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Abstract

This work is about speeding up retrieval in Case-Based Reasoning (CBR) for large-scale case bases (CBs) comprised
of temporally related cases in metric spaces. A typical example is a CB of electronic health records where consecutive
sessions of a patient forms a sequence of related cases. k-Nearest Neighbors (kNN) search is a widely used algorithm
in CBR retrieval. However, brute-force kNN is impossible for large CBs. As a contribution to efforts for speeding
up kNN search, we introduce an anytime kNN search methodology and algorithm. Anytime Lazy kNN finds exact
kNNs when allowed to run to completion with remarkable gain in execution time by avoiding unnecessary neighbor
assessments. For applications where the gain in exact kNN search may not suffice, it can be interrupted earlier and
it returns best-so-far kNNs together with a confidence value attached to each neighbor. We describe the algorithm
and methodology to construct a probabilistic model that we use both to estimate confidence upon interruption and to
automatize the interruption at desired confidence thresholds. We present the results of experiments conducted with
publicly available datasets. The results show superior gains compared to brute-force search. We reach to an average
gain of 87.18% with 0.98 confidence and to 96.84% with 0.70 confidence.

Keywords: Large-Scale Case-Based Reasoning, Exact and Approximate k-Nearest Neighbor Search, Anytime
Algorithms

1. Introduction

Industrial scale machine learning (ML) systems have to deal with larger amounts of digital data everyday due to
the exponential growth of both its generation and availability [34]. Being a member of the instance-based learning
subdivision of the larger ML family, many Case-Based Reasoning (CBR) systems are not exempt from this laborious
opportunity either. Reminiscent of human thinking, CBR is based on two assumptions observed in real world that5

similar problems have similar solutions and that problems are likely to recur [27]. Hence, it stores past problem
solving experiences as cases in its case base (CB) and when a new query is made to the system, it retrieves similar
past problems in its CB and reuses their solutions by adapting them to the query [1, 24]. This type of reasoning is
known as lazy learning in ML literature since a CBR system does not build a model prior to a query—as opposed
to eager learning methods which do so—, and generalizes its cases every time a query is posed to the system. This10

behaviour is an advantage of CBR for continuously changing large CBs since it discards the need to re-train learned
models with the updated data. However, due to its lazy nature, the efficiency of its retrieval phase affects overall system
performance. And in practice, a growing CB eventually causes the so-called swamping utility problem [13, 38] which
emerges when adding new cases to a CB degrades the system efficiency instead of improving it.

Being simple and effective, k-Nearest Neighbor (kNN) search is a widely used algorithm in CBR retrieval in15

particular and in instance-based learning in general. The naı̈ve approach to find the kNNs of a query is to perform a
brute-force search in the CB by evaluating the similarity of each case to the given query and return the k most similar
cases. The runtime complexity1 of this method may be acceptable for small sized CBs, but it implies an excessive
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1Runtime complexity of brute-force kNN is O(ndk)+O(nk log k) where n is the number of instances the query is made against, d the dimension
of each instance, k the number of nearest neighbors searched for; the first part of the complexity is for distance calculations and the second part is
for sorting the neighbors.
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execution time for large-scale CBs due to expensive similarity calculations and is likely to evolve into above mentioned
utility problem. There has been significant research to speed up nearest neighbor search (NNS) some of which we will20

review shortly in the next section. For occasions where the speed-up to find exact neighbors is still not computationally
feasible, some efforts resorted to approximation methods to find approximate enough neighbors instead.

As a contribution to these efforts, to address both exact and approximate NNS, this article introduces an anytime
kNN search algorithm, Anytime Lazy kNN (ALK). We base our algorithm on a fast exact kNN algorithm Lazy kNN
[33], and we extend it to a fully-fledged anytime algorithm. ALK finds exact kNNs when allowed to run to completion25

and otherwise, if interrupted, it returns best-so-far kNNs together with a confidence value attached to each neighbor.
Confidence values reflect the expected qualities of approximate kNNs in terms of their similarities to the query com-
pared to those of the exact kNNs. The proposed algorithm is also resumable and confidence values for approximate
results increase over allocated time. Furthermore, we provide a means of confidence prediction to automatize the
interruption of the algorithm by trading time with confidence in output.30

ALK is equally efficient in exact kNN search as the original Lazy kNN in terms of avoiding unnecessary distance
calculations that would be carried out by a standard brute-force search and it can save up significant execution time.
Additionally, and as the main contribution of this work, we show that it reaches superior gains even when it is in-
terrupted at very high confidence thresholds implying that we are very close to the exact kNNs. So, ALK gives the
expert both the option to wait for the completion of the algorithm to obtain exact kNNs and the option to interrupt35

the search—manually and/or automatically—any time when a prompter response is needed and get best-so-far kNNs
instead. In the latter case, he or she may also opt to resume the algorithm to get an output with a better confidence for
the approximate results if so desires.

Anytime Lazy kNN, like its predecessor, excels specifically at domains where the CB can be organized as sequences
of temporally related cases and the similarity metric takes into account the evolution of a sequence instead of treating40

each case individually. A good example to such domain can be found in healthcare where the electronic health record
of a patient represents the sequence of his/her consecutive sessions and each new session is typically an update to
this sequence. A search for similar patients regarding their medical histories should consider their session sequences.
And, depending on whether the whole medical history or a part of it is queried, the similarity metric would use a time
window encompassing the complete sequence or a subsequence of the health record respectively. Another natural45

example can be a time series (TS) dataset, where each instance is a sequence of temporally observed data. Here, each
data point is essentially an update to the sequence and to assess the similarity between a query and a TS sequence in
the dataset, the time window can cover the sequence fully or partially.

This article is organized as follows. Section 2 gives a background for our proposal. In subsection 2.1, first
we briefly review the main approach in CBR community to overcome the utility problem, then we mention various50

methods developed so far to speed up NNS in instance-based learning in general. Subsection 2.2 clarifies the concepts
we use throughout this paper describing the organization of a CB for our domain of interest. In subsection 2.3 we
present information on the components and desired characteristics of anytime algorithms. We present the details of
our proposed anytime kNN search methodology and our Anytime Lazy kNN algorithm itself in Section 3. Section 4
describes how we evaluated our algorithm and Section 5 gives highly encouraging results of experiments we conducted55

with real-world small to large time series datasets. Finally, we discuss the outcomes and future work in Section 6.

2. Background

2.1. Related work

Beside the obligation to deal with large scale data that comes with ever-growing CBs, current availability of the
tools to interpret big data is also encouraging CBR researchers to work on systems that could benefit from hundreds60

of millions of cases (e.g. [19, 44]). Working with CBs of this scale could not be imagined until recently. Quite the
contrary, till today the main approach in CBR community to tackle this problem has been to control the CB growth
via case base maintenance (CBM) techniques while preserving the competence of the overall CB (for competence
definition see [39], for CBM examples see [28, 20], for CBM dimensions see [43]). Of course, big data tools do not
eliminate the need for CBM altogether, maintaining the correctness of cases and an adequate index are always useful65

for an efficient CBR. However, these tools may indeed outdate CB compression strategies as discussed in [19].
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One of the efforts to overcome the computational overhead of kNN search has been to use parallel architectures
(e.g. [3, 14, 23]). Other notable effort is using search trees such as k-d trees and its variants to partition the mul-
tidimensional search space and conduct NNS by pruning parts of the tree that cannot include the nearest neighbor
(e.g. [42, 46], see also [22] for a comparison of search tree based NNS algorithms). However, beside the cost of70

their construction and maintenance, k-d trees are prone to the curse of dimensionality [5] phenomenon and although
improvement suggestions exist (e.g. [12]), they are usually not recommended for high dimensional spaces2.

