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LLUIS GODO, JOSEP PUYOL-GRUART AND CARLES
SIERRA '

CONTROL TECHNIQUES FOR COMPLEX
REASONING: THE CASE OF MILORD IT

1 INTRODUCTION

Reasoning patterns occurring in complex problem solving tasks usually cannot be
modelled by means of just a pure classical logic approach, This is due to several
reasons, for instance: incompleteness of the available information, need of using
and representing uncertain or imprecise knowledge, or combinatorial explosion
of classical theorem proving when knowledge bases become large. ‘To deal with
these problems, Milord T, an architecture for Knowledge Base Systems (KBS),
combines modularization techniques with both implicit and explicit control mech-
anisms and with an approximate reasoning component based on many-valued log-
ics.

Roughly speaking, a Knowledge Base (KB) in Milord 11 consists of 2 hierarchy
of modules interconnected by their export interfaces. Each module contains an
Object Level Theory {OLT) and a Meta-Level Theory (MLT) interacting through
a reflective mechanism {see Figure 1).

Export
orz || B

. ¢ Import

Export MET Export

Import Tmport
Pt — oL orr | ™

i : |
MLT '

/N /N

Figure 1. Structure of a Milord H module hierarchy.

A module can be understood as a functional abstraction between the set of com-
ponents it needs as input and the type of results it can produce. From the logi-
cal point of view, Milord IT makes use of both many-valued logic and epistemic
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meta-predicates to express the truth status of propositions. For further details in
these logical topics the reader is referred to [Godo ef al., 1995; Puyol ef al., 1992;
Puyol-Gruart ef al., 1998; Puyol-Gruart and Sierra, 1997; Sierra and Godo, 1992,
Sierra and Godo, 1993},

In this chapter we focus on the control techniques used in Milord IT that deter-
mine a KBS execution. The explicit part of the control, declarative in nature, is
mainly based on a reflective approach and a declarative backiracking mechanism.
In this context, reflection makes sense as a conirol mechanism because there is
a clear separation between domain (object-level) and control (meta-level) knowl-
edge. The basic implicit control components are a subsumption mechanism and a
process of elimination of unnecessary rules, both concerning the object level.

Next we list the most usual control requirements for a KBS language together
with the solutions adopted in Milord I1,

Locality of Control: All explicit control mechanisms are specified locally to each
module. This allows us to identify a module as the complete description of
a problem (or subproblem). The separation between demain and control
knowledge is a typical characteristic of most KBS languages to offer a clear
and declarative programming style.

Specificity versus generality: To solve problems, human experts are able to rea-

son at different levels of precision depending on the amount of data at hand.

For instance, a physician cannot always gather all the relevant data to make

_ a complete and accurate diagnosis. This is the case, for example, when a

patient is in a coma and thus the physician cannot pose him any question.

Nonetheless, the physician has to make a diagnosis, although it may be pro-

visional. To represent these situations Milord IT provides the knowledge
engineer with two different control options:

¢ To write rules with different levels of specificity (using more or less in-
formation, that is, putting more or less conditions) deducing the same
conclusion with possibly different levels of belief. To deal with this
kind of rules, Milord IT extends the concept of subsumption by associ-
ating sets of partial labels to the rules. This technigue guarantees the
use of the more specific knowledge whenever possible.

* To encode default-like rules {by means of meta-rules) that generate
plausible assumptions to be used when a piece of relevant information
is missing (see Section 9).

Avoidance of unnecessary work: Milord I takes advantage of the specialization
deductive mechanism [Puyol et al., 1992; Puyol-Gruart ef al,, 1998] to ea-
gerly detect when a rule cannot increase the certainty on a conclusion, When
a rule is applied, Milord ITs engine decides whether other rules with the
same conclusion can increase its certainty or not. If not, they are removed.
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Locality of threshold: In some cases knowledge engineers are interested in pro-
gramming modules whose deduced predicates are only useful if their cer-
tainty is above a minimum truth level. This is done by declaring a threshold
local to each module, Whenever a rule gets, by specialization, a truth inter-
vat with its minimum vatue below the module threshold, it is removed.

Flexibility in data gathering: Given a guery to a module, different strategies for
the medule to get an answer can be used, The different evaluation strate-
gies of Milord IT determine how and in which order the necessary external
information is gathered.

Declarativity of Control: Milord If Florn-like meta-rules are used as a declara-
tive language to implement several control actions, e.g. elimination of rules,
generation of plausible assumptions, dynamic changing of the modules hi-
erarchy or dynamic creation of modules.

The detailed description of the different implicit and explicit control mecha-
nism of Milord IT is siructured in this Chapter as follows, In Section 2 we present
a general picture of the whole control structure. Sections 3 through 3 are devoted
to describe the different Milord II control mechanisms, that is, the object level
process, the upwards reflection operation, the meta-level process, the downwards
reflection operation and the communication among modules respectively. In Sec-
tion 9 two reasoning tasks are implemented using some of the previously presented
control mechanisms.

2 MILORD I OVERVIEW

A Milord I KB consists of a hierarchy of modules, each module containing dif-
ferent kinds of knowledge, structured as sketched in Figure 2.

From a logical point of view, a module is composed of an Object Level The-
ory (OLT) and a Meta Level Theory (MLT). The OLT is generated by a set of
rules which are specified in the Deductive Knowledge definition. These rules
are formulas belonging to the Object Level Language OL,,, a propositional lan-
puage based on many-valued semantics. - Formulas of this language are of the
form (r, V), where r is a Horn-like rule and V is an interval of truth values be-
longing to a finite and totally ordered set of values, also specified in the module
declaration. Deduction in the object level language, denoted g, is mainly based
on a specialization inference rule, a straightforward generalization of the many-
valued version of Modus Ponens, which allows to simplify rules as soon as we
know truth-intervals for any of their conditions. On the other hand, the MLT is
generated by a set of meta-rules which are specified in the Deductive Control
definition, These meta-rules are formulas of the Meta Level Language MLy, a
restricted first order classical language of Horn rules, Variables in meta-rules, if
any, are considered universally quantified. Deduction at the meta level, denoted by

et v e,
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b a4, 15 based on Modus Ponens and particularization, The overall reasoning pro-
cess of a module consists on reasoning at each level and interacting between both
levels, This process produces a sequence of modifications over the initial OLT and
MLT, For a deeper insight of Milord IT modules, the reader is again referved to
{Godo et af., 1995; Sierra and Godo, 19931,

From an operational point of view, a module can be identified with a process
attached to it, used to compute values (truth intervals) for all the propositions and
variables contained in its export interface. Namely, a module execution consists
of the Teasoning process necessary to compute the values for the propositions and
variables in the export interface the user queries about. The execution of a module
can possibly activate the execution of submodules in the hierarchy. These exe-
cutions only inferact with the parent module through the export interface of the

_ submodules, giving formulas back as result. It is worth noticing that the interac-

tion is made only at the object level.

Begin

Hierarchy of submodules

Import:

Export: ...

Deductivae knowledge
Dictionary: ...
Rules:

Inference System:
Truth-values:
Connectives:
Renaming: ...

end deductive

Control knowledge
Evaluation Type!
Truth Threshold:
Daductive Control:
Structural Control:

end control

end

Figure 2, Knowledge components of a module.

