
Generalizing Semiring induced Valuation Algebras
TR-IIIA-2013-03

Jordi Roca Lacostena and Jesús Cerquides
Arti�cial Intelligence Research Institute, IIIA-CSIC

Spanish National Research Council, CSIC.
Campus Universitat Autònoma de Barcelona, Bellaterra, Spain

{jroca, cerquide}@iiia.csic.es

December 13, 2013

Abstract

Valuation algebras, are the algebraic structure associated with the
treatment and management of information packages. These kind of struc-
tures are frequently used on statistics and strongly linked to arti�cial in-
telligence.
Along this dissertation we will generalize the concept of semiring in-

duced valuation algebra so that set-based valuation algebras and some
algorithms like Action-GDL [12] or the Graph Coalition Structure Gener-
ation algorithm described in [13], can be �t into a new single wider uni�ed
framework.
This document is based on the Bachelor Degree Dissertation written by

Jordi Roca Lacostena under the supervision of Jesús Cerquides Bueno and
Joaquim Roé i Vellvé .

1 Introduction

Description and objectives of the project

Valuation algebras, are the algebraic structure associated with the treatment and management
of information packages.

These kind of structures are frequently used on statistics and strongly linked to arti�cial intel-
ligence. Furthermore, there are several articles [5, 9, 10] refering valuations algebras as an al-
gebraic structure used in order to solve Distributed Constraint Optimization Problems (DCOPs).

A DCOP [5, 9, 12] is a formalism that captures the rewards and costs of local interactions
in a multiagent system where each agent chooses a set of individual actions. Thereby, it is a
framework which can model a large number of coordination, scheduling and tasks allocation
problems in multiagent systems [12].

1

In order to solve DCOPs researchers and engineers have developed lots of algorithms relying on
valuation algebras. One of these algorithms is Action-GDL [12], which was also presented as
�nding solutions without distribute in a semiring induced valuation algebra [4, 8].

In spite of DCOPs being that important, there are still some problems that cannot be e�ciently
mapped there. Hence, Pouly created in [6] a wider framework called set-based valuation algebras
which include the valuation algebras used in DCOPs.

Nonetheless, in [13] an algorithm similar to Action-GDL is proposed in order to solve the coalition
structure generation problem (CSGP). This problem is equivalent to the complete set partition-
ing problem, one of the fundamental problems in combinatorial optimisation. Nevertheless, there
is no known way to map this problem to a set-based valuation algebra.

Hence, the objective of this dissertation is to generalize the concept of semiring induced valuation
algebra so that Action-GDL, the algorithm described in [13] and set-based valuation algebras
can be �t into a new single wider uni�ed framework.

Contents

This dissertation is divided into six chapters, being the introduction the �rst one.

The second chapter refreshes some properties of lattices and de�nes the concept of valuation
algebra in the most general way.

The third one, which is based on Pouly and Kohlas book Generic inference [8], introduces
covering join trees and describes the collect algorithm, bringing a new proof in order to show
that it works.

On the fourth chapter we de�ne valuation algebras over semirings using a partition lattices as
background.

Finally the �fth chapter shows that the Action-GDL algorithm holds on the valuation algebras
de�ned on chapter 4.

The last chapter include the conclusions of the dissertation as long as some ideas for future work
on this subject

For completeness and ease of reading, the appendix contains some basic and important informa-
tion about ordered sets and lattices.

2

2 Valuation Algebras on Modular Lattices

Information treatment and manipulation on huge domains is usually infeasible for informatic
systems. The way of solving this issue is breaking the entire information package on small data
packages over smaller domains in such a way that one can obtain the original information by
combining the small packages.

The main advantage of this procedure, known as factorization, is the fact that the information
packages created are more operable than the original package due to the di�erence between the
sizes of their respective domains.

Valuation algebras are the algebraic structure associated to the treatment of information pack-
ages, thus they are strongly linked with information management.

In this chapter we will introduce the notion of valuation algebra as long as some other concepts
which will turn out important for the objectives of our work.

2.1 Valuation algebras

Valuation Algebras are built on top of lattices. Therefore we need to know what is a lattice.
Informally, we say that a lattice is a partially ordered set in which any two elements have a
supremum and an in�mum. Further information about lattices can be found in the appendix.

De�nition 2.1.

Let D be lattice. A set Φ is called a set of valuations with domain in D if we can de�ne three
operations on Φ and D:

• Labeling : Φ→ D; φ 7→ d(φ)

• Combination: Φ× Φ→ Φ; (φ, ψ) 7→ φ⊗ ψ

• Projection: Φ×D → Φ; (φ, a) 7→ φ↓a for a ≤ d(φ)

An element φ ∈ Φ is called a valuation

Example 1. Valuations over discrete variables

In this example we are going to see the set of valuations that is used in order to de�ne and solve
a DCOP.

Consider U = {x1, . . . , xn} a �nite set of discrete variables.

For any variable xi ∈ U we denote the set of its possible values by Ωxi , and we will call it the
frame of xi. Moreover, given a subset s ⊆ U we de�ne its set of con�gurations or its frame as

Ωs =
∏
xi∈s

Ωxi

3

Hence, we will take the powerset lattice of U , P(U), as the domain lattice of the valuation
algebra de�ned over discrete variables, whereas a valuation with domain d ∈ P(U) will be any
function φ : Ωd → R from the possible con�gurations of the variables in d to the real numbers set.

Before de�ning the operations it is necessary to remark that for any d ∈ D and any s ⊂ d it
is possible to break the con�gurations of d as the con�gurations of s and the con�gurations of
s′ = {xi ∈ d : xi /∈ s}, i.e. all x ∈ Ωd can be written as (a, b) where a ∈ Ωs and b ∈ Ωs′ . We will
denote a as x↓s and b as x↓s

′

Now we are ready to de�ne all the operations in the valuation algebra de�ned over discrete vari-
ables.

Recall that labeling just maps every valuation to its domain, thus we only have to de�ne the
combination and projection:

• Combination: Given φ, ψ ∈ Φ with respective domains s, t we de�ne:

(φ⊗ ψ) : Ωs∪t −→ R
x 7−→ φ(x↓s)× ψ(x↓t)

• Projection:Given φ ∈ Φ with domain s , for all t ⊆ s we de�ne:

φ↓t : Ωt −→ R
x 7−→

∑
y∈Ωt′

φ(x, y)

For instance, consider U = {x, y, z} were x, y, z are binary variables and the valuations
φ : Ω{x,y} → R and ψ : Ω{y,z} → R de�ned as it follows:

φ y = 0 y = 1
x = 0 -2 5
x = 1 1 -3

ψ z = 0 z = 1
y = 0 0 2
y = 1 -1 1

It is clear that d(φ) = {x, y} and d(ψ) = {y, z}, thus we are going to calculate (φ⊗ψ)(α) for all
α ∈ Ω{x,y,x} :

α α↓{x,y} α↓{y,z} φ(α↓{x,y}) ψ(α↓{y,z}) (φ⊗ ψ)(α)

000 00 00 -2 0 0

001 00 01 -2 2 -4

010 01 10 5 -1 -5

011 01 11 5 1 5

100 10 00 1 0 0

101 10 01 1 2 2

110 11 10 -3 -1 3

111 11 11 -3 1 -3

4

Finally, we will take s = {y, z} and we will calculate (φ⊗ ψ)↓s(β) for all β ∈ Ωs.

Notice that Ωs′ = Ω{x} = {0, 1} , thus we obtain (φ⊗ ψ)↓s(β) = (φ⊗ ψ)(0, β) + (φ⊗ ψ)(1, β).
Hence:

β (φ⊗ ψ)(0, β) (φ⊗ ψ)(1, β) (φ⊗ ψ)↓s(β)

00 0 0 0

01 -4 2 -2

10 -5 3 -2

11 5 -3 2

De�nition 2.2.

Let D be lattice and Φ be a set of valuations with domain in D.
We say that the tuple 〈Φ, D〉 is a valuation algebra on D if the following axioms are satis�ed by
the three operations de�ned above (labeling, combination and projection): .

A1 Commutative Semigroup: Φ is associative and commutative under ⊗.

A2 Labeling : For φ, ψ ∈ Φ,

d(φ⊗ ψ) = d(φ) ∨ d(ψ)

A3 Projection: For φ ∈ Φ, a ∈ D such that a ≤ d(φ),

d(φ↓a) = a

A4 Transitivity : For φ ∈ Φ, a, b ∈ D such that a ≤ b ≤ d(φ),

(φ↓b)↓a = φ↓a

A5 Combination: For φ, ψ ∈ Φ, a ∈ D such that d(φ) ≤ a ≤ d(φ) ∨ d(ψ),

(φ⊗ ψ)↓a = φ⊗ (ψ↓a∧d(ψ))

A6 Domain: For φ ∈ Φ,

φ↓d(φ) = φ

It can easily be shown that the valuations and the operations de�ned on the example above
satisfy all the axioms of valuation algebras.

Next, we are going to prove a result that we will use in the last part of the dissertation. We
want to do it now because later on we will work with a speci�c kind of valuation algebras and
we want to show that this result holds for any valuation algebra

Proposition 2.3.

Let 〈Φ, D〉 be a valuation algebra. Let φ, ψ ∈ Φ.Then:

(φ⊗ ψ)↓d(φ)∧d(ψ) = φ↓d(φ)∧d(ψ) ⊗ ψ↓d(φ)∧d(ψ)

Proof.
Using transitivity and combination axioms it holds:

(φ⊗ψ)↓d(φ)∧d(ψ) = ((φ⊗ψ)↓d(φ))↓d(φ)∧d(ψ) = (φ⊗ψ↓d(φ)∧d(ψ))↓d(φ)∧d(ψ) = φ↓d(φ)∧d(ψ)⊗ψ↓d(φ)∧d(ψ)

5

2.2 Valuation algebras can only be de�ned on modular lattices

In [8], Pouly and Kohlas say that valuation algebras can be de�ned over any kind of lattice. We
will show that modular lattices are the most general lattices which admit a valuation algebra
structure if we want to be able to de�ne a valuation over any element of the domain D.

First of all, we will introduce the concept of modularity, which can be seen as a weaker notion
of the distributive property. Further information about modular lattices can be found in [11].

De�nition 2.4.

A lattice L = (L;∨,∧) is said to be modular if for all x,w, y ∈ L such that x ≤ y we have:

x ∨ (w ∧ y) = (x ∨ w) ∧ y

Proposition 2.5.

Let L be a lattice. Then L is modular if and only if

x ≤ z ≤ x ∨ y ⇒ x ∨ (y ∧ z) = z for all x, y, z ∈ L

Proof.
Suppose that L is modular, and x, y, z ∈ L such that x ≤ z ≤ x ∨ y
Using x ≤ z and the de�nition of modular we obtain x ∨ (y ∧ z) = (x ∨ y) ∧ z.
As long as z ≤ x ∨ y we have (x ∨ y) ∧ z = z.

