
An SMT-based solver for continuous t-norm
based logics (extended version)

Amanda Vidal1, Félix Bou21, and Llúıs Godo1

1 Artificial Intelligence Research Institute (IIIA - CSIC)
Campus de la Universitat Autònoma de Barcelona s/n,

08193 Bellaterra, Spain
2 Department of Probability, Logic and Statistics

Faculty of Mathematics, University of Barcelona (UB)
Gran Via 585, 08007 Barcelona, Spain

Abstract. In the literature, little attention has been paid to the devel-
opment of solvers for systems of mathematical fuzzy logic, even though
there is an important number of studies on complexity and proof theory
for them. In this paper, extending a recent approach by Ansótegui et al.,
we present ongoing work on an efficient and modular SMT-based solver
for a wide family of continuous t-norm based fuzzy logics. The solver is
able to deal with most famous fuzzy logics (including BL,  Lukasiewicz,
Gödel and Product); and for each of them, it is able to test, among others,
satisfiability, tautologicity and logical consequence problems. Note that,
unlike the classical case, these problems are not in general interdefinable
in fuzzy logics. Some empirical results are reported at the end of the
paper.

1 Introduction

In the literature, with a few exceptions mainly for  Lukasiewicz logics [13,15,4,14],
little attention has been paid to the development of efficient solvers for systems
of mathematical fuzzy logic, even though there is an important number of studies
on complexity and proof theory for them (see [12,9,10,1,6]). This is a problem
that limits the use of fuzzy logics in real applications. In [2], a new approach
for implementing a theorem prover for  Lukasiewicz, Gödel and Product fuzzy
logics using Satisfiability Modulo Theories (SMT) has been proposed. The main
advantage of this approach based on SMT is the modularity of being able to
cope with several fuzzy logics.

In this paper, we extend this approach in order to be able to cope with
more logics (including Basic Fuzzy Logic BL): we study the implementation
and testing of a general solver for continuous t-norm based fuzzy logics. We
have generalized the solver so it can perform satisfiability, theoremhood and
logical consequence checks for any of a wide family of these fuzzy logics. Also,
we have changed the coding for product logic from the one of [2] to one based on
Presburger Arithmetic (Linear Integer Arithmetic), and this has dramatically
enhanced its performance.



Structure of the paper. Section 2 introduces the propositional logics consid-
ered, and gives a brief introduction to SMT. Section 3 describes the SMT-based
solver proposed in this paper. Section 4 starts with an explanation of the design
of the experiments we ran on our solver, and then the results are analyzed in
Section 4.1. Section 5 presents the conclusions and future work. Finally, in Ap-
pendix A we show some code in the SMT-LIB format: we point out that this
code is missing in the proceedings version [17] of the present paper.

2 Preliminaries

2.1 Continuous t-norm based fuzzy logics

Continuous t-norm based propositional logics correspond to a family of many-
valued logical calculi with the real unit interval [0, 1] as set of truth-values and
defined by a conjunction &, an implication → and the truth-constant 0, inter-
preted respectively by a continuous t-norm ∗, its residuum⇒ and the number 0.
In this framework, each continuous t-norm ∗ uniquely determines a semantical
propositional calculus L∗ over formulas defined in the usual way (see [10]) from
a countable set {p, q, r, . . .} of propositional variables, connectives & and → and
truth-constant 0. Further connectives are defined as follows:

¬ϕ is ϕ→ 0,
ϕ ∧ ψ is ϕ&(ϕ→ ψ),
ϕ ∨ ψ is ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ),
ϕ ≡ ψ is (ϕ→ ψ)&(ψ → ϕ).

L∗-evaluations of propositional variables are mappings e assigning to each propo-
sitional variable p a truth-value e(p) ∈ [0, 1], which extend univocally to com-
pound formulas as follows: e(0) = 0, e(ϕ&ψ) = e(ϕ) ∗ e(ψ) and e(ϕ → ψ) =
e(ϕ) ⇒ e(ψ). Actually, each continuous t-norm defines an algebra [0, 1]∗ =
([0, 1],min,max, ∗,⇒, 0), called standard L∗-algebra.

