rough Set
model [42, 43] in order to obtain a more general model and we have stated a simplified ver-
sion. Moreover, we have adjusted the Soft Fuzzy Rough Set model [24] such that the idea of the
model is maintained, but the problem concerning the soft distance is avoided. Additionally, we
have rejected the claim stated in [24] that the Soft Fuzzy Rough Set model satisfies property (IU)
for the Kleene-Dienes implicator, the minimum t-norm and a similarity relation.

In order to obtain a critical comparison of all the models, we have utilized a unified notation.
Our comparison focused both on desirable theoretical properties which we would like a model
to inherit from Pawlak’s original rough set definition, as well as on its robustness when data
are contaminated with different types of noise. In addition, we have provided proofs and coun-
terexamples for the properties which were not yet discussed by the authors of the noise-tolerant
models. Furthermore, we have performed experiments on four real-valued data sets to evaluate
to what extent the IC model and the seven noise-tolerant models are sensitive to attribute and
class noise.

Our findings indicate that from a theoretical perspective, none of the noise-tolerant models
satisfies as many properties as the IC model. When we look at the properties that matter most
for practical applications, namely set and relation monotonicity, we conclude that the only mod-
els satisfying them are Yao et al.’s Variable Precision Fuzzy Rough Set model based on Fuzzy
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Granules (FG, [65]), Zhao et al.’s Fuzzy Variable Precision Rough Set model (FVPRS, [69]),
Fernández-Salido and Murakami’s β -Precision Fuzzy Rough Set model (β -PREC, [17, 18]) and
Cornelis et al.’s Ordered Weighted Average based Fuzzy Rough Set model (OWA, [7]). Among
these four, from a practical point of view, the OWA model stands out as the most interesting one,
due to its stable behavior with respect to both attribute and class noise, improving the implicator-
conjunctor-based model for each of the problems we considered. However, none of the four
models satisfies the inclusion property.

An important asset of the OWA approach is its association of weights with ordered positions
of elements rather than with the elements themselves; this provides a flexible way to weight data
samples differently according to their relevance for different tasks. Clearly, the success of this
approach depends on the choice of appropriate OWA weights. While simple rules of thumb have
been used for this purpose so far (see e.g. [7, 58]), a more systematic study of their generation
is mandatory, e.g., by using learning methods as proposed in [3, 19, 55]. This study is left for
future research.

Furthermore, the experiments in this article aim to illustrate the sensitivity of the considered
fuzzy rough set models to attribute and class noise. We plan to examine different fuzzy rough set
based algorithms and to study their effect on practical applications such as feature selection.

In addition, we continue to search for new robust models that strike the right balance between
theoretical attractiveness and practical applicability.
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Appendix A.

In this Appendix, we have gathered counterexamples for those properties that are not valid for
the noise-tolerant fuzzy rough set models in this paper, i.e., for all the 7 marks in Table 5. In all
of our examples, we work fuzzy T -similarity relations R, where the t-norm T will be specified
in each example.

Appendix A.1. Noise-Tolerant Models based on Frequency

Appendix A.1.1. Variable Precision Fuzzy Rough Set Model
Since the VPRS model of Ziarko is a special case of the VPFRS model, the properties (D),

(A), (INC), (RM), (IU), (ID) and (LU) do not hold. We give a counterexample for (UE) and
(CS).

Example 9. Let U = {x,y,z} and R the TL-similarity relation such that R(x,y) = 0.7, R(x,z) =
0.8, R(y,z) = 0.8. Let I = IL and T = TL. Let l = 0.4 and u = 0.6. Computing the lower
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approximation of /0 = 0̂ and the upper approximation of U = 1̂ in y gives us the following results:

(aprI ,u
R

(0̂))(y) = 0.2,

(aprT ,l
R (1̂))(y) = 0.9.

Hence, (UE) and (CS) do not hold for the VPFRS model.