Now suppose that x ∨ (y ∧ z) = z for all x, y, z ∈ L such that x ≤ z ≤ x ∨ y.
Given x, y, w ∈ L such that x ≤ y, we set z = (x ∨ w) ∧ y.

Due to ∨ de�nition we know that z ≤ x∨w. Equivalently we obtain x ≤ y ≤ z using ∧ de�nition,
so in particular x ≤ z ≤ x ∨ w

Using the hypothesis above we obtain x ∨ (w ∧ z) = z = (x ∨ w) ∧ y
Furthermore, since w = w ∧ (x ∨ w),we obtain x ∨ (w ∧ y) = x ∨ ((w ∧ (x ∨ w)) ∧ y) = x ∨ (w ∧
((x ∨ w) ∧ y)) = x ∨ (w ∧ z) = z = (x ∨ w) ∧ y

Theorem 2.6.

Let 〈Φ, D〉 be a valuation algebra such that for all d ∈ D, there is a φ ∈ Φ such that d(Φ) = d
Then:

D is a modular lattice

Proof.
Given x, y, z ∈ D such that x ≤ z ≤ x∨y we can take φ, ψ ∈ Φ such that d(φ) = x and d(ψ) = y
due to hypothesis.

Using the combination axiom (A5) we obtain (φ⊗ψ)↓a = φ⊗(ψ↓a∧d(ψ)) . Therefore, if we use the
labeling and projection axioms ((A2) and (A3)), we obtain z = d((φ⊗ψ)↓z) = d(φ⊗(ψ↓z∧d(ψ))) =
x ∨ (z ∧ y).

As long as we can do it for every x, y ∈ D we obtain that D is modular by proposition 2.5.

6

3 Finding marginals on a factorized valuation

As we previously said, valuation algebras are used to break big information packages on smaller
and more operable data packages. Nonetheless, we want to do it in such a way that we can
obtain the initial information by combining the small data blocks.

Thereby, along this dissertation we will study which information related to φ can be obtained
from the elements of a given factorization factorization.

In particular, we will suppose that we are given a valuation φ by means of a set of valuations
φ1, . . . , φn such that φ = φ1 ⊗ · · · ⊗ φn. Moreover, as long as we want the data packages to be
smaller we require that the domains of φi are far smaller than the domain of φ.

Since φ itself is intractable (its domain is supposed to be too big), we will be interested in de-
termining the projection φ↓s of φ to a smaller domain s ≤ d(φ).

This is known as the projection (or marginal) of φ to s and it gives us information related to
s which can only be obtained from φ. Therefore it would be pretty interesting to �nd how to
obtain φ↓s for some s ∈ D using a factorization of φ.

The aim of this chapter is to prove that there is an algorithm, called collect algorithm, which
can be used for �nding some marginals of φ from a given factorization.

The collect algorithm [3, 8] uses a covering join tree as its main data structure. Thus we start
introducing covering join trees in section 3.1 and continue with the description of the algorithm
in the section 3.2. Finally we will give a new proof about the collect algorithm which is valid on
any valuation algebra on a modular lattice.

3.1 Covering Join Trees

The collect algorithm is based on message-passing between the elements of the factorization. It
is important to know when the messages are sent and who the sender and the receiver are. In
order to understand why the collect algorithm works we will introduce the concept of covering
join tree:

De�nition 3.1.

A labeled tree is a tuple T = (V,E, λ,D) such that:

• (V,E) is a tree, in particular |V | = |E|+ 1

• D is a set

• λ : V −→ D

We say that a labeled tree is a lattice-labeled tree if D is a lattice.

Thinking about the example 1, one can deduce that given two valuations such that their domains
share a variable x they must be able to talk about information related to this variable.

7

Nonetheless, when these domains are placed on a labeled tree and they are not neighbours, it
turns necessary to send the information through the nodes in the path between them. In order
to guarantee that no information is lost during this process we must demand the labeled tree to
satisfy the property below.

De�nition 3.2.

A lattice-labeled tree T = (V,E, λ,D) is said to satisfy the running intersection property if
for any i, j ∈ V it holds that λ(i) ∧ λ(j) ≤ λ(k) for all nodes k on the path between i and j.

A lattice-labeled tree that satis�es the running intersection property is called join tree.

De�nition 3.3.

Let (Φ, D) be a valuation algebra and φ ∈ Φ such that φ = φ1 ⊗ · · · ⊗ φn.

A join tree T = (V,E, λ,D) is called covering join tree for the factorization φ1 ⊗ · · · ⊗ φn if
|V | = n and for all φi there is a node vj ∈ V such that d(φi) ≤ λ(j).

Notice that this de�nition of covering join tree is di�erent to other de�nitions given in [8, 10]
because we enforce |V | = n. Nevertheless one can easily deduce that it is possible to obtain a
new factorization, based on the original one, with the adequate number factors for �tting the
number of tree nodes. On the other side, taking |V | = n allows us to link any valuation φi of
the factorization with a single tree node.

Taking this into account, we are going to enumerate the nodes in such a way that it will be easier
to work. After doing that we will be able to introduce the concept of node separator which will
also become really helpful.

Given T = (V,E, λ,D) a covering join tree for the factorization φ1 ⊗ · · · ⊗ φn we will number
the nodes vj ∈ V in the following way:

• The root node, vk, will be numbered as π(k) = |V | = r

• Given two nodes vi, vj ∈ V \ {vk} if vj is in the path from node vi to the root node, we
will write π(vi) = a < b = π(vj).

From now on we are going to assume that all the covering join trees are numbered in this way,
and thus we will refer to a = π(vi) instead of vj . Moreover, we will suppose that d(φi) ≤ λ(i),
thus we will link each valuation φi with the node numbered by i (see de�nition 3.6).

Before de�ning the separators we must remember some properties about trees.

De�nition 3.4.

Let T = (V,E) be a tree and let r be the root node.

For each i 6= r we de�ne the parent of the node i, denoted by pa(i), as the �rst node after i in
the path between i and r.

Furthermore, for each node i we de�ne the set of its children as ch(i) = {j ∈ V : pa(j) = i}.

Similary, for each node i we de�ne the set of its brothers as br(i) = {j ∈ ch(pa(i)) : j 6= i}

8

De�nition 3.5.

Given T = (V,E, λ,D) a covering join tree , the separator sep(i) of a node i < |V | is de�ned by

sep(i) = λ(i) ∧ λ(pa(i))

Although we are ready to formulate the collect algorithm and to prove that it can be used for
�nding some marginals using the notion of covering join tree we have just de�ned, we want to
improve the nodes' labels. In other words, we want the domains linked with the tree nodes and
the factorization valuations to be as small as possible.

For instance, it is clear that for any given factorization φ = φ1 ⊗ · · · ⊗ φn we can take any tree
with n nodes and link each one of these nodes with the whole domain d(φ), obtaining a covering
join tree. Nevertheless, this procedure has the problem that the collect algorithm manipulates
information related to the domains linked with the covering join tree, so we gain nothing by
factorizing the valuation φ, because we will have to use information packages domains as huge
as the original one.

De�nition 3.6.

Let T = (V,E, λ,D) a covering join tree for a given factorization φ = φ1 ⊗ · · · ⊗ φn.

For each node i we set

• αi = d(φi) ∨
∨

j∈ch(i)

αj for i = 1, . . . , r

• βi = d(φi) ∨
∨

j,k∈ch(i)
j 6=k

(αj ∧ αk) for i = 1, . . . , r

• λ′(i) = βi ∨ (λ(pa(i)) ∧ α(i)) for i = r, . . . , 1

Then we de�ne the optimized covering join tree over T as T ′ = (V,E, λ′, D)

Remark : Notice that αi and βi are well de�ned because j ∈ ch(i) implies j < i. Similarly λ′(i)
is well de�ned due to the fact that i < pa(i).

Before getting introduced to the collect algorithm we will prove that any optimized covering join
tree is itself a covering join tree. We will use the proposition below in order to obtain that result.

Proposition 3.7.

Let T = (V,E, λ,D) be an optimized covering join tree for a given factorization φ = φ1⊗· · ·⊗φn.
Then:

λ(i) ≤ αi, for all i ∈ V

Proof.
It is immediate to see that βi ≤ αi.
Then:

λ(i) = βi ∨ (λ(pa(i)) ∧ αi) ≤ αi ∨ (λ(pa(i)) ∧ αi) = αi

9

Theorem 3.8.

Let T = (V,E, λ,D) be an optimized covering join tree for a given factorization φ = φ1⊗· · ·⊗φn.
Then:

T is a covering join tree

Proof.
First, one must notice that for all φ(i) it is satis�ed d(φ(i)) ⊆ βi ⊆ λ′(i). Therefore we only have
to prove that the running intersection property is satis�ed.

Set p1, p2, . . . , pm the unique path between two given nodes p1, pm ∈ V . We want to see that

p1 ∧ pm ≤ pi, for 1 < i < m

Notice that if m ≤ 2 it is immediate to prove it. Therefore we will suppose m ≥ 3.

As long as T is a tree, the path can be seen as the composition of two di�erent paths. The �rst
part grows up from p1 path to some node pi such that pi = pa(i−1

... (pa(i))...)). On the other
side, the second part descends from pi to pm, satisfying pj = pa(m−j

... (pa(m))...)) . Notice that
if p1 6= pm at most one of these subpaths may be empty.

Then there are three possible con�gurations for the paths:

1. No subpath is empty, i.e. 1 � i � m

In this case, by proposition 3.7 we have that λ(p1) ≤ αp1 ≤ α(pi−1) and λ(pm) ≤ αpm ≤
α(pi−1). As long as pm−1, pm+1 ∈ ch(pi) we obtain:

λ(p1) ∧ λ(pm) ≤ α(pi−1) ∧ α(pi−1) ≤
∨

j,k∈ch(i)
j 6=k

(αj ∧ αk) ≤ βi ≤ λ(i)

2. The descendant path is empty, so i = m

In this case, we use proposition 3.7 in order to obtainλ(p1) ∧ λ(pm) ≤ λ(p1) ≤ α1 ≤ αm−1

On the other side we know that λ(p1) ∧ λ(pm) ≤ λ(pm) = λ(pa(pm−1))

In conclusion we obtain λ(p1) ∧ λ(pm) ≤ αm−1 ∧ λ(pa(pm−1)) ≤ λ(pm−1). Moreover:

λ(p1) ∧ λ(pm) ≤ λ(p1) ∧ λ(pm) ∧ λ(pm−1) ≤ λ(p1) ∧ λ(pm−1)

Then we have that λ(p1) ∧ λ(pm) ≤ λ(p1) ∧ λ(pm−1) ≤ · · · ≤ λ(p1) ∧ λ(p2)

Therefore λ(p1) ∧ λ(pm) ≤ λ(p1) ∧ λ(pi) ≤ λ(pi), for 1 < i < m

3. The ascendant path is empty so i = 1

In this case we will consider the path from pm to p1 and use the proof for empty descendant
path, as long as pm, pm−1, . . . , p1 would be an ascendant path.