Conceptually, the execution of a module involves two deductive subprocesses,
object and meta-level, that act as co-routines, and three operations. Two of them,
upwards reflection and downwards reflection, ate resume-type operations between
the co-routings that, besides acting as resuming operations, modify the knowledge
used by the deductive subprocesses. The third operation is the communication with
the user and/or other modules that has the effect of adding new formulas fo the
object-level co-routine. Figure 3 shows the structure of a module and the relations
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Figure 3. A: structure of the components of Milord module procéss.
B: Co-routine view of a module process.

between its components. Besides that, the module evaluation type determines in
which way subprocesses and operations are combined to get the global control
behaviour of a module execution.

Next we succinctly describe each one of the above mentioned processes and
operations,

Object Level Process: This process uses as data the set of propositional variables
and rules of the module possibly updated by the previous downwards reflec-
tion and communication operations, With this data and a goal to be solved,
the task of the process is to obtain a value for the goal and potentiaily for
other propositional variables of the module. Obtaining a value for a propo-
stlional variable can be done in one of the following ways:! by using the
communication operation, either by querying the user (when the proposi-
tional variable is declared as Jmport) or querying a submodule (when the
propositional varizble belongs to the export interface of a submedule); or by
deduction when the propositional variable is the conclusion of a rule. To do
so, the process follows the rule specialization algorithm with two implicit
conirol mechanisms, namely the subsumption and the elimination of unnec-
essary rules, and a parametric control mechanism, the fruth-threshold rule
elimination.

The type of evaluation delermines when the cenirol is passed to the upwards
reflection or to the communication operations.

1 Actually there are other ways such as functional evaluation—in the case of propositional variables
with an attached function—or constraint propagation, but they are out of the scope of this paper.
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Upwards Reflection Operation: This operation translates a subset of the current
object level formulas in the object process to meta-predicate instances in the
meta-level process. Once the operation concludes, the meta-level process is
resumed.

Meta Level Process: The meta level process takes as input the set of meta-rules
of a module and the set of meta-predicate instances generated by the up-
wards reflection operation, together with the meta-predicate instances that
had been previously deduced. The process then makes use of a forward in-
ference engine with a depth-first control strategy, following the writing order
of meta-rules. The stop condition is the impossibility of applying any meta-
rule, In that case, the process resumes the object level process through the
downwards reflection operation.

Downwards Reflection Operation: This operation is the dual of the upwards re-
flection one. It translates formulas from the meta-level process into the ob-
ject level one and executes the actions determined by the meta-level process.
When the translation is finished, the object level process is resumed. Special
mention has to be made when an instance of the action Assume is applied.
In this case, as many extensions of the meta-theory MLT as elements in
the argument of the Assume action are generated (seec Figure 4). These
extensions conform a tree of MLTs. Every time an Assume action is exe-
cuied a new branching is added to this tree. Whenever a Resume action is
executed, a backiracking in that tree is performed and the computation is re-
sumed. This is how the declarative backiracking mechanism {see Section 7)
is implemented.

Communication: This opeération is used to add new formulas to the object-level
process either from the external user or from other modules of the KB, The
evaluation type determines when this operation is to be applied.

The confrol mechanisms determine the algorithmic behaviour of the processes
themselves or just the way processes and operations are combined. The combi-
nation of the previous processes and operations is done by the explicit declaration
of the evaluation strategy inside each module. In Milord IT there are three eval-
uation strategies: lazy, eager and reified. Bach one of them produces a different
behaviour. On the one hand, the lazy and sager evaluation types are opposite strate-
gies about how to obtain external data (from the user andfor from its submodules).
The lazy strategy always tries to use the minimum information while the eager
strategy makes use of as much information as possible.

In the following algorithmic descriptions of the evaluation strategies, OLP
stands for object level process and M LP for meta level process,

Lazy: A module with lazy evaluation finds the cheapest path to compute a solu-
tion for a goal, that is, no irrelevant data will ever be gathered. The control
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MLT |

up

oLT

Figure 4. Module processes and operations. Assume and Resume actions.

used in the module fo answer a query, in a simplified view, is a loop over first
finding the next relevant propositional variable to look for a value and then
specializing the deductive knowledge. This cycle is repeated unti the goal
is solved or no more relevant questions exist. This is the evaluation strategy
used by default.

Given a query to a lazy module, the control flow of the module process is
the following one:?

1. [OLP)] If the goat has already a value, STOP.

2. [OLP)] Otherwise, depending on the kind of goal, it performs one of
the next steps in order to get a value for it.

(a) Submodule goal. If the goal is a path to a submodule of the current
module, and if that submodule is visible,? then call the communi-
cation operation with this goal (the communication operation will
call the submodule object process to solve the goal).

(b) Goal belonging fo the import interface. Call the communication
operation with this goal (the communication operation will query
the user to give a value for the goal).

2A symbol between square brackets stands for the name of the active process in which the algorithm
step is performed .

3Submodules can be hidden by a refinement operation between inodules [Godo and Siema, 19941,
‘This kind of operation is out of the scope of this paper.
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(¢} Goal with a function attribute. Now the evaluation of the goal
depends on the evaluation of the function associated to the propo-
sitional variable. If there are arguments of the function with no
value, call recursively the lazy algorithm over them from left to
right. When all argumenis have values, evaluate the function.

{d) Goal that can be deduced by means of rules. In this case we start
a depth-first search on the rules of the module deducing the goal
to look for a propositional variable without value. The search
algorithm orders rules according to the following criteria, in order
of preference.

i. More specific rules first. We try to find solutions by first using
the more specific rules—those with less conditions,

ii. More precise rules first. A rule is more precise than another
when its truth-value interval is more precise. Notice that this
order can change during the execution because of the special-
ization of rules.

iii. The writing order of rules.

To evaluate the conditions of a selected rule, the search strat-
egy follows the writing order of the conditions (left to right), in
a depth-first manner. Finally, call recursively the lazy algorith
with the above mentioned propositional variable as a subgoal,

Notice that the algorithm finally returns a path {o a submodule of the
current module, a propositional variable belenging fo its import inter-
face, or a propositional variable with a evaluable function associated
to it, and its associated value.

. [OLP} Specialization of rules

. [OLP] Call the reification operation

{M I.P} The meta level fires all possible meta-mules.
. [M LP] Call the reflection operation

. {OLP] If the reflection operation does not modify the object level set
of formulas GOTC 1, otherwise GOTO 3.

Notice that this algorithm always provides the goal with a value since, in the
worst case, it will get the value unknown, which corresponds to the maxi-
mum imprecision interval.

Eager: An eager strategy asks the user for all the variables and propositions de-
clared in the Import interface of the module and queries all the exportable
propositional variables of its submodules as wetl.

Given a query to a module with an eager evaluation, the control flow of the
module process is the following one:
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1. [OLP] X the goal has already a value, STOP,

2. [OLP] Otherwise, call the communication operation as many times as
necessary to get values for all imported propositional variables in their
writing order.