Another common proposal to tackle the run-time bottleneck of NNS is using approximation in applications where
approximate neighbors may be acceptable. Approximate methods retrieve a similar enough neighbor instead of the
exact one in return for the improvement in retrieval speed. Typical techniques for approximate matching are using75

search tree adaptations (e.g. [31]), hashing (e.g. [2]) or proximity graphs (e.g. [17]). In CBR context, an approximate
retrieval would imply approximate solutions. An example to an adaptation method of approximate solutions that could
compensate for the retrieval accuracy in large case bases is suggested in [18].

When the retrieval time is a dire constraint, thanks to their ability to provide always a solution upon interruption,
anytime algorithms [11, 48] have also been incorporated in NNS, such as in data stream mining (e.g. [26, 40]),80

databases (e.g. [45]) and in CBR retrieval [36] among other applications. If interrupted before completion, an anytime
CBR retrieval would return the k best cases found so far with respect to their similarities to the query.

Ueno et al [40] proposes an anytime algorithm for nearest neighbor classification where they use a presorted
(worst first) index which is created by assigning ranks to all instances based on their contribution in classification on
the training set. This index is used as heuristics in NNS.85

In Schaaf’s “Fish and Sink” (FaS) [36], the CB also holds “aspect” distances of the cases among each other
which are weighted according to the “view” of the user asking the query. The NNS in CB starts with a predefined
order of cases and directly tested (DT) cases “sink” with regards to their distances to the query, dragging down their
view neighbors with them and labelling those neighbors as indirectly tested (IDT) cases. The time of interruption is
important and only after all cases are labelled either as DT or IDT, FaS can show best k cases found so far regarding90

the relative depths of the DT and IDT cases. A prior interruption yields unconfident results. If FaS is not interrupted,
it tests and sorts all cases.

Ricci and Avesani [35] use an anytime algorithm in learning a local similarity metric to be used in the CBR
retrieval where the distance around a trial case is measured using the metric attached to that case. Their anytime
algorithm updates the distance between an input case c and its neighbors depending on the role of the neighbors in95

solving c by incorporating a reinforcement learning procedure that adjusts the local weights.
On the other hand, with regard to the temporal dimension in CBR, Montani and Portinale [29] emphasize the im-

portance of temporality especially in healthcare domain and propose a framework for the representation and retrieval
of cases that are in the form of time series data in medical applications of CBR. The retrieval is addressed both at case
and history levels, the latter taking into account the evolution of the temporally related cases.100

As a more recent work, Lazy kNN [33] on which our algorithm is based on is a novel NNS which significantly
reduces the number of evaluated cases in kNN search for large-scale CBs composed of temporally related cases. Lazy
kNN leverages the triangle inequality in metric spaces by using it as a cutoff in NNS and evaluates only the “true kNN
candidate” cases for a given query. A further advantage of the algorithm is that it does not need an extra data structure
for an overall partitioning of the problem space, instead, it keeps track of the evaluated cases per sequence throughout105

the sequence’s history of updates.

2.2. Domain of interest

In CBR, a case typically consists of three parts: the problem representing the query, the solution suggested by the
CBR system for the query and the outcome (feedback) after applying the solution. In this work, we only take into
account problem parts of cases for CBR retrieval and use them as queries in kNN search. And we are particularly in-110

terested in domains where the similarity measure takes into account the history of updates to a sequence of temporally
related cases instead of treating each update as an individual case.

For clarification purposes, the concepts sequence, update, time window and query that are used in this paper
regarding our domain of interest are depicted in Figure 1.

2A good rule of thumb is to use k-d trees only if N � 2d , where N is the number of data points and d is the number of dimensions [6].
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Figure 1: Expanding (top) vs Fixed-width (below) Time Window approaches to form queries. A problem sequence is created for each particular
initial problem. Each consecutive problem related to this sequence is an update. A query is generated for each update, including the initial problem
(i.e. 0th update). To form the query for the uth problem update; the former approach expands the time window encompassing all existing u+1
updates; while the latter approach, for a fixed-width w, slides the window on the sequence covering the last w updates only (above w=5).

A problem sequence is created for each particular initial problem (e.g. a sequence is created for each patient in115

their first session) to represent the history of related problems to follow. We regard each consecutive problem related
to this sequence as an update to the sequence. Consecutive queries for a problem sequence to be used in kNN search
for CBR retrieval are formed as follows: The initial problem (which can be seen as the 0th update) for every sequence
is the first query. Each following update invokes the generation of a new query by applying a time window onto the
sequence. In this work, we use expanding and fixed-width time window approaches. For each consecutive update, the120

former approach expands the time window encompassing whole problem sequence and the latter approach slides the
time window of width w encompassing the last w updates to form the new query. Note that both approaches envelop
the same updates for the first w problem updates, and for a given sequence, they generate the same number of queries
(e.g. 10 queries in total in Figure 1).

In CBR context, after CBR’s problem solving episode for a query, the query is saved as the problem part of a new125

case. For our domain, all consecutive episodes for the queries of the same problem sequence thus form a sequence of
temporally related cases.

In implementation, case generation by time window approach can be conceptual or literal. In other words, there
may be only a single data structure representing a problem sequence, and the case for a particular update can be
formed on the fly when needed. Or, there may be l data structures for the cases of a sequence of length l.130

The problem updates encompassed by the time window comprise the problem part of the case which is used by the
similarity measure in kNN search of the CBR retrieval conducted for the query. Both approaches generate cases that
encompass different number of updates. The CBR system designer should decide whether cases of different lengths
should be compared in kNN search and if this is deemed necessary, the similarity metric—which has to satisfy the
triangle inequality for our algorithm—should be implemented accordingly.135

In the following subsection we highlight the important characteristics and concepts of anytime algorithms as a
background for the proposed algorithm that excels in domains we have just described.

2.3. Anytime Algorithms

An anytime algorithm (AA) is a computer algorithm designed in such a way that given an input problem, it
can provide a best-so-far solution at any time it is interrupted3 and the solution is accompanied by a quality value140

reflecting how close the interruption output is to the exact solution. In the core of a typical AA lies a function which
incrementally improves the solution. The quality measure4 can be based on any characteristic of the output which
is deemed important. It is preferable that the output quality monotonically increases over computation time and the
improvement in quality is greater at the early stages of execution and it diminishes over time.

3Some anytime algorithms may need a short initialization time before they can be interrupted, e.g. [40].
4We use the terminology for anytime algorithm components given in [48].
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After being interrupted, an AA can resume its execution if it is allocated more computation time. AAs also bear145

statistical information about their output quality over execution time for the input data they received. This information
makes them predictable and it can be used for meta-reasoning about allocated computation time [16] (see [48] for a list
of desired properties of AAs and quality metrics). All these characteristics make AAs useful in application domains
where complete computation to solve the problem at hand is ineffective or impossible in real-time.