10

3.2 Collect Algorithm

Given (Φ, D) be a valuation algebra and φ ∈ Φ such that φ = φ1⊗· · ·⊗φn, the aim of the collect
algorithm is compute φ↓d(φi) for some �xed i by only using φ1, . . . , φn.

In order to do that we suppose that we are given an optimized covering join tree for that factor-
ization. Notice that such a tree always exists, due to de�nition 3.6.

The algorithm is based on sending messages up the tree, through the edges of the covering join
tree, until the root node is reached. The message sent from each node summarizes the infor-
mation in the corresponding subtree which is relevant to its parent. As we will see the running
intersection property guarantees that no information is lost.

The collect algorithm may be described by the following rules:

R1 Each node sends a message to its parent once it has received all messages from its children.

R2 When a node is ready to send a message, it computes the message by projecting its current
content to the separator.

R3 When a node receives a message it updates its current content by combining it with the
incoming message

As one can deduce from these rules, the content of the nodes may change during the algorithm's
run. In order to simplify the lecture we will introduce the following notation:

• φ(1)
j = φj will denote the initial content of node j

• φ(i)
j will denote the content of node j before step i of the collect algorithm.

• yi =
r∨
j=i

λ(i)

Due to the way of numbering the nodes of the covering join tree we can suppose that during the
i-th step of the algorithm the node i sends a message to its parent. This fact allows us to de�ne
the message-passing as it follows:

• At step i, the node i computes the message

µi→pa(i) = (φ
(i)
i)↓sep(i)

• The receiving node pa(i) combines the message with its node content:

φ
(i+1)
pa(i) = φ

(i)
pa(i) ⊗ µi→pa(i)

• The content of all other nodes remains unchanged:

φ
(i+1)
j = φ

(i)
j , for all j 6= pa(i)

One can easily deduce that the algorithm has r−1 = |V |−1 steps as long as |E| = |V |−1. Thus

the content of any node at the end of the collect algorithm will be denoted by φ
(r)
j . Moreover,

looking at the structure of the collect algorithm it is immediate to prove that:

φ
(r)
j = φj ⊗

⊗
i∈ch(j)

µi→j

11

Proposition 3.9.

Let T = (V,E, λ,D) be an optimized covering join tree for a given factorization φ = φ1⊗· · ·⊗φn.
Then for i = 1, . . . , r it holds:

d(φ
(j)
i) = λ(i), for j ≥ i

Proof.
Due to how the collect algorithm works, we obtain that if j ≥ i it holds that

d(φ
(j)
i) = d(φ

(r)
i)φj = d(φi ⊗

⊗
i∈ch(j)

µi→j)

Therefore we can write d(φ
(j)
i) as it follows:

d(φ
(j)
i) = d(φ

(r)
i) = d(φi ⊗

⊗
k∈ch(i)

µk→i) = d(φi) ∨
∨

k∈ch(i)

µk→i) = d(φi) ∨
∨

k∈ch(i)

sep(k) =

= d(φi) ∨
∨

k∈ch(i)

(λ(k) ∧ λ(i))

Moreover d(φ
(j)
i) = (d(φi) ∨

∨
k∈ch(i)

λ(k)) ∧ λ(i) due to modularity (because d(φi) ≤ λ(i)).

Therefore d(φ
(j)
i) ≤ λ(i).

On the other hand by λ de�nition we know that λ(k) = βk ∨ (λ(pa(k)) ∧ αk) ≥ λ(pa(k)) ∧ αk.
Then, as long as pa(k) = i for all k ∈ ch(i) we obtain:

d(φi) ∨
∨

k∈ch(i)

(λ(k) ∧ λ(i)) ≥ d(φi) ∨
∨

k∈ch(i)

((λ(i) ∧ α(k) ∧ λ(i)) = d(φi) ∨
∨

k∈ch(i)

(α(k) ∧ λ(i))

Finally, using again the modularity we obtain:

d(φ
(j)
i) ≥ d(φi) ∨

∨
k∈ch(i)

(λ(i) ∧ α(k)) = (d(φi) ∨
∨

k∈ch(i)

α(k)) ∧ λ(i) = α(i) ∧ λ(i) = λ(i)

The following theorem proves that some marginals can be obtained from a given factorization.
A similar result can be found in the third chapter of [8], but it only holds for valuation algebras
on distributive lattices (like powersets in example 1), whereas the following theorem provides the
result for valuation algebras on modular lattices.

Theorem 3.10.

Let T = (V,E, λ,D) be an optimized covering join tree for a given factorization φ = φ1⊗· · ·⊗φn.
Then for i = 1, . . . , r it holds:

r⊗
j=i

φ
(i)
j = φ↓yi ,

In particular, for i = r we obtain that at the end of the collect algorithm, the root node r contains
the marginal of φ relative to λ(r).

φ(r)
r = φ↓λ(r)

12

Proof.
For i = 1 notice that y(1) = d(φ) because T covers a factorization φ1 ⊗ · · · ⊗ φr of φ. Therefore
we obtain:

φ↓λ(1) = φ↓d(φ) = φ = φ1 ⊗ . . . φn = φ
(1)
1 ⊗ . . . φ

(1)
n =

n⊗
j=1

φ
(1)
j

Now we will suppose that the equality holds for i and we will prove it for i+ 1:

We know that yi+1 ≤ yi due to how we de�ned yj , from that we obtain:

φ↓yi+1 = (φ↓yi)↓yi+1 = (φ
(i)
i ⊗ φ

(i)
i+1 ⊗ · · · ⊗ φ

(i)
r)↓yi+1 = ((φ

(i)
i)⊗ (φ

(i)
i+1 ⊗ · · · ⊗ φ

(i)
r))↓yi+1

Notice that as long as d(φ
(i)
j) ≤ λ(j) for all i we obtain d(φ

(i)
i+1 ⊗ · · · ⊗ φ

(i)
r) ≤ yi+1

In particular we can apply the combination axiom A5 obtaining:

((φ
(i)
i)⊗ (φ

(i)
i+1 ⊗ · · · ⊗ φ

(i)
r))↓yi+1 = (φ

(i)
i)↓d(φ

(i)
i)∧yi+1 ⊗ (φ

(i)
i+1 ⊗ · · · ⊗ φ

(i)
r)

Considering the way we numbered the tree nodes we obtain that d(φ
(i)
i)∧yi+1 = d(φ

(i)
i)∧λ(pa(i))

due to the running intersection property and the fact that i < pa(i)

Furthermore, by theorem 3.9 we obtain d(φ
(i)
i) ∧ yi+1 = λ(i) ∧ λ(pa(i)) = sep(i).

So:

φ↓yi+1 = (φ
(i)
i)↓d(φ

(i)
i)∧yi+1 ⊗ (φ

(i)
i+1 ⊗ · · · ⊗ φ

(i)
r) = ((φ

(i)
i)sep(i) ⊗ φ(i)

pa(i))⊗
⊗

j∈{i+1,...,r}
j 6=pa(i)

φ
(i)
j =

= (µi→pa(i) ⊗ φ
(i)
pa(i))⊗

⊗
j∈{i+1,...,r}
j 6=pa(i)

φ
(i)
j = φ

(i+1)
pa(i) ⊗

⊗
j∈{i+1,...,r}
j 6=pa(i+1)

φ
(i+1)
j =

⊗
j∈{i+1,...,r}

φ
(i+1)
j

13

4 Valuation Algebras on Partition Lattices

Next, we are going to show how to de�ne a semiring induced valuation algebra on a partition
lattice domain.

The reason to take partition lattice domains is that they are the most general �nite lattices
(see theorem 4.4,). Therefore any result on a partition lattice can be used on any lattice.

On the other hand, we de�ne the valuation algebra over a semiring because Action-GDL need
this algebraic structure.

Thus in section 4.1 we recall what partition lattices are, whereas next section will introduce the
raise and decrease operations which will be useful to de�ne valuations on partition lattices.

Finally, the last sections of the chapter refresh what semirings and multisets are and we use these
concepts to de�ne a semiring induced valuation algebra on a partition lattice. It is important
to remark that most of the results and concepts that one can �nd in this section are completely
original and have been designed in order to de�ne this valuation algebra.

4.1 Partition Lattices

De�nition 4.1.

A partition Π = {Bi : 1 ≤ i ≤ n} of a set X called universe consists of a collection of subsets
Bi ⊂ X called blocks such that:

• Bi 6= ∅

• Bi ∩Bj = ∅ for i 6= j and 1 ≤ i, j ≤ n

•
⋃n
i=1Bi = X

We denote the set of all possible partitions of a universe X by Part(X)

De�nition 4.2.

Let X be a set and π1, π2 ∈ Part(X).
We say that π1 is �ner than π2 ,or π2 is coarser than π1, if every block of π1 is contained in
some block of π2 or equivalently if every block of π1 is a union of blocks from π2.

Figure 1 shows an example of two partitions which can be compared. Notice that each block in
the �ner partition is contained in some block of the coarser partition.

14

Figure 1: Partitions

De�nition 4.3. Using the last de�nition we can induce two di�erent partial order relations over
Part(X):

1. π1 ≤1 π2 ⇔ π2 is coarser than π1.

2. π1 ≤2 π2 ⇔ π2 is �ner than π1.

It can be proved that (Part(X),≤1) is a complete lattice with ⊥1 = {{x} : x ∈ X} as a bottom
element, and >1 = {X} as a top element.

Equivalently, (Part(X),≤2) is a complete lattice with ⊥2 = {X} as a bottom element, and
>2 = {{x} : x ∈ X} as a top element.

From now on, we will call (Part(X),≤2) the partition lattice of a universe X and we will denote
it by (Part(X),≤) or Part(X).

We will also denote it's bottom element {X} by ⊥, and its unique block X by �

Next theorem will allow us to generalize valuation algebras in order to contain DCOP valuation
algebra in example 1 as long as the valuation algebra related to CSG problem. The proof of this
theorem can be found on [2].

Theorem 4.4. For every �nite lattice L there is a �nite set X such that L can be embedded in
Part(X)

It is important to remark that, despite theorem 4.4 just refers to �nite lattices, the same result
holds for in�nite lattices [2].

Although most de�nitions and some results in this chapter hold for partiton lattices of in�nite
universes, we will consider them to be �nite later on, as long as one can only store a �nite
quantity of information.

4.2 Rise and Decrease

In this section we will talk about rise and decrease, two operations on partition lattices which
we de�ned in order to generalize the projection of variables and the union of projections seen in
example 1.

15

4.2.1 De�nition of rise and decrease

De�nition 4.5.