From the above definitions it holds that e(¬ϕ) = e(ϕ) ⇒ 0, e(ϕ ∧ ψ) =
min(e(ϕ), e(ψ)), e(ϕ ∨ ψ) = max(e(ϕ), e(ψ)) and e(ϕ ≡ ψ) = e(ϕ→ ψ) ∗ e(ψ →
ϕ). A formula ϕ is a said to be a 1-tautology (or theorem) of L∗ if e(ϕ) = 1
for each L∗-evaluation e. The set of all 1-tautologies of L∗ will be denoted as
TAUT ([0, 1]∗). A formula ϕ is 1-satisfiable in L∗ if e(ϕ) = 1 for some L∗-
evaluation e. Moreover, the corresponding notion of logical consequence is defined
as usual: T |=∗ ϕ iff for every evaluation e such that e(ψ) = 1 for all ψ ∈ T ,
e(ϕ) = 1.

Well-known axiomatic systems, like  Lukasiewicz logic ( L), Gödel logic (G),
Product logic (Π) and Basic Fuzzy logic (BL) syntactically capture different
sets TAUT ([0, 1]∗) for different choices of the t-norm ∗ (see e.g. [10,6]). Indeed,
the following conditions hold true, where ∗ L, ∗G and ∗Π respectively denote the
 Lukasiewicz t-norm, the min t-norm and the product t-norm:



ϕ is provable in  L iff ϕ ∈ TAUT ([0, 1]∗ L
)

ϕ is provable in G iff ϕ ∈ TAUT ([0, 1]∗G)
ϕ is provable in Π iff ϕ ∈ TAUT ([0, 1]∗Π )
ϕ is provable in BL iff ϕ ∈ TAUT ([0, 1]∗) for all continuous t-norms ∗.

Also, taking into account that every continuous t-norm ∗ can be represented
as an ordinal sum of  Lukasiewicz, Gödel and Product components, the calculus
of any continuous t-norm has been axiomatized in [8]. All these completeness
results also hold from deductions from a finite set of premises but, in general,
they do not extend to deductions from infinite sets (see [6] for details).

2.2 Satisfiability Modulo Theories (SMT)

The satisfiability problem, i.e. determining whether a formula expressing a con-
straint has a solution, is one of the main problems in theoretical computer sci-
ence. If this constraint refers to Boolean variables, then we are facing a well-
known problem, the (propositional) Boolean satisfiability problem (SAT).

On the other hand, some problems require to be described in more expressive
logical languages (like those of the first order theories of the real numbers, of
the integers, etc.), and thus a formalism extending SAT, Satisfiability Modulo
Theories (SMT), has also been developed to deal with these more general decision
problems. An SMT instance is a first order formula where some function and
predicate symbols have predefined interpretations from background theories.

The more common approach [16] for the existing SMT solvers is the inte-
gration of a T -solver, i.e. a decision procedure for a given theory T , and a SAT
solver. In this model, the SAT solver is in charge of the Boolean formula, while
the T -solver analyzes sets of atomic constraints in T . With this, the T -solver
checks the possible models the SAT solver generates and rejects them if incon-
sistencies with the theory appear. In doing so, it gets the efficiency of the SAT
solvers for Boolean reasoning, long time tested, and the capability of the more
concrete T -oriented algorithms inside the respective theory T .

The current general-use library for SMT is SMT-LIB [3], and there are several
implementations of SMT-solvers for it. For our experiments, we use Z3 [7], which
implements the theories we need for our purposes:

– QF LIA (Quantifier Free Linear Integer Arithmetic), which corresponds to
quantifier free first order formulas valid in (Z,+,−, 0, 1),

– QF LRA (Quantifier Free Linear Real Arithmetic), which corresponds to
quantifier free first order formulas valid in (R,+,−, {q : q ∈ Q}),

– QF NLRA (Quantifier Free non Linear Real Arithmetic), which corresponds
to quantifier free first order formulas valid in (R,+,−, ·, /, {q : q ∈ Q}).