Appendix A.1.2. Vaguely Quantified Fuzzy Rough Set Model
Since the VPRS model of Ziarko is a special case of the VQFRS model, the properties (D),

(A), (INC), (RM), (IU), (ID) and (LU) do not hold. We give a counterexample for (CS).

Example 10. Let U = {x,y,z}, α = 0.1 and R the similarity relation such that R(x,y) = R(x,z) =
R(y,z) = 1. Let Qu =Q(0.2,1) and Ql =Q(0.1,0.6). We compute the lower and upper approximation
of α̂ in x. We obtain the following results:

(aprQu
R
(α̂))(x) = 0,

(aprQl
R (α̂))(x) = 0.

Hence, (CS) does not hold for the VQFRS model.

Appendix A.1.3. Soft Fuzzy Rough Set Model
We give counterexamples for (A), for (UE), (CS), (INC) and (LU), for (SM), for (RM) and for

(ID). Note that the property (SM) not even holds for crisp subsets A and B. A counterexample
for (IU) was already given in Example 8.

Example 11. Let U = {x,y,z} and A, B fuzzy sets in U such that A(x) = 0.3, A(y) = 0.5, A(z) =
0.5 and B(x)= 0.1, B(y)= 0.4, B(z)= 0.1. Let R be the TL-similarity relation such that R(x,y)=
0.3, R(x,z) = 0.5, R(y,z) = 0.5. Let I = IL, C = TL and δ = 0.1. The lower approximation of
B is

(aprI ,δ
R

(B))(x) = 0.5,(aprI ,δ
R

(B))(y) = 0.7,(aprI ,δ
R

(B))(z) = 0.5,

so it holds that A ⊆ aprI ,δ
R

(B). On the other hand, since (aprC ,δ
R (A))(x) = 0.3, it does not hold

that aprI ,δ
R (A)⊆ B. Hence, (A) does not hold for the SFRS model.

Example 12. Let U = {x,y} and R the similarity relation such that R(x,y) = 0.1. Let I = IL,
C =TL and δ = 0.1. We compute the lower approximation of /0= 0̂ and the upper approximation
of U = 1̂ in x:

(aprI ,δ
R

(0̂))(x) = 0.9,

(aprC ,δ
R (1̂))(x) = 0.1.

Hence, (UE), (CS) and (INC) do not hold for the SFRS model. Moreover, (aprI ,δ
R

(0̂))(y) = 0.9.
This leads to the following result:

(aprC ,δ
R (aprI ,δ

R
(0̂))(x) = 0.1.

Hence, the SFRS model does not satisfy (LU).
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Example 13. Let U = {x,y} and A, B crisp subsets of U such that A = {x} and B = {x,y}, i.e.,
A ⊆ B. Let R be the similarity relation such that R(x,y) = 0.9. Let I = IL and δ = 0.2. We
compute the lower approximation of A and B in x. We have the following results:

(aprI ,δ
R

(A))(x) = 0.1,

(aprI ,δ
R

(B))(x) = 0.

A similar counterexample can be constructed to illustrate that aprC ,δ
R (A)⊆ aprC ,δ

R (B) not always
holds. Hence, (SM) does not hold for the SFRS model.

Example 14. Let U = {x,y,z} and A the fuzzy set such that A(x) = 0.6, A(y) = 0.6, A(z) = 0.2.
Let R1 and R2 be similarity relations such that R1(x,y) = 0.4, R1(x,z) = 0.3, R1(y,z) = 0.3 and
R2(x,y) = 0.9, R2(x,z) = 0.3, R2(y,z) = 0.3, i.e., R1 ⊆ R2. Let I =IL and δ = 0.2. We compute
the lower approximation of A in x with respect to R1 and R2:

(aprI ,δ
R1

(A))(x) = 0.6,

(aprI ,δ
R2

(A))(x) = 0.7.

A similar counterexample can be constructed to illustrate that aprC ,δ
R1

(A)⊆ aprC ,δ
R2

(A) not always
holds. Hence, (RM) does not hold for the SFRS model.