Let X be a set and π1, π2 ∈ Part(X) such that π1 ≤ π2. We de�ne the raise of a block b ∈ π1

to π2 as:

b ⇑ π2 = {x ∈ π2 : x ⊆ b}

Figure 2 shows the raise of a block using the partitions shown in �gure 1:

Figure 2: Raise of a Block

De�nition 4.6.

Let X be a set and π1, π2 ∈ Part(X) such that π1 ≤ π2. We de�ne the decrease of a block b ∈ π2

to π1 as:

b ⇓ π1 = {x ∈ π1 : b ⊆ x}

Figure 3 shows the decrease of a block using the same partitions that where used in the previous
�gures:

Figure 3: Decrease of a Block

Proposition 4.7.

Let X be a set and π1, π2 ∈ Part(X) such that π1 ≤ π2. Let b ∈ π2 be a block. Then:

b ⇓ π1 has only one element.

Proof.
Let x, y ∈ π1 such that x, y ∈ b ⇓ π1.
(x, y) ∈ b ⇓ π1 implies that b ⊆ x and b ⊆ y, thus b ⊆ x ∩ y, in particular x ∩ y 6= ∅.
As long as x, y ∈ π1 are blocks, we know that x 6= y implies x∩ y 6= ∅, thus we obtain x = y

De�nition 4.8.

Let X be a set and π1, π2 ∈ Part(X) such that π1 ≤ π2. Let b ∈ π2 be a block. We will denote
the only element in b ⇓ π1 as bπ1

16

4.2.2 Properties of rise and decrease

As long as rise and decrease will generalize the projection it turns necessary to know which prop-
erties do they satisfy. Next proposition just enumerates some properties, whereas the following
lemmas will be necessary to de�ne a valuation algebra.

Proposition 4.9. Properties of rise and decrease

Let X be a set and π1, π2 ∈ Part(X) such that π1 ≤ π2. Let a ∈ π1 and b ∈ π2 be blocks. Then:

1. x 6= bπ1 ⇒ b ∩ x = ∅ , ∀x ∈ π1

2. a =
⋃

x∈a⇑π2

x

3. ∀x ∈ (a ⇑ π2)⇒ xπ1 = a

4. b ∈ (bπ1 ⇑ π2)

Proof.
They are direct from the de�nition of raise and decrease.

Lemma 1.

Let X be a set and π0, π1, π2 ∈ Part(X) such that π0 ≤ π1 ≤ π2. Let b be a block from π2. Then:

bπ0 = (bπ1)π0

Proof.
We know that b ⊆ bπ1 ⊆ (bπ1)π0 ∈ π0. We also know that it only exist a block in π2 that contains
b and this block is bπ0 Proposition 4.7

Notice that Figure 4 shows that bπ0 = (bπ1)π0 , therefore it is an example of lemma 1.

Figure 4: Lemma 1 representation

Lemma 2.

Let X be a set and π0, π1, π2 ∈ Part(X) such that π0 ≤ π1 ≤ π2. Let b be a block from π0. Then:

b ⇑ π2 =
⋃

x∈b⇑π1

x ⇑ π2

17

Proof.

Let z ∈ π2 such that z ∈
⋃

x∈b⇑π1

x ⇑ π2.

Then it exist a block x ∈ (b ⇑ π1) such that z ∈ (x ⇑ π2), which implies that x ⊆ b and z ⊆ x,
so z ⊆ b. Hence, in particular z ∈ (b ⇑ π2)

Suppose now that z ∈ b ⇑ π2.
We know, by property 4, that z ∈ zπ1 ⇑ π2 so we only need to prove that zπ1 ∈ b ⇑ π1.

We also know that b = zπ0 property 3, and the previous lemma tells us that zπ0 = (zπ1)π0 , but
zπ0 = b which means that zπ1 ∈ (b ⇑ π1) property 4.

Figure 5 shows an example of lemma 2. Notice that if we raise both blocks in b ⇑ π1 we just
obtain the blocks in b ⇑ π2.

Figure 5: Lemma 2 representation

4.2.3 Rise and decrease of block sets

We have already de�ned how to raise and decrease a block, but looking at lemma 2 one may
deduce that sometimes it turns necessary to raise or decrease a set of blocks. Next we will give
a formal de�nition for set raising and decreasing. In addition, we will rewrite the properties
already seen in such a way that they will hold for block sets.

De�nition 4.10.

Let X be a set and π1, π2 ∈ Part(X) such that π1 ≤ π2. We de�ne the raise of a subset A ⊆ π1

to π2 as:

A ⇑ π2 =
⋃
x∈A

x ⇑ π2

De�nition 4.11.

Let X be a set and π1, π2 ∈ Part(X) such that π1 ≤ π2. We de�ne the decrease of a subset
A ⊆ π2 to π1 as:

A ⇓ π1 =
⋃
x∈A

x ⇓ π1 = {xπ1 : x ∈ A}

Remark : {b} ⇓ π1 = {bπ1}

18

With these de�nitions above we can rewrite lemma 1 and lemma 2 as it follows:

Lemma 1

Let X be a set and π0, π1, π2 ∈ Part(X) such that π0 ≤ π1 ≤ π2. Let A be a subset of π2. Then:

A ⇓ π0 = (A ⇓ π1) ⇓ π0

Lemma 2

Let X be a set and π0, π1, π2 ∈ Part(X) such that π0 ≤ π1 ≤ π2. Let A be a subset of π0. Then:

A ⇑ π2 = (A ⇑ π1) ⇑ π2

Moreover, given X a set, π1, π2 ∈ Part(X) such that π1 ≤ π2, A ⊆ π1 and B ⊆ π2 we can also
rewrite the properties 3 and 4 of the rise and decrease:

3. A = A ⇑ π2 ⇓ π1.

4. B ⊆ B ⇓ π1 ⇑ π2.

As it's clear than A = B implies that their rise and decrease will be equal we obtain the following
result.

Proposition 4.12.

Let X be a set and π1, π2 ∈ Part(X) such that π1 ≤ π2. Let A,B ⊆ π1 . Then:

A ⇑ π2 = B ⇑ π2 ⇔ A = B

Proof.
A = B ⇒ A ⇑ π2 = B ⇑ π2 is clear, so we only have to demonstrate A ⇑ π2 = B ⇑ π2 ⇒ A = B.
Due to the property 3 we obtain:

A ⇑ π2 = B ⇑ π2 ⇒ A = A ⇑ π2 ⇓ π1 = B ⇑ π2 ⇓ π1 = B

.

Remark : A ⇓ π1 = B ⇓ π2 doesn't imply that A = B, because property 4 doesn't give an
equality but an inclusion.

As we will see later, the following lemma will allow us to know when it is possible to de�ne a
valuation algebra on a partition lattice.

Lemma 3.

Let X be a set and π0, π1, π2, π3 ∈ Part(X) such that π0 ≤ π1 ≤ π3 and π0 ≤ π2 ≤ π3 . Let
b ∈ π2 be a block . Then:

b ⇑ π3 ⇓ π1 ⊆ b ⇓ π0 ⇑ π1

Proof.
The property 3 tells us that x ⇓ π0 ⇑ π1 = x ⇓ π0 ⇑ π1 ⇑ π3 ⇓ π1.

Then, by lemma 2 we obtain: x ⇓ π0 ⇑ π1 ⇑ π3 ⇓ π1 = x ⇓ π0 ⇑ π3 ⇓ π1 = x ⇓ π0 ⇑ π2 ⇑ π3 ⇓
π1 = (x ⇓ π0 ⇑ π2) ⇑ π3 ⇓ π1 which is a superset of x ⇑ π3 ⇓ π1 due to property 4.

19

4.3 Semirings and Multisets

Before being able to de�ne a valuation algebra on partition lattice we need to recall what R −
multisets are, as long as de�ne the raise and decrease of multisets. In order to do that, we will
introduce the needed concepts during the following pages.

De�nition 4.13.

A semiring is a tuple 〈A,+,×〉, where + and × are binary operations such that:

• + and × are both associative

• + is commutative

• for a, b, c ∈ R: a× (b+ c) = a× b+ a× c

• for a, b, c ∈ R: (a+ b)× c = a× c+ b× c

• + has a neutral element e+

• × has a neutral element e×

• a× e+ = e+ × a = e+ for all a ∈ R

A semiring is called commutative if a× b = b× a for all a, b ∈ A

A semiring is called cancellative if for all a, b, c ∈ A we have:

a× b = a× c ⇒ b = c

De�nition 4.14.

Let X be a �nite set and R be a semiring. Given Π ∈ Part(X) a R-multiset over Π is a mapping

Φ : Π→ R
b 7→ Φ(b)

We say that Π is the domain of Φ and we denote it by d(Φ)

Example 2. R−Multiset over a partition

This example will show how a R−Multiset over a partition can be represented.

Let R = 〈Z,+,×〉 and Π = {b1, b2, b3} be a partiton with three blocks.
Then the R-multiset de�ned by

Φ : Π→ Z
b1 7→ 3
b2 7→ −1
b3 7→ 2

will be represented as:

20

Next, we are going to de�ne the raise and decrease of multisets, which will turn very important
in order to de�ne combination and projection operations in section 4.4.

De�nition 4.15.

Let X be a �nite set and R be a semiring. Let π1, π2 ∈ Part(X) such that π1 ≤ π2. We de�ne
the raise of a R-multiset Φ : π1 → R over π1 to π2 as the R-multiset over π2 de�ned by:

(Φ ⇑ π2) : π2 −→ R
b 7−→ Φ(bπ1)

Although one may imagine how the raise of a R−multiset looks like, �gure 6 shows it.

Figure 6: Raise of a Multiset

De�nition 4.16.

Let X be a �nite set and R be a semiring. Let π1, π2 ∈ Part(X) such that π1 ≤ π2. We de�ne
the decrease of a R-multiset Φ : π2 → R over π2 to π1 as the R-multiset over π1 de�ned by:

(Φ ⇓ π1) : π1 −→ R

b 7−→
∑

a∈(b⇑π2)

Φ(a)

Figure 7 shows an example of a Multiset decrease.

Figure 7: Decrease of a Multiset

4.4 De�ning a valuation algebra on a partition lattice

Notice that R−multisets over partitions can be seen as information contained in each block. We
will use this fact in order to de�ne a valuation algebra on partition lattices.

First of all we must de�ne the operations of labeling, combination and projection. This will
be done in the following section, whereas in section 4.4.2 we will create the desired valuation
algebra.

21

4.4.1 Valuations and operations on partition lattices

De�nition 4.17.

Let X be a �nite set and R be a semiring. Let φ be a R-multiset over π1 ∈ Part(X). Let ψ
be a R-multiset over π2 ∈ Part(X). We de�ne the combination of φ and ψ as the following
R-multiset over π1 ∨ π2:

(φ⊗ ψ) : π1 ∨ π2 −→ R
b 7−→ φ(bπ1)× ψ(bπ2)

Notice that as we can see in �gure 8 it holds that φ⊗ ψ = (φ ⇑ (π1 ∨ π2))× (ψ ⇑ (π1 ∨ π2)).