Performance Profile (PP) of an AA is used in estimating the quality of the output of the algorithm as a function of150

the amount of execution time [47]. An AA can have several PPs to track different result attributes [7]. After devising a
quality measure, the PP of an anytime algorithm is typically constructed by using a simulation method. The algorithm
is run with numerous input instances which are provided within a training dataset that can be randomly generated using
the domain knowledge and the quality of the results over execution time are recorded. This statistical data composed
of (execution time, output quality) pairs forms the Quality Map of the algorithm. Once the quality map is obtained, the155

corresponding PP of the algorithm can be derived from it as a formula by means of curve fitting methods or it can be
represented as a table which reflects the discrete probability distribution of quality for discrete time allocations. The
latter representation is called the Performance Distribution Profile (PDP) of the anytime algorithm and helps us give
more accurate decisions compared to a single value of a fitted function. In our work, we opted for PDPs (see [15, 47]
for further discussion on possible representations of PPs).160

In accordance with the above description of a preferable AA, and regarding the focus of this work, an anytime
kNN search algorithm is expected to monotonically improve on its k-nearest neighbors and provide a quality value
attached to the best-so-far neighbors upon interruption. Also the improvement in output quality is preferred to be
diminishing over time which means that the nearest neighbors found in early stages of search are almost as close to
the query as the exact neighbors. Furthermore, the algorithm should be able to resume its execution without a major165

overhead if it is allocated extra computation time to improve on its results.
In the following section, after discussing the challenges in building such a well-tempered anytime kNN search

algorithm, we point out why we deem Lazy kNN a very good candidate to be converted into an AA which overcomes
these difficulties. Then, we provide the steps of this conversion as we detail the implementations of the above men-
tioned AA concepts at each step until we ultimately achieve our fully-fledged Anytime Lazy kNN search algorithm.170

3. Anytime Lazy kNN

The main difficulty of converting an exact kNN search to an anytime algorithm lies in the quality assessment of
the best-so-far neighbors. Having the search interrupted, we would like to compare the similarities of approximate
and exact kNNs to the query. However, it is impossible to build an accurate quality measure for such an assessment.
The reason is obvious, exact kNNs remain unknown till the end of search and even though we might have already175

found them earlier, we cannot be aware of this until we evaluate all candidates in the search space. Consequently,
for an algorithm which searches kNNs all at once (e.g. brute-force kNN search), exact kNNs are available only as a
whole and after the completion of the search.

As an enhancement to partially ease the constraint of having to wait till completion, if we conduct kNN search
in an incremental fashion finding k-nearest neighbors one by one in k iterations, we would at least guarantee the180

exactness of the top i-1 NNs when interrupted at the ith iteration (i ≤ k). Of course, this method would make sense
only if extra iterations do not imply an additional cost of redundant similarity calculations. And clearly, although
incremental search bears the possibility of providing some of the exact kNNs upon interruption, it does not eliminate
the need to assess the quality of the remaining kNN list members that are yet-to-be ascertained for exactness.

In this section, we first deal with the design of an anytime kNN algorithm that exhibits the desired performance185

profile outlined in subsection 2.3. For the core of the AA, we propose to extend an existing algorithm, Lazy kNN [33].
Specifically, although Lazy kNN was designed to provide exact kNNs as a whole list after running to completion, we
show how it can be converted to an incremental kNN search without any redundant computation in subsection 3.1.
Then, we explain how Incremental Lazy kNN can be used in the core of an AA and present the pseudo-code of
Anytime Lazy kNN (henceforth ALK) in subsection 3.2.190

Once we have the AA algorithm, we introduce the steps required to define the appropriate mechanism to assess
the quality of best-so-far kNNs at any given moment. In AA literature, when accuracy is not an option as a metric to
build a deterministic quality measure, it is common to resort to a certainty metric to reflect a degree of correctness of
intermediate results, e.g. by using the probability distribution of output quality over time [48].
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Figure 2 illustrates the steps of the generation and use of the probabilistic quality measure that we implemented195

for our algorithm. Top two steps are to build the PDP of ALK for an application domain. In the first step, ALK
runs kNN search simulations and gathers statistical data to generate the Quality Map of the algorithm. We detail this
step in subsection 3.3. In the second step which is described in subsection 3.4, PDP is built out of the quality map.
PDP endows our algorithm with the ability to predict the expected quality of best-so-far kNNs upon interruption.
Henceforth, in concordance with CBR literature [9], we refer to expected output quality as confidence and define our200

confidence estimator based on PDP in subsection 3.5. We also show how PDP helps us to automatize the interruption
upon reaching a given confidence threshold. In the final step of Figure 2, ALK is now ready to serve as an anytime
kNN search algorithm. It accepts a query and an optional interruption point, and returns the exact/best-so-far kNNs
together with a confidence value for each neighbor.

Train
Sequences ALK

Quality Map

Performance Distribution Profile

query,
interrupt ALK

Train
Case Base

Case Base

kNN,
confidence

Gather Insights
for Quality Map 

Build PDP

Use PDP to provide 
confidence for
best-so-far kNNs  
when interrupted

PDP Generation

Anytime kNN search with Confidence

Figure 2: Generation and use of confidence. First, the Quality Map of the algorithm for the application domain is created out of interruption
simulations with training data. Then, Performance Distribution Profile is generated out of Quality Map. PDP endows ALK with the ability to attach
confidence values to its best-so-far kNNs when interrupted. PDP also provides a means to automatize interruption at given confidence thresholds.

3.1. Incremental Lazy kNN205

Lazy kNN’s strength in speeding up exact kNN search comes from the evaluation of only the true kNN candidate
cases in the CB for a query. During the execution of Lazy kNN, best-so-far kNN list members and their positions in
the list are subject to change until the last candidate case in the CB is evaluated. And, this is only when the exact kNN
list is provided as output. This is because, with respect to the triangular inequality used in the candidacy assessment,
even the last candidate can potentially surpass the nearest neighbor found so far. Due to this nature of having to run210

to completion, Lazy kNN cannot say how confident it is of its best-so-far kNNs when interrupted.
To gradually improve on each of the kNNs and to be able to provide at least some of the exact NNs upon inter-

ruption, we developed an incremental version of Lazy kNN where we basically invoke the original algorithm k times
iteratively. And, at each iteration i we find the ith exact NN. Thus, if the algorithm is interrupted during the ith iteration,
it ensures that the top i-1 NNs are the exact NNs of the query.215

The beauty of this conversion from standard to incremental kNN search is that, despite reiterations, Incremental
Lazy kNN does not carry out any redundant similarity calculation compared to the original version of the algorithm.
Though surprising it might be at first glance, this behaviour is due to the fact that we always evaluate the minimum
number of candidate cases at each iteration, and after k iterations, the total number of assessed candidates equals the
number of assessments made by the original Lazy kNN.220

With respect to the desired monotonicity property of an AA, we can argue that exact kNN search in general
exhibits monotonicity since any kNN search algorithm could maintain best-so-far neighbors even if it cannot improve
any of them after a new neighbor candidate evaluation and provide these when interrupted. However, for all-at-once
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Algorithm 1: Anytime Lazy KNN

1 Class AnytimeLazyKNN:
Attributes: k: k of kNN

current iter: Iteration index to start/resume the NNS from
current index: Index to the candidate assessment in search space to start/resume the NNS from
query: The query formed for the problem update in the sequence for which the NNS is to be started/resumed

Methods : Construct(k):
IncrementalLazyKNN(query, interrupt)

2 Function Construct(k):
3 this. k ← k
4 this. current iter ← 1
5 this. current index← null
6 this. query← null
7 return this

8 Function IncrementalLazyKNN(this, query, interrupt):
9 if query <> this. query then // Update ?

10 this. query← query
11 this. current iter ← 1
12 this. current index← null

13 for iter ← this. current iter to this. k do // Iterate × k
14 kNN, this. current index← LazyKNN*(iter, this. query, interrupt, this. current index)
15 if this. current index <> null then // Interrupt ?
16 this. current iter ← iter
17 break

18 return kNN, confidence(kNN, interrupt)

algorithms this gradual improvement is for the kNN list as a whole (i.e. any member can be improved during search
any time). On the other hand, Incremental Lazy kNN possesses a monotonicity at individual nearest neighbor level225

that serves better for AA purposes. Given more time, current exact NNs will not change but the approximate ones are
likely to be replaced by nearer neighbors, eventually all kNNs becoming the exact ones.