Example 15. Let U = {x,y,z} and A the fuzzy set such that A(x) = 0, A(y) = 0.2, A(z) = 0.3. Let
R be the TL-similarity relation such that R(x,y) = 0.5, R(x,z) = 0.8, R(y,z) = 0.6. Let I = IL
and δ = 0.1. We compute the lower approximation of A:

(aprI ,δ
R

(A))(x) = 0,(aprI ,δ
R

(A))(y) = 0.5,(aprI ,δ
R

(A))(z) = 0.2.

Now, since (aprI ,δ
R

(aprI ,δ
R

(A)))(y) = 0.4, it does not hold that aprI ,δ
R

(aprI ,δ
R

(A)) = aprI ,δ
R

(A).

A similar counterexample can be constructed to illustrate that aprC ,δ
R (aprC ,δ

R (A)) = aprC ,δ
R (A)

not always holds. Hence, (ID) does not hold for the SFRS model.

Appendix A.1.4. A Variable Precison Fuzzy Rough Set Model based on Fuzzy Granules
We give counterexamples for (A), for (UE), (CS), (INC), (ID) and (LU) and for (IU).

Example 16. Let U = {x,y,z} and A, B fuzzy sets such that A(x) = 0.5, A(y) = 0.8, A(z) =
0.2 and B(x) = 1, B(y) = 0.3, B(z) = 0.3. Let R be the similarity relation such that R(x,y) =
0.3, R(x,z) = 0.3, R(y,z) = 1. Let T = TL, S = SL and γ = 0.6. We compute the upper
approximation of A:

(aprS ,γ
R (A))(x) = 0.1,(aprS ,γ

R (A))(y) = 0.2,(aprS ,γ
R (A))(z) = 0.2,

i.e., aprS ,γ
R (A) ⊆ B. However, since (aprT ,γ

R
(B))(y) = 0.3, it does not hold that A ⊆ aprT ,γ

R
(B).

Hence, (A) does not hold for the FG model.

Example 17. Let U = {y1, . . . ,y100} and R the similarity relation such that for all yi,y j ∈U with
i , j it holds that R(yi,y j) = 0.5. Let T =TL, S =SL and γ = 0.95. The lower approximation
of /0 = 0̂ in y1 is

(aprT ,γ
R

(0̂))(y1) = 0.5.
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The upper approximation of U = 1̂ in y1 is

(aprS ,γ
R (1̂))(y1) = 0.5.

Hence, (UE), (CS) and (INC) do not hold for the FG model. Furthermore, it holds, for every
yi ∈U, that

(aprT ,γ
R

(0̂))(yi) = 0.5 = (aprS ,γ
R (1̂))(yi).

This leads to the following results:

(aprS ,γ
R (aprS ,γ

R (1̂)))(y1) = 0

and
(aprS ,γ

R (aprT ,γ
R

(0̂)))(y1) = 1.

Hence, (ID) and (LU) do not hold for the FG model.

Example 18. Let U = {x,y,z} and A, B fuzzy sets such that A(x) = 0.6, A(y) = 0.6, A(z) =
0.2 and B(x) = 0.6, B(y) = 0, B(z) = 0.7. Let R be the similarity relation such that R(x,y) =
0.4, R(x,z) = 0.4, R(y,z) = 0.5. Let T = TL, S = SL and γ = 0.6. We compute the lower
approximation of A, B and A∩B in z:

(aprT ,γ
R

(A))(z) = 1,

(aprT ,γ
R

(B))(z) = 0.7,

(aprT ,γ
R

(A∩B))(z) = 0.5.

A similar counterexample can be constructed to prove that the upper approximation of the union
of two fuzzy sets is not necessarily equal to the union of the upper approximations of the two
fuzzy sets. Hence, (IU) does not hold for the FG model.

Appendix A.2. Fuzzy Variable Precision Rough Set Model
We give a counterexample for (UE), (CS) and (INC) and for (LU).