Figure 8: Combination

De�nition 4.18.

Let X be a �nite set and R be a semiring. Let π1, π2 ∈ Part(X) such that π1 ≤ π2 and let φ be
a R-multiset over π2. We de�ne the projection of φ to π1 as:

φ↓π1 = (φ ⇓ π1)

De�nition 4.19.

Let X be a �nite set and D ⊆ Part(X)
Let R be a commutative semiring.

We denote by Φ the �nite set of R-multisets over elements from D

For each π ∈ D we de�ne Φπ as the set of R-multisets over π.

We de�ne a R-valuation algebra candidate over D as the tuple 〈Φ, D〉 with the following opera-
tions:

• Labeling :Φ→ D; φ 7→ d(φ)

• Combination: Φ⊗ Φ→ Φ; (φ, ψ) 7→ φ⊗ ψ

• Projection: Φ×D → Φ; (φ, π) 7→ φ ⇓ π , for π ≤ d(φ)

22

4.4.2 Valuable partition lattices

Although we have just de�ned valuations on partition lattice we still must prove that the satisfy
the valuation algebra axioms (see de�nition 2.2). Unfortunately, valuation algebra axioms don't
hold for any set of valuations on partition lattices, therefore we must de�ne when it is possible
to de�ne a valuation algebra.

De�nition 4.20.

Let X a �nite set. A valuable partition lattice over X is de�ned as any sublattice D ⊆ Part(X)
such that for all π1, π2, π3 ∈ D such that π1 ≤ π3, π2 ≤ π3 we have:

b ⇓ (π1 ∧ π2) ⇑ π1 = b ⇑ π3 ⇓ π1 for all b ∈ π2

Recall that Lemma 3 told us that b ⇓ (π1 ∧ π2) ⇑ π1 ⊆ b ⇑ π3 ⇓ π1 is always satis�ed. Therefore
valuable partition lattices satisfy the equality instead of the subset relation in Lemma 3.

Figure 9 shows this property that all blocks in a valuable partition lattice must satisfy. Hence,
the partition lattice 〈{π1, π2, π3, π1 ∧ π2},∨,∧〉 is in fact a valuable partition lattice.

Figure 9: A valuable partition latice

Notice that in Figure 9 we have that π3 = π1 ∨ π2. This has been made on purpose in order to
introduce the following proposition. It will give us an alternative de�nition for valuable partition
lattices, as long as an important property which they satisfy.

Proposition 4.21.

Let X be a �nite set and D ⊆ Part(X) a sublattice. Then:

D is a valuable partition lattice over X
if and only if

b ⇓ (π1 ∧ π2) ⇑ π1 = b ⇑ (π1 ∨ π2) ⇓ π1 for all π1, π2 ∈ D, b ∈ π2

Proof.
It's clear that π1 ≤ π3 and π2 ≤ π3 implies (π1 ∨ π2) ≤ π3.

In particular if π2 ⇓ (π1 ∧ π2) ⇑ π1 = π2 ⇑ (π1 ∨ π2) ⇓ π1, for all π1, π2 ∈ D we can use some
results already proven in order to obtain that D is a valuable partition lattice over X:

b ⇓ (π1 ∧ π2) ⇑ π1 = b ⇑ (π1 ∨ π2) ⇓ π1 = b ⇑ (π1 ∨ π2) ⇑ π3 ⇓ (π1 ∨ π2) ⇓ π1 = b ⇑ π3 ⇓ π1

23

On the other side, if we set π3 = π1 ∨ π2 it holds that π1 ≤ π3 and π2 ≤ π3.

So using the valuable partition lattice de�nition we obtain b ⇓ (π1 ∧ π2) ⇑ π1 =⇑ π3 ⇓ π1 =⇑
(π1 ∨ π2) ⇓ π1.

Proposition 4.22.

Let D be a valuable partition lattice over a �nite set X and let π0, π1, π2 ∈ D such that π0 ≤
π2 ≤ π0 ∨ π1. Then we have:

(b ⇓ (π1 ∧ π2)) ⇑ π1 = (b ⇑ (π0 ∨ π1)) ⇓ π1 , for all b ∈ π2

Proof.
Using ∨ de�nition, one can easily deduce π0∨π1 = π2∨π1 from the expression π0 ≤ π2 ≤ π0∨π1.
Thus from the de�nition of valuable partition lattice we obtain (b ⇓ (π1 ∧ π2)) ⇑ π1 = (b ⇑
(π1 ∨ π2)) ⇓ π1 = (b ⇑ (π0 ∨ π1)) ⇓ π1.

Thinking about valuation algebras axioms, one may deduce that most problematic axiom when
de�ning valuation algebras is the combination axiom (A5). Recall that theorem 2.6 shows that
a modular lattice is needed in order to de�ne a good valuation algebra. On the other side last
proposition will allow us to prove that valuations on a valuable partition lattice satisfy the axiom.
Therefore we obtain the following theorem:

Theorem 4.23.

Let X be a �nite set and D ⊆ Part(X) and let 〈Φ, D〉 be a R-valuation algebra candidate. Then:

D modular valuable partition lattice ⇒ 〈Φ, D〉 is a valuation algebra.

Proof.
We have to verify the six axioms related to valuation algebras. In order to that we will use
the combination and projection de�nitions given in section 4.4.1. Therefore we will write the
valuation algebras' axioms as it follows:

A1 Φ is associative and commutative under ⊗.

As long as commutativity is guaranteed by × commutativity on R we only have to verify
the associativity.

Let φ, ψ, ϕ ∈ Φ with domains π1, π2, π3 respectively.

First of all we must verify that d(φ⊗ ψ)⊗ ϕ) = d(φ⊗ (ψ ⊗ ϕ))

d(φ⊗ ψ)⊗ ϕ) = (π1 ∨ π2) ∨ π3 = π1 ∨ (π2 ∨ π3) = d(φ⊗ (ψ ⊗ ϕ))

Now, let b ∈ π1 ∨ π2 ∨ π3 be a block.

((φ ⊗ ψ) ⊗ ϕ) (b) = (φ ⊗ ψ)(bπ1∨π2) × ϕ(bπ3) = φ((bπ1∨π2)π1) × ψ((bπ1∨π2)π2) × ϕ(bπ3) =
φ(bπ1)× ψ(bπ2)× ϕ(bπ3)

By a similar reasoning we obtain (φ⊗ (ψ ⊗ ϕ)) (b) = φ(bπ1)× ψ(bπ2)× ϕ(bπ3)

A2 For φ, ψ ∈ Φ we have that d(φ⊗ ψ) = d(φ) ∨ d(ψ)

It's clear due to the de�nition of the combination.

24

A3 For φ ∈ Φ, π ∈ D such that π ≤ d(φ) we have that d(φ ⇓ π) = π

It's clear due to the de�nition of the projection.

A4 For φ ∈ Φ, π0, π1, π2 ∈ D such that π0 ≤ π1 ≤ π2 = d(φ) we have that (φ ⇓ π1) ⇓ π0 =
φ ⇓ π0

Let b ∈ π0 be a block. By the lemma 2 we have:

((φ ⇓ π1) ⇓ π0) (b) =
∑

a∈(b⇑π1)

(φ ⇓ π1) (a) =
∑

a∈(b⇑π1)

∑
x∈(a⇑π2)

φ (x) =
∑

x∈(
⋃
b⇑π1

x⇑π2)

φ (x) =

∑
x∈(b⇑π1)⇑π2

φ (x) =
∑

x∈b⇑π2

φ (x) = (φ ⇓ π0) (b)

A5 For φ, ψ ∈ Φ, with domain π0 and π1 respectively and for all π2 ∈ D such that

π0 ≤ π2 ≤ π0 ∨ π1, we have that (φ⊗ ψ) ⇓ π2 = φ⊗ (ψ ⇓ π2 ∧ π1))

First of all we must verify that d((φ⊗ ψ) ⇓ π2) = d(φ⊗ (ψ ⇓ π2 ∧ π1))).

It's clear that d((φ⊗ψ) ⇓ π2) = π2. On the other side d(φ⊗(ψ ⇓ π2∧π1))) = π0∨(π2∧π1) =
π2 due to Proposition 2.5

Now, let b ∈ π2 be a block.

(φ⊗ (ψ ⇓ π2 ∧ π1)) (b) = φ(bπ0)× (ψ ⇓ (π2 ∧ π1)) (bπ2∧π1) = φ(bπ0)×
∑

x∈(bπ2∧π1⇑π1) ψ(x).

((φ⊗ ψ) ⇓ π2) (b) =
∑

x∈(b⇑(π0∨π1))(φ⊗ ψ)(x) =
∑

x∈(b⇑(π0∨π1)) φ(xπ0)× ψ(xπ1).

We must remark that for all x ∈ (b ⇑ (π0 ∨ π1)) we have xπ0 = x(π0∨π1)π0
= bπ0 .

From that, we obtain ((φ⊗ ψ) ⇓ π2) (b) = φ(bπ0)×
∑

x∈(b⇑(π0∨π1)) ψ(xπ1), so for ending the
proof we have to verify that ∑

x∈(bπ2∧π1⇑π1)

ψ(x) =
∑

x∈(b⇑(π0∨π1))

ψ(xπ1)

Equivalently we can verify bπ2∧π1 ⇑ π1 = {xπ1 : x ∈ (b ⇑ (π0 ∨ π1))} but as long as D is a
valuable partition lattice we have bπ2∧π1 ⇑ π1 = b ⇓ π2 ∧ π1 ⇑ π1 = b ⇑ (π0 ∨ π1) ⇓ π1 =
{xπ1 : x ∈ (b ⇑ (π0 ∨ π1))} where the second equality is due to Proposition 4.22.

A6 For φ ∈ Φ , φ ⇓ d(φ) = φ

It's clear that for each π ∈ Part(X) we have bπ = b for all b ∈ π.

25

Although we have just shown how to de�ne a valuation algebra on a partition lattice, we would
like to prove that it has been done in the most general way possible.

Notice that it can easily be proven that if 〈Φ, D〉 is a valuation algebra it holds that D is a
modular valuable partition lattice. We already know that modularity is needed and we only
have to accept the axiom 5 in order to obtain that valuable partition lattices are also needed.

Theorem 4.24.

Let X be a �nite set and D ⊆ Part(X) and let 〈Φ, D〉 be a R-valuation algebra candidate. Then:

D modular valuable partition lattice ⇔ 〈Φ, D〉 is a valuation algebra.

From now on we will do a distinction between the valuation algebras notation and theR−multisets
and partition notation.
Therefore, when talking about valuation algebras domains we will write elements of the lattice
x, y, z instead of the partition notation π, π1, π2. Moreover, we will write φ↓x instead of φ ⇓ π .