We note that the incremental nature of our algorithm is analogous to Broder’s incremental NNS [8] which also
finds kNNs iteratively starting from the first, ending with the kth; but it differs from the incremental retrieval concept
of Cunningham et al. [10] and Jurisica et al. [21] because there, the iteration takes place in conversational CBR230

systems where the retrieval is incrementally refined via iterative user interactions.
The following subsection gives our Anytime Lazy kNN search algorithm with Incremental Lazy kNN at its core.

3.2. Anytime Lazy kNN Algorithm

Besides monotonicity, another desired property of AAs is preemptability [48], that is, the capability to resume
their execution after being interrupted. Incremental Lazy kNN can easily be made resumable by introducing two235

attributes to the algorithm to preserve the point in NNS where the interruption has occurred: 1) current iteration and,
2) the index of the next candidate to be assessed.

The simplified pseudo-code of ALK is given in Algorithm 1. For every particular problem sequence, a unique
instance of the AnytimeLazyKNN class is instantiated (e.g. one instance for each patient). Then, each update (includ-
ing the initial problem) to the sequence is passed as a query to the IncrementalLazyKNN method together with an240

optional interruption point (interrupt). current iter and current index are the two above-mentioned private instance
attributes respectively to be used for resumability.

IncrementalLazyKNN uses a slightly extended version (LazyKNN*) of the original Lazy kNN which accepts two
additional optional arguments: interrupt and current index and returns new current index beside kNNs. LazyKNN*
is iteratively called k times, each time passing the iteration index iter as the k argument. The return value for245

current index is null if no interruption occurs, otherwise it points to the first candidate to be assessed if the algorithm
is resumed.

Upon exit, IncrementalLazyKNN method returns the kNN list and the confidence of the algorithm for each
member of the list. If the algorithm is run to completion, the kNNs will be exact and their confidence values will be
1. If the algorithm is interrupted, best-so-far kNN list is returned together with the expected quality values for each250
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member of the list provided by the confidence system function which is based on the PDP of the algorithm that we
will explain in subsection 3.4.

But, as explained in 2.3, before building the PDP of ALK, we need to generate its quality map. And in the following
subsection we show how we do it after defining our quality measure.

The complete code of ALK including all its functionality that will be covered throughout the rest of this article is255

publicly available at: https://github.com/IIIA-ML/alk

3.3. Quality Measure and Map

Quality measure of an AA is usually a function of execution time. However, in order to have a measure indepen-
dent of the computer platform that the algorithm runs on, we opted to implement a measure which is a function of the
number of similarity calculations carried out so far in kNN search. So, given a query and a number of calculations c260

as the interruption point, we define the quality measure for ALK as follows:

Qc =
sim(NN

k

c , query)

sim(NN
k

E , query)
(1)

where sim is the similarity metric, NN
k

c and NN
k

E are the best-so-far and exact kth NN respectively, Qc gives the output
quality. If need be, c can be translated into actual execution time for the platform used.

Having the quality measure, the quality map can be generated as follows. After each similarity calculation c made
for an input query, the similarity of the best-so-far kth neighbor (i.e. the dividend in Eq. (1)) is recorded. When the265

simulation ends for that query, the similarity of the exact kth NN (i.e. the divisor in Eq. (1)) is obtained. Then, by
backtracking the simulation, the quality Qc that we would get after each similarity calculation c is calculated using the
recorded sim data. Eventually, all (c,Qc) pairs collected during simulations provide us with the QualityMap of our
algorithm.

However, this quality map does not reflect neither the temporal relations between cases nor the incremental nature270

of ALK. If we want a finer-grained quality measure incorporating these characteristics as well, we may add two more
dimensions to the map. Since ALK finds the kNNs in an incremental fashion, the first extra dimension would be the
index i of a nearest neighbor in the kNN list. This would allow us to assign a quality value per neighbor.

As for the temporal dimension, we could use the index u of the update on the problem sequence for which the
query is generated for. This dimension provides even a finer-grained quality map, because, the more updates are275

covered by the time window, the less difference will have been introduced by the new update. Therefore, the more
similar will be two successive queries and intuitively, the more similar will be their neighbors. Consequently, for a new
query covering multiple updates, although ALK needs to evaluate all candidates within the neighbors of prior queries
for the sake of mathematical exactness, it is very likely that the exact kNNs are found within the neighbors of the
recent queries of the same sequence. As a result, this likelihood leads to higher quality values after fewer calculations.280

This phenomenon also helps ALK to fulfill the desired AA property of diminishing output quality values. In other
words, the increase in the quality of best-so-far kNNs are likely to be higher in the early similarity assessments during
the kNN search compared to the later assessments.

Hence, we define the finer-grained quality as follows:

Q
u,i

c
=

sim(NN
u,i

c , queryu)

sim(NN
u,i

E , queryu)
(2)

where NN
u,i

c is the ith NN returned by the algorithm when it is interrupted after c similarity calculations during the285

NNS for the uth query of a problem sequence, and NN
u,i

E is the exact ith NN for the same query.
Figure 3 shows an example to the quality map of ALK generated by using the quality measure in Eq. (2). It is

generated throughout simulations with input sequences taken from the SwedishLeaf dataset (see subsection 4.2). The
figure is a 2D excerpt of the 4D map plotted for the third nearest neighbor of the queries generated for the tenth
updates (i.e. Q

10,3

c
) of input sequences.290
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Figure 3: Quality map of Anytime Lazy kNN for the SwedishLeaf dataset. Here the map is shown for the 10th update and the 3rd nearest neighbor.
Every point on the map is an instance of output quality observed throughout simulations.

3.4. Performance Distribution Profile

As the final step to have Anytime Lazy kNN, we use the quality map to build the PDP of our algorithm which is
essentially the discrete probability distribution of output quality over computation time.

For this purpose, we first discretize the calculation range into m discrete calculation values c1, . . . , cm of equal in-
tervals of δc, where cm is the maximum number of similarity calculations performed for a test input during simulations.295

Then we discretize the quality range
[
0, 1

]
into n discrete quality values q1, . . . , qn of equal intervals of δq.

In coherence with the finer-grained QualityMap presented above, we create a four-dimensional array PDP to
hold the discreet probability distribution of quality. The dimensions of PDP are the maximum update number for
an input sequence during simulations, k of kNN, the number of calculation intervals m and the number of quality
intervals n respectively.300

Thus, an entry in PDP
[
u, i, r, v

]
represents the discrete probability that the output quality of the best-so-far ith NN

is in
(
qv−δq, qv

]
after a number of similarity calculations in

(
cr−δc, cr

]
made during the kNN search for the uth problem

update.
The values of system parameters δc and δq, hence the size of the PDP can be adjusted with respect to the desired

accuracy of the performance information. The smaller δc and δq are, the more accurate will be the expected quality305

predicted by the PDP. The corresponding Performance Distribution Profile of the quality map in Figure 3 is given in
Table 1.