Example 19. Let U = {x,y,z} and R the similarity relation such that R(x,y) =R(x,z) =R(y,z) =
1. Let I =IL, C =TL, N =NS, D =SM and α = 0.1. We compute the lower approximation
of /0 = 0̂ and the upper approximation of U = 1̂ in x:

(aprI ,α
R

(0̂))(x) = 0.1,

(aprC ,α
R (1̂))(x) = 0.9.

Hence, (UE), (CS) and (INC) do not hold for the FVPRS model.

Example 20. Let U = {x,y,z} and R the similarity relation such that R(x,y) =R(x,z) =R(y,z) =
1. Let I = IL, C = TL, N = NS, D = SM and α = 0.1. The upper approximation of /0 is /0:

aprC ,α
R (0̂) = 0̂.

However, from Example 19, we obtain that

(aprI ,α
R

(aprC ,α
R (0̂))(x) = (aprI ,α

R
(0̂))(x) = 0.1.

Hence, (LU) does not hold for the FVPRS model.
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Appendix A.3. Noise-Tolerant Models based on Aggregation Operators
Appendix A.3.1. β -Precision Fuzzy Rough Set Model

We give counterexamples for (A), for (UE), (CS), (INC), (ID) and (LU) and for (IU).

Example 21. Let U = {x,y,z}, A and B fuzzy sets such that A(x) = 0.5, A(y) = 0.8, A(z) = 0.3
and B(x) = 0.5, B(y) = 0.9, B(z) = 0.7. Let I = IL, C = TL, T = TL, S = SL and β = 0.9.
Let R be the TL-similarity relation such that R(x,y) = 0.3, R(x,z) = 0.6 and R(y,z) = 0.7. We
compute the lower approximation of B:

(apr
I ,Tβ

R (B))(x) = 0.5,(apr
I ,Tβ

R (B))(y) = 0.9,(apr
I ,Tβ

R (B))(z) = 0.6.

We conclude that A ⊆ apr
I ,Tβ

R (B), but since (apr
C ,Sβ

R (A))(x) = 0.6, apr
C ,Sβ

R (A) * B. Hence,
(A) does not hold for the β -PREC model.

Example 22. Let U = {y1, . . . ,y100} and R the similarity relation such that for all yi,y j ∈U with
i , j it holds that R(yi,y j) = 0.5. Let I = IL, C = TP, T = TM , S = SM and β = 0.95. The
lower approximation of /0 = 0̂ in y1 is

(apr
I ,Tβ

R (0̂))(y1) = 0.5.

The upper approximation of U = 1̂ in y1 is

(apr
C ,Sβ

R (1̂))(y1) = 0.5.

Hence, (UE), (CS) and (INC) do not hold for the β -PREC model. Furthermore, it holds, for
every yi ∈U, that

(apr
I ,Tβ

R (0̂))(yi) = 0.5 = (apr
C ,Sβ

R (1̂))(yi).

This leads to the following results:

(apr
I ,Tβ

R (apr
I ,Tβ

R (0̂)))(y1) = 1

and
(apr

C ,Sβ

R (apr
I ,Tβ

R (0̂)))(y1) = 0.25.

Hence, (ID) and (LU) do not hold for the β -PREC model.

Example 23. Let U = {y0, . . . ,y10} and A, B fuzzy sets such that

A(y0) = 1,B(y0) = 0,
A(yi) = 1,B(yi) =

i
10 , i even, not 0,

A(yi) =
i

10 ,B(yi) = 1, i odd, not 0.

Let I = IKD, C = TM , T = TM and S = SM . Let R be the similarity relation such that for
all yi,y j ∈U it holds that R(yi,y j) = 1 and β = 0.8. We compute the lower approximation of A,
B and A∩B in y0. We have the following results:

(apr
I ,Tβ

R (A))(y0) = 0.3,

(apr
I ,Tβ

R (B))(y0) = 0.2,

(apr
I ,Tβ

R (A∩B))(y0) = 0.1.
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A similar counterexample can be constructed to prove that the upper approximation of the
union of two fuzzy sets is not necessarily equal to the union of the upper approximations of the
two fuzzy sets. Hence, (IU) does not hold for the β -PREC model.

