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Abstract

Current approaches to argumentation-based planning represent an interesting
proposal where defeasible argumentation is used as a practical mechanism suit-
able for reasoning with potentially contradictory information in dynamic en-
vironments. In many real-world planning scenarios, the development of for-
malisms allowing explicit preference specification over pieces of knowledge turns
out to be an essential task—however, despite its importance, existing plan-
ning systems are not provided with the possibility of dynamically changing
these preferences when a plan is being constructed. This paper presents an
argumentation-based approach to deal with the handling of preferences when a
plan is formulated; in particular, we propose using conditional expressions to
select and change priorities regarding information upon which plans are con-
structed. Our aim is not to improve the efficiency of current planning systems,
but to enhance the resulting plan itself by introducing an approach capable of
representing and handling multiple preferences over defeasible knowledge. This
approach will contribute to the strengthening of existing argumentation-based
epistemic planning systems, providing a useful tool that the user could exploit.
Finally, we also present a running-time analysis and several complexity results
associated with our approach.
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1. Introduction

Planning is a research area of AI that addresses the problem of obtaining a
set of actions to achieve a specific goal given an initial state of the world. Re-
cently, the consideration of epistemic elements in building a plan has extended
the area: “Epistemic planning is the enrichment of planning with epistemic no-
tions, that is, knowledge and beliefs” [1, 2, 3]. Defeasible argumentation is a
form of reasoning about beliefs that can be used to exploit knowledge bases in
the context of possible inconsistencies [4, 5]. Specifically, the fundamental pro-
cess in defeasible argumentation is to confront reasons to support or dismiss a
conclusion that is under scrutiny. An analysis mechanism supports this process
by obtaining arguments and then comparing those in conflict to reach a decision
regarding acceptance. Defeasible argumentation-based epistemic planners have
been adequately applied in the context of complex and dynamic domains where
contradictory and incomplete information is considered [6, 7, 8]; these planners
are characterized by the efficient use of defeasible reasoning for the epistemic
tasks performed over the represented knowledge. In particular, defeasible argu-
mentation is used as the inference mechanism to reason about the preconditions
and effects of a planner system’s actions.

In many planning approaches [9, 10, 11], modeling user preferences with
explicitly-specified priorities plays a significant role, especially in decision-making
processes. This priority information is beneficial in the selection of appropriate
knowledge, and guides the planning process according to user needs. However,
and despite its importance in the reasoning process, existing argumentation-
based planning systems do not provide additional capabilities for dynamically
changing the preference expressed by these priorities when a plan is being con-
structed. The main contribution of this paper centers on revising and extending
previous work [12] by introducing an epistemic planning formalism to equip a
planner’s reasoning engine with tools for carrying out this task. In particular,
we will deal with the problem of preference handling by introducing a way to se-
lect a priority assignment mechanism to modify the preferences among different
pieces of defeasible knowledge in each step (action) of a plan; in order to for-
malize such selection, we will use the conditional expression structure proposed
in [13].

In formulating our proposal, we will start from the proposal in [6, 7], where a
DeLP-based epistemic planner was first introduced. Concretely, this formalism
presents an approach where actions are selected and incorporated into a plan
after argumentation-based epistemic reasoning is performed. In this paper, we
will use the P-DeLP framework belonging to the DeLP family, which will provide
the inference engine for reasoning over the knowledge used by the planner—its
language and the reasoning mechanism will be described in Section 3. P-DeLP
stands for Possibilistic Defeasible Logic Programming, and considers weights
associated with the object language. In contrast to our approach, [6, 7] focus on
constructing plans using partial order planning techniques, whereas we focus on
developing a framework to deal with the problem of constructing plans based on
multiple preferences at the defeasible knowledge level through weights. In our

2



approach, arguments are sets of weighted formulas that support a conclusion,
and such weights are used to compute an argument’s strength and then settle
conflicts among contradictory conclusions. In analyzing the applicability of a
particular action, our proposal provides a way to specify conditional expressions,
which will to help decide what preference relation should be considered in each
context. We will introduce an extension of the APOP algorithm presented in [7]
that considers these expressions. Part of our work is also focused on studying
aspects related to computational complexity in the context of our approach.

The rest of the paper is structured as follows. Section 2 introduces a running
example to motivate our proposal’s main ideas. In Section 3, we give an overview
of Possibilistic Defeasible Logic Programming (P-DeLP), while in Section 4
we formalize our mechanisms for expressing preferences. Then, in Section 5,
we present our characterization of a defeasible argumentation-based epistemic
planner with the distinctive capability of handling preferences. We extend the
APOP algorithm presented in [7] with our approach, and in Section 6 we analyze
a new type of interference that can arise in a plan. Section 7 presents a running
time analysis of the main processes used by our algorithm and gives several
complexity results for our planning problem. In Section 8, we introduce an
example exercising our proposal. Finally, in Section 9 we include the relevant
related work, and in Section 10 we offer our conclusions and possible future
research lines.

2. Motivation

An argumentation-based epistemic planner traditionally adopts a single per-
spective in the construction of a plan, which is reflected by the strategy used
in the process of establishing why an argument is favored over others. These
strategies are established to compare information and decide between conflicting
arguments capturing the importance or priority of the information that argu-
ments contain. Given the usual dynamic nature of preferences, designing a real
planning system with a single perspective when facing different situations is
quite limiting. Furthermore, when the comparison fails—it is indecisive—the
system could become ineffective because it fails in its primary role of making a
decision. This situation could improve with the expansion of this type of planner
to consider context-adaptable priorities [14]; that is, priorities given in terms of
defeasible rules attached with weights that may vary from one particular con-
text to another. A possible way to address such a circumstance is to consider
tools that allow to dynamically change the information priority criterion to be
applied as the planner reasons and chooses which actions to add to a plan.

The use of a priority criterion can be mainly understood as a means for
modeling the choices of users. Instead of considering a single criterion to pri-
oritize defeasible knowledge, we propose that the system evaluate the situation
considering several contexts and decide which one to use depending on the cur-
rent state of the world. Consider, for instance, a scenario in which a planner
system considers the following actions: recommend tourist destinations, suggest
airlines, and advise adopting travel insurance policies. To find a plan for giving
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a recommendation, the system could consider the user’s particular preferences
through explicitly-specified priorities, which are obtained in advance. Suppose
the system can use two priority criteria; one based on trust and another based
on price. For illustration purposes, let us also assume that the system considers
the following domain knowledge about travel insurance policies:

Rule Description

r1 An insurance policy is not suggested if it is expensive.

r2 An expensive policy is suggested if it is trusted by a user.

Considering the price-based criterion, r1 will have higher priority since the
price of what is being offered is under consideration, whereas r2 is prioritized
if the user’s trust-based criterion is considered. Then, the user can inform in
which situations (context) to use each one by specifying conditions; for instance,
when the offered location is one of the most expensive places for tourists, then
perhaps the price should be used; otherwise, the trust-based criterion is used.
Considering a conditional criterion selection allows these systems to adopt the
criterion that better adapts to their knowledge of the situation. As we can see,
this new approach provides a different way to solve planning problems by using
more than one preference relation in the planning process by considering the
system’s epistemic states as they are affected by their environment. Hence, our
approach focuses on two issues: how to use multiple priority criteria and how to
decide the applicability of an action leveraging conditional selection statements
over prioritized knowledge.

3. Preliminaries

In solving a planning problem, planning systems should be provided with an
appropriate set of actions whose representation must consider all the precon-
ditions and effects that are relevant to solve the problem. In many real-world
applications, these systems often have to deal with potentially contradictory
and incomplete knowledge about the environment. In this context, structured
argumentation has played a significant role in capturing and representing this
type of knowledge to be used in reasoning about actions. As we will explain
later, the preconditions to execute actions can be satisfied by other actions’
effects (as usual) or by conclusions supported by arguments that are based on
inference rules and other actions’ effects. We will also show that apart from
effects that are present in the definition of actions, there could be more effects
that the system will be able to deduce using argumentation-based reasoning.

In this section, we present a structured argumentation framework based on
the mechanisms of Defeasible Logic Programming (DeLP)–see [15] for full de-
tails on DeLP. The main difference between the framework we will introduce
and DeLP lies in the use of Possibilistic Logic (PL) [16] as labels adorning
the formulas with a necessity degree at the object level of the language. The
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inclusion of the labels permits the consideration of preferences in this formaliza-
tion; we refer to this structured argumentation system as Possibilistic Defeasible
Logic Programming (P-DeLP). We will summarize the elements we require here
from the works in [17, 16, 18]1; the interested reader is referred to these works
for a thorough presentation. A variant of P-DeLP with a somewhat different
semantics can be found in [19].

3.1. Background on Possibilistic logic

Possibilistic Logic (see e.g., [20] for full details) is a logic of qualitative
uncertainty, alternative to other more numerical uncertainty models like the
probabilistic one, where what really matters is the likelihood order induced on
propositions by the uncertainty values they take, and not the absolute values
themselves. It is thus an ordinal model that is very suitable for handling prefer-
ences [21, 22, 23], and this is the reason we have chosen it for our argumentation-
based planning framework. We will now give a bare-bones introduction of this
uncertainty logic, as necessary for our presentation.

Possibilistic logic was initially defined on top of classical logic, although there
are generalizations that use a substratum of non-classical or fuzzy logics. Here
we will stick to the classical setting. We start from a classical propositional
language L, built from a (countable) set of propositional variables {p1, p2, . . .}
and Boolean connectives ∧, ∨, and ¬. Let us denote by I the set of all Boolean
interpretations I : L → {0, 1} over the language L, defined in the usual way.
For each proposition ϕ we will denote by [ϕ] the set of its models, i.e. [ϕ] = {I ∈
I | I(ϕ) = 1}.

Possibilistic logic attaches weights from the unit interval [0, 1] to propositions
to model statements of the form “ϕ is certain at least to the degree r”, where ϕ
is a proposition of L that represents an (imprecise) knowledge about the state
of the world, and r ∈ [0, 1] represents a lower bound on the belief of ϕ in terms
of necessity measures, with the following convention: if r = 1 it means that ϕ
is known to be fully certain, the higher is r the more certain is ϕ, and if r = 0
it means nothing is known about ϕ. Necessity values can also be interpreted
as degrees of preference or levels of priority when dealing with goals [21, 24].
Weighted formulas will be denoted as pairs (ϕ, r).

Belief states in the possibilistic view of uncertainty are modeled as possibility
distributions on the set I of all possible interpretations required to be normal-
ized, i.e., at least one interpretation must be totally possible. A (normalized)
possibility distribution is thus a mapping π : I → [0, 1] such that π(I) = 1 for
some I ∈ I, assigning a degree of plausibility to every possible interpretation.
Here π(I) = 1 means that I is a fully plausible interpretation, π(I) = 0 means
that I is a completely discarded interpretation, and in general, the higher is
π(I), the more plausible is I. Then, to measure the certainty level induced on

1Actually, the framework developed in these papers is more general than the one considered
here, in the sense that the underlying logic in these references was assumed to be Gödel fuzzy
logic, while here we will deal with classical propositional logic.

5



a proposition ϕ by such a possibilistic model π, it is customary to compute the
necessity and possibility measures of the set [ϕ] of interpretations satisfying ϕ,
according to the following definitions [25]:

Nπ(ϕ) = inf
I∈I
{1− π(I) | I ̸∈ [ϕ]}, Ππ(ϕ) = sup

I∈I
{π(I) | I ∈ [ϕ]}

Nπ(ϕ) estimates to what extent all the counter-models of ϕ (i.e., the models of
¬ϕ) are implausible, while Ππ(ϕ) estimates to what extent there is at least a
model of ϕ that is plausible. Necessity and possibility measures are dual in the
sense that Nπ(ϕ) = 1 − Ππ(¬ϕ), hence expressing the fact that a proposition
ϕ is certain to the extent in which ¬ϕ is deemed implausible. Necessity and
possibility measures satisfy these characteristic decomposability properties:

Nπ(ϕ ∧ ψ) = min(Nπ(ϕ), Nπ(ψ))
Ππ(ϕ ∨ ψ) = max(Ππ(ϕ),Ππ(ψ))

for any pair of propositions ϕ, ψ, and Nπ(⊥) = 0 (or equivalently Ππ(⊤) = 1).
As a consequence, the following condition is also satisfied for any ϕ: if Nπ(ϕ) > 0
then Nπ(¬ϕ) = 0. Therefore, if Nπ(ϕ) = 1 then ϕ is considered a fully certain
piece of information, if Nπ(¬ϕ) = 1 then ϕ is fully disbelieved, while the case
Nπ(ϕ) = Nπ(¬ϕ) = 0 represents full ignorance about ϕ.

In Possibilistic logic, a weighted formula (ϕ, r) will be satisfied by a possi-
bilistic model π whenever Nπ(ϕ) ≥ r. Then, the following weighted version of
the resolution rule is sound in possibilistic logic:

(ϕ ∨ ψ, r) (¬ϕ ∨ χ, t)
(ψ ∨ χ,min(r, t))

Actually, for propositions in clausal form, this rule was shown to be also com-
plete for deduction by refutation—see [20] for details.

Possibilistic logic has also been adapted to qualify conditional formulas “if ψ
then ϕ” rather than material implications ¬ψ∨ϕ by using conditional measures.
In contrast to probability theory, where there is a predominant way of express-
ing the conditional probability Pr(ϕ | ψ) of ϕ given ψ simply by means of the
ratio Pr(ϕ∧ψ)/Pr(ψ), in the case of possibility theory there have been different
proposals. Among them, the most purely qualitative one regarding possibil-
ity measures is taking the conditional possibility Ππ(ϕ | ψ) as the maximum
solution x of the equation min(x,Ππ(ψ)) = Ππ(ϕ ∧ ψ)—see [26]. By duality,
taking Nπ(ϕ | ψ) = 1−Π(¬ϕ | ψ) leads to the following definition of conditional
necessity:

Nπ(ϕ | ψ) =
{

0, if Nπ(¬ψ) = Nπ(¬ψ ∨ ϕ)
Nπ(¬ψ ∨ ϕ), otherwise

which is a slight variant of Nπ(¬ψ∨ϕ). With this definition, one can check that
the following weighted version of the resolution rule still holds:

Nπ(ϕ | ψ) ≥ r Nπ(ψ | χ) ≥ t
Nπ(ϕ | χ) ≥ min(r, t)

,
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which, in turn, also validates the following (conditional) possibilistic modus
ponens inference rule:

Nπ(ϕ | ψ1 ∧ . . . ∧ ψn) ≥ r, Nπ(ψ1) ≥ t1, . . . , Nπ(ψn) ≥ tn
Nπ(ϕ) ≥ min(r, t1, . . . , tn)

[PMP ]

This rule will be used in the P-DeLP framework described in the next section.

3.2. P-DeLP: Language and Reasoning Mechanisms

In P-DeLP, formulas will be supported by arguments, which will have an
attached weight (formally a necessity degree) associated with the supported
conclusion. The ultimate answer to queries will be based on the existence of
warranted arguments computed through a qualitative dialectical analysis. The
top-down proof procedure of P-DeLP is based on the one used in Defeasible
Logic Programming [15] and will be presented below.

Given a set of literals L, a weighted clause is a pair (R;ω), where R is a rule
L← L1 , . . . , Lk or a fact L (i.e., a rule with empty antecedent), L,L1, . . . , Lk ∈
L, and the weight ω ∈ [0, 1] expresses the priority or preference degree of
the clause, interpreted as a lower bound for the conditional necessity degree
N(L | L1 ∧ . . . ∧ Lk) in the case R = L← L1 , . . . , Lk , or a lower bound
for the necessity degree N(L) in the case R = L. Note that, by consider-
ing N(L | L1 ∧ . . . ∧ Lk) we are following the usual notational conventions in
Logic Programming [27] that regard the set of literals in the body of a clause
L1, . . . , Lk as a conjunction of these literals. Also, following [15], P-DeLP rules
can also be represented as schematic rules with variables; as usual in Logic Pro-
gramming, schematic variables are denoted with an initial uppercase letter. To
keep the usual terminology in defeasible reasoning, we distinguish between strict
and defeasible clauses: a clause (R;ω) is referred as strict if ω = 1 (top priority)
and defeasible otherwise, i.e. if ω < 1. Of course, the higher is weight ω, the
higher is the priority of the clause. Given a set P of weighted clauses, often
referred to as a P-DeLP program or simply a program, we will distinguish the
set of all the clauses in P considered as strict, denoted Π, and the set of all the
defeasible clauses in P, denoted ∆. When useful, we will write P = (Π,∆) to
refer to the set of weighted clauses, discriminating strict and defeasible clauses.