3. Steps 3,4, 5 and 6 of the Lazy evaluation algorithm.

4, FOR each submodule DO (Submodules are ordered by their writing
order).

() [OLP] call the communication operation to get values for all the
submodule exportable propositional variables used in the rules or
meta-rules of the module.

{b) Steps 3,4, 5 and 6 of the Lazy evaluation algorithm.
END FOR

5. [OLP} If the goal has already a value, STOP,

6. Steps 3,4, 3 and 6 of the Lazy cvaluation algorithm.

7. [OLP]GOTO 4

Reified: This kind of evaluation strategy does not differ from the eager one in the
way of gathering data. The main difference of a reified sirategy with respect
to both lazy and eager strategies is that the specialization mechanism of the
object levet is not used at all. Therefore, deduction is only performed at
the meta-level process. The motivation behind this evaluation strategy is to
provide module designers with the possibility to define meta-interpreters.

3 OBIJECT LEVEL PROCESS

3.1 Object-level deduction

Miford I provides the user with approximate reasoning capabilities at the object
level, The approximate reasoning mechanisms are based on the use of a finitely-
valued fuzzy (or many-valued) logic. Before describing the logical deduction sys-
tem, and for the sake of a better understanding, we first outline the semantics
behind it. .

A particular many-valued logic can be specified inside each module by defin-
ing which is the algebra of iruth-values, i.e. which is the (finite) ordered set of
truth-values and which is the set of logical operators associated {o them, For-
mally speaking, a Milord II algebra of truth-values A, 7 = (A, <, N, T, Iz)
is a finite linearly ordered residuated lattice with a negation operation. In plain
words, the set of truth-values 4, = {0 = a1 < 62 < ... < @y, = 1} isa
chain of n elements where 0 and 1 are the booleans false and frue respectively;
the negation operation N, is the involution in Ap, ie. Np{a:) = an_iya; the
conjunction operator T' is a t-norm, i.e. a binary, commutative, asscciative and
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non-decreasing operation on A, with 1 as neutral element and 0 as null ele-
ment; finally Iy is the residuum of T, ie. defined as Ir{e,b) = Max{c €
An | T(e,c) < b}, and it is used to model a many-valued implication. As it
is easy to notice from the above definition, any of such truth-values algebras is
completely determined as soon as the set of truth-values 4,, and the conjunction
operator T' are chosen. So, varying these two characteristics we generate a family
of different multiple-valued logics. For instance, taking T'{a:, ;) = @min(1,5y OF
T(@i, @) = Gmin(n,n—i+s) We get the well-known Godel’s and Eukasiewiczs se-
mantics (truth-tables) for finitely-valued logics [Gottwald, 1988; Gottwald, 1993;
Hijek, 1998; Hdjek, 1995].

In a given module, and thus for a given truth-value algebra A, and a set of
propositional variables g, the set OL,; of object-level formulas consists of:

s OLy-Atoms: {(p,V) | p € Zo}
o OL,-Literals: {(p, V), (=p, V) | {p,V} € OL-Atoms}

¢ OL;-Rules: {{py Apa A+ App — ¢, V*} | p; and g are literals (atoms or
negations of atoms) and Vi, j(p; # pj, Pt # ~P5: 9 # P54 # "Pi}}

where ¥V and V* are intervals of truth-values. Intervals V* for rules are constrained
to bo upper intervals, i.e. of the form [g, 1], where ¢ > 0. That is, object level
formulas are indeed signed formulas under the form of pairs of usual propositional
formulas (restricted to be literals or rules) and intervals of truth-values.

The semantics is obviously determined by the connective operators of the truth-
value algebra A, . Inferpretations are defined by valuations p mapping the
(propositional) sentences to truth-values of 4,, fulfilling the following conditions:*

pltrue) =1,
p(=p) = Nulo(p)),

pLA ... Apn = q) = In(T(plp1), - -, p(on)); p(0)).
Then the satisfaction relation between interpretations and OL,,-formulas is de-
fined as

pEo (e, V)iffplp) €V

and it is extended to a semantical entailment between sets of OL,,~-formulas and
O L,;-formulas as usual:

T'Eo (p,V)iff p 2o (g, V) forall psuch that p =0 A, forait A € T

Once the semantics is clear, we come to the (syntactical) deduction system which
is implemented in each module. The -Many-valued Specialisation Calculus (Mv-
SC for short) is defined by the following axioms:

o AL (5,[0,1])

*+The expression T'(ry, 72, F3, . ..} is the recurrent application of T as T'(ry, T(rz, T{rs .. J}).
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o A2: (true, 1}
and by the following inference rules:
o Weakening: from (i, V1) infer (i, Va), where 11 C Va
¢ Not-introduction: from (p, V) infer (—p, N1 (V)
» Not-elimination: from {~p, V) infer {p, N;;(V))
¢ Composition: from {ip, V1) and (¢, 13} infer {ip, V3 N V3)

¢ Specialization: from {(p;, V) and (p1 A+ App — ¢, W*) infer (pr A--- A
Dict APt A APy — ¢, MPE(V, W)

where N2 ({a, b)) = [Nn(b), Nn(a)] is the point-wise extension of N, to intervals
and M P3(V, W*) is defined as follows: MP;([a,b},[c,1]) = [T{e,¢),1}. In
[Puyol-Gruart ef al., 19981 it is shown that this deductive system is sound with
respect o the above semantics and complete for deriving OL,,-atoms. Object-
level deduction will be denoted by bo.

3.2 Object Level Control Mechanisms

Subsumption mechanism

When expressing the deductive knowledge of a module, experts might write dif-
ferent rules concluding the same propositional variable to represent the possibility
of either:

» having different unrelated sets of conditions entailing that propositional vari-
able, or

¢ having different sets of conditions related by an inclusion relation that may

allow concluding that propositional variable (with different certainty val-

ues). Subsumption is the mechanism that ensures that only the most specific
sets of conditions will be used. -

The widely accepted subsumption criterion is to use always the more specific
knowledge in the deductive process. This idea is made precise in the following
general definition, .

DEFINITION 1 (Subsumption). Given a knowledge base K B and two rules Ry :
(A1 = B,ay) and Ry : {Ag = C,a2) where B and C ate literals over the same
propositional variable, we say that rute R is more specific than rule Ry if, taking
for granted the set of formulas in i B, whenover A; is true Ay is also true, that is,
when

KBE A = Az
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In the particular multi-valued logical framework of Milord I this definition can
be expressed as p(41 — Aq) = 1, for all many-valued intexpretation p such that
p I= K B. By definition of the implication connective as a residuum, the condition
(A1 = Ag) = 1is equivalently expressed as p(41) < p(As).

This criterion can be described in terms of the set of labels—non deducible
propositionai variables needed to apply the rule-—associated to each premise.
Namely, it can be checked that, in the conditions of the above definition, rule
R, is more specific than rule Ry if for each label L; of A; there is a label Ljof
Ag such that L; —+ Lj is a valid formula, The condition = L; — L; reduces to
the inclusionship of tabels Ly C L;.