3.5. Confidence

Equipped with PDP, our algorithm becomes ready to predict the output quality when the kNN search for an unseen
query is interrupted. We refer to the expected quality as the confidence of our algorithm in conformity with the CBR310

literature [9]. Specifically, we define our confidence measure as the weighted mean of the probability distribution of
quality for a calculation interval in PDP:

µ
u,i

c
=

∑
v

qv P
u,i

c
(qv) (3)

where P
u,i

c
(qv) is a shorthand for PDP

[
u, i, rc, v

]
and rc is the interval in the calculation range where c falls into. This

equation gives us the confidence ∈
[
0, 1

]
of the best-so-far ith NN of the uth update when ALK is interrupted after c

number of similarity assessments during kNN search. Since confidence gives us a mean value µ, we also provide the315

(weighted) standard deviation σ of the quality distribution to be used together with it:
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Table 1: Performance Distribution Profile with Confidence. The PDP is essentially a 4-dimensional array; here the table for update=10 and the
3rd nearest neighbor in kNN entry corresponding to the quality map in Fig. 3 is shown. confidence for a calculation range is the expected quality
which is defined as the weighted mean of the probability distribution of quality for that range. Note that δc=220 and δq=0.025 settings are used in
the generation of this PDP.

quality µ σ

c 0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000

220 0.001 0.023 0.165 0.297 0.265 0.140 0.063 0.008 0.024 0.880 0.106
440 0.146 0.320 0.294 0.156 0.052 0.032 0.919 0.030
660 0.203 0.387 0.240 0.127 0.042 0.935 0.027
880 0.011 0.273 0.422 0.186 0.108 0.953 0.024

1100 0.112 0.367 0.301 0.219 0.966 0.024
1320 0.028 0.341 0.325 0.306 0.973 0.022
1540 0.016 0.222 0.356 0.407 0.979 0.020
1760 0.002 0.102 0.351 0.546 0.986 0.017
1980 0.025 0.327 0.647 0.991 0.013
2200 0.004 0.182 0.814 0.995 0.010
2420 0.099 0.901 0.998 0.007
2640 0.019 0.981 1.000 0.003
2860 1.000 1.000

σ
u,i

c =

√∑
v

(
qv − µ

u,i

c

)2
P

u,i

c
(qv) (4)

The confidence µ and its deviation σ for the quality map example in Figure 3 are given in the Table 1. In this
PDP excerpt, we can see that σ is higher for early calculations when fewer candidates are assessed and it decreases
as we assess more candidates. When c does not coincide exactly with the PDP calculation intervals, we use linear
interpolation for both µ and σ.320

Beside giving us a confidence value to reason with the best-so-far kNNs, the PDP of our algorithm also provides
us with a means to automatize the interruption itself. This may be achieved in two ways: either by specifying a time
of execution or reaching a desired confidence threshold for the output.

In the former case, the execution time can be translated into a number of similarity calculations depending on the
computer system the algorithm is running on. In the latter case, the PDP gives us the estimated number of similarity325

calculations to reach a desired confidence. In either case, obtained number of calculations is used for interruption.
While selecting interruption points, the standard deviation of the probability distribution of quality can be taken

into account. Thus, if we define the confidence threshold for interruption as µ+ zσ, the choosing of the z offset
parameter, that is the number of σ’s subtracted from or added to µ, would depend on how precautious or optimistic
we want to be with the confidence provided by the PDP respectively.330

The trustworthiness of a probabilistic model depends on how much of the plausible problem space is represented
by the model. In other words, the more representative the input queries used in simulations are for our domain, the
more we can trust our model in predicting the confidence of our algorithm for future queries. Regarding CBR’s
fundamental representativeness assumption, we can safely assume that the CB that we will train our model with is
representative of our problem space. Nevertheless, as we will describe in subsection 4.2, in our experiments we chose335

our training and test datasets in a way to enable a rigorous testing of the representativeness of the PDP as well.

4. Evaluation Methodology

There have been three main goals for the development of ALK: 1) To be able to interrupt kNN search and get best-
so-far kNNs when exact kNN search is not feasible; 2) to attach confidence values to best-so-far kNNs that indicate
how much we can trust each one of them in the reasoning process; and, 3) to be able to automatize interruption upon340

reaching given confidence thresholds. The previous section detailed the steps of how we developed such an anytime
algorithm and a confidence measure that gives us the estimated output quality.

Confidence plays a key role in ALK both to assess the quality of the best-so-far output and to determine thresholds
to automatize interruption. Therefore, to evaluate whether we met our above-mentioned goals, first we need to have
a notion of efficiency for our confidence estimation. In other words, we would like to know how much we can trust345
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Figure 4: Efficiency of confidence.µ+zσ
Q

ratio for interruption tests on the SwedishLeaf dataset, with z=-1 and different time window width w and
step settings and using the PDP for which an excerpt is given in Table 1.

the confidence measure itself. Accordingly, we define our efficiency measure in subsection 4.1 and explain how to
interpret it. Later, in subsection 4.2, we describe the real world time series datasets that we used for our experiments
to build CBs each of which was organized as sequences of temporally related cases. In subsection 4.3, we give
the settings and insights of the experiments that we conducted both to demonstrate empirically that our confidence
measure is efficient enough, and to provide evidence regarding the speed-up achieved by ALK when we interrupt the350

algorithm upon reaching given confidence thresholds.

4.1. Efficiency of confidence

Confidence µ is an estimator of how close the best-so-far kNNs are to the query compared with the exact kNNs.
In other words, it is an estimator of the expected quality of the best-so-far kNNs. Therefore, to measure the efficiency
of a confidence estimation, we utilize the ratio of the confidence µ and the observed actual quality Q and we formally355

define efficiency as follows:

η
u,i

c
=
µ

u,i

c
+ zσ

u,i

c

Q
u,i

c

(5)

We use a zσ offset value to be able to incorporate the deviation of the confidence provided by the PDP along with
the µ itself upon interruption. The factor z can be chosen regarding how prudent we want to be with raw confidence
values. z=−1 would be a more cautious choice than the neutral z=0, and z=1 would be a more optimistic one. An
efficiency value η� 1 would signal an overconfident confidence measure that can possibly mislead reasoning with360

best-so-far kNNs; whereas η � 1 would imply an overcautious measure suggesting longer times of execution till
reaching an acceptable approximation. On the other hand, while interpreting efficiency, we should bear in mind
that due to its discrete nature, the precision of PDP (i.e. the choosing of δc and δq) affects the accuracy of quality
estimation as well.

An example plot for the efficiency of confidence is shown in Figure 4. Interruption tests for this plot were con-365

ducted on four different CBs generated out of the SwedishLeaf dataset by four different w and step settings. The
confidence thresholds for interruption were selected with z=−1 setting. For all CBs, we see that the dispersion in
efficiency is larger for lower confidence thresholds and it diminishes for higher thresholds. But, the efficiency almost
consistently remains below 1.0, converging to 1.0 as the confidence threshold also gets closer to 1.0, to which we
ultimately reach when we have the exact kNNs. This is a behavior that we desired by setting the z parameter to −1370

preferring to be precautious with the confidence provided by the PDP. And indeed, Figure 4 shows that, when the
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Table 2: Time series datasets used to generate CBs of temporally related cases in experiments for building PDPs and their corresponding CB sizes
generated with two different time window step settings.

# Dataset Type Sequences Updates CB Size

step=10 step=1

1 PowerCons Device 180 144 2,700 25,920
2 SwedishLeaf Image 625 128 8,125 80,000
3 Strawberry Spectrograph 613 235 14,712 144,055
4 EOGHorizontalSignal Medical 362 1,250 45,250 452,500
5 InsectWingbeatSound Sensor 1,980 256 51,480 506,880
6 ECG5000 Medical 4,500 140 63,000 630,000
7 UWaveGestureLibraryX Motion 3,582 315 114,624 1,128,330
8 Yoga Image 3,000 426 129,000 1,278,000
9 Phoneme Sound 1,896 1,024 195,288 1,941,504

10 Mallat Simulated 2,345 1,024 241,535 2,401,280
11 MixedShapesRegularTrain Image 2,425 1,024 249,775 2,483,200

algorithm was interrupted at µ-σ ∈
{
0.7, . . . , 0.98

}
, the actual quality of the best-so-far kNNs were higher than these

confidence threshold values.

4.2. Datasets
We used eleven univariate time series datasets available at the UEA & UCR Time Series Classification Repository375

[4] as real world data in our experiments. Every dataset in the repository is available as a two-pack of train and test
sub-datasets. Some test sub-datasets are larger than their train reciprocals. Since, for the scope of this article, we are
only interested in the retrieval of the problem parts of cases and not in classification with their solutions, we took the
liberty to use the larger one to generate the CB TRAIN to be used in building the PDP for a dataset.