Example 1. Continuing with the running example of Section 2, let P1 =
(Π1,∆1) be a P-DeLP program that represents information for recommending
travel insurance policies.

Π1 =



(airline(a1, ana); 1)

(spendIns(1500, ana); 1)

(costIns(1700, i1); 1)

(lostLuggage(i1); 1)

(insurance(I )← expectTrouble(I ); 1)
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∆1 =



(∼insurance(I ,U )← expIns(I ,U ); 0.2)

(insurance(I ,U )← expIns(I ,U ), trustIns(I ,U ); 0.1)

(trustIns(I ,U )← airline(A,U ), lostLuggage(I ); 0.85)

(trustIns(I ,U )← travelAg(T ,U ), insT (I ,T ); 0.8)

(expIns(I ,U )← spendIns(E ,U ), costIns(C , I ),C > E ; 0.95)

(∼expIns(I ,U )← spendIns(E ,U ), costIns(C , I ),C < E ; 0.1)

(∼prefA(A,U )← expA(A); 0.6)

(prefA(A,U )← expA(A), trustA(A,U ); 0.3)

(∼prefTAg(T ,U )← expTAg(T ); 0.7)

(prefTAg(T ,U )← expTAg(T ), trusTAg(T ,U ); 0.2)

(trustA(A,U )← trust(U ,U 1), trustA(A,U 1); 0.2)

(expA(A)← topRatingA(A); 0.3)

(trusTAg(T ,U )← trust(U ,U 1), trusTAg(T ,U 1); 0.9)

(expTAg(T )← topRatingTA(T ); 0.6)


Observe that the set Π1 of clauses considered strict has four facts and one

rule. These facts represent information that can be automatically obtained by
a planner system: a1 is an airline recommended for ana (airline(a1, ana)), ana
hopes to spend no more than 1500 on travel insurance (spendIns(1500, ana)),
1700 is the cost of the travel insurance policy i1 (costIns(1700, i1)), and i1
covers the cost of lost luggage (lostLuggage(i1)). The remaining strict rule in
Π1 contains the advice that if trouble is expected with the airline, then travel
insurance should be obtaind. As ana is not expecting trouble, this fact is not
part of Π1.

The set ∆1 has several defeasible rules, and each one has an associated pri-
ority degree. The first two rules represent reasons for and against suggesting a
travel insurance policy: if I is an expensive policy (expIns(I ,U )), then there is
a reason against suggesting it, whereas if I is trusted by a user (trustIns(I ,U )),
then there exist reasons for suggesting it. The third and fourth rules repre-
sent reasons for establishing whether a particular user trusts a policy; if I
covers the cost of lost luggage or works with a recommended travel agency
(travelAg(T,U)), then there are tentative reasons to believe that it is a trusted
one. Defeasible rules 7–10 introduce some reasons for and against suggesting
an airline or travel agency, and a suggestion is given if a user trusts it. The
eleventh rule expresses that “a travel agency (trusTAg(T,U1)) which is trusted
by a trusted user (trust(U,U1)) typically will be trusted”. Finally, a travel
agency T is not suggested if it is expensive. Thus, the fourteenth defeasible
rule can be read as follows: “if T is one of the top agencies rated by the users
(topRatingTA(T )), then it is expensive”. □

We will use the possibilistic inference meta-relation |∼ between P and (L;ω),
i.e., P |∼ (L;ω), which will express that from P it is possible to build a sequence
(L1;ω1), . . . , (Ln;ωn) of weighted literals such that (a) (Ln;ωn) = (L;ω), and
(b) each (Li;ωi) with i < n either belongs to P or has been obtained by the
application of the following generalized modus ponens rule
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(H ← H1 , . . . ,Hk ;β)
(H1; γ1), . . . , (Hk; γk)

(H; min(β, γ1, . . . , γk))
[GMP ]

where (H ← H1 , . . . ,Hk ;β) ∈ P and all the weighted literals (H1; γ1), ..., (Hk; γk)
appear before (Li;ωi) in the sequence.

Note that this inference rule faithfully corresponds to the possibilistic modus
ponens rule [PMP] introduced in the previous section, once we interpret the
weights in clauses as we prescribed above.

A P-DeLP program P will be deemed as contradictory, denoted P |∼⊥, if,
for some atom a, P |∼(a;ω) and P |∼(∼a;β), with ω > 0 and β > 0. Given a
P-DeLP program P = (Π,∆), we will assume that the set Π of all the clauses
that are considered as strict (i.e., with weight ω = 1) is non-contradictory, i.e.,
Π |≁ ⊥.

Next, we introduce the notion of argument in the setting of a P-DeLP pro-
gram.

Definition 1 (Argument). Let P = (Π,∆) be a P-DeLP program. We say
that a set of defeasible rules A ⊆ ∆ is an argument for a literal L with necessity
degree ω > 0, denoted ⟨A, (L;ω)⟩, if

(i) Π∪A |∼ (L; ω), and ω = max{β ∈ [0, 1] | Π∪A |∼ (L; β)}, i.e., ω is the
greatest degree of deduction of L from Π ∪ A.

(ii) Π ∪ A is non-contradictory,

(iii) A is ⊆-minimal, i.e., there is no A′ ⊊ A satisfying (i) and (ii).

An argument ⟨S, (H; γ)⟩ is a sub-argument of ⟨A, (L;ω)⟩ iff S ⊆ A. When
no confusion may arise, we will overload the notation by writing ⟨S, (H; γ)⟩ ⊆
⟨A, (L;ω)⟩, and will also simplify the notation even further by writing S ⊆ A
when the rest of the elements are understood from the context.

Example 2. Consider the next two arguments: ⟨A1, (insurance(i1, ana); 0.1)⟩
and ⟨A2, (∼insurance(i1, ana); 0.2)⟩, constructed from the DeLP-program P1

presented in Example 1, where

A1 =


(insurance(i1, ana)← expIns(i1, ana), trustIns(i1, ana); 0.1)

(expIns(i1, ana)← spendIns(1500, ana), costIns(1700, i1), 1700 > 1500; 0.95)

(trustIns(i1, ana)← airline(a1, ana), lostLuggage(i1); 0.85)


A2 =

{
(∼insurance(i1, ana)← expIns(i1, ana); 0.2)

(expIns(i1, ana)← spendIns(1500, ana), costIns(1700, i1), 1700 > 1500; 0.95)

}
and each literal (insurance(i1, ana); 0.1) and (∼insurance(i1, ana); 0.2) is obtained

by applying the inference rule generalized modus ponens presented above.

Given a program, it can be the case that there exist arguments supporting
contradictory literals. Two literals are contradictory if they are complementary
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with respect to strong negation. In what follows, for a given literal L, we will
write its complement as L to denote “∼a” if L = a, and “a” if L =∼a.

Given a program P = (Π,∆) and two weighted literals (L1; ω1) and (L2; ω2),
with ω1, ω2 > 0, such that Π ∪ {(L1; ω1)} |≁ ⊥ and Π ∪ {(L2; ω2)} |≁ ⊥, we
say that they disagree regarding P when Π ∪ {(L1; ω1), (L2; ω2)} |∼⊥. Two
complementary weighted literals trivially disagree.

Definition 2 (Attack). Let P = (Π,∆) be P-DeLP program, and let ⟨A, (L;α)⟩
and ⟨B, (Q;β)⟩ be two arguments built from P. We say that ⟨B, (Q;β)⟩ attacks
⟨A, (L;α)⟩ at the weighted literal (H ; γ) if and only if there exists a subargu-
ment ⟨S, (H; γ)⟩ of ⟨A, (L;α)⟩, called the disagreement subargument, such that
(H ; γ) and (Q ; β) disagree with respect to P = (Π,∆).

We also say that an argument ⟨A, (L;α)⟩ is a counterargument for another
argument ⟨B, (Q;β)⟩ when there is an attack from the former to the latter.

In P-DeLP, given an argument that attacks another, such as the two argu-
ments in the previous example:

⟨A1, (insurance(i1, ana); 0.1)⟩ and ⟨A2, (∼insurance(i1, ana); 0.2)⟩),

the arguments are compared using a simple strategy to decide which one pre-
vails: an argument ⟨A, (L;α)⟩ is preferred to an argument ⟨B, (Q;β)⟩, denoted
⟨A, (L;α)⟩ > ⟨B, (Q;β)⟩, when α > β.

The notion that an argument defeats another one results from a successful
attack.

Definition 3 (Defeat). Let ⟨A, (L;α)⟩ and ⟨B, (Q;β)⟩ be two arguments. We
say that ⟨B, (Q;β)⟩ defeats ⟨A, (L;α)⟩, or equivalently that ⟨B, (Q;β)⟩ is a de-
feater of ⟨A, (L;α)⟩, if ⟨B, (Q;β)⟩ attacks ⟨A, (L;α)⟩ with disagreement subar-
gument ⟨S, (H; γ)⟩, and β ≥ γ.

Moreover, we will say that:

− ⟨B, (Q;β)⟩ is a proper defeater of ⟨A, (L;α)⟩ if β > γ, and

− ⟨B, (Q;β)⟩ is a blocking defeater of ⟨A, (L;α)⟩ if β = γ.

It is interesting to note that in the case of blocking defeaters, both arguments
⟨A, (L;α)⟩ and ⟨B, (Q;β)⟩ defeat each other, i.e., the result of the attack is that
both arguments end up being defeated.

Once we have defined the attack relation between arguments and the notion
of defeat, the next step is to stipulate how a conclusion can be obtained from a
knowledge base specified as a P-DeLP program. Following the DeLP approach,
our procedure will dialectically analyze the arguments that can be built for a
possible conclusion represented by a given weighted literal, as explained next.

Given a P-DeLP program P and an argument ⟨A, (L;α)⟩ built from P, to
establish whether ⟨A, (L;α)⟩ is acceptable or undefeated, all the possible de-
featers for ⟨A, (L;α)⟩ are considered successively, and for each one of them, the
defeaters for this defeater will be considered recursively in a dialectical process.
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As each defeater could in turn be defeated, a finite sequence of arguments such
as

Λ = [⟨A0, (L0;ω0)⟩, ⟨A1, (L1;ω1)⟩ . . . , ⟨An, (Ln;ωn)⟩],
where each argument (except the first one) is a defeater of its predecessor, is
called an argumentation line. In Λ, considering the position of the arguments
in the line, the ones in even positions with regard to the initial argument play
a role of support, and those in odd positions act as interfering arguments. In
P-DeLP, an argumentation line Λ is acceptable if the following conditions hold:

(1) Λ is finite,

(2) the set of supporting arguments in Λ is non-contradictory, and the set of
interfering arguments in Λ is also non-contradictory,

(3) no argument ⟨Aj , (Lj ;ωj)⟩ in Λ is a subargument of an argument ⟨Ai, (Li;ωi)⟩
in Λ, with i < j, and

(4) every blocking defeater ⟨Ai, (Li;ωi)⟩ in Λ is defeated by a proper defeater
⟨Ai+1, (Li+1;ωi+1)⟩ in Λ.

These four constraints are necessary to avoid fallacious situations, such as the
generation of infinite lines or the switch of roles for a given argument, among oth-
ers (see [15] for a complete discussion). We will also say that ⟨An+1, (Ln+1;ωn+1)⟩
is acceptable w.r.t. Λ = [⟨A0, (L0;ω0)⟩, ⟨A1, (L1;ω1)⟩ . . . , ⟨An, (Ln;ωn)⟩], if
Λ = [⟨A0, (L0;ω0)⟩, ⟨A1, (L1;ω1)⟩ . . . , ⟨An, (Ln;ωn)⟩, ⟨An+1, (Ln+1;ωn+1)⟩] is
an acceptable argumentation line.

Of course, there can be more than one defeater for a particular argument;
therefore, many acceptable argumentation lines could arise from this argument,
leading to a tree structure called a dialectical tree. Each path from the root of
the dialectical tree to a leaf corresponds to a different acceptable argumentation
line. Observe that every node (except the root) is a defeater of its parent and,
naturally, all leaves are undefeated.

Given an argument ⟨A, (L;α)⟩, to decide whether (L; α) is warranted, every
node in the dialectical tree associated with ⟨A, (L;α)⟩ is marked as undefeated
(“U”), or defeated (“D”). All leaf nodes are marked as “U”, and an inner node
is marked as “D” if it has at least one child marked as “U”, but it will be marked
as “U” if all its children are marked as “D”. Thus, a ground literal (L; α) is
warranted from a program P = (Π,∆) if there exists an argument ⟨A, (L;α)⟩
for (L; α) from P such that the root of its associated dialectical tree is marked
as “U”.

In the next section, we will propose a tool that allows selecting and changing
weights attached to prioritized rules. In Section 5, we will formally introduce a
preference-based argumentation approach for solving planning problems. To do
this, and as explained in Section 1, we will extend and refine several concepts
introduced in [12] to achieve the mentioned goals.

4. Preference Handling

In the previous section, we presented the P-DeLP system that will be used
in this paper to reason defeasibly during the planning process. One of our
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goals is to adjust the priority weights on rules to be used by P-DeLP’s inference
mechanism when selecting actions in the planning process. For that, we will in-
troduce a way of specifying a context-adaptable priority assignment mechanism
that relies on the use of conditional expressions, which in turn constitutes one of
contributions in our approach. Before formally defining this type of expressions,
we will introduce some concepts required by this definition.

The P-DeLP system requires a particular argument comparison strategy
to deal with conflicting arguments. In Section 3 we have presented a specific
criterion that relies on the weights of arguments; these weights are obtained
by a specific way of aggregating (using the min function) the priority degrees
attached to the defeasible rules in the argument. In our approach, the priority
degree associated with a defeasible rule is context-dependent, where the notion
of context is understood—in a general sense—as conditions favoring a particular
priority criterion. The following definition introduces the concept of priority
criterion as an assignment of weights to defeasible rules (recall that the higher
is the weight assigned to a defeasible rule, the higher is the priority of that
rule).2

Definition 4 (Priority criterion). Let R be a finite set of rules built from a
set of literals L. A priority criterion prc is specified by an assignment ρprc :
R→ [0, 1) of priority degrees to the rules in R.

A couple of remarks to simplify notation: (i) we will often identify the
criterion identifier prc with its associated assignment of weights ρprc , and we
will simply write prc(R) instead of ρprc(R); and (ii) given a set of (weighted)
defeasible rules ∆ and a priority criterion prc, we will write ∆prc to denote the
set of updated rules {(R, prc(R)) | R ∈ ∆−}, where ∆− = {R | (R;ω) ∈ ∆ for
some ω ∈ [0, 1]}. It is important to note that, if prc assigns a minimal weight
to a defeasible rule R ∈ ∆−, that is, if prc(R) = 0, then R will play no role at
all under the criterion prc. Also note that, since priority criteria are intended
to be assigned only to defeasible rules, by definition, it is not allowed to assign
a maximal weight 1 to a rule, since in that case it would become a strict rule.