26

5 Dynamic Programming

As we saw in chapter 3, the collect algorithm can be generalized from distributive lattices to
modular lattices. In this chapter we will generalize the Action-GDL algorithm, which was cre-
ated to solve DCOPs.

This chapter relies in the chapter 8 of [8], where it is shown the Action-GDL under the name
of computing solutions without distribute. Therefore, the domain lattices in that chapter are
powerset lattices, which are boolean lattices. In fact, most of the proofs and de�nitions are made
using the existence of a complementary domain.

On the other hand, we will work on modular valuable partition lattices domains, which in general
do not satisfy neither the existence of a complementary nor the distributive property, therefore
we will do a generalization of the contents in [8].

It is important to remark that during the study of chapter 8 in [8] we came across with a coun-
terexample of theorem 8.1. That theorem plays a very important role on that chapter because
all the algorithms proposed there rely on it.

Fortunately we found how to �x the problem with a little change in the theorem statement, but
it has a little cost: the semiring 〈A,+,×〉 employed to de�ne the valuation algebra must be
cancellative.

Nevertheless, in most practical applications, Action-GDL uses the tropical or the arctic semirings,
de�ned as 〈R ∪ {+∞},min,+〉 and 〈R ∪ {−∞},max,+〉 respectively, which are cancellative
semirings [4].

5.1 Idempotent Valuation Algebras on Partition Lattices

As long as Action-GDL works on tropical or arctic semirings induced valuation algebras it makes
sense to think that it would work on any valuation algebra over a semiring with the same prop-
erties.

These properties, apart from cancellativity, are a total order and an idempotent +. We will
de�ne these concepts as long as some important results related to them in this section.

De�nition 5.1.

A semiring 〈A,+,×〉 is said to be idempotent if a+ a = a for all a ∈ A.

In order to know whether + is idempotent or not we will write ⊗ instead of + when it must be
an idempotent operation.

De�nition 5.2.

Given R = 〈A,+,×〉 a semiring, we de�ne the canonical partial order ≤ in R by setting

a ≤ b⇔ there is c ∈ A such that a+ c = b

If this order is a total order, then we will say that our semiring is a totally ordered semiring.

27

The proposition below will be useful in order to work with idempotent semirings.

Proposition 5.3.

Let 〈A,⊕,×〉 be an idempotent semiring. Then:

a ≤ b⇔ a⊕ b = b

Proof.
It is clear that a⊕ b = b⇒ a ≤ b. Therefore we only have to prove the opposite implication.

Suppose a ≤ b, i.e. there is c ∈ A such that a⊕ c = b. Then by idempotency we obtain:

a⊕ b = a⊕ a⊕ c = a⊕ c = b

Notice that in any totally ordered idempotent semiring we have that a⊕ b = max⊕(a, b), where
max⊕ is the maximum according to the canonical order de�ned by ⊕.

The propositions below generalize this idea showing that
⊕
x∈X

x = max⊗{x : x ∈ X} .

Proposition 5.4.

Let 〈A,⊕,×〉 be a totally ordered, idempotent semiring and let X = {x1, . . . , xn} ⊂ A. Then:

There is xi ∈ X such that
⊕
x∈X

x = xi

Proof.
The case n = 1 is immediate.

For |X| ≥ 2 we will suppose that our proposition holds for any Y ⊆ A such that |Y | ≤ n− 1.

By the associative property of ⊕ we obtain
⊕
x∈X

x = x1 ⊕
⊕

x∈X\{x1}

x

As long as 〈A,⊕,×〉 is a totally ordered semiring, at least one of the following expressions must
be satis�ed:

• x1 ≥
⊕

x∈X\{x1}

x, which would imply that x1 ⊕
⊕

x∈X\{x1}

x = x1

• x1 ≤
⊕

x∈X\{x1}

x, which would imply that x1 ⊕
⊕

x∈X\{x1}

x =
⊕

x∈X\{x1}

x = xj for some 1 � j

Remark : Notice that due to the proof, it is immediate to see that xi ≥ xj for all xj ∈ X. In
particular we obtain: ⊕

x∈X
x = max⊗{x : x ∈ X}

28

Proposition 5.5.

Let 〈A,⊕,×〉 be a totally ordered, idempotent semiring and let X ⊆ Y ⊆ A with |X| < ∞ and
|Y | <∞. Then: ⊕

x∈X
x ≤

⊕
y∈Y

y

Proof.

As long as X ⊆ Y we have
⊕
y∈Y

y =
⊕
x∈X

x ⊕
⊕

z∈Y−X
z. In order to simplify the notation we can

write α =
⊕
x∈X

x and β =
⊕

z∈Y−X
z.

In particular
⊕
y∈Y

y = α⊕ β

Using that 〈A,⊕,×〉 is totally ordered, at least one of the following expressions must be satis�ed:

• α ≤ β: Then α⊕ β = β, so α ≤ β =
⊕
y∈Y

y

• β ≤ α: Then α⊕ β = α. Therefore, we have α = α⊕ β =
⊕
y∈Y

y. In particular α ≤
⊕
y∈Y

y

From now on we will consider 〈Φ, D〉 to be a valuation algebra on a modular valuable partition
lattice de�ned over a totally ordered, idempotent semiring.

5.2 Solutions and Extensions

Given φ a valuation, the Action-GDL aim is �nding the con�guration of its domain which max-
imizes or minimizes φ.

In fact, Action-GDL computesmax⊕ using the tropical or the arctic semiring depending on what
are we looking for, i.e. we use ⊕ = min if we want the minimum con�guration whereas we use
⊕ = max if we want to maximize the valuation.

Notice that �nding the maximum con�guration is the same that �nd a con�guration x such that
φ(x) = max⊗{φ(x) : x ∈ d(φ)}. Therefore, according to proposition 5.4 remark we have that
�nding the maximum value is equivalent to �nd x ∈ d(φ) such that

φ(x) = max⊗{φ(x) : x ∈ X} =
⊕
x∈d(φ)

φ(x) = φ↓⊥(�)

On the other hand, compute the projection from d(φ) to ⊥ could be so di�cult due to d(φ) size.
Therefore, we will use the projection axiom of valuation algebras in order to compute φ from
φ↓⊥ with some intermediate steps which we will call extensions.

In this section we are going to de�ne the notion of extension sets and the notion of solution,
which will allow us to do the process de�ned above.

29

De�nition 5.6.

Given φ a valuation, s ∈ D such that s ≤ d(φ) and β ∈ s we de�ne the set of extensions of β
with respect to φ as:

W s
φ(β) = {b ∈ (β ⇑ d(φ)) : φ(b) = φ↓s(β)}

Lemma 4.

Let φ be a valuation and s ∈ D such that s ≤ d(φ). Let β ∈ s and b ∈ (β ⇑ d(φ)). Then, for all
u such that s ≤ u ≤ d(φ) it holds:

φ(b) = φ↓u(bu) = φ↓s(β) ⇔ φ(b) = φ↓s(β)

Proof.
It's clear that φ(b) = φ↓u(bu) = φ↓s(β) ⇒ φ(b) = φ↓s(β).

Therefore we only have to prove φ(b) = φ↓s(β)⇒ φ(b) = φ↓u(bu) = φ↓s(β)

We must remark that b ∈ (β ⇑ d(φ)) ⇒ b ⊆ β, moreover, as long as s ≤ u ≤ d(φ), we obtain
b ⊆ bu ⊆ bs = β . Thus, in particular {bu} ⊆ (β ⇑ u).

Using that fact, we can secure that bu ⇑ d(φ) ⊆ (β ⇑ u) ⇑ d(φ), obtaining:

φ↓u(bu) =
⊕

a∈bu⇑d(φ)

φ(a) ≤
⊕

a∈(β⇑u)⇑d(φ)

φ(a) = φ↓s(β) = φ(b)

But as long as b ∈ (bu ⇑ s) we have
⊕

a∈(bu⇑d(φ)) φ(a) ≥ φ(b), hence φ(b) = φ↓u(bu).

The following theorem shows that the extension from a block β to a bigger domain d(φ) can be
made in two steps: �rst we extend β to some domain u bigger than β's domain but smaller than
d(φ), and then we extend the elements of this extension to d(φ).

Theorem 5.7.

Let φ be a valuation, s ∈ D such that s ≤ d(φ) and β ∈ s. Then, for all u ∈ D such that
s ≤ u ≤ d(φ) it holds:

W s
φ(β) = {b ∈ (β ⇑ d(φ)) : bu ∈W s

φ↓u(β) and b ∈W u
φ (bu)}

Proof.
Using de�nition 5.6 we have that

W s
φ⇓u(β) = {α ∈ (β ⇑ u) : φ↓u(α) = φ↓u↓s(β)}

W u
φ (bu) = {α ∈ {bu ⇑ d(φ)} : φ(α) = φ↓u(bu)}

In particular:
α ∈W s

φ↓u(β)⇔ φ↓u(α) = φ↓s(β)

α ∈W u
φ (bu)⇔ φ(α) = φ↓u(αu)

.

30

Hence, we obtain:

{b ∈ (β ⇑ d(φ)) : bu ∈W s
φ↓u(β) and b ∈W u

φ (bu)} =

{b ∈ (β ⇑ d(φ)) : φ↓u(bu) = φ↓s(β) and φ(b) = φ↓u(bu)} =

{b ∈ (β ⇑ d(φ)) : φ(b) = φ↓u(bu) = φ↓s(β)} = W s
φ(β)

Where the last equality is due to lemma 4

De�nition 5.8. Given φ a valuation, we de�ne it's solution set as follows:

cφ = W⊥φ (�)

Remark

cφ = W⊥φ (�) = {b ∈ (� ⇑ d(φ)) : φ(b) = φ↓⊥(�)} = {b ∈ d(φ) : φ(b) = φ↓⊥(�)} =

{b ∈ d(φ) : φ(b) = φ↓s(bπ) = φ↓⊥(�)} for all s ≤ d(φ)

Lemma 5.

Let φ be a valuation and s ∈ D such that s ≤ d(φ)
Then:

cφ↓s = (cφ) ⇓ s

Proof.
Given α ∈ cφ ⇓ s, then, for all a ∈ (α ⇑ d(φ)) it holds φ(a) = φ↓s(as) = φ↓⊥(�) = φ↓s↓⊥(�). In
particular α = as ∈ cφ↓s

On the other side, β ∈ cφ↓s ⇒ φ↓s(β) = φ↓s↓⊥(�) = φ↓⊥(�).

Aditionally φ↓s(β) =
⊕

b∈(β⇑d(φ))

φ(b) = max⊗{φ(b) : b ∈ (β ⇑ d(φ))}.