3 A SMT solver for continuous t-norm based fuzzy logics

Inspired by the approach of Ansótegui et. al in [2], we aim at showing in this
short paper that a more general solver for fuzzy logics can be implemented using



an SMT solver. The main feature of the solver is its versatility, so it can be
used for testing on a wide range of fuzzy logics (like BL,  Lukasiewicz, Gödel,
Product and logics obtained through ordinal sums) and also for different kinds
of problems, like tautologicity and satisfiability but also logical consequence, or
getting evaluations for a given formula (i.e., obtaining variable values that yield
a formula a certain truth degree given some restrictions).

It is well-known that every continuous t-norm can be expressed as an ordinal
sum of the three main continuous t-norms ∗ L, ∗G and ∗Π . The fact that the
three basic t-norms are defined using only addition and multiplications over the
real unit interval was used in [2] to develop a solver for theoremhood in these
three logics using QF LRA and QF NLRA. The case of BL was not considered
in [2] because its usual semantics is based on the whole family of continuous
t-norms, and not just on a single one. However, thanks to a result of Montagna
[11] one can reduce proofs over BL, when working with concrete formulas, to
proofs over the logic of an ordinal sum of as many  Lukasiewicz components as
different variables involved in the set of formulas plus one. This trick is the one
we use in our solver for the implementation of BL.

We have implemented a solver that allows the specification, in term of its
components, of any continuous t-norm; and the use of BL too. We also allow
finitely-valued  Lukasiewicz and Gödel logics, and all these logics can be also
extended with rational truth-constants. Also, we have considered interesting to
add to our software more options than just testing the theoremhood of a formula
in a certain logic. In our solver, we can check whether a given formula (possibly
with truth-constants) is a logical consequence of a finite set of formulas (possibly
with truth-constants as well).

On the other hand, for the particular case of Product logic we have employed
a new methodology. This is so because the previous approach, directly coding
Product logic connectives with product and division of real numbers, has serious
efficiency problems (inherited from QF NLRA). Indeed, it is already noted in
[2] that these problems appear with really simple formulas. To overcome these
problems, we have used an alternative coding based on QF LIA. We can do this
because Cignoli and Torrens showed in [5] that the variety of Product algebras
is also generated by a discrete linear product algebra: the one with domain
the negative cone of the additive group of the integers together with a first

element −∞. Indeed, it holds that TAUT ([0, 1]∗Π ) = TAUT ((Z̃−)⊕), where

Z̃− := Z− ∪ {−∞} endowed with the natural order plus setting −∞ < x for all
x ∈ Z−, and with its conjunction operation ⊕ defined as:

x⊕ y :=

{
x+ y, if x, y ∈ Z−

−∞, otherwise.

Notice that its corresponding residuated implication is then defined as:

x⇒⊕ y :=

0, if x ≤ y
y − x, if x, y ∈ Z−, x > y
−∞, otherwise.



Therefore, for dealing with Product logic it is enough to consider this discrete
algebra; and this particular algebra can be coded using just natural numbers with
the addition (i.e. using Presburger Arithmetic). Our experiments have shown
that, for concrete instances, this approach based on the discrete theory of integers
with the addition (instead of the reals with product) works much better.

In the appendix we present Z3-code examples generated by our software to
solve several kind of problems. These examples clarify the methodology explained
above.

4 Experimental Results

We consider the main advantage of our solver to be the versatility it allows, but
we have also performed an empirical evaluation of our approach using only its
theorem-prover option to compare it to [2].

We have conducted experiments over two different families of BL-theorems,
see (1) and (2) below. First, for comparison reasons with [2], we have considered
the following generalizations (based on powers of the & connective) of the first
seven Hájek’s axioms of BL [10]:

(A1) (pn → qn)→ ((qn → rn)→ (pn → rn))
(A2) (pn&qn)→ pn

(A3) (pn&qn)→ (qn&pn)
(A4) (pn&(pn → qn))→ (qn&(qn → pn))
(A5a) (pn → (qn → rn))→ ((pn&qn)→ rn)
(A5b) ((pn&qn)→ rn)→ (pn → (qn → rn))
(A6) ((pn → qn)→ rn)→ (((qn → pn)→ rn)→ rn)

(1)

where p, q and r are propositional variables, and n ∈ N\{0}. It is worth noticing
that the length of these formulas grows linearly with the parameter n.