Example 3. Consider the defeasible rules of the P-DeLP program P1 from
Example 1, and the two criteria price and trust prioritizing rules according re-
spectively to the price of what is being offered to the user and how much the
user trusts the source of the offer. The following are the corresponding sets of
updated rules according to these criteria:

2As it is assumed in many non-monotonic reasoning scenarios, there are different ways in
which preference or priority degrees for pieces of defeasible knowledge can be specified; for
instance, by the knowledge engineer according to their (subjective) priorities, with feedback
provided by human users that participate in human-in-the-loop systems, or in the context
of multiagent systems by defining a generic procedure for automatically updating an agent’s
knowledge base when new incoming information is perceived.
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∆trust =



(insurance(I ,U )← expIns(I ,U ), trustIns(I ,U ); 0.8)

(∼insurance(I ,U )← expIns(I ,U ); 0.3)

(prefA(A,U )← expA(A), trustA(A,U ); 0.7)

(∼prefA(A,U )← expA(A); 0.3)

(prefTAg(T ,U )← expTAg(T ), trusTAg(T ,U ); 0.9)

(∼prefTAg(T ,U )← expTAg(T ); 0.5)

(expIns(I ,U )← spendIns(E ,U ), costIns(C , I ),C > E ; 0.95)

[. . .]



∆price =



(∼insurance(I ,U )← expIns(I ,U ); 0.6)

(insurance(I ,U )← expIns(I ,U ), trustIns(I ,U ); 0.5)

(∼prefA(A,U )← expA(A); 0.8))

(prefA(A,U )← expA(A), trustA(A,U ); 0.4)

(∼prefTAg(T ,U )← expTAg(T ); 0.9)

(prefTAg(T ,U )← expTAg(T ,D), trusTAg(T ,U ); 0.5)

(expIns(I ,U )← spendIns(E ,U ), costIns(C , I ),C > E ; 0.95)

[. . .]


Consider now the argument comparison strategy defined in Section 3.2. Then,
using the priorities specified in ∆trust, the argument ⟨A1, (insurance(i1, ana); 0.8)⟩
is preferred over the argument ⟨A2, (∼insurance(i1, ana); 0.3)⟩, where

A1=


(insurance(i1, ana)← expIns(i1, ana), trustIns(i1, ana); 0.8)

(expIns(i1, ana)← spendIns(1500, ana), costIns(1700, i1), 1700 > 1500; 0.95)

(trustIns(i1, ana)← airline(a1, ana), lostLuggage(i1); 0.85)


A2=

{
(∼insurance(i1, ana)← expIns(i1, ana); 0.3)

(expIns(i1, ana)← spendIns(1500, ana), costIns(1700, i1), 1700 > 1500; 0.95)

}

since A1 provides a greater weight than A2. However, if the priority crite-
rion price is used, then we get the arguments ⟨A1, (insurance(i1, ana); 0.5)⟩ and
⟨A2, (∼insurance(i1, ana); 0.6)⟩, where:

A1=


(insurance(i1, ana)← expIns(i1, ana), trustIns(i1, ana); 0.5)

(expIns(i1, ana)← spendIns(1500, ana), costIns(1700, i1), 1700 > 1500; 0.95)

(trustIns(i1, ana)← airline(a1, ana), lostLuggage(i1); 0.85)


A2=

{
(∼insurance(i1, ana)← expIns(i1, ana); 0.6)

(expIns(i1, ana)← spendIns(1500, ana), costIns(1700, i1), 1700 > 1500; 0.95)

}
and thus A2 is preferred to A1. □

One of our goals is to devise a mechanism that dynamically changes preferences
depending on the world’s current state where the planner system acts. We will
formalize this idea in the rest of this section.
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Definition 5 (Consistent set of literals/State). A state of the world Ψ is
represented by a consistent set of literals. A set of literals is consistent if it is a
non-contradictory set.

Example 4. Consider a planning domain where a system makes recommenda-
tions over tourist destinations considering the user’s preferences. The following
consistent set of facts can represent a possible state,

Ψ4 =



airline(a1, ana),

spendIns(1500, ana),

costIns(1700, i1),

lostLuggage(i1),

covIns(d1, i1),

safeDest(d1)


where covIns(d1, i1) expresses that d1 is a tourist destination covered by travel
insurance policy i1, and safeDest(d1) expresses that d1 is a safe destination.□

In [28], we introduced a mechanism for changing the argument preference
criterion where the use of guards offers a particular way of associating conditions
to the selection of a criterion. In this paper, on the other hand, guards allow
guiding the choice of a priority order issued from a given context depending on
the world’s current state instead of selecting a criterion for comparing arguments
(as was proposed in [28]).

Definition 6 (Guard). A guard is a set of literals γ. We will say that a guard
is satisfied by a state Ψ when γ ⊆ Ψ.

In our approach, defeasible argumentation is used for reasoning over the
preconditions to execute actions. To do so in a specific context, the planning
system will use a particular priority order over defeasible knowledge obtained
after evaluating a conditional expression. Thus, as we will show later, every
action will be associated with a conditional expression which will allow for the
possibility to consider all priority criteria declared in the system or just some
of them. In particular, the use of conditional expressions has been an issue re-
cently addressed in [13] in the context of the DeLP system, where a special kind
of conditional expression is used to establish the way in which the system com-
pares arguments. Following the formal structure of the conditional expressions
introduced in [13], a particular type of expression adapted to our approach for
selecting priority criteria is introduced next.

Definition 7 (Conditional-preference expression). Let C be a set of pri-
ority criteria over a set of defeasible rules ∆. A conditional-preference expres-
sion E over C is a finite sequence that can be inductively defined as follows:

- every priority criterion prc ∈ C is a conditional-preference expression over
C;
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- if E1 and E2 are conditional-preference expressions over C and γ is a
guard, then [γ : E1;E2] is a conditional-preference expression over C;

- nothing else is a conditional-preference expression over C.

Intuitively, the conditional-preference expression E in the above definition can
be understood as follows: if E is a priority criterion prc, then the priority assign-
ment corresponding to this criterion is applied over the rules of ∆, otherwise if
E is [γ : E1;E2] and γ is satisfied by the current state Ψ (i.e., γ ⊆ Ψ), then E1

is evaluated; otherwise, E2 is evaluated. This recursive evaluation procedure is
applied until a priority criterion is obtained. This intuitive idea is captured by
the function eval defined below.

Definition 8 (Evaluating function). Let L be the set of all literals the plan-
ner system can use for representing world states, C be a set of priority criteria
over the set of defeasible rules the system manages, and E be the set of all
possible conditional-preference expressions built over L and C (hence, C ⊆ E).
Then, the function eval : E × 2L −→ C for evaluating conditional-preference
expressions is defined as:

eval(E ,Ψ) =


prc, if E = prc,

eval(E1,Ψ), if E = [γ : E1;E2] and γ is satisfied by Ψ,

eval(E2,Ψ), if E = [γ : E1;E2] and γ is not satisfied by Ψ.

Note that, even when no guard is satisfied, the result of evaluating a conditional-
preference expression will always be a priority criterion.

Example 5. Consider the priority criteria price and trust defined in Exam-
ple 3. Using these criteria, the following are examples of conditional-preference
expressions:

— E1 = [{expensiveDest(D)} : trust; [{safeDest(D), topDest(D)} : price; trust]]

— E2 = price

Expression E1 is to be interpreted as follows: “if expensiveDest(D) is present
in the system’s state, then use the trust-based priority, otherwise
[{safeDest(D), topDest(D)} : price; trust] should be evaluated”. Consider the
state Ψ4 introduced in Example 4 and the tourist destination d1. For E1, the
guards {expensiveDest(d1)} and {safeDest(d1), topDest(d1)} are not satisfied
by the state Ψ4. Thus, the result eval(E ,Ψ4) of evaluating E1 in the state Ψ4

is the priority criterion trust. □

The computational mechanisms presented here will allow us to formalize in
the next section a planning approach capable of handling preferences based on
the use of conditional-preference expressions.
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5. Epistemic Planning

We now introduce an epistemic planning formalism that combines actions
with argumentative reasoning where contextualized priorities expressing user
preferences can be considered. A solution to a planning problem may use a
different priority order over defeasible knowledge for each action executed in our
proposal. The selection of this ordering will depend on the result of evaluating
a conditional-preference expression, which is associated with the chosen action.

Three elements specify an action A: its preconditions P, its consequences X,
and the preferences E under which P will be evaluated. Formally,

Definition 9 (Action). An action is expressed as a tuple A = ⟨X,P,E ⟩, where
X = {X 1,X 2, . . . ,X n} is a consistent set of literals representing the conse-
quences of executing A, P = {P1,P2, . . . ,Pn} is a set of literals representing
the preconditions that need to be satisfied before A can be executed, and E is
a conditional-preference expression representing the preferences under which to
evaluate preconditions P. We will use the following notation for actions:

X
(A,E)←−−− P, or

{X 1 ,X 2 , . . . ,X n}
(A,E)←−−− {P1 ,P2 , . . . ,Pn}.

Intuitively, in a given context, an action A specifies that “if all literals in P
representing the preconditions of A are warranted under the preferences defined
by the criterion prc obtained from E, then after executing A the literals of X will
be added to the state Ψ”. Later, we will define when an action is applicable and
the result of its execution.

Example 6. Consider the application domain presented in Example 4 and the
conditional-preference expressions

E1 = [{expensiveDest(D)} : trust; [{safeDest(D), topDest(D)} : price; trust]], and

E2 = price

of Example 5. Suppose the system has the following actions concerning a tourist
destination. The action recDest allows to recommend a place whenever there
exists an available travel insurance policy for the user.

A6 =


{airline(A,U )} (recAirline(A,U),E1)←−−−−−−−−−−−− {avAir(A), prefA(A,U )}

{travelAg(T ,U )} (recTravelAg(T,U),E2)←−−−−−−−−−−−−− {avTAg(T ), prefTAg(T ,U )}

{tDest(D1,U )} (recDest(D,U),E1)←−−−−−−−−−−− {covIns(D , I ), insurance(I ,U )}


□

As we have mentioned, our formalism allows the introduction of the knowl-
edge to be used to reason about the actions and offer a set of actions that will be
available for modifying the world. We formalize the notion of preference-based
planning domain as follows:
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Definition 10 (Planning domain). A preference-based planning domain is a
triple (∆,C,A) where:

− ∆ is a set of defeasible rules.

− C is a set of priority criteria over rules of ∆.

− A = {A1,A2, . . . ,An} is a set of actions, where for each A ∈ A, and
A = ⟨X,P,E ⟩, such that for every prc in E it holds that prc ∈ C.

Example 7. Consider the set of defeasible rules ∆1 defined in Example 1,
the set of criteria C3 = {price, trust} of Example 3, and the set of actions
A6 presented in Example 6. The triple (∆1,C3,A6) defines the planing domain
for the recommender system introduced in Example 4. □

The P-DeLP argumentation formalism described above allows a system to
represent domain knowledge with defeasible rules, as defined in Definition 10.
These domain rules together with the set of literals describing the current state
of the world Ψ define a P-DeLP program (Ψ∗,∆), where Ψ∗ = {(L, 1) | L ∈ Ψ},
upon which the planner system can perform defeasible reasoning, e.g., about
whether preconditions of a given action are warranted. For simplicity in the for-
malizations and algorithms proposed in this paper, we will consider restricted
forms of P-DeLP programs of the form (Ψ∗,∆) without strict rules. Neverthe-
less, it is important note that one can have non-attackable defeasible rules that
can exactly capture the behavior of strict rules.

In a given planning domain (∆,C,A), the condition that must be satisfied
before an action A = ⟨X,P,E ⟩ can be executed consists of warranting the literals
of the set P. The warrant of these literals will depend on the priority criterion
used. As we propose to use a priority selection mechanism based on the current
world state, it is possible that a particular action can be associated with different
contextual priorities in different circumstances. We will denote by warrL(Ψ,∆)
the set of literals warranted by the program (Ψ∗,∆), that is,

warrL(Ψ,∆) = {L | (L, ω) is warranted by (Ψ∗,∆) for some ω > 0}

Definition 11 (Applicable action). Let (∆,C,A) be a planning domain, and
Ψ a state. Let A = ⟨X,P,E ⟩ be an action in A and prc the priority criterion ob-
tained from eval(E ,Ψ). The action A is applicable in Ψ according to preferences
defined by prc when for every precondition Pi ∈ P, it holds Pi ∈ warrL(Ψ,∆prc).

After an applicable action A = ⟨X,P,E ⟩ is executed in a state Ψ, the state
itself is consistently modified with each effect of X after removing any possible
conflict as described below. We will denote by ΨA the new state resulting from
executing the action A.

Definition 12 (State update function). Let L be the set of all literals that
a system can use for representing world states. Let (∆,C,A) be a planning
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domain, Ψ a state, and ⟨X,P,E ⟩ an action in A applicable in Ψ. Then, we
denote the resulting state after executing A in the state Ψ with

execA(A,Ψ) = ΨA = (Ψ\X) ∪ X,

where X is the set of the complemented literals in X.

It is easy to check that the resulting state ΨA is a valid state, i.e., ΨA is a
consistent set of literals.

Example 8. Let us return to the planing domain (∆1,C3,A6) for the recom-
mender system specialized in tourist destinations introduced in Example 7 and
the state Ψ4 presented in Example 4, where:

Ψ4 =



airline(a1, ana),

spendIns(1500, ana),

costIns(1700, i1),

lostLuggage(i1),

covIns(d1, i1),

safeDest(d1)


Consider now the action recDest(d1, ana) in A6 and the priority criterion trust.
This action is applicable in Ψ4 according to the priorities defined by trust because
one of its preconditions covIns(d1, i1) belongs to Ψ4 and its other precondition
insurance(i1, ana) belongs to warrL(Ψ4,∆trust) since there exists a non-defeated
argument for it ⟨A1, (insurance(i1, ana); 0.8)⟩ where:

A1=


(insurance(i1, ana)← expIns(i1, ana), trustIns(i1, ana); 0.8)

(expIns(i1, ana)← spendIns(1500, ana), costIns(1700, i1), 1700 > 1500; 0.95)

(trustIns(i1, ana)← airline(a1, ana), lostLuggage(i1); 0.85)


The resulting state of executing the action recDest(d1, ana) in the state Ψ4

is then the following:

ΨrecDest(d1,ana) = (Ψ4\X) ∪ X =



airline(a1, ana)

spendIns(1500, ana)

costIns(1700, i1)

lostLuggage(i1)

covIns(d1, i1)

safeDest(d1)

tDest(d1, ana)


where X = {tDest(d1, ana)}. □
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Since the execution of an applicable action leads to a new state, another ac-
tion could be applicable at this new state, and so on. Therefore, this observation
naturally leads to the notion of an applicable sequence of actions.

Definition 13 (Applicable sequence). Given a planning domain (∆,C,A)
and a state Ψ, let S = [A1,A2, . . . ,An] be a sequence of actions where each
Ai ∈ A. The sequence S will be regarded as an applicable sequence of actions
at Ψ if (1) A1 is applicable at Ψ, and (2) for every action Ai, 2 ≤ i ≤ n, is
applicable in (...(ΨA1)...)Ai−1 . We will use ΨS or Ψ[A1,...,An] as a shorthand for
(...(ΨA1)...)An .

Again, it is immediate to verify that the resulting state Ψ[A1,A2,...,An] of
executing an applicable sequence of actions S = [A1,A2, . . . ,An] is a consistent
set of literals.

Example 9. Consider the planning domain (∆1,C3,A6) introduced in Exam-
ple 7 and recall the set of actions

A6 =


{airline(A,U )} (recAirline(A,U),E1)←−−−−−−−−−−−− {avAir(A), prefA(A,U )}

{travelAg(T ,U )} (recTravelAg(T,U),E2)←−−−−−−−−−−−−− {avTAg(T ), prefTAg(T ,U )}

{tDest(D1,U )} (recDest(D,U),E1)←−−−−−−−−−−− {covIns(D , I ), insurance(I ,U )}


where E1 = [{expensiveDest(D)} : trust; [{safeDest(D), topDest(D)} : price; trust]]
and E2 = price. Let Ψ9 be the following state:

Ψ9 =


spendIns(1500, ana), costIns(1700, i1), lostLuggage(i1),

avAir(a1), trustA(a1, juan), trust(ana, juan),

topRatingA(a1), safeDest(d1), covIns(d1, i1)


Different sequences of actions are analyzed in order to determine whether they
are applicable at Ψ9 below.