Appendix A.3.2. Ordered Weighted Average based Fuzzy Rough Set Model
We give counterexamples for (A), for (UE), (CS), (INC), (ID) and (LU) and for (IU).

Example 24. Let U = {x,y,z}, and A, B fuzzy sets such that A(x) = 0.7, A(y) = 0, A(z) = 0.1 and
B(x) = 0.8, B(y) = 0.3, B(z) = 0.7. Let R be the TL-similarity relation such that R(x,y) = 0.8,
R(x,z) = 0.3, R(y,z) = 0.2. Let I =IL, C =TL, W1 = 〈 1

6 ,
2
6 ,

3
6 〉 and W2 = 〈 3

6 ,
2
6 ,

1
6 〉. The upper

approximation of A is:

(aprC ,W2
R (A))(x) = 0.35,(aprC ,W2

R (A))(y) = 0.25,(aprC ,W2
R (A))(z) = 0.05,

i.e., aprC ,W2
R (A)⊆ B. On the other hand, since (aprI ,W1

R
(B))(x) = 41

60 = 0.6833..., it does not hold
that A⊆ aprI ,W1

R
(B). Hence, (A) does not hold for the OWA model.

Example 25. Let U = {x,y} and R the similarity relation such that R(x,y) = 0.5. Let I = IL,
C = TL, W1 = 〈 1

3 ,
2
3 〉 and W2 = 〈 2

3 ,
1
3 〉. We compute the lower approximation of /0 = 0̂ and the

upper approximation of U = 1̂ in x:

(aprI ,W1
R

(0̂))(x) =
1
6
,

(aprC ,W2
R (1̂))(x) =

5
6
.

Hence, (UE), (CS) and (INC) do not hold for the OWA model.
Furthermore, it also holds that (aprI ,W1

R
(0̂))(y) = 1

6 and (aprC ,W2
R (1̂))(y) = 5

6 . This leads to
the following results:

(aprI ,W1
R

(aprI ,W1
R

(0̂)))(x) =
1
3
,

(aprC ,W2
R (aprI ,W1

R
(0̂)))(x) =

1
9
.

Hence, (ID) and (LU) do not hold for the OWA model.

Example 26. Let U = {y0, . . . ,y10} and A, B fuzzy sets such that

A(y0) = 1,B(y0) = 0,
A(yi) = 1,B(yi) =

i
10 , i even, not 0,

A(yi) =
i

10 ,B(yi) = 1, i odd, not 0.

Let R be the similarity relation such that for all yi,y j ∈U it holds that R(yi,y j) = 1. Let I =IL,
C = TL and let W1 and W2 be as follows:

W1 = 〈0.10,0.09,0.08,0.07,0.06,0.05,0.04,0.03,0.02,0.01,0.45〉,
W2 = 〈0.45,0.10,0.09,0.08,0.07,0.06,0.05,0.04,0.03,0.02,0.01〉.
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This leads to the following results:

(aprI ,W1
R

(A))(y0) = 0.565,

(aprI ,W1
R

(B))(y0) = 0.51,

(aprI ,W1
R

(A∩B))(y0) = 0.385,

(aprC ,W2
R (A))(y0) = 0.945,

(aprC ,W2
R (B))(y0) = 0.93,

(aprC ,W2
R (A∪B))(y0) = 1.

Hence, (IU) does not hold for the OWA model.
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[12] L. Fariñas del Cerro and H. Prade. Rough sets, twofold fuzzy sets and modal logic – Fuzziness in indiscernibility
and partial information. In A. Di Nola and A.G.S. Ventre, editors, The Mathematics of Fuzzy Systems, pages
103–120. Verlag TUV, Rheinland, Köln, 1986.
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