In [2] the authors refer to [13] to justify why these formulas can be considered
a good test bench for (at least)  Lukasiewicz logic. In our opinion, these formulas
have the drawback of using only three variables. This is a serious drawback at
least in  Lukasiewicz logic because in this case tautologicity for formulas with
three variables can be proved to be solved in polynomial time3.

To overcome the drawback of the bounded number of variables, we propose
a new family of BL-theorems to be used as a bench test. For every n ∈ N \ {0},

n∧
i=1

(&n
j=1 pij) →

n∨
j=1

(&n
i=1 pij) (2)

3 This polynomial time result is outside the scope of the present paper, but it can be
obtained from the rational triangulation associated with the McNaughton function
of the formula with three variables. It is worth noticing that the known proofs of NP-
completeness for  Lukasiewicz logic [12,10,1] need an arbitrary number of variables.



is a BL-theorem which uses n2 variables; the length of these formulas grows
quadratically with n. As an example, we note that for n = 2 we get the BL-
theorem

(
(p11&p12) ∧ (p21&p22)

)
→
(
(p11&p21) ∨ (p12&p22)

)
. We believe these

formulas are significantly harder than the ones previously proposed in [13]; and
indeed, our experimental results support this claim4.

4.1 Data results

We ran experiments on a machine with a i5-650 3.20GHz processor and 8GB of
RAM. Evaluating the validity in  Lukasiewicz, Product and Gödel logics of the
generalizations of the BL axioms (1), ranging n from 0 to 500 with increments
of 10, throws better results than the ones obtained in [2], but since our solver
is an extension of their work for these logics, we suppose this is due to the
use of different machines. For Product Logic, we obtained really good timings.
Actually, they are worse than the ones for  Lukasiewicz and Gödel logics in most
of the cases, since the Presburger arithmetic has high complexity too, but the
difference with the previous approach is clear: complex formulas are solved in a
comparatively short time, whereas in [2] they could not even be processed. In
Figure 1 one can see and compare solving times (given in seconds) for some of
the axioms of the test bench for the cases of BL,  Lukasiewicz, Gödel and Product
logics. It is also interesting to observe how irregularly the computation time for
Product Logic varies depending on the axiom and the parameter.

The experiments done with the other family of BL-theorems (2) (see Fig-
ure 2 for the results) suggests that here the evaluation time is growing non-
polynomially on the parameter n. We have only included in the graph those
answers (for parameters n ≤ 70) obtained in at most 3 hours of execution (e.g.
for the BL case we have only got answers for the problems with n ≤ 4). The
high differences in time when evaluating the theorems were expectable:  Lukasi-
ewicz and Gödel are simpler than BL when proving the theoremhood because
of the method used for BL (considering n2 + 1 copies of  Lukasiewicz, where n
is the parameter of the formula). On the other hand, the computation times for
Product logic modeled with the Presburger arithmetic over Z− ∪{−∞} are also
smaller than for BL.

5 Conclusions

We have extended the use of SMT technology to define general-use logical solvers
for continuous t-norm logics, considered two test suites for these logics, and
performed empirical evaluation and testing of our solver. Also, we have provided
a new approach for solving more efficiently problems on Product logic.

There are a number of tasks and open questions that we propose as future
work. Firstly, solving real applications with SMT-based theorem provers: the

4 We point out that the natural way to compare our formula with parameter n is to
consider the formulas in [13] with the integer part of

√
n as parameter.



 0

 2

 4

 6

 8

 10

 12

 0  100  200  300  400  500

T
im

e
 (

s
e
c
o
n

d
s
)

Parameter n

GENERALIZATION OF AXIOM A1

BL
L
G
P

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  100  200  300  400  500

T
im

e
 (

s
e
c
o
n

d
s
)

Parameter n

GENERALIZATION OF AXIOM A3

BL
L
G
P

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  100  200  300  400  500

T
im

e
 (

s
e
c
o

n
d

s
)

Parameter n

GENERALIZATION OF AXIOM A4

BL
L
G
P

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  100  200  300  400  500

T
im

e
 (

s
e
c
o

n
d

s
)

Parameter n

GENERALIZATION OF AXIOM A6

BL
L
G
P

Fig. 1. Generalizations of BL-axioms given in (1).

non-existence of fast and modern theorem provers has limited so far the potential
of fuzzy logics to real applications. Secondly, using Presburger arithmetic has
been very useful for our solver to deal with product t-norm, but it is still missing
an implementation where this trick is used for ordinal sums where one of the
components is the product t-norm. Finally, we would like to point out a more
challenging problem: to design an SMT solver for MTL logic (i.e., the logic of
left-continuous t-norms), since no completeness is currently known using just
one particular t-norm.