� Consider the action sequence

S1 = [recDest(d1, ana)].

In this case, the working priority criterion is eval(E1 ,Ψ9) = trust and it
turns out that the action recDest(d1, ana) is not applicable in Ψ9 because
the precondition insurance(i1, ana) does not belong to warrL(Ψ9,∆trust).
Then, S1 is not a feasible plan since it is not a sequence of applicable
actions at Ψ9.

� Consider the sequence

S2 = [recTravelAg(t1, ana), recDest(d1, ana)].
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Given preferences defined by the criterion price, obtained after evaluating
the expression E2 from Ψ9, the action recTravelAg(t1, ana) is not appli-
cable from Ψ9 since an agency preferred by ana cannot be found from
(Ψ9,∆price). Thus, the sequence S2 is not applicable from Ψ9.

� Now, let us look at the sequence

S3 = [recAirline(a1, ana), recDest(d1, ana)].

Using the priorities ∆trust defined by the criterion trust obtained after
evaluating E1 from Ψ9, a1 is an available airline (avAir(a1)) and preferred
by ana (prefA(a1, ana)). Thus, the action recAirline(a1, ana) is applicable.
The result of executing recAirline(a1, ana) is:

Ψ
[recAirline(a1, ana)]
9 =


spendIns(1500, ana), costIns(1700, i1), avAir(a1),

lostLuggage(i1), trustA(a1, juan), trust(ana, juan),

topRatingA(a1), safeDest(d1), airline(a1, ana),

covIns(d1, i1)


The next action recDest(d1, ana) is also applicable at Ψ

[recAirline(a1,ana)]
9 ,

and observe that

covIns(d1, i1) ∈ Ψ
[recAirline(a1,ana)]
9

and
insurance(i1, ana) ∈ warrL(Ψ

[recAirline(a1, ana)]
9 ,∆trust)

since there exists the non-defeated argument ⟨A1, (insurance(i1, ana); 0.8)⟩
for (insurance(i1, ana), 0.8), where

A1=

{
(insurance(i1, ana)← expIns(i1, ana), trustIns(i1, ana); 0.8)

(expIns(i1, ana)← spendIns(1500, ana), costIns(1700, i1), 1700>1500; 0.95)

(trustIns(i1, ana)← airline(a1, ana), lostLuggage(i1); 0.85)

}

The resulting state after executing recDest(d1, ana) from Ψ
[recAirline(a1,ana)]
9

is the following:

ΨS3
9 =


spendIns(1500, ana), costIns(1700, i1), lostLuggage(i1), avAir(a1)

trust(ana, juan), topRatingA(a1), safeDest(d1), trustA(a1, juan),

airline(a1, ana), tDest(d1, ana)


and S3 is a sequence of applicable actions at Ψ9. □
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The main aim of classical planning is to find a sequence of actions that, starting
from an initial state, leads to a state where a given goal is satisfied. Next,
we will formally define the concept of preference-based planning problem for a
given domain.

Definition 14 (Preference-based planning problem). Let (∆,C,A) be a
planning domain. A preference-based planning problem over (∆,C,A) is a tuple
(Ψ,∆,C,A,G), where:

— Ψ is a consistent finite set of weighted literals representing an initial state,

— ∆ is a set of defeasible rules,

— C is a set of priority criteria,

— A = {A1,A2, . . . ,An} is a set of actions, and

— G is a consistent finite set of literals representing the system’s goals.

A solution to a preference-based planning problem is an applicable sequence
of actions such that when executed in an initial state, it will lead to a state that
satisfies the conditions in G. Formally:

Definition 15 (Solution plan to a preference-based planning problem).
Let T = (Ψ,∆,C,A,G) be a preference-based planning problem. We will say
that a sequence of actions S = [A1,A2, . . . ,An] is a solution for T if:

(i) S is applicable at Ψ, and

(ii) Each literal L ∈ G is warranted by the updated program ((ΨS)∗,∆′), where
∆′ denotes the set of updated defeasible rules resulting from the application
of some priority criterion; that is, G ⊆ warrL(ΨS,∆′).

Observe that in the above definition, if S = [A1,A2, . . . ,An] is applica-
ble at Ψ and G ⊆ ΨS, each L ∈ G is automatically warranted in the pro-
gram (ΨS,∆′) since the argument ⟨∅, (L; 1)⟩ is undefeated. The intuitions
behind this definition also contemplate situations where goals are not explic-
itly achieved in the final state, but they are conclusions derived from program
rules. The main rationale for considering these situations is that there could
be effects produced by the interaction of actions with the environment or with
other actions, which it does not seem to be a feasible alternative to consider
all possible effects in an action’s definition. Consider, for instance, the se-
quence of applicable actions S3 at Ψ9 presented in Example 9, and assume
that G = {tDest(d1, ana), insurance(i1, ana)}. In this case, it turns out that

tDest(d1, ana), insurance(i1, ana) ∈ warrL(Ψ
[recAirline(a1, ana), recDest(d1, ana)]
9 ,∆trust), but

insurance(i1, ana) /∈ ΨS3
9 , i.e., it is not computed as an action’s effect. This ca-

pacity is especially useful in dynamic domains where it is not always possible
to have all the information necessary to achieve the planning system’s goals in
advance.
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Example 10. Given the conditional-preference expression E2 presented in Ex-
ample 5, the following preference-based planning problem (Ψ9,∆1,C3,A6,G10)
can be formulated, where

— Ψ9 is the state presented in Example 9,

— (∆1,C3,A6) is the planning domain introduced in Example 7,

— G10 = {tDest(d1, ana), airline(a1, ana)}

A possible solution for this planning problem is the plan

S3 = [recAirline(a1, ana), recDest(d1, ana)]

since

— S3 is a sequence of applicable actions at Ψ9, and

— G10 ⊆ ΨS3 .

An applicable sequence of actions may exist that does not represent a so-
lution to the planning problem at hand; for instance, if we consider a plan-
ning problem slightly different from the previous one, such as the following:
T ′ = (Ψ9,∆1,C3,A6,G

′) where

G′ = {tDest(d1, ana), travelAg(t1, ana)},

it turns out that S3 is still applicable at Ψ9, but it is no longer a solution for T ′.
□

So far, we have presented a planning formalism that integrates preferences
into the construction of plans. In particular, the proposed approach provides
the possibility of expressing contextual preferences under which a specific ac-
tion’s preconditions should be evaluated. To encode these preferences, we have
introduced conditional priority expressions, allowing the user to specify possibly
different priority criteria depending on the state of the world. This feature of
our formalism is intended to help produce satisfactory solution plans concerning
the user’s needs and preferences, in the sense of favoring their confidence in the
obtained plans.

In the next section, we introduce an extension of the APOP algorithm pre-
sented in [7] in order to properly deal with the conditional expressions proposed
in this work. We first analyze different types of interferences that may arise
when conditional expressions are used, and then, in Section 7, go on to analyze
computational complexity issues associated with our approach.

6. Argumentation-based Partial Order Planning with Contextual
Preferences (P-APOP)

The formalism described above defines when actions are applicable and how
to compute their effects, but it does not describe how to construct a plan for
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achieving a planner system’s goals. In [7], a Partial Order Planning algorithm for
Defeasible Logic Programming, called APOP, is proposed to build plans. This
section will introduce an extension of this algorithm to consider conditional-
preference expressions during the planning process.

The basic idea behind the APOP algorithm is to search through a plan
space, beginning from the system’s goals up to a given initial state, to generate
a partial-order plan that is a solution for the planning problem. That is, the
planner starts with an initial partial plan consisting of a start step whose effects
encode the initial state and a finish step whose preconditions encode the goals
to be achieved by warranting them through the argumentation process. This
initial plan is then incrementally completed with new steps until all the steps’
preconditions are warranted. Intuitively, this process generates a new partial
plan whenever a new step is considered. As usual in the partial-order planning
paradigm [29], a plan in APOP includes all actions that need to be taken and
specifies an ordering between actions only when necessary; in contrast, in total-
order planning, a plan specifies a linear order on the actions to be taken. In [7],
two types of steps are identified: action steps for representing the execution
of an action, and argument steps for expressing arguments used in the plan to
support the preconditions of some action step. Unlike actions, arguments will
not only be used to support some step of a plan, but they will also be added as
interfering or supporting arguments in the plan.

If only actions are used in a plan, then only one type of interference (threat)
can arise in a plan under construction. This interference appears when a new
action added in the plan deletes a literal satisfying a precondition already solved
by other action steps. Nevertheless, when involving actions and arguments to
construct plans, other types of interferences can appear, which should be ad-
dressed appropriately to obtain a valid plan. In [7], the authors identify different
types of interferences that could arise in argumentation-based planning and pro-
pose methods to resolve each of them. When conditional expressions are used,
an action might have interferences with the guards appearing in these expres-
sions. In Section 6.3, we will introduce an extension of the APOP algorithm
that detects these new threats and attempts to resolve them. However, be-
fore addressing this, we first introduce some basic terminology and graphical
representation used in the rest of the paper.

6.1. Basic terminology and graphical representation

In this section, our main interest is to study a new type of threat that arises
when an action’s effects interfere with guards of conditional-preference expres-
sions already evaluated. Therefore, we need to detect under which circumstances
they could happen to decide how to address them. To facilitate this task, and
before showing with an illustrative example how a complete plan is constructed
in P-APOP, we will introduce the notion of selected path structure below.

Let us recall that in the epistemic planning formalism described in Sec-
tion 5, an action is applicable in a current state Ψ if every precondition of the
action is warranted under the rule priority order obtained from the evaluation
of the conditional expression E associated with the action. In this process,
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the satisfaction of the guards is checked against Ψ. It is interesting to observe
that, a priori, for any criterion in E , there exists a finite sequence of guards
whose satisfaction or unsatisfaction support the selection of such a criterion.
Of course, different sequences of guards can possibly lead to different criteria.
Nevertheless, the evaluation of an expression E in a given state Ψ, resulting
in a criterion eval(E ,Ψ) (see Definition 8), reflects the fact that there exists
only one sequence of guards whose satisfaction status by the state leads to that
criterion. For instance, considering the expression E1 and state Ψ9 of Exam-
ple 9, eval(E1,Ψ9) returns the criterion trust, and its associated sequence of
guards is G2 = [{expensiveDest(D)}, {safeDest(D),topDest(D)}], where guards
{expensiveDest(D)} and {safeDest(D),topDest(D)} are not satisfied by Ψ9.

The following definition is introduced to identify which guards are satisfied
and which ones are not by a given state when the conditional-preference ex-
pression associated with a specific action is evaluated. The sequence of guards
supporting the selection of a priority criterion is considered below.

Definition 16 (Selected path structure). Let E be a conditional-preference
expression, Ψ a state, and prc the priority criterion obtained by the evaluation
of E in Ψ, that is, prc = eval(E ,Ψ). Let G = [γ1, γ2, . . . , γn] be the sequence of
guards appearing in E whose evaluation leads to obtain prc. The selected path
structure for prc extracted from G is the triple Γ = (G+,G−, prc)Ψ,E where:

— G+ = {γ ∈ G | γ is satisfied by Ψ}, and

— G− = {γ ∈ G | γ is not satisfied by Ψ}.

Example 11. Consider the conditional-preference expressions

E1 = [{expensiveDest(D)} : trust; [{safeDest(D), topDest(D)} : price; trust]]

E2 = price

of Example 5. Given the state Ψ9 of Example 9, the following two selected path
structures can be obtained:

− Γ1 = ({}, {{expensiveDest(d1)}, {safeDest(d1), topDest(d1)}}, trust)Ψ9 ,E1

− Γ2 = ({}, {}, price)Ψ9 ,E2
□

The definition above introduces a structure later used to identify when an
action step threatens a guard in a selected path structure. Next, we will use
our example domain of tourist destination recommendation for illustrative pur-
poses to show how APOP can be extended to handle the conditional preference
expressions presented before.

Figure 1 illustrates a sequence of partial plans and how a complete plan
using actions and arguments for Example 10 is obtained. The preconditions
of the finish step correspond to the system’s goals G10 and the effects of the
start step encode the initial state Ψ9. For simplicity, we have replaced the liter-
als in Ψ9 = {spendIns(1500, ana), costIns(1700, i1), lostLuggage(i1), avAir(a1),
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trustA(a1, juan), trust(ana, juan), topRatingA(a1), safeDest(d1), covIns(d1, i1)}
by the symbols sI, cL, lH, aA, tA, t, tR, sD, and aI, respectively.

In Figure 1, following the graphical representation proposed in [7] to show a
complete plan with arguments and actions, action steps are depicted by square
nodes labeled with the action name. The literals appearing below an action step
represent the action’s preconditions, and the literals appearing above represent
its effects. Moreover, the literal that appears on the right-hand side of an ac-
tion step represents the selected path structure obtained from the conditional-
preference expression associated with the action. Argument steps are repre-
sented by triangles labeled with the argument name. The literal at the top of
the triangle is the conclusion of the argument. On the other hand, the solid
arrows represent causal links (→) of the plan, and they are used to link an
action step effect with a precondition of another action step or with a literal
in the base of an argument step. The solid arrows that link the conclusion of
an argument step and a precondition of an action step represent support links
(≻–) of the plan. The ordering constraints (≺) are represented by dashed arrows.
These constraints allow establishing an order between steps, whereas causal and
support links allow identifying each literal source in a plan. These particular
sets are later used by algorithms introduced in Section 6.3.

In Figure 1-(a), the finish action step has two unsatisfied preconditions
(tDest(d1, ana), airline(a1, ana)). The action recDest is the only one available
that can be used to satisfy the precondition with the literal tDest(d1, ana).
Thus, recDest is added (Fig. 1-(b)) to the plan by the planning process and
its preconditions become subgoals to be achieved. Observe that the precondi-
tion covIns(d1, i1) is achieved by the start step; however, none of the available
actions achieve insurance(i1, ana). Nevertheless, from the rules ∆trust, it is
possible to construct the argument ⟨A1, (insurance(i1, ana); 0.8)⟩ that supports
(insurance(i1, ana); 0.8), and ⟨A2, (∼insurance(i1, ana); 0.3)⟩ that attacks
⟨A1, (insurance(i1, ana); 0.8)⟩ (for the detailed structure, see Example 8). Then,
the argument

⟨A1, (insurance(i1, ana); 0.8)⟩

is selected since it has a greater weight, and the set of literals appearing in
the body of rules conforming A1 become new subgoals; this situation is de-
picted in Fig. 1-(c). Now, the literals lostLuggage(i1), spendIns(1500, ana), and
costIns(1700, i1) are satisfied by the start step, whereas airline(a1, ana) is the
effect of the action recAirline. Thus, a new step recAirline is added and now
the preconditions prefA(a1, ana) and avAir(a1) must be satisfied. The literal
avAir(a1) is satisfied by the start step and from ∆trust it is possible to construct
the argument ⟨A3, (prefA(a1, ana); 0.2)⟩, that is undefeated, supporting the sub-
goal prefA(a1, ana). Observe that although there is an attacking argument
⟨A4, (∼prefA(a1, ana); 0.3)⟩, there is no defeater for ⟨A3, (prefA(a1, ana); 0.2)⟩.
The literals in the base of ⟨A3, (prefA(a1, ana); 0.2)⟩ are achieved by the start
step. Finally, the initial goal airline(a1, ana) is achieved by the action already
selected (recAirline) and a plan is formulated. In this particular plan, the same
selected path structure Γ1 was obtained from actions, while trust is in turn the
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P1
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A2

∼ insurance(i1,ana)

A4

∼prefA(a1,ana)A3

prefA(a1,ana)

Figure 1: Different partial plans for Example 10.

priority criterion under which such plan is constructed.
In P-APOP, several (potential) arguments can be considered during a plan

construction; ⟨A1, (insurance(i1, ana); 0.8)⟩ and ⟨A3, (prefA(a1, ana); 0.2)⟩ are
two potential arguments. A potential argument is different from the notion
used in Section 3 because it is not constructed from a set of facts as usual in the
DeLP formalism. It is impossible to know which literals in Ψ are true because
they depend on actions that will be chosen later in the planning process. The
following definition, presented in [7], is adapted to our proposal to formalize
the notion of potential argument, that will be used in our P-APOP algorithm
in Section 6.3.