For instance consider the following set of rules:

RitaAbAcAd— g
Ry:eAf—g
Ra:e—be
Ritanb— f

It is easy to see that there is a subsumption relation between the rules B; and
Rs. The set of non deducible propositional variables necessary to apply the rule
Ry is {a, b, ¢, d}, whilst for the rule R, is {a, b, ¢}. Therefore R; is more specific
than Ry,

Due to the special deductive mechanism of Milord IT, based on specialization
of rules, the subsumption relation changes as deduction progresses. This is so
because the specialization mechanism reduces the conditions in the premises of
rules, and thus modifies the reference KB used to compute labels. Because of
that, Milord Il incorporates an algorithm that dynamically computes and completes
partial labels, in the sense that, the set of labels can be incomplete and even labels
may be incomplete,

Elimination of Unnecessary Rules

The maximum precision given to the conclusion of a rule is limited by the truth
intervai of the rule. Consider a rule with certainty value {a,, 1] and whose premise
has been evaluated to the interval [a;,a;]. Then, the interval associated to the
concluded propositional variable by the application of this rule is given by

M Pgfa;, a5], [ar, 1]} = [T'{ai, 05), 1)) = [a], 1] .where a!. < a,.
‘This consideration leads us to the following definition.
DEFINITION 2. A rule (A — g,{a., 1]} is unnecessary for a propositional vari-
able (g, [as,05]) if 2, < a;. Similarly, 2 tule (4 = —q, [ay, 1]) is unnecessary

for a propositional variable (g, {a;, a;]) if e, < Ny,(ay), where N,, is the negation
operator.

Therefore we can easily test whether the remaining rules concluding a proposi-
tional variable are still useful or not. This is what we call the elimination of unnec-
essary rules process. The test is applied every time a rule is speciafized since the

CONTROL TECHNIQUES FOR COMPLEX REASONING: THE CASE QF MILORDTT 77

specialization mechanism broadens rule intervals. This control technique allows us

" to save nnnecessary deductions as well as unnecessary information requirements

and processing,

4 META-LEVEL PROCESS

4.1 Meta-level deduction

The meta-level language ML, corresponding to an object-level language OL,,, is
a resiricted classical first order language. It is defined from a set ¥, of predicate
symbols including predicates K, P and WK which play a specialrole in the reflec-
tion mechanism; a set Xigq of action symbols (inhibitrules, assume, resume,
filter, stop and module); a set Xyyy of classical arithmetic function symbels; a
set Yoo of constants including the truth-values of A, and object propesitional
variables of 2e; and a set By, of variable symbols,® which can be empty.

Meta-level formulas are either ground literals, in a classical sense, or mles of
the type

{PEARA...AP, = Q| F,Q literals },

where cach variable occurring in ¢ must occur also in some Fy. Variables in meta-
rules, if any, are considered universally quantified, Quantifiers are ali outermost,
Only the conclusion ¢J may contain action symbols.

The semantics of the language is the classical of first order logic. The meaning
of the special predicates K, P and WK will be explained in the next subsection
along with the definition of the reification rules which use them to represent object-
level sentences.

Finally, the deduction system is based on only one {modus ponens-like} infer-
ence rule:

fom {PLAPRA...AP, = Q,P,F,...,P}infer Q'

where P}, ..., P, are ground instances of Py, ..., Fy, respectively, such that there
exists a unifier o for {PA AP A ... APLPIAPLA ... AP and @' = 0Q
is the ground instance of ¢} resulting from o. The deductive system of Milord 11
meta-level is thus not complete with respect to the classical semantics we use for it.
Nevertheless, the deduction mechanism based on this single inference tule is pow-
erful encugh for our modelling puzposes. Meta-level Deduction will be denoted
by the symbol 4.

4.2  Control Actions

Conirol actions may affect the deductive knowledge of a module by inhibiting
rules and by branching and backtracking the reasoning process. Control actions

SWhen using Milord I syntax variable are prefixed by $, for instarce $x.
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may also modify the hierarchy of a module by inhibiting modules, or creating new
ones, They can also abort the execution.

Inhihit Rules: This action takes out of the OLT a particular set of rules. When we
execute inhibit rules (pathpredid),all the rules containing the propo-
sitional variable pathpredid in their premises are removed. We can also
inhibit all rules containing in their premises propositional variables related
to a given one.

Assume: The argument of this action stands for an ordered list of possible as-
sumptions to be made at the object level that can be retracted later on.

Resume: It retracts the latest assumption performed.

Filter: This action consists on inhibiting (filtering) a set of submodules of the
module. This means that all the propositions p exported by the filtered sub-
modules will be considered as being (p, unknown)

Stop: This is an abort action. In some cases it is necessary to abort the execution
when an unrecoverable situation holds.

Module: When a meta-rule concludes an instance of module, for example mod-
ule(= (A, B)), an action will be performed, at downwards reflection time, to
add a submodule named A and equal to B as the last, in writing order, of
the already existing submodules. B can be any allowed modular expression,
in particular, the application of a generic module. Generic modules contain-
ing as control knowledge meta-rule calls to themselves are allowed. This is
the way recursion can be defined inside Milord IT [Puyol-Gruart and Sierra,
19971,

Assume and Resume predicates deserve special attention because they allow
to define a backtracking mechanism in Milord I (see Section 7), useful to model
hypothetical reasoning.

3 UPWARDS REFLECTION OPERATION

The upwards reflection operation {ranslates formulas from the current OLT to the
MLT in the form of meta-predicate instances. It relates a sub-theory of the QLT
with the set of ground literals of the meta-language M L. The meta-predicate WK
is used to relate the set of object mv-literals with the set of ground meta-literals.
Given that the constant names used in the M LT are exactly the same as those used
in the OLT as proposition names, the quoting functions for literals are omitted for
the sake of simplicity. The same applies for the intervals of truth-values. So we
will write WK (p, V} instead of WK ([p], [V]). The reification rules are:

{(p,V)e OLT
Fv WK(p, V)
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(n,V) ¢ OLT
Fm WK (p, V)
{pr Apa A Apy -+ q,¥) € OLT
F s WK (implies(and(p1,p2,* 1 Pu), @), V)

The other two meta-predicates, I and P, used in the meta-level language to
represent the OLT state are definable from the meta-predicate WK

K(p,[ai, as)) = WK (p, [ai, as]) A ~ WK (P, lacer, a5) A = WK (p, [os, a5-1])
P(p) = WK(p,[a2,1]) |

5.1 Other meta-predicates

Upwards reflection also contains programmer defined relations between proposi-
tional variables, the threshold and the rules. Although the submodules of 2 module
are not persistent, the initial submodules are also reified, as well as those that have
been filtered.

Relations: When declaring a propositional variable in Milord 1T, it is possible to
establish a relation with another propositional variable, in the same mod-
ule or in a submodule. There is a set of system-defined relations used for
control. Other relations are domain dependent and defined by programmers.
The name of the relation used in the definition of propositional variables,
corresponds to a binary meta-predicate identifier. The two arguments corre-
spond to the name of the propositional variables being related, For instance
the definition

pi = name: ...
relation: relationid p2

becomes the next meta-predicate instance: relationid{p;, pa)

Threshold: A certainty threshold is treated as a meta-predicate instance. There
is an instance per module and one per each submodule: threshold(a;) and
threshold{submodule;, ar ).