Acknowledgments. The authors acknowledge support of the Spanish projects TASSAT

(TIN2010-20967-C04-01), ARINF (TIN2009-14704-C03-03) and AT (CONSOLIDER

CSD2007-0022), and the grants 2009SGR-1433 and 2009SGR-1434 from the Catalan

Government. Amanda Vidal is supported by a JAE Predoc fellowship from CSIC.

References

1. S. Aguzzoli, B. Gerla, and Z. Haniková. Complexity issues in basic logic. Soft
Computing, 9(12):919–934, 2005.

2. C. Ansótegui, M. Bofill, F. Manyà, and M. Villaret. Building automated theorem
provers for infinitely valued logics with satisfiability modulo theory solvers. In
ISMVL 2012, pages 25–30. IEEE Computer Society, 2012.



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  10  20  30  40  50  60  70

T
im

e
 (

s
e
c
o
n
d
s
)

Parameter n

HARD INSTANCES

BL
L
G
P

Fig. 2. Our proposed BL-theorems given in (2).

3. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard: Version 2.0. Techni-
cal report, Department of Computer Science, The University of Iowa, 2010. Avail-
able at www.SMT-LIB.org.

4. F. Bobillo and U. Straccia. Fuzzy description logics with general t-norms and
datatypes. Fuzzy Sets and Systems, 160(23):3382–3402, 2009.

5. R. Cignoli and A. Torrens. An algebraic analysis of product logic. Multiple-valued
logic, 5:45–65, 2000.

6. P. Cintula, P. Hájek, and C. Noguera, editors. Handbook of Mathematical Fuzzy
Logic, 2 volumes, volume 37 and 38 of Studies in Logic. Mathematical Logic and
Foundation. College Publications, 2011.

7. L. Mendonça de Moura and N. Bjørner. Z3: An efficient SMT solver. In C. R.
Ramakrishnan and J. Rehof, editors, TACAS 2008, pages 337–340, 2008.

8. F. Esteva, L. Godo, and M. Montagna. Equational Characterization of the Subva-
rieties of BL Generated by t-norm Algebras. Studia Logica, 76(2):161–200, 2004.

9. R. Hähnle. Automated deduction in multiple valued logics. Oxford Univ. Pr., 1993.
10. P. Hájek. Metamathematics of fuzzy logic. Kluwer Academic Publishers, 1998.
11. F. Montagna. Generating the variety of BL-algebras. Soft Computing, 9(12):869–

874, 2005.
12. D. Mundici. Satisfiability in many-valued sentential logic is NP-complete. Theo-

retical Computer Science, 52(1-2):145–153, 1987.
13. R. Rothenberg. A class of theorems in  Lukasiewicz logic for benchmarking auto-

mated theorem provers. In N. Olivetti and C. Schwind, editors, TABLEAUX ’07,
pages 101–111, 2007.

14. S. Schockaert, J. Janssen, and D. Vermeir. Satisfiability checking in  Lukasiewicz
logic as finite constraint satisfaction. Journal of Automated Reasoning. To appear.

15. S. Schockaert, J. Janssen, D. Vermeir, and M. De Cock. Finite satisfiability in
infinite-valued  Lukasiewicz logic. In L. Godo and A. Pugliese, editors, SUM, volume
5785 of LNCS, pages 240–254. Springer, 2009.



16. R. Sebastiani. Lazy satisfiability modulo theories. Journal on Satisfiability, Boolean
Modeling anc Computation, 3(3-4):141–224, 2007.

17. A. Vidal, F. Bou, and L. Godo. An SMT-based solver for continuous t-norm based
logics. In Proceedings of SUM 2012, LNCS. Springer. To appear.