Definition 17 (Potential argument). Let ∆ be a finite set of defeasible rules,
and A ⊆ ∆. We say that ⟨A, (L;ω)⟩ is a potential argument for a literal L
with necessity degree ω > 0 if ⟨A, (L;ω)⟩ is an argument w.r.t. DeLP-program
(Base(A),∆), where Base(A) denotes the set of literals that appear in the bodies
but not in the heads of the rules in A, i.e., the literals necessary to “activate”
the argument allowing to obtain L.

As mentioned above, ⟨A1, (insurance(i1, ana); 0.8)⟩ is a potential argument
since its existence will depend on the effects of the action recAirline, apart from
some literals appearing in the start step. It is important to remark that a
potential argument keeps the same structure as an argument as formalized in
Definition 1—the difference is that in a “normal” argument A, all the necessary
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literals are provided by the strict part of the program, i.e., Π ⊢ Base(A).
In P-APOP, finding a partial-order plan consists in completing a plan by

adding steps to achieve subgoals, as illustrated in Figure 1. In this sense, a plan
can be seen as a sequence of plan steps, where each step is either an action step
or an argument step. More formally, and following descriptions of the P-APOP
algorithm (see Algorithm 2), we will regard:

� an action step as a tuple (N,X,P,Γ), where N is the step name, ⟨X,P,E ⟩
is the action attached to N, and Γ is the selected path structure associated
with E .

� an argument step denoted as (N, ⟨A, (L;ω)⟩,Λ, prc), where N is the step
name, ⟨A, (L;ω)⟩ is a potential argument from ∆prc, Λ is a argumentation
line associated with N.

As a final remark, note that our proposal does not establish a single spe-
cific sequence of actions, but rather focuses on defining a set of ordering con-
straints, specifying which actions must be executed before others. To deter-
mine whether a partial-order plan is a solution to a preference-based planning
problem, it is necessary to firstly establish a correspondence between partially-
ordered plans and totally-ordered plans, as usual in the partial-order planning
paradigm. To achieve this, we can simply apply a topological sorting algorithm
to derive a total-order solution. Given a totally-ordered sequence of action steps
Seq = [(start, , , ), (N1, , , ), . . . , (Nn, , , ), (finish, , , )]3 derived from
a particular partial plan, where each Ni ≺ Nj (1 ≤ i < j ≤ n) is consis-
tent with the ordering constraints of the corresponding plan, we will denote
by Plan(Seq) = [A1,A2, . . . ,An] the sequence of actions obtained by replacing
each action step in Seq with its corresponding action. Note that start and finish
steps are not included in Plan(Seq) because they do not correspond to the ex-
ecution of an action—they are only required to represent the initial state and
goals of the problem. Finally, we will say that a partial-order plan is a solu-
tion to a preference-based planning problem T when the sequence of actions
Plan(Seq) = [A1,A2, . . . ,An] extracted from a linearization Seq of such a plan
is a solution to T . The implementation details such as backtracking over those
choice points that lead to failure, necessary for guaranteeing planner complete-
ness, are considered in Section 6.3.

6.2. Interferences with Guards

In APOP [6, 7], when a plan is being constructed, three types of threats
involving actions and arguments must be checked (see Figure 2):

Fig. 2-(a) action-action: Let Ni → Nj be a causal link between two action
steps; a precondition L of Nj is threatened by an action step Nk if
the complemented literal L is an effect of Nk.

3We use “ ” to denote anonymous variables, i.e., those for which value bindings are not
relevant.
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Figure 2: Type of threats in APOP.

Fig. 2-(b) action-argument : Let ⟨A, (L;α)⟩ be an argument supporting a pre-
condition of an action step Nj ; then, an action step Nk threatens the
argument ⟨A, (L;α)⟩ if an effect of Nk negates any literal present in
the set of all literals that appear as bodies of rules in the argument
⟨A, (L;α)⟩. The step Nk comes before ⟨A, (L;α)⟩.

Fig. 2-(c) argument-argument : Let ⟨A, (L;α)⟩ be an argument added to a plan
to support the precondition of an action step Nj ; then, ⟨A, (L;α)⟩ is
threatened by an argument ⟨B, (Q;β)⟩ if ⟨B, (Q;β)⟩ is a defeater for
⟨A, (L;α)⟩, and ⟨B, (Q;β)⟩ is ordered to appear before ⟨A, (L;α)⟩ in
the plan.

Different threat resolution methods may be applied for each threat, such as in-
cluding new ordering constraints for moving the cause of the threat to a harmless
position or eliminating the threat with a counterargument or a new action step.
The detailed study of these threats, and methods to solve them, is out of the
scope of this article; the related issues have been thoroughly studied in [7]4.

4In particular, the reader is referred to algorithm Resolve Threats in that work.
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Here, we will consider a new type of threat involving guards appearing when
extending APOP with conditional expressions proposed in our approach. Let
us consider the following case. Given the selected path structure

Γ1 = ({}, {{expensiveDest(d1)}, {safeDest(d1), topDest(d1)}}, trust)Ψ9 ,E1

suppose for instance that topDest(d1) is an effect of action recAirline(a1, ana).
In such a case, this action would interfere with the guard’s literals of P1. If
recAirline(a1, ana) adds topDest(d1) to the current state before recDest(d1, ana)
is executed, the guard {safeDest(D), topDest(D)} will be satisfied at the mo-
ment E1 is evaluated; in contrast with P1, {safeDest(D), topDest(D)} will be
now present in the set G+. The evaluation procedure would return the criterion
price, and consequently the resulting plan would not be valid. Next, we will
show some cases of interferences arising when conditional expressions are used.

Given a selected path structure (G+,G−, prc)Ψ,E , an action step might in-
terfere with the guard’s literals of G+ and G−. Figures 3-(a), 3-(b), and 3-(c)
show three different situations where the action step Ni threatens the guards
of ({{d}}, {}, prc)Ψ ,E because the effect ∼d negates a literal present in a guard

of G+. If Ni makes ∼d true before Nj , the literal d is not present in the system’s
state Ψ at the moment the expression E is evaluated. As this can lead to se-
lecting a different priority criterion, Nj could not be executed since a warranted
precondition can become non-warranted under the new selected criterion. In
addition to these situations, Figure 3-(d) shows yet another different interfer-
ence situation where Ni makes d true before Nj . Then, when E is evaluated, the
literal d will be present in the considered state and the selected path structure
associated with the action Ni possibly changes. Note that if we consider threats
that involve guards in G+, its associated path structure will be always affected
because the satisfaction state of such guards becomes non-satisfied. However,
the situation is different when we consider an action step that interferes with
guards of G−.

Observe that, even though the action Ni can threaten a guard of a path
structure, the selected priority criterion may not be affected. Consider again the
example in Figure 3-(d), and assume that ({}, {{d , a}}, prc)Ψ ,E is the selected
path structure associated with Nj . Also, it will be assumed that both literals
in {d , a} are not satisfied by the system’s state. In such a case, although Ni

threatens the guard {d , a}, the selected path structure is not affected since
{d , a} keeps being non-satisfied. In this particular case, the only possibility to
modify the path structure is making both “d” and “a” true before Nj .
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Figure 3: Guard-action threats.

Here, our main interest is to address threats where a selected path structure
is affected after a new action is added to the plan. As mentioned above, this
type of threats is important because they can lead to select a new criterion
that can change in turn the warrant status of an action’s precondition. In our
proposal, both the interferences with the guards of G+ and G− will be resolved
by the same resolution methods independently of the threat type. We consider
two possible alternatives to resolve these threats:

� Promotion: To add an ordering constraint (Nj ≺ Ni) to force Ni to come
after Nj (see Fig. 4(b)).

� Disabling a literal : To add the literal L to Nj as a new precondition to
forbid the existence of L in the state upon which preference-conditional
expression associated with Nj will be evaluated. The step chosen to sup-
port L must be an action step to come after Ni because it is necessary to
avoid the existence of L (see Fig. 4(c)).

30



Ni

L

P

(a)

({{L}},{}, prc),ENj

M

H Ni

L

P

(b)

({{L}},{}, prc),ENj

M

H
Ni

L

P

(c)

({{L}},{}, prc),ENj

M

H, L

plan

Nk

L

Pk

Figure 4: Solutions to guard-action threats.

According to the observations made in the examples above, it is important to
note that a threat to a guard literal in G− is not enough to change the status of
the guard from non-satisfied to satisfied. Indeed, in the case an interference with
a guard γ ∈ G− occurs, it is necessary to check whether all non-satisfied literals
of γ by the current state Ψ are effectively threatened by action steps. Only
in that case may the status of γ change, and accordingly the path structure
associated with Nj may be affected as well. In particular, this situation is
considered in the algorithm presented in Section 6.3.

Several conclusions can be drawn from the issues addressed in this section.
In general terms, actions could interfere with actions, arguments, and guards in
conditional-preference expressions already evaluated. Consequently, the prior-
ity criterion selected for a specific action or the information considered for such
selection could change. As this information is an important step in the argu-
mentative reasoning process, it is easy to see that the use of a different priority
criterion can change the warrant state of an action’s preconditions affecting
clearly its applicability. The two possible strategies proposed here for solving
the new type of threat considered in this section will be used in an algorithm
presented next.

6.3. The P-APOP Algorithm

Next, we present an extension of the APOP algorithm, called P-APOP (Ar-
gumentative Partial Order Planning with Preferences), that includes conditional-
preference expressions formalized before. Operationally speaking, the P-APOP
algorithm makes use of several functions.
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The primary function P-APOP starts with an initial plan and seeks to
complete it with new steps, resolving the threats that could appear. Thus,
this algorithm firstly builds a null plan and then attempts to complete it with
the recursive procedure complete plan. To represent a plan, we use six sets
containing (see make null plan in Algorithm 2): action steps, argument steps,
ordering constraints, subgoals, causal links, and support links.

To achieve its goal, function complete plan (see Algorithm 3) uses two
auxiliary functions during the involved process:

� get steps (see Algorithm 4): this function will build plan steps to sup-
port an unsatisfied subgoal. Note that the process to find an argument to
support a subgoal is achieved by using a priority criterion obtained from
a selected path structure. If no argument can be constructed, then only
actions are considered.

Following the notation of [7], we use “possibly Si ≺ Sj” in several of
our algorithms to represent that Si ≺ Sj is consistent with the ordering
constraints of the corresponding plan (Plan.OC). Let us denote Plan.OC+

the transitive closure of Plan.OC. Then, we will say that Si ≺ Sj is
consistent with Plan.OC, if Plan.OC ∪ {Si ≺ Sj} is a strict partial order,
or equivalently Sj ≺ Si /∈ Plan.OC+. In addition, we will say that Si ≺
Sk ≺ Sj is consistent with Plan.OC, if Plan.OC ∪ {Si ≺ Sk, Sk ≺ Sj} is a
strict partial order.

� resolve threats (see Algorithm 5): this function attempts to resolve
the threats that could appear when a new step is added. In particular,
function guard action threat (see Algorithm 6) resolves guard-action
threats using methods promotion and disabling literal proposed in Section
6.2. Checking the existence of threats every time a new step is added
in the plan allows us to avoid being trapped in loops of adding subgoals
that were already considered in the planning process. Threats that involve
only actions and arguments are out of the scope of this paper, as they are
essentially the same as in APOP. A description of the algorithms that deal
with these problems can be found in [6, 7].

Algorithms 1, 2, and 3 implement an outline of the P-APOP algorithm and
proceed in a manner similar to that of the traditional APOP algorithm. Besides
the initial state Ψ and the goals G, function P-APOP considers ∆ and A as
input parameters. The set ∆ contains defeasible rules whose weights possibly
change by the use of a different priority criterion when new action steps are
added to the plan. For convenience, we will assume that the initial weights of
the rules in ∆ are provided by a certain distinguished priority criterion in the
set C of criteria the system works with. The procedure complete plan selects
an unsatisfied subgoal:

(SubGoal,Step,SubGoalType,ArgLine,Crit)

where, ArgLine is an argumentation line associated with SubGoal, and one of
the following conditions is to be satisfied:
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Algorithm 1 P-APOP algorithm

function P-APOP(
↓
Ψ,
↓
∆,
↓
G,
↓
A): Plan

Plan := make null plan(Ψ,G);
Plan := complete plan(Plan,∆,A,Ψ);
return Plan;

end function

Algorithm 2 Function to make null plan

function make null plan(
↓
Ψ,
↓
G): Plan

Plan.ActS := {(start, ∅,Ψ, ∅), (finish,G, ∅, ∅)}; ▷ Action steps
Plan.ArgS := ∅; ▷ Argument steps
Plan.OC := {start ≺ finish}; ▷ Ordering constraints
Plan.SG := {(G, finish, ∅, ac arg, [ ])|G ∈ G}; ▷ Subgoals or open

conditions
Plan.CL := ∅; ▷ Causal links
Plan.SL := ∅; ▷ Support links
return Plan;

end function

� there exists an action step (Step, ,P,Γ), such that SubGoal ∈ P,
SubGoalType ∈ {ac, arg, ac arg}5, and Crit is the priority criterion as-
sociated with Γ.

� there exists an argument step (Step, ⟨B, (P ;ω)⟩, , prc), such that SubGoal ∈
Base(B), SubGoalType = ac, and Crit = prc.

Then, the set of steps to achieve the subgoal in consideration is obtained via
the execution of function get steps.

Algorithm 4 is in charge of constructing action steps (apart from argument
steps) to support an unsatisfied subgoal

(P, Sj ,SubGoalType, [⟨A1, L1⟩, . . . , ⟨An, Ln⟩], prcj).

The set Act Steps contains all action steps where P is an action’s effect. These
steps can be either actions in A, or action steps appearing in the plan before Sj .
Moreover, Arg Steps constitutes a set of argument steps containing all potential
arguments for P built from ∆prcj .