By proposition 5.4 we can secure that it exist some b ∈ (β ⇑ d(φ)) such that φ(b) = φ↓s(β) =
φ↓⊥(�). Then, as long as β = bs we obtain β ∈ ((cφ) ⇓ s)

5.3 Optimization on General Valuation Algebras

Notice that given a factorized valuation φ = φ1 ⊗ · · · ⊗ φn the collect algorithm allows us to
compute φ↓λ(r) , where r denotes the factor linked with the root node of the optimized covering
join tree (see section 3.2).

As long as λ(r) is supposed to be small enough, we are able to compute φ↓(⊥) by projecting
φ↓λ(r) to ⊥. Therefore we know which is the best value that φ can take.

In this section we will show and give di�erent algorithms in order to compute elements b ∈ d(φ)
such that b ∈ cφ . Notice that if we work with an idempotent induced valuation algebra it
is equivalent to compute elements such that φ(b) is the best, according to the canonical order
de�ned in the semiring.

In order to do it we will suppose that we work with a valuation algebra 〈Φ, D〉 de�ned on a
modular valuable Partition Lattice such that the semiring that induces it is a totally ordered,
idempotent and cancellative semiring R = 〈A,⊕,×〉.

31

The following theorem shows us that given a factorized valuation φ and a domain u ≤ d(φ), we
can compute c(φ↓u) and extend its elements to d(φ) in order to obtain the whole solution set.

Theorem 5.9.

Let φ ∈ Φ such that there are φs, φt ∈ Φ with domains s and t such that φ = φs ⊗ φt.
Then, for all u ∈ D such that u ∧ t ≤ s ≤ u ≤ d(φ) we have:

cφ = {b ∈ (s ∨ t) : bu ∈ c(φ↓u) and bt ∈W u∧t
φ↓t

(bu∧t)}

Proof.

Set m := φ↓⊥(�), and u such that u ∧ t ≤ s ≤ u ≤ d(φ).

First we will prove that cφ ⊆ {b ∈ (s ∨ t) : bu ∈ c(φ↓u) and bt ∈W u∧t
φ↓t

(bu∧t)}

Given b ∈ cφ we can guarantee that φ↓u(bu) = m for all u ≤ d(φ)(= (s ∨ t)) due the remark of
de�nition 5.8. In particular we obtain:

• φ↓s(bs) = m

• φ↓u(bu) = m ⇒ bu ∈ c(φ↓u)

• φ↓t(bt) = m and φ↓(u∧t)(bu∧t) = m ⇒ φ↓t(bt) = φ↓(u∧t)(bu∧t) ⇒ bt ∈W u∧t
φ↓t

(bu∧t)

So in order to complete the proof we must demonstrate the opposite inclusion

Given b ∈ {b ∈ (s ∨ t) : bu ∈ c(φ↓u) and bt ∈W u∧t
φ↓t

(bu∧t)} we have:

• bu ∈ c(φ↓u) ⇒ φ↓u(bu) = (φ↓u)↓⊥(�) = φ↓bot(�) = m

⇒ bu∧t ∈ c(φ↓u∧t) ⇒ (φ↓u∧t)(bu∧t) = m

• bt ∈W u∧t
φ↓t

(bu∧t)⇒ φ↓t(bt) = φ↓u∧t(bu∧t) = m

Then using the combination axiom (A5)we obtain:

m = φ↓u(bu) = (φs ⊗ φt)↓u(bu) = (φs ⊗ (φ↓u∧tt))(bu) = φs(bs)× φ↓u∧tt (bu∧t)

m = φ↓t(bt) = (φu ⊗ φt)↓t(bt) = (φt ⊗ (φ↓u∧ts))(bt) = φt(bt)× φ↓u∧ts (bu∧t)

Finally, using the associative and commutative property of × we obtain:

m × m = φs(bs) × φ↓u∧tt (bu∧t) × φt(bt) × φ↓u∧ts (bu∧t) = (φs(bs) × φt(bt)) × (φ↓u∧tt (bu∧t) ×
φ↓u∧ts (bu∧t)) = φ(b)× φ↓u∧t(bu∧t)) due to proposition. 2.3

Hence m×m = φ(b)× φ↓u∧t(bu∧t)) = φ(b)×m

Recall that we supposed that we work on a valuation algebra induced by an idempotent totally
ordered and cancellative semiring, thereby we obtain m = φ(b) due to the cancellativity. In
particular, b ∈ cφ

32

Recall that both, arctic and tropical semiring, are cancellative, therefore, as long as the theorem
above works for modular domains instead of boolean domains we will consider that it is a gen-
eralized and corrected version of theorem 8.1 in [8].

As it is done in [8] with theorem 8.1, we will use theorem 5.9 to create all the desired algorithms.
In order to do that we will suppose that we are given an optimized covering join tree for a �xed
factorization φ1 ⊗ . . . φr

Corollary 5.10.

For i = 1, ..., r − 1 and s = λ(i+ 1) ∨ · · · ∨ λ(r) it holds:

c
↓s∨λ(i)
φ = {b ∈ s ∨ λ(i) : bs ∈ c↓sφ and bλ(i) ∈W

sep(i)

φ↓λ(i)
(bsep(i))}

Proof.

By Theorem 2.6 we have c
↓s∨λ(i)
φ = c(φ↓s∨λ(i)) = c

(φ
(i)
i ⊗φ

(i)
i+1⊗···⊗φ

(i)
r)

= c
((φ

(i)
i)⊗(φ

(i)
i+1⊗···⊗φ

(i)
r))

Using the proposition 3.9 we obtain d((φ
(i)
i)) = λ(i). Therefore, if we take s = d(φ

(i)
i+1⊗· · ·⊗φ

(i)
r)

λ(i + 1) ∨ · · · ∨ λ(r) = u and t = λ(i) we have that u ∧ t = s ∧ t ≤ s ≤ u ≤ s ∨ t. Thus we can
apply the previous theorem obtaining:

c
↓s∨λ(i)
φ = {b ∈ (s ∨ t) : bu ∈ c(φ↓u) and bt ∈W u∧t

φ↓t (bu∧t)}

Finally, as long as i < pa(i) we can apply the running intersection property and obtain:

u ∧ t = s ∧ t = s ∧ λ(i) = λ(pa(i)) ∧ λ(i) = sep(i)

Recall that the collect algorithm allows us to know φ↓λ(r). As long as for any given tree one
can �x any node as root node it makes sense to think that one compute φ↓λ(i) for i = 1, . . . , r
by running the collect algorithm r times. Nevertheless a multi-query procedure was created in
order to do that using a single covering join tree.

Although in [8] this procedure, called collect-distribute algorithm, is only described on valuation
algebras with boolean domains, in [11] it is given a generalization to modular domains. Therefore
we can use the corollary above to compute all the solutions with the following algorithm:

1. Execute the collect-distribute algorithm on {φ1, . . . , φn}

2. Identify c
↓λ(r)
φ in the root node.

3. For i = r − 1, . . . , 1

a) Compute W
sep(i)

φ↓λ(i)
in node i

b) Build c
↓λ(r)∨···∨λ(i)
φ by application of Corollary 5.10

4. Return cφ = c
↓λ(r)∨···∨λ(1)
φ

This procedure allows us to create the following algorithm:

33

Algorithm 1. Computing all solutions with distribute

input: φ↓λ(r) for i = 1, . . . , r
begin:

c := W⊥
φ↓λ(r)

(�)
for i = r − 1, . . . , 1 do

s := λ(r) ∨ · · · ∨ λ(i+ 1)

c := {b ∈ s ∨ λ(i) : bs ∈ c↓sφ and bλ(i) ∈W
sep(i)

φ↓λ(i)
(bsep(i))}

endfor

return c
end

Nevertheless we want to be able to compute solutions using only the collect algorithm instead
of the Collect-Distribute algorithm. Moreover, in most cases we will be interested on �nding a
single solution. Next we will bring some results in order to do it, and �nally we will show the
algorithms without distribute phase.

Theorem 5.11. If the con�guration extension sets satisfy that for all φs, φt ∈ D with domains
s and t such that t ≤ s it holds that W t

φs
(x) ⊆W t

φs⊗φt(x)
Then for i = 1, ..., r − 1 and s = λ(i+ 1) ∨ · · · ∨ λ(r) it holds:

c
↓s∨λ(i)
φ ⊇ {b ∈ s ∨ λ(i) : bs ∈ c↓sφ and bλ(i) ∈W

sep(i)

φ
(r)
i

(bsep(i))}

Proof.

The previous theorem tells us that c
↓s∨λ(i)
φ = {b ∈ s∨λ(i) : bs ∈ c↓sφ and bλ(i) ∈W

sep(i)

φ↓λ(i)
(bsep(i))}.

Pouly and Kohlas proved in [8] that φ↓λ(i) = φ
(r)
i ⊗ ψ↓sep(i) due to the the message-passing in

distribute algorithm.

As long as sep(i) ≤ λ(pa(i)) ≤ s we obtain W sep(i)

φ↓λ(i)
(bsep(i)) ⊇W

sep(i)

φ
(r)
i

(bsep(i)) due to the theorem

hypothesis.

Proposition 5.12.

Let (Φ, D) is a valuation algebra de�ned on a modular valuable partition lattice over a totally
ordered, idempotent,cancellative semiring. Then for all φs, φt ∈ D with domains s and t such
that t ≤ s it holds that

W t
φs(x) ⊆W t

φs⊗φt(x)

Proof.
Fixed x ∈ t we know that
W t
φs

(x) = {b ∈ (x ⇑ t) : φs(b) = φ↓ts (x)}
W t
φs⊗φt(x) = {b ∈ (x ⇑ t) : (φs ⊗ φt)(b) = (φs ⊗ φt)↓t(x)}

Then, given b ∈W t
φs

(x) ⊆ s it holds that:

(φs ⊗ φt)(b) = φs(b)× φt(xt) = φs(b)× φt(xt) = φ↓ts (x)× φt(xt) = (φ↓ts ⊗ φt)(x) = (φs ⊗ φt)↓t(x)

34

Therefore, the proposition above allows us to use theorem 5.11 in order to compute some solutions
after using the collect algorithm. This can be done with the following procedure:

1. Execute the collect algorithm on {φ1, . . . , φn}

2. Compute c
↓λ(r)
φ in the root node.

3. For i = r − 1, . . . , 1

a) Compute W
sep(i)

φ
(r)
i

in node i

b) Build a subset of c
↓λ(r)∨···∨λ(i)
φ by application of Corollary 5.11

4. Return the subset ofcφ = c
↓λ(r)∨···∨λ(1)
φ

Notice that some solutions can mean a single one, therefore, by using the procedure above we
can obtain two algorithms. One of them will compute some solutions while the other one will
compute a single solution (as Action-GDL does).