On the other hand, as in any probabilistic model, the representativeness of the PDP built for a specific training CB380

is crucial for the efficiency of the confidence estimation when the same PDP is used for future queries. Therefore, to
be able to test the representativeness of the PDP as well, we carried out interruption tests on the CB TEST generated
out of the corresponding smaller sub-dataset. In other words, in interruption tests both the CB and the test sequences
were unseen.

To build a CB out of a given univariate TS dataset, as described in subsection 2.2, we treated each instance in the385

dataset as a sequence for our CB and each data point of the TS instance as an update to the sequence. Then we applied
time window on every instance to create individual cases of the sequence. Each window represented the problem
part of a case and we regarded each data point enveloped by the window as a feature of that case. We adopted two
approaches to implement time windows. The first approach used a sliding window of fixed-width and the second one
an expanding window. For a TS instance of length l (i.e. having l data observations), both approaches generated l390

cases.
To generate even more diverse CBs out of a given TS dataset, we also incorporated time window step concept.

With a step>1 setting, we moved the time window in steps over the sequence and we generated cases for every step
number of updates instead of doing it for each update in a sequence. Having step ≥ 1 as an optional parameter, for
a problem sequence of length l, both expanding and fixed-window approaches generated

⌈
l/step

⌉
number of cases.395

Table 2 summarizes the datasets and their corresponding CBs used in our experiments to build PDPs.

4.3. Experiment settings
With respect to distance measures, ALK is based on Lazy KNN algorithm that relies on distance measures that

are true metrics as mentioned in subsection 2.1. Therefore, we used normalized euclidean distance in all experi-
ments5. For every CB, normalization was done by taking into account the min and max values of the related uni-400

variate TS dataset. And the similarity sim between a query and a case in CB was defined as: sim(query, case) =
1−distance(query, case).

5Interested reader can refer to [37, 41] for empirical comparison of similarity measures for time series data in general. Mueen et al.’s work [30]
may be of special interest for time series where they also benefit from the triangle inequality for early abandoning of the costly distance measuring
to find exact motifs.
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As mentioned in subsection 2.2, regardless of the time window approach used, a decision has to be made with
respect to how to measure the distance between two cases of different number of features. A straight-forward decision
could be not measuring this distance at all and returning 0. However in order to test our algorithm with larger CBs, in405

our experiments, we opted to extend the shorter case to the length of the longer one by filling in missing features with
values that maximized the distance.

After deciding the similarity assessment method, for each TS dataset given in subsection 4.2, we launched four
experiments for combinations of two time window approaches (Expanding and fixed-width time window of width
w=40) and two window step settings (step∈ [1, 10]). Having k set to 9, each experiment for a configuration 3-tuple of410 (
dataset, w, step

)
was conducted in three stages:

In the first stage, using the larger TS sub-dataset, we generated a set of sequences of temporally related cases for
the experiment configuration. Then, we split this set into two parts; where one part served as the CB TRAIN and the
other part as input test sequences for our algorithm. For each input sequence, we generated input queries along its
updates starting from the initial problem. By feeding the algorithm with these queries over CB TRAIN, we generated415

the Quality Map for the dataset as described in subsection 3.3.
Consecutively, in the second stage, we built its PDP as described in subsection 3.4. While building PDP for

each dataset, we discretized the range of similarity calculations and the quality range with δc=
⌈
cm/400

⌉
and δq=0.05

interval settings respectively, where cm was the highest number of similarity calculations reached for that experiment.
In the third stage, out of the smaller TS sub-dataset, we generated the CB TEST and the set of unseen input420

queries for interruption tests, using the same method and time window configuration in the first stage. Then, we
fed the algorithm with these queries over CB TEST and for each query, we interrupted the algorithm using a set of
confidence thresholds as interruption points.

In coherence with the dividend of the efficiency Eq. (5), confidence thresholds for interruptions were determined
with a zσ offset. We chose to be slightly cautious with PDP’s confidence estimation and set z to −1. The thresholds425

were chosen for the 9th NN and taking into account the problem update index of the query. So, for example, given the
uth query for a test sequence and a threshold of 0.95, the algorithm was automatically interrupted after the number of
similarity calculations needed for the µ-σ provided by PDP for the 9th NN of a uth query to reach 0.95.

5. Results

In this section, we provide the results of average gains in similarity assessments upon interruption and average430

efficiency of confidence estimation along experiments to assess if we met our design goals for ALK. Precisely, at each
interruption, similarities of the best-so-far kNNs to the query, and the confidence µ together with its deviation σ for
each member of the kNNs were recorded. Finally, we let the algorithm finish and we obtained the similarities of the
exact kNNs to the query. And later, by backtracking, we calculated the actual qualities Q. This allowed us to calculate
and record the efficiency η of the confidence for each NN using the Eq. (5). At interruptions, we also recorded the435

gain in similarity calculations for the query, i.e. the percentage of the avoided calculations upon interruption with
respect to the total number of calculations that would have been carried out by a brute-force search.

Finally, recorded efficiency and gain values throughout experiments gave us the answers we were looking for. We
show the average gain of the algorithm for the set of confidence thresholds used as interruption points in Table 3. In
the same table, we also provide the average efficiency of confidence for each experiment together with its average440

deviation.
The average gain at an interruption threshold was calculated out of the gains of all test queries at that threshold.

While interpreting the average gains, we note that, especially for the expanding window setting, the gain for later
updates will be greater than earlier updates of a sequence. As mentioned in subsection 3.1, gains of uninterrupted
Anytime Lazy kNN are precisely the gains that would be achieved by the original Lazy kNN. In Table 3, average445

gains for uninterrupted runs are in the range of
[
28.07, 96.35

]
. While the upper limit of this range can correspond to

quite acceptable execution times for some CBs to wait for the exact kNNs, the lower limit may not be tolerable for
very large CBs. And in the latter case, we would have to trade time for approximate results and this is when we benefit
from the true merit of ALK.

In the table, for many configurations, we observe a notable leap between the gain for an uninterrupted run and450

the corresponding gain upon an interruption at a confidence threshold as high as 0.98. And for some experiment
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Table 3: Average Gain % upon Interruptions at Confidence Thresholds. The algorithm is interrupted at the number of calculations when the
µ-σ (z=-1) value provided by PDP reaches to the given confidence thresholds. For e.g., a threshold of 0.95 means “stop when µ-σ reaches 0.95”.
The table summarizes average gains in terms of % of avoided similarity assessments during tests compared to a brute-force search. The gains upon
interruption can be compared to the gain at the ‘Unint.’ column which is achieved when the algorithm is run to completion uninterrupted for exact
kNNs. We also provide the mean of efficiency η together with the mean of its standard deviationση to reflect the efficiency of the quality estimation
(i.e. confidence) for each experiment.