Submodules: There is a meta-predicate called submodule which has an
instance per submodule (meta-predicate with only one argument}, and an
instance per sub-submodule (the same meta-predicate name but with two
arguments), that is, submodule(submodule,) or submodule{submodule,,
subsubmoduley). :

Filtered: Instances of this meta-predicate represent the submodules that have been
filtered {removed) by meta-tules, filtered(submodule).
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6 DOWNWARDS REFLECTION OPERATION

The downwards reflection operation is responsible of making effective at the ohject
level the consequences of the deduced meta-predicate instances.

K(p,V)e MLT
I_O (P, V)

The reflection operation modifies the data structure of the OLP to make it causally
comected, using the terminology of Patty Maes [Maes, 1988], with the meta-
predicate instances.

7 DECLARATIVE BACKTRACKING

When a meta-rule with an Assume action in its conclusion is applied, as many ex-
tensions of the meta-theory M LT as elements in the argument set of the Assume
action are generated. For instance, consider the case where, in a certain moment,
we have in the current cbject theory only the literal

{»,1)

and MLT consists of the following meta-rule:
If K (p, 1) and.—:P(q) then Assume({(g,1}, (q,0)})

Suppose also that g could not be proved in OLT. Then, after the upwazds reflec-
tion process, the current M LT will be the extension of the previous one with the
ground literals K{p,1) and —FP{g). So, now the above meta-rule can be applied,
and this causes the system to obtain the conclusion Assume({{g, 1}, (g, }). The
meaning of the action Assume is that the elements of its argament should be as-
sumed in different extensions of the current QL. This is done by building a tree
of M LT's, each containing a K meta-predicate instance for all the efements of
the argument of Assume, implemented by a snapshots stack, So in this case we
obtain the following two different extensions of the current M LT in Figure 5:

MEIT, = MET U K(g,1)
MLT, = MLT U K(g,0)

From now on, and until another instance of an Assume or Resume action
is obtained, the existing communication (upward reflection and downward reflec-
tion) between OLT and M LT is moved to a communication between QLT and

- MIT:.® Thus, in this case, after the downward reflection process OLT is ex-

tended with {g, 1}.

SComputationally speaking, M LT} is managed by the same co-routine of M LT but with a new
snapshot in the stack containing the state of M LT plus Assume{{{g,1),{g,0)}).
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K{p,1)
~P(g) LT
Assume({{g, 1), (¢, 0)}}
fgz;;) MLT, {1{1925) | MIT
K(g,1) K@,0)

Figure 5. Meta-theories branching using the Assume action.

In order to backtrack in the tree of M L1's generated by successive applica-
tions of Assune actions, the language provides a special O-ary predicate Resume.
When a meta-rule concluding Resume is applied, we perform a backtracking in
the meta-theories tree. This backtracking restores the parent M LT, and the cur-
rent (LT becomes the OLT which was active at the moment the assumptions
were made by the parent M LT'. In the above example, backtracking from M LT}
to M LT makes that ¢ will not be true in the current OLT, and that immediately
the communication (upward reflection and downward reflection) between OLT
and M LT is moved to a communication between OLT and M LT; (see Figure 6).

Kip,1)
~Plg)  NMET
K(p,1) Resume R K(p,1)
~P{g) T TP
K(g,1) | MLT: K(q,0) | MIT

Figure 6. Backtracking using the action Resume.

1t is worth noticing that actions Assume and Resume provide the system with
a declarative backtracking mechanism, similar fo the approach taken in MetaPro-
log {Bacha, 1988]. This declarative mechanism allows us to implement several
complex reasoning patterns. For instance, consider that an assumption was made
at the meta-level. Whenever a contradiction occurs in OLT afterwards, we can
declaratively detect it, and then, by means of the Resume meta-predicate, we can
move back to a previous non contradictory GLT'. This can be achieved by a meta-
tule, such as

If Assumne($y) and K (8z, ()7} then Resume

TNotice that 2 contradiction in OLT oceurs when OLT' contains literals of the form {p, V) and
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Assume instances can also be used as conditions to check whether an assump-
tion has been previously made. Meta-level theories keep track of them to allow
explicit reasoning about the assumptions active at any moment. 'We can see the
Assume action as a pointer {copy of the state) we put in our reasoning process in
order to retract what is deduced from it later on, if necessary. An application of
the mechanism to a scheduling problem can be found in [Sierra and Godo, 1993].

8 COMMUNICATION CONTROL MECHANISMS

The last issue considered in this Chapter referring to control mechanisms in Mi-
lord II concerns the communication operation. The object level module process
activdtes the communication operation to either query the user or query some of

the submodules. When the operation queries the user, the result is the extension -

of the current OLT by a propositional variable. However, the communication from
a submeodule to its present parent module is governed by a set of inference rules
concerning the translation between the possibly differeat corresponding local log-
ics of the modules,? and the structural relations concerning the hierarchy. Some of
these rules are shown below.

E“Gf (P; V)
Fo (i/p, T(V])

b a1, submodule(5)
Fa submodule(i, 3)

Fat, submodule(a, §)
t i submodule(i/a, 9)

Fp, cval type(a)
F ot eval type(i,a)

The first rule translates object level formulas from the submodule @; to the
module O. The second one informs the modute O that its submodule ©); has the
module Oy as a submodule. The third one allows us to propagate the KB structure
through the medule hierarchy. Finally, the fourth rule informs the module @ of the
evaluation type of its submodule ¢;.

(=, V') such that V 1 V3 (V') = 6. In this case the literal {p, ()) is generated,

8The system allows the specification of mappings between local logics in the sense of renaming
mappings T : An — I{Am) sending each trath-value of an algebm A, to an interval of truth-values
of another algebra Am, extending in the obvious way to intervals of 4.
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9 EXAMPLES OF COMPLEX REASONING TASKS

9.1 Scheduling Reasoning System

This example is an excerpt of the detailed scheduling problem presented in [Sierra
and Godo, 19931,

In general, to specify a complex reasoning system in Milord IT it is necessary
to define a hierarchy of modules. This hierarchy captures the usual task/subtask
decomposition. However, in some cases it is necessary to iterate over a set of
subtasks (for instance, hypothesis assumption, evaluation, and revision). The only
way to perform iteration in our language is through the reification/reflection mech-
anism. This leads to understand the task/subtask decomposition in such cases as a
particular relation between the OLTs and the MLTs.

In this scheduling example we build a module in which we associate to each
variable a proposition identifier. The space of values for variables is understood
in the proposed implementation as the set of truth values of a particular multiple-

valued logic. Requirements are expressed as restrictions over the truth value as--

signments for these propositions. Solutions to the scheduling problem are then
considered to be truth value assignments that fulfil the requirements.

In order to implement a scheduling task with a set of requirements to be fulfilled,
two modules must be defined:

Requirements module This module will contain the requirsments as meta-
predicates over the propositions of the object level, i.e. restrictions over
the possible values that object level propositions can take. These meta-
predicates are defined in the dictionary of the module, This module also de-
fines the particular multiple-valued logic for the object level. In the example
there is no truth-values combination, so selecting connectives is irrelevant.