Algorithm 2. Computing some solutions without distribute

input: φ
(r)
i for i = 1, . . . , r

begin:

c := W⊥
φ
(r)
r

(�)
for i = r − 1, . . . , 1 do

s := λ(r) ∨ · · · ∨ λ(i+ 1)

c := {b ∈ s ∨ λ(i) : bs ∈ c↓sφ and bλ(i) ∈W
sep(i)

φ
(r)
i

(bsep(i))}
endfor

return x
end

It is important to notice that if b ∈ W t
φs⊗φt(x) then φs(b) × φt(xt) = (φs ⊗ φt)↓t(x) = φ↓ts (x) ×

φt(xt).

Thus, if φt(xt) is invertible for all x then we do not have an inclusion but an equality in theorem
5.11 and the following proposition. Therefore algorithm 2 will compute all solutions instead of
some solutions.

To �nish the content of the dissertation we show the Action-GDL generalization to modular
lattices:

Algorithm 3. Computing one solutions without distribute (General Action-GDL)

input: φ
(r)
i for i = 1, . . . , r

begin:

choose x ∈W⊥
φ
(r)
r

(�)
for i = r − 1, . . . , 1 do

s := λ(r) ∨ · · · ∨ λ(i+ 1)

choose x ∈ {b ∈ s ∨ λ(i) : bs ∈ c↓sφ and bλ(i) ∈W
sep(i)

φ
(r)
i

(bsep(i))}
endfor

return c
end

35

6 Conclusions and future work

Along this dissertation we have introduced a new valuation algebra on partition lattices and we
have proved that some algorithms related to valuation algebras hold there. This leads us to
several original results:

• We proved that the only requirement for de�ning a (good enough) valuation algebra is a
modular domain in the second chapter.

• On the third chapter we generalized the collect algorithm from distributive domains to
modular domains.

• Although optimized covering join trees have been already used by engineers and statisti-
cians ,to the best of our knowledge they have never been formalized. We bring a formal
description of these trees on de�nition 3.6

• During chapter 4 we de�ned the raise and decrease in di�erent environments, such as
blocks, block sets and multisets; which leaded us to de�ne a new valuation algebra, which
can be used as the most general valuation algebra over semirings (see theorem 4.24).

• In chapter �ve we generalized some algorithms to some speci�c valuation algebra (we ask
for idempotent, totally ordered and cancellative semirings). Moreover, taking into account
that previous algorithms do use valuation algebras with boolean domains we were greatly
surprised that we can generalize the algorithms to modular domains.

In addition, it is important to remark that we found a wrong theorem in [8] (theorem 8.1 or
theorem 1 in [7]), as long as a theorem with an incomplete proof (theorem 8.4):

• Theroem 8.1 has been generalized and �xed in this dissertation (see theorem 5.9).

• Theorem 8.4 has been generalized and its proof has been completed using lemma 4 (see
lemma 4 and theorem 5.7 in chapter 5).

On the other side there are still several chapter and results in [3, 8] that might be generalized.

Moreover, there are also some generalized results in chapter 5 of this dissertation that can be
improved. In particular, we would like to proof theorem 5.9 without using the cancellative
property, obtaining a better generalization. Furthermore, we believe that it would be possible to
prove the results in section 5.3 using the property of extensions de�ned in theorem 5.7. In that
case we should be able to generalize the results in [7].

In addition, we think that it is possible to generalize the results in chapters 4 and 5 to partition
lattices with in�nite universes if we use an adequate semiring.

Finally, in order to complete all the aims of the dissertation we would like to show how to embed
the valuations in example 1, the valuations used in CSGP and the set-based valuation algebras
described in [6] in the generalized valuations described on chapter 4, proving that we have created
a wider uni�ed framework.

36

Appendix A: A brief summary on lattices

De�nition A.1.

A partial order is a binary relation ≤ over a set P such that:

1. a ≤ a, ∀a ∈ P (≤ is re�exive)

2. a ≤ b and b ≤ c ⇒ a ≤ c ∀a, b, c ∈ P (≤ is transitive)

3. a ≤ b and b ≤ a ⇒ a = b ∀a, b ∈ P (≤ is antisymmetric)

An ordered set is a tuple (P,≤) where P is a set and ≤ is a partial order over P . We can also
denote it by P .

De�nition A.2.

A partial order over a set P is called total order if for all x, y ∈ P it holds x ≤ y or y ≤ x

A totally ordered set is a tuple (P,≤) where P is a set and ≤ is a total order over P . We can
also denote it by P .

De�nition A.3.

Let P be an ordered set.

• P has a bottom element if there exists an element ⊥ ∈ P such that ⊥ ≤ a ∀a ∈ P .

• P has a top element if there exists an element > ∈ P such that x ≤ > ∀a ∈ P .

De�nition A.4.

Let P be an ordered set and S ⊆ P .

• An element x ∈ P is called supremum, least upper bound or join of S if:

1. a ≤ x ∀a ∈ S.
2. for any y ∈ P such that a ≤ y ∀a ∈ S it holds that x ≤ y.

• An element x ∈ P is called in�mum, greatest lower bound or meet of S if:

1. x ≤ a ∀a ∈ S.
2. for any y ∈ P such that y ≤ a ∀a ∈ S it holds that y ≤ x.

If supremum or in�mum of a subset S ⊆ P exist, then they are always unique and we write
∨
S

for supremum and
∧
S for in�mum .

Moreover, if S = {a, b} consists of two elements, we generally write a∧b or sup{a, b} for supremum
and a ∨ b or inf{a, b} for in�mum.

37

De�nition A.5.

Let L be a non-empty ordered set. Then L = (L;∨,∧) is called a lattice if a ∧ b and a ∨ b exist
∀a, b ∈ P .

Example:

Let X be a set, then (P(X),⊆) is a lattice with ⊥ = ∅, > = X , a∨b = a∪b and a∧b = a∩b

De�nition A.6.

A lattice K = (K;∨k∧k) is said to be a sublattice of the lattice L = (L;∨L,∧L) if

• a, b ∈ K ⇒ a ∨L b, a ∧L b ∈ K

• ∨K and ∧K are the restrictions to K of ∨L and ∧L respectively.

In that case we will write K ⊆ L

De�nition A.7.

Let L be a lattice.

• L is said to be bounded if it has a bottom and top element.

• L is called a complete lattice if
∧
S and

∨
S exist ∀S ⊆ P .

• L is said to be modular if for all x,w, y ∈ L such that x ≤ y we have:

x ∨ (w ∧ y) = (x ∨ w) ∧ y

• L is said to be distributive if for all a, b, c ∈ L:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

Remark : If a lattice is distributive then it is also modular.

Proposition A.8.

Let L be a lattice and K ⊆ L a sublattice. Then:

K complete ⇒ L complete

Proposition A.9.

Let L be a lattice and K ⊆ L a sublattice. Then:

K modular ⇒ L modular

Proposition A.10.

Let L be a lattice and K ⊆ L a sublattice. Then:

K distributive ⇒ L distributive

38

Proposition A.11. Let L be a lattice. Then L is modular if and only if

x ≤ z ≤ x ∨ y ⇒ x ∨ (y ∧ z) = z for all x, y, x ∈ L

Proof. Suppose that L is modular, and x, y, z ∈ L such that x ≤ z ≤ x ∨ y
Using x ≤ z and the de�nition of modular we obtain x ∨ (y ∧ z) = (x ∨ y) ∧ z.
As long as z ≤ x ∨ y we have (x ∨ y) ∧ z = z.

Now suppose that x ∨ (y ∧ z) = z for all x, y, x ∈ L such that x ≤ z ≤ x ∨ y.
Given x, y, w ∈ L such that x ≤ y, we set z = (x ∨ w) ∧ y.

Due to ∨ de�nition we know that z ≤ x∨w. Equivalently we obtain x ≤ y ≤ z using ∧ de�nition,
so in particular x ≤ z ≤ x ∨ w

Using the hypothesis above we obtain x ∨ (w ∧ z) = z = (x ∨ w) ∧ y
Furthermore, since w = w ∧ (x ∨ w),we obtain x ∨ (w ∧ y) = x ∨ ((w ∧ (x ∨ w)) ∧ y) = x ∨ (w ∧
((x ∨ w) ∧ y)) = x ∨ (w ∧ z) = z = (x ∨ w) ∧ y

De�nition A.12.

Two lattices L = (L,∨L,∧L) and K = (K,∨K ,∧K) are said to be isomorphs if it exist a bijective
function φ : L → K such that:

φ(a ∨L b) = φ(a) ∨K φ(b) for all a, b,∈ L
φ(a ∧L b) = φ(a) ∧K φ(b) for all a, b,∈ L

In that case we will write L ∼= K and the function φ is called an isomorphism.

Remark : Every isomorphism is a bijective ∨-homomorphism and ∧-homomorphism.

De�nition A.13.

We say that a lattice D can be embedded in a lattice L if there is a sublattice K ⊆ L such that
D ∼= K.

Theorem A.14. Grätzer 2011 [2]
For every �nite lattice L there is a �nite set X such that L can be embedded in Part(X) [1]

39

Bibliography

[1] G. Grätzer. General Lattice Theory. Academic Press, 1978.

[2] G. Grätzer. Lattice Theory: Foundation. Springer, 2011.

[3] J. Kohlas. Information Algebras: Generic Structures For Inference. Springer, 2003.

[4] J. Kohlas and N. Wilson. Semiring induced valuation algebras. Arti�cial Intelligence,
172(11):1360�1399, July 2008.

[5] P.J. Modi, W.M. Shen, M. Tambe, and M. Yokoo. Adopt: Asynchronous distributed con-
straint optimization with quality guarantees. ARTIFICIAL INTELLIGENCE, 161:149�180,
2006.

[6] M. Pouly. A Generic Framework for Local Computation. PhD thesis, Department of Infor-
matics, University of Fribourg, 2008.

[7] M. Pouly. Generic solution construction in valuation-based systems. In Proceedings of
the 24th Canadian conference on Advances in arti�cial intelligence, Canadian AI'11, pages
335�346. Springer-Verlag, 2011.

[8] M. Pouly and J. Kohlas. Generic Inference - A unifying Theory for Automated Reasoning.
John Wiley & Sons, Inc., 2011.

[9] R.Mailler and V.Lesser. Solving distributed constraint optimization problems using cooper-
ative mediation. In Proceedings of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 438�445, 2004.

[10] C. Schneuwly, M. Pouly, and J. Kohlas. Local computation in covering join trees. Technical
Report 04-16, Department of Informatics, University of Fribourg, 2004.

[11] G. Shafer. An axiomatic study of computation in hypertrees, 1991.

[12] M. Vinyals, J.A. Rodriguez-Aguilar, and J. Cerquides. Constructing a unifying theory of
dynamic programming DCOP algrithms via the generalized distributive law. Autonomous
Agents and Multi-Agent Systems, (22):439�464, May 2010.

[13] T. Voice, M. Polukarov, and N. R. Jennings. Graph coalition structure generation. CoRR,
abs/1102.1747, 2011.

40

