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1 Introduction

In his monograph [9], Hájek established theoretical basis for a wide family of fuzzy
(thus, many-valued) logics which, since then, has been significantly developed and fur-
ther generalized, giving rise to a discipline that has been named as Mathematical Fuzzy
logic (MFL). Hájek’s approach consists in fixing the real unit interval as standard do-
main to evaluate atomic formulas, while the evaluation of compound sentences only
depends on the chosen operation which provides the semantics for the so called strong
conjunction connective. His general approach to fuzzy logics is grounded on the obser-
vation that, if strong conjunction is interpreted by a continuous t-norm [10], then any
other connective of a logic has a natural standard interpretation.

Among continuous t-norms, the so called Łukasiewicz, Gödel and product t-norms
play a fundamental role. Indeed, Mostert-Shields’ Theorem [10] shows that a t-norm is
continuous if and only if it can be built from the previous three ones by the construction
of ordinal sum. In other words, a t-norm is continuous if and only if it is an ordinal sum
of Łukasiewicz, Gödel and product t-norms. These three operations determine three
different algebraizable propositional logics (bringing the same names as their associ-
ated t-norms), whose equivalent algebraic semantics are the varieties of MV, Gödel and
Product algebras respectively.

Within the setting of MFL, states were first introduced by Mundici [11] as maps av-
eraging the truth-value in Łukasiewicz logic. In his work, states are functions mapping
any MV-algebra A in the real unit interval [0,1], satisfying a normalization condition
and the additivity law. Such functions suitably generalize the classical notion of finitely
additive probability measures on Boolean algebras, besides corresponding to convex
combinations of valuations in Łukasiewicz propositional logic. However, states and
probability measures were previously studied in [5] (see also [6, 13]) on Łukasiewicz
tribes (σ -complete MV-algebras of fuzzy sets) as well as on other t-norm based tribes
with continuous operations. MV-algebraic states have been deeply studied in recent



years, as they enjoy several important properties and characterizations (see [8] for a
survey).

One of the most important results of MV-algebraic state theory is Kroupa-Panti
theorem [12, §10], a representation theorem showing that every state of an MV-algebra
is the Lebesgue integral with respect to a regular Borel probability measure. Moreover,
the correspondence between states and regular Borel probability measures is one-to-
one.

Many attempts of defining states in different structures have been made (see for
instance [8, §8] for a short survey). In particular, in [2], the authors provide a definition
of state for the Lindenbaum algebra of Gödel logic that results in corresponding to the
integration of the truth value functions induced by Gödel formulas, with respect to Borel
probability measures on the real unit cube [0,1]n. Moreover, such states correspond to
convex combinations of finitely many truth-value assignments.

The aim of this contribution is to introduce and study states for product logic, the
remaining fundamental many-valued logic for which such a notion is still lacking. In
particular, our axiomatization will result in characterizing Lebesgue integrals of the
functions belonging to the free n-generated product algebra, i.e. the Lindenbaum al-
gebra of product logic over n variables, with respect to Borel probability measures on
[0,1]n. In this sense, our states will correctly correspond to finitely additive probability
measures in this context, and they will interestingly represent an axiomatization of the
Lebesgue integral as an operator acting on product logic formulas. Moreover, and quite
surprisingly since in the axiomatization of states the product t-norm operation is only
indirectly involved via a condition concerning double negation, we prove that every
state belongs to the convex closure of product logic valuations.

2 States of free product algebras and their integral representation

Product algebras are BL-algebras satisfying two further equations:

x∧¬x = 0 and ¬¬x→ ((y · x→ z · x)→ (y→ z)) = 1.

They constitute a variety that is the equivalent algebraic semantics for Product logic. In
what follows, FP(n) will denote the free product algebra over n generators. We invite
the interested reader to consult [1] and [7] for more details.

The functional representation theorem for free product algebras (cf. [1, Theorem
3.2.5]), shows that, up to isomorphism, every element of FP(n) is a Product logic func-
tion, i.e. [0,1]-valued function defined on [0,1]n associated to a product logic formula
built over n propositional variables. These functions are for Product logic the equivalent
counterpart of McNaughton functions for Łukasiewicz logic.

Next we introduce the notion of state of FP(n).

Definition 1. A state of FP(n) is a map s : FP(n)→ [0,1] satisfying the following
conditions:

S1. s(1) = 1 and s(0) = 0,
S2. s( f ∧g)+ s( f ∨g) = s( f )+ s(g),
S3. If f ≤ g, then s( f )≤ s(g),



S4. If f 6= 0, then s( f ) = 0 implies s(¬¬ f ) = 0.

By the previous definition, it follows that states of a free product algebra are lattice
valuations (axioms S1–S3) as introduced by Birkhoff in [4]. However, if we compare
Definition 1 with states of an MV-algebra, it is evident that, while for the case of MV-
algebras the monoidal operation is directly involved in the axiomatization of states, the
unique axiom that we impose and that, indirectly, involves the multiplicative connec-
tives of product logic is S4.

Product logic functions in FP(n) are not continuous, unlike the case of free MV-
algebras, and there are infinitely many, unlike the case for (finitely generated) free Gödel
algebras. However, it is always possible to consider a finite partition of their domain,
which depends on the Boolean skeleton of FP(n), upon which the restriction of each
product function is continuous. By exploiting this fact, one can show the following
integral representation theorem.

Theorem 1 (Integral representation). For a [0,1]-valued map s on FP(n), the follow-
ing are equivalent:

(i) s is a state,
(ii) there is a unique Borel probability measure µ : B([0,1]n)→ [0,1] such that, for

every f ∈FP(n),

s( f ) =
∫
[0,1]n

f dµ.

3 The state space and its extremal points

In the light of the previous Theorem 1, for n being a natural number, let us introduce
the following notation: S (n) stands for the set of all states of FP(n), while M (n)
denotes the set of all regular Borel probability measures on the Borel subsets of [0,1]n.
It is quite obvious that S (n) and M (n) are convex subsets of [0,1]FP(n) and [0,1]2

[0,1]n

respectively, whence, by Krein-Milman Theorem they coincide with the convex hull
of their extremal points. As for M (n) it is known that its extremal elements are Dirac
measures, i.e., for each x ∈ [0,1]n, those δx : 2[0,1]

n → [0,1] such that δx(B) = 1 iff x ∈ B
and δx(C) = 0 otherwise (see for instance [12, Cor. 10.6]).

Let δ : S (n)→M (n) be the map that associates to every state its corresponding
measure via Theorem 1. Thus, it is easy to prove that δ is bijective and affine. A direct
consequence is that the extremal points of S (n), i.e., extremal states are mapped into
extremal points of M (n), i.e. Dirac measures. Now, it is not hard to show that Dirac
measures correspond univocally to the homomorphisms of FP(n) into [0,1], that is to
say, to the valuations of the logic, that hence are exactly the extremal states.

Theorem 2. The following are equivalent for a state s : FP(n)→ [0,1]

1. s is extremal;
2. δ (s) is a Dirac measure;
3. s is a product homomorphism.



Thus, via Krein-Milman Theorem, we obtain the following:

Corollary 1. For every n ∈ N, the state space S (n) is the convex closure of the set of
product homomorphisms from FP(n) into [0,1].
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