5SubGoalType determines the type of step that must be used to achieve SubGoal. The
values ac, arg, and ac arg indicate the need for an action step, an argument step, or either
of the two types, respectively. For instance, if a new action step (N,X,P,Γ) is added in the
plan, then SubGoal = ac arg for each SubGoal ∈ P; this allows to use either an action step
or an argument step to achieve each precondition of N. Observe also that if there exists an
argument step, then ArgLine is updated with the argument at hand (see Algorithm 4).
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Algorithm 3 Function to complete plan

1: function complete plan(
↓↑

Plan,
↓
∆,

↓
A,

↓
Ψ): Plan

2: if Plan.SG = ∅ then return Plan;
3: end if
4: choose (SubGoal,Step,SubGoalType,ArgLine,Crit) ∈ Plan.SG fromPlan.SG;

5: Plan.SG := Plan.SG \(SubGoal,Step,SubGoalType,ArgLine,Crit);
6: Steps := get steps(SubGoal,Step,SubGoalType,ArgLine,Crit);
7: for each S ∈ Steps do
8: if S = (Si, P rei, Efi, (G+,G−, prc)Ψ,E i) then

9: Plan.CL := Plan.CL ∪ {Si
P→ Sp};

10: Plan.OC := Plan.OC ∪ {Si ≺ Sp};
11: if S /∈ Plan.ActS then
12: Plan.ActS := Plan.ActS ∪ (Si, P rei, Efi, (G+,G−, prc)Ψ,E i);
13: Plan.OC := Plan.OC ∪ {start ≺ Si, Si ≺ finish};
14: Plan.SG := Plan.SG ∪ {(G,Si, Sp, ac arg, [ ], prc) | G ∈ Prei};
15: end if
16: end if
17: if S = (Si, ⟨Bi, (P ;ω)⟩,ArgLinei, prcj) then
18: Plan.ArgS := Plan.ArgS ∪ (Si, ⟨Bi, (P ;ω)⟩,ArgLinei, prcj);
19: Plan.OC := Plan.OC ∪ {Si ≺ Step};
20: Plan.SL := Plan.SL ∪ {Si

P
≻–Step};

21: Plan.SG = Plan.SG ∪ {(G,Si, Sp, ac,ArgLinei, prcj) | G ∈ Base(Bi)};
22: end if
23: if resolve threats(Plan,∆) = null then
24: remove S from Plan;
25: else
26: π := complete plan(Plan,∆,A,Ψ);
27: if π ̸= null then
28: return Plan;
29: end if
30: if stopPoint backtracking(S) = false then
31: return null;
32: end if
33: end if
34: end for
35: remove Step from Plan;
36: update stopPoint backtracking(Step);
37: return null;

38: end function
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Algorithm 4 Function to get steps

1: function get steps(
↓
SG): Steps

2: Let SG = (P, Sj ,SubGoalType, [⟨A1, L1⟩, . . . , ⟨An, Ln⟩], prcj);
3: Act Steps := {(Sac, P re, Ef, (G+,G−, prc)Ψ,Eac) |

P ∈ Ef, (Sac, P re, Ef, (G+,G−, prc)Ψ,Eac) ∈ Plan.ActS
that possibly Sac ≺ SjorSac is created using an action A ∈ A}

where (G+,G−, prc)Ψ,Eac is obtained from Ψ};
4: Arg Steps := {(Sarg, ⟨B, (P ;ω)⟩,ArgLinearg, prcj) | ⟨B, (P ;ω)⟩

is a potential argument for P from ∆prcj acceptable w.r.t.
[⟨A0, (L0;ω0)⟩, . . . , ⟨An, (Ln;ωn)⟩],ArgLinearg =
[⟨A0, (L0;ω0)⟩, . . . , ⟨An, (Ln;ωn)⟩, ⟨B, (P ;ω)⟩]};

5: switch SubGoalType do
6: case ac : Steps := Act Steps;

7: case arg : Steps := Arg Steps;

8: case ac arg : Steps := Act Steps ∪Arg Steps;

9: return Steps;
10: end function

Once the set Steps has been built, Algorithm 3 checks for the existence of
an appropriate step to achieve SubGoal according to the value of SubGoalType.
The statement for each in line 7 allows the algorithm to choose among different
alternative steps. In each case, the plan will be updated accordingly.

In contrast with APOP, the set of action steps in a plan (Plan.ActS) includes
in each of its elements a selected path structure. This component is essential
in the planning process for two reasons: 1) deciding which priority criterion
should be used at the moment a warrant for an action’s preconditions is needed
(see Algorithm 4), and 2) identifying all guard-action threats (see Algorithm 6).
Another difference is that an argument step

(Si, ⟨Bi, (P ;ω)⟩,ArgLinei, prcj)

includes the criterion that should be considered later by a defeater for ⟨B, (P ;ω)⟩
that could appear as the plan is built. Finally, our algorithm includes in each
subgoal of Plan.SG the priority criterion upon which the reasoning over an
action’s preconditions will be based.

The incorporation of an argument step to a plan to support an unsatisfied
subgoal of an action step is not enough to warrant that precondition since the
potential argument associated with the argument step could be defeated by
other ones. At this point, it is not possible to know all defeaters of an argu-
ment since they depend on effects of action steps added later in the planning
process. For this reason the dialectical tree for a particular argument is built
gradually as the plan is built. The component ArgLine in a subgoal is essen-
tially used as a way to arrive at acceptable argumentation lines associated with
a particular potential argument. Recall that the existence of a new defeater
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Algorithm 5 Function to resolve threats

1: function resolve threats(
↓↑

Plan,
↓
∆,
↓
Ψ): Plan

2: if action action threat(Plan) ̸= null then
3: if action argument threat(Plan) ̸= null then
4: if argument argument threat(Plan,∆) ̸= null then
5: if guard action threat(Plan,Ψ) ̸= null then
6: return Plan; ▷ No threats exist
7: end if
8: end if
9: end if

10: end if
11: return null; ▷ There exists an unresolved threat
12: end function

gives rise to a new threat argument-argument that will be then addressed by
function argument argument threat (see Algorithm 5). Besides identify-
ing defeaters interfering with a potential argument, this function will resolve
such threats attempting particularly to warrant those arguments that support a
precondition of an action step. Keeping ArgLine updated turns out to be an es-
sential task to address this issue. We refer the reader to the APOP algorithm [7]
for further details about how ArgLine is updated when a defeater is identified.

As we have already mentioned, after a new step is added to the plan, new
threats could occur. The procedure guard action threat will consider all ac-
tion steps in the plan to detect possible interferences with guards of conditional
expressions already evaluated. Note that statement SG = SGS ∪SGNS in Algo-
rithm 6 identifies all these possible interference cases for every (G+,G−, prc)Ψ,E

extracted from each evaluated expression E . Then, the procedure tries to re-
solve each of them, choosing either promotion or disabling literal. The proce-
dure will return null in case it encounters an unresolvable threat. Apart from
guard-action threats, Algorithm 5 considers—with the first three statements—
the threats usually present in APOP that involve only actions and arguments (its
implementation could be made in an analogous way to [7]). Although specifics of
such implementations are outside the scope of this work, we assume that they
will return null when they cannot resolve the threat in question; otherwise,
they will return the current plan.

Once resolve threats has been executed, Algorithm 3 checks the exis-
tence of unresolved threats. Note that unresolved threats involve backtracking,
which implies removing step S (along with its dependencies) from Plan, and
considering pending alternatives. Finally, if the algorithm fails in finding a step
to achieve a subgoal, the backtracking point is updated and the control is re-
turned at the point in the algorithm where a choice was made. If this choice
is a backtrack point, the pending alternatives are considered. The basic idea
behind P-APOP is to search through a plan space, which can be characterized
as a tree where each node represents a partial-order plan. If a failure occurs,
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Algorithm 6 Function to resolve guard-action threats

1: function guard action threat(
↓↑

Plan,
↓
Ψ): Plan

2: for each (Sj , , , (G+,G−, prc)Ψ,E) ∈ Plan.ActS do
3: SAL := {(A,L) | A ∈ Plan.ActS∧L ∈ EfA∧ possibly A ≺ Sj∧ ∄D ∈

Plan.ActS ∧ L ∈ EfD ∧A ≺ D ≺ Sj};
4: SL := {L| (A,L) ∈ SAL};
5: SGS = {(A,L) | (A,L) ∈ SAL ∧ L is present in G+}
6: for each γ ∈ G− do
7: LNS := {L | L ∈ γ ∧ L /∈ Ψ};
8: if LNS ⊆ SL then
9: choose N from LNS ;

10: SGNS := SGNS ∪ {(A,N) | (A,N) ∈ SAL};
11: end if
12: end for
13: SG = SGS ∪ SGNS

14: for each (Si, N) ∈ SG do
15: choose either
16: if possibly Sj ≺ Si then ▷ Promotion
17: Plan.OC = Plan.OC ∪ {Sj ≺ Si};
18: else return null;
19: end if
20: if Si

N→ Sk ∈ Plan.CL ∧ Sk ≺ Sj then ▷ Disabling
21: Let Sk = (Sk, P re, Ef, (G+,G−, prc)Ψ,Ek);
22: Plan.SG = Plan.SG ∪ (N,Sk, ac, [ ], (G+,G−, prc)Ψ,Ek);
23: else return null;
24: end if
25: end choose
26: end for
27: end for
28: end function
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the algorithm backtracks to the parent node. Note that the rollback process
involved in the backtracking step requires identifying any links, ordering con-
straints, subgoals, and dependency tree associated with the failed step, and
removing them without changing the rest of the plan. In our algorithm, we
consider two auxiliary functions to help the backtracking process. In particular,
update stopPoint backtracking updates the point to backtrack to in order
to try a different choice, every time a step fails, and stopPoint backtracking
is used to check whether the current step is a point to make the backtracking
stop. This is illustrated in Figure 5, which shows two backtracking steps. The
first occurs because no step can be constructed to support some of the liter-
als that are present in the base of argument ⟨A, (e;ω)⟩. Backtracking stops
at finding the point where the choice of ⟨A, (e;ω)⟩ was made. Then, another
backtrack is triggered because the precondition e fails to be satisfied. Note that
every time a backtrack to make a new choice begins, the current step and its
dependencies are removed from the plan, as shown in Figure 5-(b) and 5-(c)
with steps ⟨A, (e;ω)⟩ and Ni, respectively.
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b
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c

P3

Nn

d
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Figure 5: Backtracking example.

Progress through the P-APOP algorithm consists of analyzing partially com-
plete plans and modifying them in a way that brings them closer to a solution.
It is easy to see that P-APOP is sound and complete6, essentially because a suc-

6Soundness here is defined as the property that ensures that applicable sequences of actions
obtained from a partial plan generated by the algorithm are such that, when executed in an
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cessful search terminates with a partially-ordered solution plan, i.e., any linear
plan that satisfies the partially ordered one is such that all action step precon-
ditions are necessarily satisfied, and backtracking ensures that the search space
is eventually exhausted.

7. Complexity Results

We have seen how defeasible argumentation frameworks like P-DeLP can
be combined with partial-order planning techniques to consider arguments as
planning steps, and in Section 6.3 we presented the P-APOP algorithm for
constructing plans. In this section, we address a major issue that arises in plan
construction processes, which is that they must satisfy reasonable response time
requirements.

Therefore, we now focus on analyzing the complexity of our approach in order
to determine in which cases it is suitable for supporting the development of real-
world applications; throughout this analysis, we first focus on identifying factors
that affect the performance of the main P-APOP algorithm (Algorithm 1), and
then on the data and combined complexity of query answering in the context
of P-DeLP. Before presenting our results, we briefly recall some basic concepts;
a thorough introduction to these notions is outside the scope of this paper, and
we refer the interested reader to [30, 31] for further details.

� Computational cost is most commonly analyzed in terms of the time
and/or space needed to arrive at a solution to a particular problem. In
order to do so, the instance size needs to be characterized in terms of
parameters of interest; these parameters should be adequately chosen to
represent how problem instances grow.

� Running time (also known as algorithmic complexity) refers to a specific al-
gorithmic solution to a problem, and is typically analyzed using asymptotic
notation (proposed over a century ago by Bachmann and Landau [32, 33])
to identify a family of functions that characterizes how computational
cost grows as instance size grows. Examples of common running time ex-
pressed in this manner is “O(n2)” or “O(n log n)”—these are written in
Big-O notation, a particular kind of asymptotic notation.

� The term computational complexity (typically abbreviated simply as com-
plexity) usually refers to the difficulty of solving a problem (i.e., without
necessarily considering specific algorithms to do so). To abstract away un-
necessary details, complexity is often studied for decision problems, which
are those that have a Yes/No answer. In our case, an example of a de-
cision problem is the main one we will be studying: Does there exist a
plan P such that, executed starting in state Ψ, arrives at goal G following

initial state, will lead to satisfying all specified goals. Completeness in our scenario is defined
as the algorithm’s capability of finding all possible solutions.
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priorities C and satisfies the constraints imposed by ∆ and A? Examples
of decision problem complexities are “NP-hard” or “PTIME”, where the
former is a hardness result (sometimes referred to as a lower bound), and
the latter a membership one (sometimes referred to as an upper bound).
When a problem is both a member of a class C and hard for the same
class, it is said to be “C-complete”.

Data and Combined Complexity. A common refinement of complex-
ity analysis was proposed by Vardi (in the context of databases, but it is
now commonly used in many areas) [34] and assumes restricted classes of
instances in which certain parts of the problem are fixed. Here, we will
make use of the notions of data complexity—which refers to the complex-
ity of query answering when only Ψ is considered to be an input (that
is, ∆, G, and A are considered fixed)—and combined complexity when all
parameters are allowed to vary. Other commonly used refinements, such
as query, fixed program, and bounded arity complexity will be studied in
future work.

Next, we begin by examining several factors in light of the main procedures
that have a major impact on the performance of Algorithm 1.

7.1. Main factors affecting the running time of our algorithm

In our proposal, we have particularly focused on partial order planning
(POP); much work has been done on comparing the computational cost of dif-
ferent POP algorithms, but little attention has been devoted to analyzing time
complexity in defeasible planning. Our aim in this section is to address this
issue by focusing on analyzing several main factors that affect the performance
of our algorithm. Although determining the precise asymptotic running time of
the main P-APOP algorithm is outside of the scope of this work, this analysis
provides sufficient details for a preliminary study of the computational cost of
our approach; in particular, it is helpful in identifying the complexity sources,
which guide the study in the next section.

As a starting point in the endeavor to better understand the computational
cost of deriving a plan in our proposal, we now discuss a few main differences
in comparison to classical POP algorithms, focusing on the subroutines that
have the largest effect on the overall running time. To facilitate this study, we
will briefly recall some of the algorithms previously introduced in this paper,
such as complete plan (Algorithm 3), and its auxiliary functions get steps
(Algorithm 4) and resolve threats (Algorithm 5). Next, we outline the
running time of the following procedures, which are the basis of obtaining a
single partial plan:

— Building an argument: The procedure get steps is in charge of con-
structing argument steps to support a precondition. Building an argu-
ment depends on checking the existence of a potential argument for such
precondition from a set of given defeasible rules. Verifying every subset
of ∆ and checking all conditions of a potential argument definition can be
accomplished in polynomial time (for fixed ∆) in the size of the input.
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— Obtaining a selected path structure: This structure is generated after a
conditional expression is evaluated, that is by applying a recursive proce-
dure to support the selection of a priority criterion. Note that conditional
preference expressions can be represented via a full binary tree where ev-
ery inner node is labeled with a guard and each leaf node is labeled with
a criterion. The recursive loop only requires O(n) time, where n is the
maximum number of guards in the search tree from the root guard to the
selected criterion.

— Resolving an action-argument threat: Identifying and resolving a threat
depends on the number of causal links in the plan, which we denote with cl.
Assuming the worst case, each link is analyzed as many times as action
steps have been generated during the planning process; thus, this also
depends on the number as of action steps present in the plan. Since the
cost of resolving the threat is linear, the total time demanded will be
in O(cl ∗ as).

— Resolving an argument-argument threat: When creating an argument step
for a precondition, defeaters interfering with such argument could appear
as a new threat. The time for checking the existence of a defeater is
dominated by the number of defeasible rules; this step can be carried out
in polynomial time when ∆ is fixed.

— Resolving a guard-action threat: There exists a selected path structure
associated with each action step in the plan, and identifying this type of
threat involves visiting all steps. Then, it is necessary to look at those ac-
tion steps in the plan capable of changing the satisfaction or insatisfaction
state of a guard, and this can be done in polynomial time.

Towards a more concrete result, analyzing the performance of a planning
algorithm requires looking both at the number of plans generated when solving
a planning problem and the computational cost of obtaining each plan. In our
discussion so far, we showed that the cost per plan in our approach is strongly
influenced by several factors that affect overall performance, but in order to ob-
tain a complete analysis we must consider the number of plans generated until
a solution plan is found. Several research efforts have been conducted following
this direction; for example, Knoblock and Yang [35] proposed to study the plan-
ning process as a search through a space of plans—their approach represents
the search space as a tree, where each inner node corresponds to a plan and
each arc corresponds to a plan transformation. In our proposal, each transfor-
mation would extend a plan by adding additional steps in addition to ordering
constraints or new subgoals when a new threat is addressed. In turn, each leaf
in the search tree corresponds either to a solution plan or a dead-end, and each
intermediate node corresponds to a plan that can be extended.

The intuitions in [35] can also be applied in our problem, in this case as
a particular type of depth-first search through a space of plans. This leads to
challenging problems such as determining the branching factor and depth of
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search, which are outside the scope of this initial study. However, in the next
section, we can already see that the outlook is not promising since these in
general have a crippling effect, which is reflected in the result that our planning
problem is PSPACE-hard and in EXPTIME in the combined complexity. On a
more positive note, we also show that for several fragments—where restrictions
are appplied—the complexity is lower.