Unint. Interruption at µ-σ= Efficiency

Time window 0.98 0.95 0.92 0.90 0.85 0.80 0.75 0.70 η ση

Dataset w step

PowerCons
Expanding 1 75.65 97.78 98.63 98.96 99.01 99.17 99.30 99.38 99.45 0.92 0.07

10 47.67 75.47 84.37 87.62 88.06 89.46 91.10 92.27 93.47 0.95 0.07

40 1 69.62 97.44 98.49 98.91 98.96 99.16 99.27 99.39 99.46 0.92 0.08
10 35.12 74.78 81.52 84.14 84.32 85.33 88.91 91.26 96.04 0.97 0.05

SwedishLeaf
Expanding 1 75.96 98.79 99.14 99.25 99.31 99.43 99.52 99.61 99.66 0.92 0.07

10 47.55 76.04 79.95 81.38 82.10 87.00 91.68 93.24 96.36 0.94 0.07

40 1 79.11 98.97 99.14 99.25 99.32 99.44 99.54 99.62 99.66 0.92 0.07
10 38.01 63.69 75.34 84.17 89.44 95.32 96.29 96.34 96.37 0.94 0.07

Strawberry
Expanding 1 81.59 98.74 99.10 99.20 99.26 99.39 99.50 99.55 99.57 0.92 0.06

10 56.39 74.92 80.33 83.01 83.51 87.07 96.16 96.75 97.07 0.94 0.06

40 1 89.08 98.95 99.15 99.25 99.30 99.43 99.52 99.55 99.57 0.93 0.06
10 57.79 79.98 83.81 85.27 85.91 92.04 95.29 98.03 98.34 0.94 0.07

EOGHorizontalSignal
Expanding 1 91.12 99.51 99.60 99.68 99.72 99.73 99.73 99.73 99.73 0.95 0.03

10 76.32 98.84 98.96 99.02 99.20 99.41 99.50 99.57 99.63 0.94 0.07

40 1 96.35 99.39 99.47 99.63 99.73 99.73 99.73 99.73 99.73 0.95 0.03
10 87.04 99.08 99.21 99.24 99.25 99.29 99.33 99.63 99.68 0.91 0.08

InsectWingbeatSound
Expanding 1 81.50 95.22 96.09 96.90 97.18 97.34 97.43 97.48 97.50 0.94 0.05

10 55.96 58.04 62.29 68.29 71.22 78.89 87.11 91.28 93.59 0.89 0.09

40 1 84.97 95.40 96.25 97.03 97.25 97.41 97.50 97.56 97.60 0.95 0.05
10 42.27 44.81 48.76 61.17 70.70 84.19 88.62 90.03 94.11 0.91 0.08

ECG5000
Expanding 1 76.71 92.23 94.56 95.89 96.42 97.09 97.32 97.41 97.46 0.93 0.05

10 48.09 48.09 48.09 48.09 48.09 65.35 86.86 87.28 95.64 0.94 0.07

40 1 79.90 93.51 95.34 96.37 96.61 97.07 97.31 97.40 97.45 0.94 0.05
10 48.79 73.24 81.79 85.49 85.63 86.00 86.37 86.74 89.11 0.92 0.08

UWaveGestureLibraryX
Expanding 1 84.20 98.15 98.66 98.84 98.87 98.91 98.93 98.95 98.95 0.96 0.03

10 61.93 84.27 87.09 89.42 90.60 93.00 95.62 97.76 98.06 0.91 0.07

40 1 91.78 98.11 98.75 98.89 98.91 98.95 98.97 98.99 98.99 0.96 0.03
10 61.62 90.84 93.73 93.90 94.00 94.26 97.69 97.76 98.13 0.93 0.06

Yoga
Expanding 1 86.70 95.22 96.65 97.04 97.14 97.22 97.24 97.26 97.28 0.96 0.03

10 67.32 79.12 85.34 87.85 88.74 90.99 94.15 95.65 96.38 0.89 0.08

40 1 92.59 95.42 96.66 96.89 96.93 97.20 97.23 97.26 97.28 0.96 0.03
10 63.99 70.68 89.03 91.44 91.83 92.84 95.20 95.70 95.79 0.93 0.06

Phoneme
Expanding 1 88.95 96.27 97.54 97.56 97.56 97.56 97.57 97.57 97.57 0.97 0.02

10 71.60 90.53 93.00 94.48 95.25 96.42 97.06 97.37 97.52 0.92 0.06

40 1 66.97 96.29 97.54 97.56 97.57 97.57 97.57 97.57 97.57 0.97 0.02
10 28.07 94.06 94.63 95.13 95.46 96.25 97.27 97.31 97.50 0.94 0.05

Mallat
Expanding 1 89.66 90.29 90.66 90.75 90.78 90.82 90.84 90.87 90.87 0.97 0.02

10 72.83 73.29 74.24 76.14 77.86 83.29 86.10 86.84 86.96 0.91 0.06

40 1 93.07 93.48 93.98 94.07 94.13 94.21 94.25 94.28 94.30 0.97 0.02
10 67.74 69.40 71.43 75.86 77.85 83.05 85.49 86.00 86.97 0.93 0.05

MixedShapesRegularTrain
Expanding 1 90.52 97.92 98.60 98.63 98.65 98.66 98.67 98.67 98.67 0.97 0.02

10 74.30 96.23 96.94 97.32 97.55 98.06 98.38 98.51 98.59 0.92 0.06

40 1 95.68 97.95 98.56 98.57 98.62 98.67 98.68 98.68 98.68 0.98 0.02
10 76.13 95.36 95.70 97.11 97.32 97.62 97.63 98.43 98.56 0.95 0.04

configurations, like the Phoneme with w=40 and step=10, this difference is tremendous. In this example, although
the algorithm reaches a confidence threshold of 0.98 with an average 94.06% gain, it ends up doing many more cal-
culations to ascertain the exact kNNs which ultimately reduces the gain down to 28.07% level. The confidence being
quite efficient

(
η=0.94, ση=0.05

)
for this experiment, this phenomenon occurs due to the fact that, in this particular455

CB, there are many similar kNN candidates which need to be assessed, but, in the end they cannot win over best-so-far
kNNs. Another common observation is that we reach higher gains for step=1 compared to step=10, because with
the former configuration, less change is introduced per update and the kNNs of the new query are more similar to the
kNNs of the previous one. Thus, less calculations are needed to obtain the exact kNNs and, in the case of interruption,
to reach the desired confidence threshold.460

We also see that for z=−1 setting, the quality estimation of PDP (i.e. the confidence) was quite efficient with a
relatively minor deviation

(
η∈

[
0.89, 0.98

]
, ση ∈

[
0.02, 0.09

])
throughout our experiments. The average efficiency was
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Table 4: Average Execution Times and Speed-up Factors per Update. Average execution times (in milliseconds) of kNN search per sequence
update are given for select experiments with time window width w=40 setting. Speed-up factors are given with respect to the execution time of a
brute-force search. Note that, average execution time and speed-up factor for an experiment are proportionate to its average gain in Table 3.

Uninterrupted ALK interrupted at µ-σ=

Brute ALK 0.98 0.95 0.85 0.70

ms ms Speed ms Speed ms Speed ms Speed ms Speed
Dataset step

PowerCons 1 425.86 129.37 ×3.29 10.90 ×39.06 6.43 ×66.23 3.58 ×119.05 2.30 ×185.19
10 24.10 15.64 ×1.54 6.08 ×3.97 4.45 ×5.41 3.54 ×6.82 0.95 ×25.25

SwedishLeaf 1 1295.09 270.54 ×4.79 13.34 ×97.09 11.14 ×116.28 7.25 ×178.57 4.40 ×294.12
10 69.93 43.28 ×1.62 25.39 ×2.75 17.25 ×4.06 3.27 ×21.37 2.54 ×27.55

Strawberry 1 1437.21 156.94 ×9.16 15.09 ×95.24 12.22 ×117.65 8.19 ×175.44 6.18 ×232.56
10 98.52 41.59 ×2.37 19.72 ×5.0 15.95 ×6.18 7.84 ×12.56 1.64 ×60.24

EOGHorizontalSignal 1 8057.42 294.10 ×27.4 49.15 ×163.93 42.70 ×188.68 21.76 ×370.37 21.76 ×370.37
10 710.63 92.10 ×7.72 6.54 ×108.7 5.61 ×126.58 5.05 ×140.85 2.27 ×312.5

InsectWingbeatSound 1 958.27 144.03 ×6.65 44.08 ×21.74 35.94 ×26.67 24.82 ×38.61 23.00 ×41.67
10 54.77 31.62 ×1.73 30.22 ×1.81 28.06 ×1.95 8.66 ×6.33 3.23 ×16.98