Design task Module This module contains the initial conditions of the problem
as object level rules, and the meta-rules that perform the different subtagks
of the scheduling process.

Each problem setting is determined by a number of tasks and a set of con-
sirains among them, and requires a particular reguirements module and a
particular design task module. In order to be generic all design task modules
have been programmed with the MLT in common. Thus, to build the actual
module that will perform the design, if is necessary to connect this particu-
lar generic design task module with a concrete requirements module, so the
former can inherit the requirements of the problem from the Iater. It is done
int the following way, using the refinement operation:”

Module Example = Design : Requirements

A : B is a modular expression that generates a new module that resulls from modifying A by
adding elements inherited from B, such as dietfonary or logie. See for details [Puyol-Gruart and
Sierra, 19971,
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1. Meta-rules that restrict the possible values of propositions in such a way
that there is no need for backtracking, i.e. only one child remains. This is
the case of requirements of type before, equ and notbefore. These meta-
rules use the K meta-predicate in their conclusion. An example of such a
meta-rute for the before requirement is:

Requirements Module

The requirements of the scheduler under study are:

it 2

« The number of fasks to be scheduled.

 The temporal constraint relations among them.
MOO2 if before($x,$y) and K($x,int($z,true))

and K($y, int($w,true)) and ge(Sz,3w)
then conclude K($y, int(suc{$z),true))

o The number of available time points to perform the tasks.

The tasks are represented as a set of object level propositions Ai, ..., An, the
temporal relations as meta-predicates over pats O_f elements in the set {Ay,..., 2. Meta-rules that perform branching, i.¢. two children remain. T his is the case
An}, and. the r}umber of time points timey, .. - ,time, as the truth-values of the of constraints of type “diff”. These meta-rules have the action Assume in
logic, which will be {false, timey, ..., time,, true}. their conclusion. Example:

In our particular case there are four types of constraints that we wiil represent

by four meta-predicates: before, equ, diff and nothefore. MOOS if diff($x,$y) and K($x,int($7,true))

and X($y,int($z,true)) then

1. before{z,y) means that activity 2 must occur before activity . Assume(list(($x int(suc($7),irue)), ($y.int(suc($z),rue))))

2. equ(z,y) means that activities = and ¢ must occur during the same time

period. A special meta-rule is also needed to detect when no sotution is found, and

then in that case to backtrack. This situation can be detected when a propo-

3. diff (, ) means that activities z and y must not occur in the same period. sition gets the interval {true, truej as follows:

4. notbefore(s,y) means that activity @ must not occur before activity y. MOO1 if K($x,int(icue,true)) then Resume

Design Task Module When the search space is exhausted and no solution is found, this situation

The implementation of the heuristic search to find a solution to the scheduling reflects that the set of constraints is inconsistent.

problem, is done by defining a set of rules and meta-rules. Rules are responsible
for the initial attachment of the whole space of values to the propositions and -
meta-rules are responsible for the pruning of the search space.

For each proposition A; representing a scheduling activity a rule like

Code of the example

Here we present the complete code of the scheduling module for a set on 4 tasks
to bfoscheduled (see Figure 7). The set of constraints is specific for each example
test. :

To use the scheduler in a test example we define a module requirements which
contains the meta-predicates defining the relations between the propositions at the
 object level, and the set of truth-values representing the admissible time poins (see
- Figure 8).

_ Now, as said before, using the inheritance property of the operator “:”, we define
he module that performs a scheduling of four tasks, module scheduler test, with
particular set of requirements, defined in requirements.

ROO; if true then conclude A; is timey

has to be written in order to define the initial possible truth-values for the propo-
sitions, i. e. the interval [timey ,true]. These intervals represent the root node of
the search space. In general the truth-value of the Tules determine the initial time
point to start the scheduling of the corresponding activity. So initial conditions of
the problem can be stated just modifying the certainty values of these rules.

At the meta-level, for each possible constraint violation a meta-rule is written
having as premise a set of conditions that are true when a particular constrain|
is violated, and as conclusion “how” to restrict the set of possible values for on
activity in such a way that the violation is solved. That is, the meta-rule cuts off,
set of children states. Meta-tules can be of two types depending on the violatio

Ofn the Meta-rules, it is possible to use some system-defined mela-predicates such as: ge (greater or
al), It (lower than), gt (greater than). The meta-predicates ge, It, gt can ba applied over the order of
the truth-values of the local logic, or over the real nunbers. It is alse possible to perform operations on
of the truth-values, such as suc (successor function), that have (o be uaderstood in the context of an
ered set of truth-values,
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Module Scheduler =

Begin ‘
Export Al, A2, A3, A4
Deductive knowledge

Rules:

ROO1 if true then conclude Alistl
R002 if true then conclude A2 istl
R0O03 if true then conclude A3 istl
ROO4 if true then conclude A4 is t1

Inference system:

Truth values = (false, t1, £2, 3, trug)
end deductive
Control knowledge

Evaluation iype: eager

Peductive conirol:

51+ If a propositionat varfable gets the maximum value

;» no solution can be found.

MOOL it K($x,int(true,true))
then Resume

3 X before Y,

MO02 if before($x,$y) and K($x,int($z,true})
and K3y, int($w.true)) and ge($z,5w)
then conclude K($y, int{suc($z),irue))

nXequal Y

MO03 if equ($x,$y) and K($x,int($z,true)}
and K($y,int($w,true)) and gt($z,$w)
then conclude K(3y, int($z,true)}

33 X not before Y

MOO04 if notbefore($x, $y) and K(3x,ini($z,true))
and X($y,int($w,true)) and 1t($z, $w)
then conclude K{$x, int{$w,true))

s X diffecent Y '

MOOS IiF diff($x,3y) and K($x,ini($z,true))
and K{$y,int($z,true)) then

Assume(list{($x,int(suc($z),tue)), ($y,int(§uc($z),true))))

end control
end

Figure 7. Scheduler module declaration,
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Module Reguirements =
Begin
Export Al, A2, A3, Ad
Deductive knowledge
Dictionary:
Predicates:
Al =Name: “Al” Type: many-valued
Relation: notbefore Ad
A2 = Name: “A2” Type: many-valued
A3 = Name: “A3” Type: many-valued
A4 =Name: “A4” Type: many-valued
Relation: before A2
Relation: before A3
Relation: diff Al
Inference system;
Truth values = (false, t1, 12, {3, true)
end deductive
Control knowledge
Evaluation type: eager
end control i
end

Figure 8. Requirements module declaration,
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Mdule Scheduler_test = scheduler : requirementil

Table 2. Second assumption.

. . — 4 — +~ 5 - — 6 =

Now, let’s see the execution frace of the module Scheduler_test: . B S S T
Initially OLT deduces the interval [t1true] for ail the propositions Al-A4 AL M0 = Al =

by means of rules RO0O1-R004. Upwards reflection operation introduces the 002 S A2 yvi =

following set of predicates into MLT: MO02 S A3 A3 a3

Ad Ad MO035 = Ad

. Table 1 represents a part of the meta-level process until the first assumption

. Meta-rules M0O03 and M004 cannct be fired. Given the relation “A4 diff

. Similarly to the previous meta-level process, Table 2 represents meta-rule

. Now a matching occurs for meta-rule MO04 because of the relation “Al;

. Given that Ad and A1 have the same value, a new assumption is performe

K(Aint(t1,true)), fori = 1,2,3,4.