7.2. Main complexity results

As we mentioned previously, the problem of studying the complexity of
argumentation-based epistemic planning is challenging, and has not yet been
fully addressed. In this section, we provide several complexity results for the
following central problem:

P-APOP Solution Existence: Does there exist a plan P such
that, executed starting in state Ψ, arrives at goal G following prior-
ities C and satisfies the constraints imposed by ∆ and A?

We sometimes refer to P-APOP Solution Existence as the preference-based
planning problem or our planning problem. In order to explore the different
sources of complexity, we will study a variety of restricted versions or fragments
of the problem as well—these results can be summarized as follows (cf. Figure 6):

P-APOP Solution Existence is:

— PSPACE-hard and in EXPTIME in the general case (no limits imposed
on action effects and preconditions).

— DP-hard in the combined complexity if: (i) actions are allowed to have
a single precondition, or (ii) actions are allowed to have a single positive
precondition and up to two postconditions.

— NP-complete in the data complexity if either: (i) actions are restricted to
positive postconditions, or (ii) actions can have a single precondition and
a single positive postcondition.

— In PTIME in the data complexity if actions are restricted to either: (i) pos-
itive preconditions and one postcondition, (ii) a single precondition and
the number of goals is bounded by a constant, or (iii) no preconditions.

In [36], the authors provide several complexity results for PLANSAT—the
decision problem of establishing whether an instance of propositional planning is
satisfiable—and several of its restricted versions. These results, in combination
with the main complexity contributions for DeLP reported in [37], will be used
as the bases for our analysis in the rest of the section.

Table 6 illustrates the main complexity results of our work; it includes the
hierarchy of different planning problems presented in [36], and shows how the
computational complexity varies from PTIME to EXPTIME, depending on dif-
ferent restrictions that can be considered. The results for PLANSAT are sum-
marized in the second column, whereas the main data and combined complexity
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Hierarchy of Planning Problems

* preconds
* postconds

* preconds
1 postconds

2 +preconds
2 postconds

* preconds
* +postconds

1 +precond
2 postconds

1 precond
* postconds

* +preconds
1 postcond

1 precond
1 +postcond

1 preconds
* postconds
k goals

0 precond
* postconds

Planning P-DeLP Preference-based 
planning

PSPACE-complete

NP-hard

NP-complete

PTIME

EXPTIME
[combined]

co-NP-hard
[combined]

NP
[data]

PTIME
[data]

Complexity

EXPTIME,
PSPACE-hard

[combined]
(Prop. 1)

DP-hard
[combined]
(Prop. 2)

NP-complete
[data]

(Prop. 3)

PTIME
[data]

(Prop. 4)

Figure 6: Overview of complexity results: The figure in the left hand side is reproduced
from [36], as are the results in the “Planning column”; the results in the “P-DeLP” are direct
consequences from those in [37].

results for P-DeLP (the decision problem of whether a literal is warranted) are
given in the third column. Finally, the last column gives the complexity results
for our planning problem under each set of restricted versions.

We define data and combined complexity in the context of P-DeLP following
the approach taken for DeLP in [37]. Making an analogy with the corresponding
concepts in databases, the current state Ψ represents the input database; the
data complexity of the decision problem to check whether a literal is warranted
is therefore the complexity of the problem when the set of defeasible rules ∆
is fixed, while the combined complexity corresponds to the case in which both
Ψ and ∆ vary. In our case, it is immediate to check that the data complexity
of this problem for P-DeLP is the same as that in the DeLP case [37], i.e., in
some class NPC , where C is the class determined by the particular argument
preference criterion. From the developments in [37], we have membership in
EXPTIME for combined complexity.

Proposition 1. P-APOP Solution Existence is PSPACE-hard and in EX-
PTIME in the combined complexity.

Proof In [36], the PLANSAT problem is shown to be PSPACE-complete.
This propositional planning problem is a particular type of preference-based
planning problem, given that the latter adds defeasible rules—and preference
criteria over them—to the classical domain. Therefore, the PSPACE-hardness
result in [36] can almost directly de transferred to our case since we only need
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to observe that in instances in which the set ∆ (and consequently C) is empty,
we arrive at PLANSAT instances, so PLANSAT can trivially be reduced to our
problem. This shows that our preference-based planning problem is PSPACE-
hard in the combined complexity, which establishes a lower bound on the prob-
lem’s complexity. To establish an upper bound, we must look at the added cost
of carrying out the computations associated with P-DeLP; since it is known
that the worst-case computational cost of deciding warrants in DeLP is expo-
nential [37], and that P-DeLP additionally involves updating weights—which
can clearly be done with an EXPTIME budget—it follows that out problem is
in EXPTIME (in the combined complexity). □

In [36], Bylander examines how computational complexity for planning varies
depending on a variety of conditions, and some interesting results are obtained.
We now follow the same path for studying fragments for the P-APOP case and
derive several interesting results.

Proposition 2. P-APOP Solution Existence is DP-hard in the combined
complexity whenever either: (i) actions are allowed to have a single precondition,
or (ii) actions are allowed to have a single positive precondition and up to 2
postconditions.

Proof The class DP is defined as the set of all languages L = L1∩L2, where
L1 ∈ NP and L2 ∈ co-NP [38]. In [36], the PLANSAT problem is shown to be
NP-hard whenever either condition (i) or (ii) hold (referred to as PLANSAT+),
while deciding whether a literal is warranted given a DeLP program is known
to be co-NP-hard [39].

In our setting, the preference-based planning problem follows this arrange-
ment, since it must satisfy both the conditions imposed by PLANSAT+ (finding
a sequence of actions that satisfy the goals) and DeLP warrants (action precon-
ditions). Therefore, we can reduce SAT-UNSAT, a DP-complete problem [38],
to preference-based planning making use of the same reductions that lead to
the hardness results mentioned above, with a simple addition as follows. We
begin with two Boolean formulas F1 and F2, and must create an instance of
PLANSAT and a P-DeLP program such that the planning problem encodes F1

and the P-DeLP program encodes F2. We do this as follows:

� Use the reduction from SAT to PLANSAT+ in [36] to obtain an P-APOP
problem instance (∆ is empty).

� Add a fresh action α (i.e., an action that does not appear in the problem),
with a single postcondition ϕ that is also added as precondition to all other
actions in the instance. Therefore, all solutions must begin with action α;
therefore, it is easy to see that this does not interfere with the reduction
from SAT to PLANSAT+.

� Use the reduction from UNSAT to the problem of determining the warrant
status of a literal in DeLP in [39]. This reduction introduces an arbitrary
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literal whose warrant status is tied to the (un)satisfiability of the UNSAT
instance; to achieve our composite reduction, we can simply use the same
literal ϕ introduced as the postcondition of α in the previous step.

From this construction, it is clear that F1 is satisfiable and F2 is not if and only
if the preference-based planning instance derived from the two reductions has a
solution, which concludes the DP-hardness proof. □

The following proposition states that our problem is NP-complete in the
data complexity under certain conditions.

Proposition 3. P-APOP Solution Existence is NP-complete in the data
complexity when actions are restricted to any number of effects but without
negated literals.

Proof The computational complexity of PLANSAT limited to actions with
any number of effects without negated literals is NP-complete. Any PLANSAT
instance can be polynomially reduced to a preference-based planning problem
instance if the set of defeasible rules ∆ is empty, which implies that P-APOP
Solution Existence is NP-hard in the data complexity. Since deciding the
warrant status of a literal in P-DeLP is NP in the data complexity, we can
conclude that our problem is also in NP. Therefore, our planning problem is
NP-complete in the data complexity. □

According to the results shown in [36], PLANSAT is polynomial under sev-
eral different sets of assumptions; next, we show that such restrictions can be
incorporated into our problem so that it can also be solved in polynomial time
if the set ∆ is fixed. This leads to the following proposition.

Proposition 4. P-APOP Solution Existence is in PTIME in the data
complexity under any of the following restrictions:

— Number of goals at most k, and actions restricted to one precondition.

— Preconditions have no negated literals, and only one effect.

— Actions restricted to no preconditions.

Proof For fixed ∆, the decision problem of checking whether a literal is
warranted is in PTIME in the data complexity [37]. Given that the number of
arguments is polynomial when ∆ is fixed, and determining whether a literal is
warranted can be done in polynomial time when the argument preference criteria
is polynomial, our problem is thus also solvable in polynomial time under these
restrictions, which proves membership in PTIME in the data complexity. □

The results obtained in this section, in general terms, emphasize the fact
that studying both the data and combined complexities for P-DeLP allowed
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us to analyze the difficulty of solving our planning problem under a variety of
conditions. As a final remark, note that we have not specifically considered
the complexity of computing the argument preference criterion; though there
exist several cases that can be studied, we point out that computing general-
ized specificity—the default criterion used in (P-)DeLP—can clearly be done in
polynomial time; see [15] for further details on this criterion.

8. Application Example

In this section, we will apply our approach to a scenario where a cooking
service robot must prepare a meal considering the homeowners’ particular pref-
erences. The robot can perform several tasks, such as setting the table, cooking,
or calling a food delivery service, and its job finishes when the meal is ready on
the table. Our approach expands the robot’s planning system capacity by con-
sidering contextual preferences, i.e., user’s preferences expressed in a particular
context. Note that we will build on this simplistic scenario essentially to illus-
trate and apply our proposal—a formal definition of the robot’s characteristics
is out of the scope of this example.

Consider the following set of facts representing the world state:

Ψ8 =



suggested on TV (f 1)

uncommonly consumed(f 1)

friend(maria)

like(maria, f 1)

near dService(deliv1)

good food(deliv1)

bad service(deliv1)

cooking recipe(f 1)

delivery service(deliv1)

∼homemade food

∼food ordering


The set Ψ8 contains information related to foods and delivery services that a

system can consider during the planning process. Literals suggested on TV (f 1)
and uncommonly consumed(f 1) express that f 1 is a food suggested by several
TV programs, and it is not a commonly consumed food, respectively. Also,
the literals friend(maria) and like(maria, f 1) state that maria is a good family
friend, and she has expressed that f 1 is one of her most preferred foods. More-
over, the literals near dService(deliv1) and good food(deliv1) indicate that the
delivery service deliv1 is located nearby and offers good food, but its customer
service is bad (bad service(deliv1)). Moreover, the literals cooking recipe(f 1)
and delivery service(deliv1) convey that there exists an available recipe for
making f 1 and deliv1 is a food delivery service. Finally, ∼homemade food and
∼food ordering express that there is no homemade food or food orders.

In order to model the robot’s knowledge, we consider the following set of
defeasible rules:
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∆8 =



(preferF (F )← friend(FF ), like(FF ,F ); 0.8)

(∼preferF (F )← friend(F ), dislike(FF ,F ); 0.7)

(preferF (F )← suggested on TV (F ); 0.5)

(∼preferF (F )← suggested on TV (F ), infrequently consumed(F ); 0.3)

(preferD(D)← near dService(D); 0.9)

(∼preferD(D)← good food(D), bad service(D); 0.3)

(preferD(D)← good food(D); 0.3)

(food ready ← homemade food ; 0.1)

(food ready ← delivery service food ; 0.5)


The set ∆8 contains several defeasible rules, the first two of which represent

tentative reasons to establish whether food at home is ready to eat: “if there
is homemade food” or “if there is delivery service food”. The last three rules
express reasons for and against establishing which food delivery service is more
appealing or preferable: “if D is a nearby delivery service” or “if D offers good
food” are both reasons to prefer D , whereas “if D ’s food is good, but offers poor
customer service” is a reason for not preferring D . Observe that the third and
fifth rules represent reasons for establishing whether a food is a preferred option:
“if F is a food suggested on TV” or “if FF is a family friend and F is considered
as one of FF ’s favorite foods” are both reasons for preferring F . Finally, the
fourth and sixth rules can be read as follows: “if F is a food suggested on
TV, but infrequently consumed” or “if F is not one of FF ’s favorite foods” are
defeasible reasons against preferring F .

In our scenario, a robot could perform several actions based on the owners’
preferences. To analyze each particular action’s applicability, here we propose
a way of context-adaptable selection of preferences by the use of conditional
expressions, as introduced in the previous sections. We present two conditional-
preference expressions that implement the following intuitions:

“If it is lunchtime, use Maria’s preferences,
otherwise use Juan’s preferences”, and

“Maria’s preferences should be applied”.

The intuitions can be captured with the conditional-preference expressions in-
cluded below:

E1 = [{lunchtime} : pref maria; pref juan], and

E2 = pref maria, where
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∆pref maria=



(preferF (F )← friend(FF ), like(FF ,F ); 0.8)

(∼preferF (F )← friend(FF ), dislike(FF ,F ); 0.7)

(preferF (F )← suggested on TV (F ); 0.5)

(∼preferF (F )← suggested on TV (F ), infrequently consumed(F ); 0.3)

(preferD(D)← near dService(D); 0.9)

(∼preferD(D)← good food(D), bad service(D); 0.3)

(preferD(D)← good food(D); 0.3)

[. . .]



∆pref juan=



(preferF (F )← friend(FF ), like(FF ,F ); 0.6)

(∼preferF (F )← friend(FF ), dislike(FF ,F ); 0.5)

(preferF (F )← suggested on TV (F ); 0.9)

(∼preferF (F )← suggested on TV (F ), infrequently consumed(F ); 0.9)

(preferD(D)← near dService(D); 0.5)

(∼preferD(D)← good food(D), bad service(D); 0.9)

(preferD(D)← good food(D); 0.8)

[. . .]


In our application example, the robot’s task consists of preparing a meal

and setting the table; also, it can order food from a delivery service. Then, the
actions it can perform are the following:

A7 =

{table ready} (set table,E1)←−−−−−−−− {food ready}

{delivery service food} (receive food delivery,E2)←−−−−−−−−−−−−−− {food ordering}

{food ordering} (order food,E1)←−−−−−−−−− {∼homemade food , delivery service(D), preferD(D)}

{homemade food} (cooking,E1)←−−−−−−− {∼food ordering , food recipe(F ), preferF (F )}


They can be interpreted as follows:

— set table: setting the table. There must be a meal ready to serve.

— receive food delivery: receiving food delivery. There must exist a food
order.

— order food: ordering food from a food delivery service. There must not be
homemade food kept in the fridge, and the delivery service selected must
be a preferable one according to the owner’s preferences.

— cooking: cooking at home. There must exist a food recipe available, and
the selected food must be chosen according to the owner’s preferences.

Given these actions, a preference-based planning problem can be defined as

T = (Ψ8,∆8,C8,A8,G8),
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where G8 = {table ready} and C8 = {pref maria, pref juan}. In what follows,
the sequence of actions S1 = [A1,A2,A3] is analyzed in order to establish whether
it is a plan that satisfies the goal table ready .

– Action A1 = ⟨X1,P1,E1⟩ where

A1 = order food

X1 = food ordering

P1 = {∼homemade food,
delivery service(deliv1),
preferD(deliv1)}

E1 = [{lunchtime} : pref maria; pref juan]

– Action A2 = ⟨X2,P2,E2⟩ where

A2 = receive food delivery

X2 = delivery service food

P2 = food ordering

E2 = pref maria

– Action A3 = ⟨X3,P3,E1⟩ where

A3 = set table

X3 = table ready

P3 = food ready

E1 = [{lunchtime} : pref maria; pref juan]

For solving the planning problem T , the plan S1 must be an applicable se-
quence of actions: since the precondition preferD(deliv1 ) of A1 is not warranted
from warrL(Ψ8,∆pref juan), where pref juan is the priority criterion used after
evaluating E1, S1 cannot be considered as a solution plan option. Even though
it is possible to construct two arguments from ∆8, ⟨A1, (preferD(deliv1 ); 0.5)⟩
and ⟨A2, (preferD(deliv1 ); 0.8)⟩ with

A1 =
{

(preferD(deliv1)← near dService(deliv1); 0.5)
}

A2 =
{

(preferD(deliv1)← good food(deliv1); 0.8)
}

supporting preferD(deliv1), are both defeated by ⟨A3, (∼preferD(deliv1); 0.9)⟩,
whereA3 = {(∼preferD(deliv1)← good food(deliv1), bad service(deliv1); 0.9)}.
Note that if the conditional preference expression attached to A1 changes, then
S1 could possibly be a solution plan. Next, we show how the applicability of an
action can change depending on the conditional-preference expression used.
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Now, we consider a new plan S2 = [A1,A2,A3], but E2 = pref maria is the
preference expression associated with action A1. Note that it is possible from ∆′8
to construct the undefeated argument ⟨A1, (preferD(deliv1); 0.9)⟩ where A1 =
{(preferD(deliv1)← near dService(deliv1); 0.9)}, and hence A1 is applicable in
this case. The next two actions, A2 and A3, are also applicable. Observe that
the only difference between S1 and S2 is the priority criterion used for the action
A1; this fact clearly shows the importance of having tools that allow adapting
the planning process to the user’s preferences when finding a plan to solve the
proposed goals.