ECG5000 1 1370.28 275.43 ×4.98 88.93 ×15.41 63.86 ×21.46 40.15 ×34.13 34.94 ×39.22
10 69.98 35.84 ×1.95 18.73 ×3.74 12.74 ×5.49 9.80 ×7.14 7.62 ×9.18

UWaveGestureLibraryX 1 6408.30 526.76 ×12.17 121.12 ×52.91 80.10 ×80.0 66.01 ×97.09 64.72 ×99.01
10 354.34 136.00 ×2.61 32.46 ×10.92 22.22 ×15.95 8.19 ×43.29 6.63 ×53.48

Yoga 1 2329.18 172.59 ×13.5 106.68 ×21.83 77.79 ×29.94 64.52 ×36.1 63.35 ×36.76
10 138.37 49.83 ×2.78 40.57 ×3.41 15.18 ×9.12 6.64 ×20.83 5.83 ×23.75

Phoneme 1 4383.57 1447.89 ×3.03 162.63 ×26.95 107.84 ×40.65 106.52 ×41.15 106.52 ×41.15
10 435.54 313.28 ×1.39 25.87 ×16.84 23.39 ×18.62 11.89 ×36.63 10.89 ×40.0

Mallat 1 867.53 60.12 ×14.43 56.56 ×15.34 52.23 ×16.61 49.88 ×17.39 49.45 ×17.54
10 62.13 20.04 ×3.1 19.01 ×3.27 17.75 ×3.5 9.02 ×6.89 8.10 ×7.67

MixedShapesRegularTrain 1 9590.46 414.31 ×23.15 196.60 ×48.78 138.10 ×69.44 126.59 ×75.76 126.59 ×75.76
10 1076.32 256.92 ×4.19 49.94 ×21.55 46.28 ×23.26 25.51 ×42.19 15.50 ×69.44

Test environment specs: CPU: 12× Intel(R) Core(TM) i7-8700K @ 3.70GHz; Memory: 31GiB; OS: Ubuntu 18.04; Python: 3.7.3.

slightly below 1, which means that the actual quality was a bit above the confidence threshold. This was a desired
behaviour of efficiency, since we wanted to be precautious by lowering the confidence µ by −σ for interruptions. In
other words, we preferred to have slightly lower gain in execution time to giving slightly overconfident results.465

The gain concept that we have been using throughout the article is based on the percentage of the avoided similarity
calculations compared to the number of similarity calculations that would have been carried out by brute-force search.
This definition let us establish a platform-independent measure for the speed-up in kNN search by ALK. To give a
more thorough view of this speed-up, we also provide Table 4 that translates the gain to real execution time for a test
platform that we used. The table gives the average execution times for kNN search per sequence update conducted470

by brute-force search and ALK. The former evaluates all the cases in the case base while our algorithm assesses only
the true kNN candidates. The table shows that even when ALK is not interrupted and run to completion to find exact
kNNs, it is faster than brute-force search by orders of magnitude. However, the real contribution of our algorithm is
for the occasions when this speed-up is still not feasible and we have to resort to approximate kNNs. In this case,
even when we interrupt ALK at a high confidence threshold like 0.98, the speed-up drastically increases. For e.g.,475

for the EOGHorizontalSignal experiment with w=40 and step=1 setting, ALK delivers best-so-far kNNs of the query
for a sequence update with 0.98 confidence 163.93 times faster than the brute-force search on average, reducing the
execution time from 8.057 seconds down to 0.049 seconds. For the same experiment, the speed-up factor increases
to 370.37 if we settle with a confidence of 0.85. Table 4 also reveals that the speed-up is more dramatic for the
larger case base of the same dataset. The CB generated for a dataset with step=1 is 10 times larger than the CB of a480

step=10 as explained in subsection 4.2. And this observation underpins the very purpose of the ALK, larger the CB
is, higher becomes the speed-up. We also note that the average execution time and speed-up factor for an experiment
are inversely proportionate to the corresponding average gain given in Table 3.

For each application, the definition of acceptable approximate results will be different. For some critical decisions,
we may need approximate results with very high confidence whereas for less critical situations we may conform with485

less confidence. The gain that we will achieve for interrupting the algorithm with higher or lower thresholds will
change according to the nature of the CB and used time window configurations. But in any case, if we opt for the
approximate results instead of the exact ones, ALK will boost the speed-up in kNN search higher than Lazy kNN.
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6. Discussion and Conclusions

In this work we introduced Anytime Lazy kNN (ALK), an anytime exact and approximate kNN algorithm to boost490

CBR retrieval in large-scale CBs of temporally related cases, e.g. a CB of electronic health records of patients.
Our algorithm is based on Lazy kNN [33] which is an effective exact kNN algorithm in CBR literature for such
domains. However, for some applications, the notable speed-up provided by this algorithm may not suffice and the
execution time for exact kNN may still be intolerable. Therefore, to fit the CBR system with an approximate retrieval
option for time-critical applications, we described our methodology to transform Lazy kNN to ALK. Specifically, after495

presenting our domain of interest and the concepts we used throughout this paper, we detailed how we constructed a
probabilistic model of adjustable accuracy to estimate the quality of best-so-far kNNs upon interruption. We referred
to the expected quality as the confidence of the algorithm for its output in accordance with the CBR literature. Later,
we showed how we can implement confidence thresholds to automatize the interruption with options to be precautious,
neutral or optimistic about the confidence provided by our probabilistic model. Before experimentation, we explained500

how we can treat a time series as a sequence of temporally related cases and showed different ways of generating CBs
out of a TS dataset by different time window settings. Furthermore, we devised a means to measure the efficiency of
confidence estimation to be used throughout experiments. Finally, we presented the results of numerous experiments
conducted on publicly available TS datasets of diverse domains and characteristics.

The results show us that we can reach superior speed-up in approximate kNN search even when we interrupt the505

algorithm at very high confidence thresholds which means that best-so-far kNNs are almost as near to the query as
the exact kNNs. So, with ALK, the expert can opt to wait for the completion of the algorithm to obtain exact kNNs
or, he or she can interrupt the search manually/automatically any time when a prompter response is needed and get
best-so-far kNNs together with a confidence value for each NN to reason with.

The Performance Distribution Profile used by our algorithm as the basis of its probabilistic model discretizes the510

calculation range linearly. A way to increase both the accuracy and efficiency of confidence can be to discretize this
range logarithmically, attributing more importance to the beginning of the calculation range given the fact that NNs
are actually found in the early stages of ALK execution for the domains of our interest.

We mainly focused on its use in a CBR context, but ALK can be applied to any kNN search domain that exhibits
temporal relation between examples in a metric search space. For example, we tested ALK with univariate TS datasets,515

but in a like manner, given an adequate metric distance for a multivariate TS (see [25] for examples), our algorithm
would work just the same. One way to build a CB from a multivariate TS dataset can be to treat each instance as
a sequence and each time-dependent variable of the instance as a multi-valued case feature. The number of feature
values would be determined by the applied time window.

On the other hand, we only used the problem space for retrieval. However, a case also bears a solution part and520

as future work we want to enhance retrieval by incorporating the solution space as well. Especially, low confidence
zones in a CB’s solution space (e.g. categorized as dubiosity patterns in [32]) can help ALK further tune its retrieval
performance. For example, if the solutions of best-so-far kNNs exhibit a “border” pattern where two competing
solutions (say classes) exist; then the algorithm may use this information to encourage resuming the search expecting
a possible change in kNNs favouring one of the competing solutions.525

The complete code of ALK algorithm including all its functionality covered throughout this article and simple
instructions to reproduce the experiments are publicly available at the online repository: https://github.com/
IIIA-ML/alk
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