For the sake of simplicity, in the following we will consider on}y Ehe rr.xini-
mum value of the interval of trath-values of propositions. This initial situa-
tion and all the meta-level processes are represented in Tables 1 to 3.

7. Table 3 represents a new cycle of the meta-level process until a resume op-
eration is performed. Now meta-rule M002 increase again the value of A2,
making it equal to rrue (represented as * in the table),

Table 3. Resume.

Table 1. First assumption. — 7 - PR
- 1 = - 2 = ~ 3 = tI 2 13  Resume tl 2 3
11 2 3 i 2 3 Assume 1 12 3 Al W0l = Al
Al Al Al MO02 = ¥ A2
A2 MO02 = A2 A2 A3 el
A3 MOD2 = A3 A3 - Ad MODI Ad &=
Ad Ad MOO5 = Ad

8. Given that the value for A2 is true, a matching is possible for meta-rule
MO001 producing a resume operation. Remember the last assumption:

Assume(list((Ad,int(t3,true)), (ALint(t3,true)}))
now the vatue 3 is assumed for A1, and A4 return to the previous value, (2.
Now no meta-rules can be applied, and the solution is found.

is generated. Meta-rule MO0? is used two times considering the relation.s
«ad before A2” and “A4 before A3”, increasing the value of the proposi-
tional variables A2 and A3.

9. Finally downwards reflection operation assigns to the propositions of OLT
the solution result:

{(A 1 ,[G,UUBD,(AQ,It3,iIl]BD,(A3 ,[L'?',.l.nle]),(AfL [t2,true])}

Al” and that A4 and A1 have the same value, an assumption is produced by
meta-rule MOD5: :
Assume(list((A4,int(i2,true)), (Al Ant(i2,irue)))}

first the value (2 is assumed for Ad. Notice that if the we invert the relation “A4 diff A1” in the code of requirements
module an eguivalent solution is obtained without any assumption.

acfions until a new assumption is performed. M002 increase again the values

of A2 and A3. 9.2 A General Method for solving a class of Default Reasoning

. problems

In this section we describe, through an example, a simple approach implemented

i!}j Milord IT to tackle some of the usual problems in defeasible Teasoning, such as
héritance, irrelevance and specificity, in a restricted propositional framework.

onsider the following well-known set of defeasible rules:

notbefore A4”, producing a new value for Al,

by meta-rule MOOS5:
Assume(list{{Ad,int{t3,rue)), (Al,int(t3,tbrue))))

first the value t3 is assuined for Ad. B F,P— B,P > —F
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The intended behaviour of this set of rules is to infer ~F given P, to infer F' given

B, and to infer B given P.
The implementation in Milord IT makes use of three modules, The module

Penguin (see Figure 9) defines an object level component with the following char-
acteristics:

Module Penguin =
Begin
Import?, B
Export F
Deductive knowledge
Dictionary:
Predicates:
B = Name: “Bird” Type: many-valued
P = Name: “Penguin” Type: many-valued
F = Name: “Flies” Type: many-valued
FPos = Name: “Plies+" Type: many-valued
Relation: supports F
FiNeg = Name: “Flies-” Type: many-valued
Relation: distracts
Rules:
ROO1 If B then conclude FPos isd
RO02 If P then conclude B isd
RO03 If P then conclude FNeg is d
Inference system:
Fruth values = (0, dd, d, 1) -
Conjunction = min
Modus ponens = Truth table:

(o o O
0 0 dd)
@ 0 dd 4
0 dd d )
End Deductive
End

Figure 3. Module Penguin,

e For those propositional variables with contradictory defauit conclusions a -

couple of extra propositional variables (in this case FPos and FiNeg) tha

will accumulate the evidence for the particutar sign coming from eventually -

different deductive paths, These propositional variables are related throug
two relations named supports and disiracts. : -

« Default rules are writlen as object level rules with truth-value d, one d.egrf:
below the maximum one (see next point), Notice that atl threc rules in the
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example are considered as default rules, although rules P ~» Band P —
—F could be considered as well as strict rules and have attached maximnm
truth-value 1.

A local logic with as many truth-values as the maximum path in the de-
ductive trees associated to exportable propositional variables. In the current
example we take as {0 < dd < d < 1} as truth-value set. The combination
of conditions (conjunction declaration) is done with the min operator. So,
shorter paths win. The truth table for the modus ponens operation!! cor-
responds to the so-called Zukasiewicz t-norm and has the characteristic of
“counting” the number of applied defaults because it makes the minimum
interval value decrease by one term (look at the thivd column or row in the
table).

At the end of a deductive process, by specialization, the value of the coupled
propositional variables is an interval with the minimum value as low as the
maximum number of defaull rules applied to get it.

Module Default_interpreter =

Begin
Control knowledge
Evaluation type: eager
Deductive control:

MO001 FEK($x, int(Smini, $max 1)) and supporis($x, $y}
and distracts($z, 3y) and K{$z, int($min2, Smax2))
and gt($mint, $min2))
then conclude X(Sy, int(1,1))

MO02 If K(3x, int(3mint, $max1)) and supports($z, $y)
and distracts(3z, $y) and K($z, int($min2, $max2))
and l¢(Eminl, $min2))
then conclude K{not($y), int(1,1))

Structural control: .

MO0O1 I¢ K($x, $cert) and supports($x, $y)
and distracts($z, $y) and K($z, $cert)
then abort

Ead control
End

Figure 10, Default Interpreter module,

The Default interpreter module (see Figure 10} contains a generic control able
anage any module containing default rules written in the way outlined in the

Ir! this example the algebra of truth-values is differant for that defined in Section 3, here defining
citly the modus ponens operator,
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module Pengrin, The connection between the default interpreter module and any
: containing default rules is done as in the declaration of the module Solution (see
i Figure 11). The Union module operation, constructs a new module from tweo other
! - modules by performing the union component by component. In this example from
hl the modules Penguin and Default interpreter. Whenever the union is not feasible
I an error is raised, for example, when trying to make the union of two modules with
i different focal logics. Once connected, the Default interpreter module and the Pen-
AR guin modute, the new module acts as a module having the deductive knowledge of
: module Penguin and the control knowledge of module Default.interpreter. So the
gb execution of Solution acts in the following way, because of the eager interpretation
defined in Solution:

i’ rModule Solution = Union (Penguin, Default_interpreter) l

Figure 11. Solution module.

s P and B are queried to the user. Let suppose P is true.

+ An upwards reflection step is performed. Nothing can be deduced.

FPos and FiNeg are deduced. Fpos will have an interval with a mini-
mum value lower than FNeg because two rules were necessary fo deduce
it. Given (P,[1,1]) and using modus ponens we get (FPos, [dd,1]) and
(FNeg,[d,1]).

An upwards reflexion is performed with K (FPos, int(dd, 1)) and K (FNeg, '
int{d, 1)). MOO2 is applied and K {not{#}, int(1,1)) is concluded.