When the space of plans to achieve the goals is dense, it may be simple to find
a solution plan; however, the challenge is to find a solution plan that satisfies
the user’s needs and preferences. In [40], the authors argue that preferences are
of vital importance when the planning problem has too many solutions. The use
of preferences contributes to the user’s confidence in obtained plans. Given this
consideration, we have presented a planning approach for integrating preferences
with argumentation-based planners, improving aspects of these planners, such
as flexibility for changing the preferences over defeasible knowledge depending
on the state of the world and reliability in the generated plans. Finally, Fig. 7
shows how plan S2 is generated by algorithm P-APOP introduced in Section 6.3.
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Figure 7: Plan generated using the P-APOP algorithm.
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9. Related Work

Combining argumentation and epistemic planning is not a new issue in the
literature [41, 7, 42, 8, 43]. However, the approaches in these works have not
involved the formalization and use of mechanisms for handling preferences dur-
ing a planning process. Our approach introduces a programmable mechanism
for applying preference in every step (action) of a plan.

In [41], an argumentation formalism for agents following the BDI approach is
proposed. The authors present an argumentation-based model to reason about
desires (generating desires and plans to achieve them). Similarly to our work,
[41] is based on structured argumentation; however, although that approach
combines argumentation and plans, there are several differences with our pro-
posal. Firstly, it defines different instantiations of Dungs’ abstract argumenta-
tion framework for generating consistent desires and consistent plans to achieve
these desires. Moreover, it defines the notion of conflict among plans and uses
an argumentative analysis to establish which plan prevails. Thus, the notion
of a plan is clearly more related to our definition of an argument than to our
formalization of a plan. Finally, they use a fixed preference criterion that inte-
grates the value of desires and the cost of plans; instead, we present an approach
where several criteria that correspond to priority criteria can be considered. The
proposed approach provides mechanisms that allow the selection and change of
the contextual priorities that should be used in each plan action.

In [6, 7], an argumentation-based formalism for constructing plans using par-
tial order planning techniques called DeLP-based partial order planning (DeLP-
POP) is introduced. In this approach, action preconditions can be satisfied by
actions’ effects or conclusions supported by arguments. The actions and argu-
ments are combined to construct plans. The authors present an extension of
the POP algorithm to consider actions and arguments as planning steps and
resolve the interferences that can appear. In [8, 44], DeLP-POP is extended to
multi-agent cooperative planning; in contrast to our work, they do not focus
on how to introduce mechanisms for representing preferences. Our approach
extends the representation capabilities of the DeLP-POP system providing the
possibility of indicating what preferences, indicated as priority degrees, may be
considered at the moment of evaluating an action’s preconditions through the
use of conditional expressions. Our proposal combines planning with the ap-
plication of priority information, improving the reasoning abilities and scope of
the planning system presented in [6, 7]. The conditional-preference expressions
give the possibility of programming which preference context should be used in
each particular situation.

Integrating multi-agent systems, argumentation, and automatic planning is
a research topic addressed by several works in the literature [42, 43]. In [42], an
argumentation-based model for addressing the collaborative planning problem
in teams of agents is presented. The use of argumentation in this approach
allows deliberative dialogues facilitating agreements through the interchange
of information about collaborative tasks. In contrast, rather than focusing on
defining a collaborative planning formalism, our proposal seeks to integrate
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the preferences into the planning process, indicating the priority criterion upon
which the reasoning over action preconditions is based. Note that conditional
expressions provide a useful tool to agree on a criterion to adopt by agents when
engaged in dialogue.

Recently, [43] presented a planning system based on DeLP [15] to reason
about context information during the construction of a plan—the system is de-
signed to operate in cooperative multi-agent environments. Each step of the
construction of a plan can be discussed among agents; thus, the proposed dia-
log mechanism allows agents to exchange arguments about the conditions that
might affect an action’s feasibility according to their knowledge and beliefs. The
main difference with this work and our own is that they do not specify what
information is prioritized by agents. Integrating our proposal to the proposals
of [42, 43] would add interesting characteristics to this kind of system. The
conditional-preference expressions presented could be useful to model tools that
allow the planner to decide what priority criterion should be used by agents
participating in a dialog, depending on the available information.

An approach for practical reasoning was proposed in [45], providing grounds
for formalizing the relationship between values and actions and integrating de-
feasible argumentation into the agent reasoning process. In this formalism, the
values that an agent holds are used to compare plans, and several comparison
strategies are formally defined. The authors propose to arrange values hierar-
chically and exploit an agent’s preferences over values using such a hierarchy.
As in the case of our work, their proposal is based on defeasible argumenta-
tion and presents a preference-based approach, but there are some differences
between the two approaches. Despite sharing the motivation of integrating pref-
erences into an argumentation-based plan construction formalism, they do not
adopt a mechanism to change the agent’s preferences. To decide how to choose
between actions plans, they take into account those values that the agent con-
siders important, whereas we present an algorithm to construct plans. In [45],
the authors focus on comparing plans based on a hierarchical order over values.

The work of [12] concerns epistemic planning problems, focusing on an argu-
mentation-based approach. The paper aims to take the first step in developing
an approach to handle contextual preferences that can dynamically change based
on knowledge-based priorities. They introduce an architecture that is indepen-
dent of the underlying formalism and reasoning mechanisms, as well as a set
of guidelines to support knowledge and software engineers in the analysis and
design of planning systems leveraging this preference handling capacity, and the
authors also present a concrete instantiation based on Possibilistic Defeasible
Logic Programming. Here, we have revised, refined, and extended the proposal
in [12]. There are therefore several significant differences in our work. We for-
mally define the main concepts employed in [12] to decide which actions to keep
and which not should be applied during the construction of plans by considering
the conditional-preference expression associated with each action. We also ex-
tend this work by introducing a section to discuss interferences that can appear
when such expressions are used. Finally, we present an extension of the APOP
algorithm [7], as well as the application example developed in Section 8 to show
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how a plan is constructed.
Shams et al. [46] propose a framework for normative planning problems that

use argumentation to reason about goals and norms in order to identify the best
course of action. A planner will be able to select the best plan to execute by
prioritizing certain goals and norms over others. In particular, they focus on
showing how an agent can decide on the justifiability of the plans and use
its preferences to resolve the different types of conflicts within and between
goals and norms, and identify which plans are the best to follow. Similarly,
our proposal presents an argumentation-based approach, but there are some
important differences with [46], perhaps the most salient being that our work
focuses on structured rather than abstract argumentation. Moreover, although
both approaches can prioritize information in the planning process, Shams et al.
do not focus on the specification of preferences. An interesting feature of our
proposal is that [46] could be extended by incorporating the notion of context-
adaptable priority selection introduced here as a particular way of deciding
between plans.

The need for adding explainability features to planning systems has been
recently recognized by many researchers. In [47], an argumentation-based ap-
proach is proposed to generate explanations for planning solutions as well as for
invalid plans. While this work—as in our case—uses an argumentation formal-
ism to model planning problems, the focus is not on introducing a particular way
of preference representation, but instead on providing explanations associated
with plans. Additional related efforts in the area of Explainable AI Planning
(XAIP) are [48], [49], and [50].

Finally, several works have been developed to integrate preferences in the
planning process [51, 52, 53]. Most of these approaches are not argumentation-
based and rely on methodologies and issues related to the development of ap-
proaches that study how to generate preferred plans and, ideally, those that are
optimal. There is no unique way to carry out this task. To address the problem
of preference-based planning, most of the research efforts rely on defining a lan-
guage for specifying users’ preferences, as well as a formalism for specifying and
reasoning over plans. Most preference languages in the literature have either
a quantitative or qualitative nature, while some of them admit a combination
of both. Although our proposal is part of the same general effort to include
preferences within the planning process, our main aim is not the generation of
preferred plans. Here, we focus on defining a way of adjusting priorities on infor-
mation to be used when plans are being constructed depending on the current
state in which the system acts. Our work can therefore be seen as complement-
ing the current research in planning with preferences. Detailed descriptions of
many of preference-based planners are discussed by Baier and McIlraith [54].
The interested reader is refereed to there work for further details.

The works discussed in this section are summarized in Table 1. The ta-
ble briefly describes, for each related work that is particularly close to ours,
the strengths, limitations, and aspects that can be enhanced with mechanisms
presented here.
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Reference Contributions Features Poss. Improvements

Rahwn &
Amgoud [41]

A framework based
on argumentation to
reason about desires
and plans.

(i) Structured
argumentation-
based approach.
(ii) No tools for
interchangeable plan
preference criteria.

Using our conditional
preference expressions to
select and change
criteria.

Garćıa et al. [7] Argumentation-based
formalism for build-
ing plans.

(i) DeLP-based
approach.
(ii) Use of actions’
effects and arguments
for satisfying
preconditions.
(iii) Algorithm
extending POP to
consider arguments
as plan steps.

By specifying conditional
expressions, our proposal
can be used for
incorporating into
actions an easy and
natural way to change
priorities on information
necessary to achieve the
planning system’s goals.

Pardo et al. [8] A proposal to extend
DeLP-POP [7] to a
multiagent environ-
ment.

(i) Proposal using
DeLP as reasoning
mechanism.
(ii) No mechanism
for preference
representation is
used.

Our conditional
preference expressions
could be used as a
particular way of
expressing explicitly
specified context-depen-
dent preferences.

Toniolo et al. [42] Argumentation-based
approach to deal the
colloborative
planning problem in
teams of agents.

(i) Use argumentative
dialogues about
norms and actions.
(ii) No algorithm to
construct plans is
specified.

To use our conditional
expressions to provide a
useful tool to agree on a
priority criterion to
adopt by agents during
the deliberative dialogue.

Pajares-Ferrando &
Onaindia [43]

Planning system for
cooperative multia-
gent environments
that uses context
information when
plans are built.

(i) Based on DeLP.
(ii) Extend the
DeLP-POP
formalism [7] to a
multiagent scenario.
(iii) No priority order
over rules is pre-
sented.
(iv) Provides a
specification of the
qualification problem.

The agent’s preferences
can be encoded as
prioritized DeLP-rules,
and conditional
expressions can be used
as an easy way to capture
context-dependent
preferences.

Teze et al. [45] An argumentation-
based proposal to
formalize the
relationship between
values and actions.

(i) Based on DeLP.
(ii) Agents’ values
are used to compare
plans.
(iii) Several strategies
defined to compare
plans based on the
agent’s value system.
(iv) No mechanism to
modify agents’
preferences are intro-
duced.

Our approach could be
useful as a tool to change
values that actions
promote depending
current state of the
world.
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Teze & Godo [12] Argumentation-based
formalism proposing
a set of software
engineering
guidelines to analyze
and design planning
systems with
capacities for
handling contextual
preferences.

(i) Takes the first
step in considering
preferences that can
dynamically change
via knowledge-based
priorities.
(ii) Introduces an
architecture that
leverages this
preference handling
capacity.

The intuitions behind
this formalism can be
revised, refined, and
extended with our
approach.

Shams et al. [46] Argumentation-based
framework for
planning problems in
normative
environments.

(i) Applies abstract
argumentation.
(ii) Investigates the
properties of the best
plan(s).
(iii) Decides on the
best plan to follow
using argumentation.
(iv) Shows how
preferences between
goals and norms can
be applied to decide
on the best plan.

The formalism could be
extended incorporating
the intuitive notion of
context-adaptable
priority selection
introduced here as a
particular way to decide
between plans.

Fan [47] An argumentation
approach that make
an initial step
towards explainable
planning.

(i) Uses structured
argumentation.
(ii) Argumentation as
a modelling tool for
solving planning
problems and
deriving explanations
from solution plans.
(iii) No specific tool
to dynamically
change preferences is
introduced.

(i) Our context-adaptable
priorities selection could
be exploited to show
explanations focused on
preferences under which
system reasoning is
based.
(ii) Knowledge-based
priorities could offer a
means for deciding
between plans.

Table 1: A summary of the main aspects of the related work discussion.

10. Conclusion and Future Work

In this paper, we proposed an argumentation-based approach that planning
systems can use to construct plans, where each action is executed under specific
preferences selected via different priority criteria. To select the priority criterion
under which the system’s reasoning is based, we proposed to use a particular
type of conditional expression, which provides systems with a way to carry
out context-adaptable selection. For the construction of plans, we refined and
extended the work presented in [12], and proposed an algorithm that extends
the APOP algorithm to consider conditional expressions in its implementation.
We have also addressed several types of interferences (threats) that can appear
and need to be tackled to obtain a valid plan. Our focus was not on developing
tools for improving the planning process’s efficiency, but rather on introducing
an argumentation-based formalism to incorporate the use of preferences in such
a process. For defeasible reasoning over system knowledge, we proposed to use
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the P-DeLP inference mechanism. We have also focused on presenting several
complexity results of our approach; to the best of our knowledge, these are the
first complexity results in the argumentation-based planning literature.

As future work, there are several lines of promising research under consid-
eration. We wish to develop an implementation of a planner agent based on
the proposal presented, and are also interested in studying how to integrate our
approach with a collaborative planning context where several points of view
(criteria) are considered by agents involved.

Even though the results we obtained show the feasibility of developing our
proposed tools, there are several limitations associated with our efforts that
point to the need for further developments and evaluations. Here, we have fo-
cused particularly on exploring the aspects centered on the theoretical design
of the proposed approach. Thus, computational aspects such as running time
efficiency, though of great importance for our long-term goal, fall out of the
scope of this paper. A line of work that we are interested in involves the imple-
mentation of the framework (and its incorporation into the recently-developed
P-DAQAP platform [55]), focusing on achieving scalability and an empirical
evaluation in a real scenario, comparing it with other approaches from the lit-
erature with respect to effectiveness and efficiency measures. In the formalism,
the P-APOP algorithm does not benefit from any heuristic, so another promis-
ing issue to analyze in the future is the adaptation of the algorithm to include
different heuristic methods that allow the reduction of the search space and,
consequently, the overall computational cost. Finally, extending this work to
include other preference representation tools—such as operators for combining
or prioritizing contexts—is also a challenging objective to be addressed.

As we mentioned previously, the use of argumentation in planning systems
is not new. An interesting area of future work is to investigate the relationship
between our approach and emerging conflict between plans. For example, we
can follow the approach proposed in [41], and include our proposal of conditional
expressions; in this way, it would be possible to consider multiple preferences
when partial plans are in conflict. An additional line that we also intend to
explore in the future is the relationship between the notion of threat and attack
present in the argumentation literature. On the other hand, the assignment of
values to rules based on some kind of rationality principle like the one proposed
in [56] is also a challenging objective we want to explore as future work.
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International Conference on Autonomous Agents and Multiagent Systems,
Virtual Event, United Kingdom, May 3-7, 2021, ACM, 2021, pp. 429–437.

[51] T. A. Nguyen, M. B. Do, A. Gerevini, I. Serina, B. Srivastava, S. Kamb-
hampati, Generating diverse plans to handle unknown and partially known
user preferences, Artif. Intell. 190 (2012) 1–31.

[52] M. Das, P. Odom, M. R. Islam, J. R. Doppa, D. Roth, S. Natarajan,
Preference-guided planning: An active elicitation approach, in: E. André,
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