Downwards reflection produces: {F, {0, 0]). As expected ponguins dor't fly.

9.3 A Legal Problem: Default Reasoning

This example is borrowed from Brewka [Brewka, 1994] and it is based on the next
statements ;

s According to Uniform Commercial Code (UCC) a security interest in goods
is perfected by taking possession of the collateral.

e According to Ship Mortgage Act (SMA) security interest in a ship may only’
be perfected by filing a financing statement.

¢ UCC is state law, SMA federal taw. UUC is more recent than SMA.

. ' ' + The principle Lex Posterior gives precedence to newer laws.
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e The principle Lex Superior gives federal law precedence over state law,
+ Miller has possession of a certain ship but did not file a financing statsment.

We are interested in formolizing this example in such a way that we can answer
negatively the question fs Millers’ security interest perfected?

In [Brewka, 1994} default logic is enriched by allowing to represent priorities
among defaults and reasoning about them. In this formalism, defaults are refer-
enced by a unique name identifier, and preferences among defaults are encoded
by a strict partial order, noted <, in the set of default names, This preferences are
used then to eliminate alt those Reiter oxtensions which are incompatible with the
priority information they contain,

Using Brewka'’s approach, the previous statements are represented as follows.

Defaults;
UCC : possession ~» perfected
SMA 1 ship A - financial-statement — —per fected
LP{d;,d;) : more-recent{d;, d;} = di < dj
L8{d;,dy} : federal-law(d:) A state-law(d;) — d; < dj

Propositional variables and relations:
possession
ship
~financial-statement
more-recent(UCC, SMA) '
federal-law(SM A) !
state-law(UCC) |

The set of Reiter extensions would be:

By =Th{W U per fected, UOC < SMA)
By = Th{W U —per fected, UCC < SMA)
By = Th{W U per feeted, SM A < UCC)
By = Th{W U—perfected, SM A < TCG)

The only extensions compatible with the priorily information defined so far ars

. I and Ey. If we add the next priority information

LS(z,y} < LP(y,z)

the conflict is solved in favour of Ey.
In Figure 12 an implementation of this example in Milord I is presented.!? Let
us comment the more relevant aspects of the code.

12 . N

The meaning qf_aat.of-u.mtances(vari, exprassion, var?) is the following: given an
©xprogsion confaining the variable varl, the variable var2 will be bound to a list containing afl the
instances of var1 that make the expression true.
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Begin

End

Module Legal =

Tmport possession, ship, financial statements
Esport perfected
Deductive knowledge

Ead deductive
Control Knowledge

Dictlonary:
Predicates:
Perfected = Name: “Perfected” Type: many-valued
Possession = Name: *Possession”’ Question: “Possession?”
Tygpe: boolean
Ship = Name: “Ship” Questions “Ship?” Type: boolean
fin_stat == Name: “Financial Statements™ Type: boolean
Question; “Financial Statements?”
SMA = Name: “SMA” Type: boolean Relations law federal
YCC= Name: “UCC” Type: boolean
Relation: law stale Relation: more.recent SMA
Federal = Name: “Federal” Type: class
State = Name: “State” Type: class
Rules:
RO0Y if possession then conclude UCCiss ‘
RO02 i ship and no(fin stat) then conclude SMA is s

Evaluation type: eager
Deductive control:
MB01 if more_recent($y, $2) then conclude LP(8y.$2)
MOG2 if law($y, federal) and law($z, state)
then concinde LS(3y, $2)
MO03 i LS(Sx, $y) and LP(5y, 3x)
then conclude prefered(LS($x, $v), LP(Sy, $x))
MO04 if more_recent{$y, $2) and
seb_of instances($x, prefered{Sx,LP($y,52)), SHist)
. and equal¢§list,nil} then conclide prefered($y, $z)
MO05 if law($y,federal) and law{$z, state) and
set_of _Instances{$x,prefered($x,LS(5y.$2)), Slist)
and equal($list,nil) then conclude Prefered($y, $7)
M006 if KUCC, int(s,s)) and
set_of_instances(3x,conj{prefered($x, UCC),
K($x, int(s, 5))), $list) and equal($list, nil}
and no(K{not({perfected), lni(s,s))
then conclude K{perfected, inf(s,s))
MO07 i€ K(SMA, int(s,s)) and
set.of instances($x,conj(prefered($x, SMA),
K($x, int(s, s}, $list} and equal(§list, nil)
and no(K(perfected, int{s,s)}
then conclude K(not{perfected), int(s,s))
End control

Figure 12. Legal module declaration.
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¢ Object level rules are used to model the verification of the conditions of
UCC and SMA laws. When they are verified, rules deduce object level
predicates named UCC and SMA with the value s (for sure), meaning frue
in the many-valued logic used by defavkt in Milord IT.

+ Most important elements are in the meta-level. The first five meta-rules
{MO001-MO035) model, in a straightforward manner, the LP and LS prefer-
ence criteria.

» The last two meta-rules model the defavits. For example MOO6 says: If it
is known that the conditions of the UCC law are fulfilled, UCC with trath-
value true, and there are no laws preferred to UCC with their conditions
fulfilled, and it is not known the negation of the propositional variable per-
Jfected, then the propositional variable perfected can be assumed,

» The eager evaluation mechanism starts by querying the user about posses-
sion, ship and financial-statements in this order, then applies, if possible,
the object level rules, upwards reflect, and deduces at the meta-level, Let us
follow a trace:

. Possession? frue

.. Sh.ip? true.

. Financial statements? false

. OL deduction gets: {ucc, [3, 5]} and {smna,[s, 5])

- Upwards reflection produces: K(uce,in(s, s)), K{sma,int(s,s)),
more-recent{uce, sma}, law(sma, federal}, law(uce, state), and
other irrelevant meta-predicates.

. MOOI applies getting: LP{uce, sma)

. MO0O2 applies getting: LS{smd, ucc)

. M0O3 applies getting: pmférred(LS(sma,ucc),LP(ucc,sma))
. MO04 fails, $list is not nil

. MOOS applies getting: preferred(sma, uce)

. MOO6 fails, $iist is not nil

. MOO7 applies getting: K (not{perfected),int(s, 8))

. No more meta-tule applies

- Downwards reflection produces: {not(perfected), [s, s])

15, No object level deductions are possible, STOP
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10 - CONCLUSIONS

It is often the case that reasoning patterns ocourring in complex problem solving
tasks cannot be modelted (or at least it may tuen very cumbersome) by means of
a puee logical approach. Extra-logical mechanisms may be of great help in such
situations if coreectly used in suitable contexis, In this paper we have described the
control techniques successfully used in the Milord If system. The most remark-
able feature is its declarative control which is modelled by a meta-level approach,
based on reflection techuiques and equipped with a declarative backtracking mech-
anism. The use of reflection techniques, togsther with an (implicit) subsumption
mechanism at the object level, has been proved specially well suited to tackle the
problem of incompleteness of knowledge. As a final remark, it is interesting to
notice that, although particular to this systen:, most of the considered technigues
can be of general interest for a variety of multi-language logical architectures {e.g.

multi-agent systems).
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