A Appendix

These are a few characteristic examples generated through our software to be run
with z3 SMT-solver. It returns 〈unsat〉 in the validity and logical consequence
tests (because these examples are logically valid), and the variables’ values in
the model generator case.

A.1 Validity of (x1 → x2)→ ((x2 → x3)→ (x1 → x3)) in the logic
with t-norm “[0, 0.2] ⊕ [0.2, 0.7] ⊕ [0.7, 0.9] ⊕ [0.9, 1]” where
[0, 0.2] and [0.7, 0.9] are ∗ L, and [0.2, 0.7] and [0.9, 1] are ∗G

(set -logic QF_LRA)

; min(x,y)

(define -fun min ((x Real) (y Real)) Real

(ite (> x y) y x))

; max(x,y)

(define -fun max ((x Real) (y Real)) Real

(ite (> x y) x y))

; tnorm

(define -fun tnorm ((x Real) (y Real)) Real

(ite (and (>= x 0) (<= x 0.2)

(>= y 0) (<= y 0.2))

(+ 0 (max 0 (- (+ x y) (+ 0 0.2))))

(ite (and (>= x 0.7) (<= x 0.9)

(>= y 0.7) (<= y 0.9))

(+ 0.7 (max 0 (- (+ x y) (+ 0.7 0.9))))

(ite (and (>= x 0.2) (<= x 0.7)

(>= y 0.2) (<= y 0.7))

(min x y)

(ite (and (>= x 0.9) (<= x 1)

(>= y 0.9) (<= y 1))

(min x y)(min x y))))))

;implication (Residuum)

(define -fun impl ((x Real) (y Real)) Real

(ite (<= x y) 1

(ite (and (>= x 0) (<= x 0.2)

(>= y 0) (<= y 0.2))

(- (+ y 0.2) x)

(ite (and (>= x 0.7) (<= x 0.9)

(>= y 0.7) (<= y 0.9))

(- (+ y 0.9) x)



(ite (and (>= x 0.2) (<= x 0.7)

(>= y 0.2) (<= y 0.7))

y

(ite (and (>= x 0.9) (<= x 1)

(>= y 0.9) (<= y 1))

y

y))))))

;negation (not x = x -> 0)

(define -fun neg ((x Real)) Real

(impl x 0))

;conjunction min (x, y)

(define -fun con ((x Real) (y Real)) Real

(min x y))

;disjunction max (x, y)

(define -fun dis ((x Real) (y Real)) Real

(max x y))

(declare -fun x () Real)

(declare -fun y () Real)

(declare -fun z () Real)

(assert (or

(and (>= x 0) (<= x 0.2))

(and (>= x 0.7) (<= x 0.9))

(and (>= x 0.2) (<= x 0.7))

(and (>= x 0.9) (<= x 1))))

(assert (or

(and (>= y 0) (<= y 0.2))

(and (>= y 0.7) (<= y 0.9))

(and (>= y 0.2) (<= y 0.7))

(and (>= y 0.9) (<= y 1))))

(assert (or

(and (>= z 0) (<= z 0.2))

(and (>= z 0.7) (<= z 0.9))

(and (>= z 0.2) (<= z 0.7))

(and (>= z 0.9) (<= z 1))))

(assert (< (impl (impl x1 x2) (impl (impl x2 x3) (impl x1 x3))) 1) )

(check -sat)

A.2 Validy of (x1 → x2) → ((x2 → x3) → (x1 → x3)) in the
Product Logic Modeled over the Presburger Arithmetic

(set -logic QF_LIA)

; min(x,y)

(define -fun min ((x Int) (y Int)) Int

(ite (= x 1) x (ite (= y 1) y (ite (> x y) y x))))

; max(x,y)

(define -fun max ((x Int) (y Int)) Int



(ite (= x 1) y (ite (= y 1) x (ite (> x y) x y))))

; tnorm

(define -fun tnorm ((x Int) (y Int)) Int

(ite (or (= x 1) (= y 1)) 1 (+ x y)))

;implication (Residuum)

(define -fun impl ((x Int) (y Int)) Int

(ite (= x 1) 0 (ite (= y 1) 1 (ite (<= x y) 0 (- y x)))))

;negation (not x = x -> 0)

(define -fun neg ((x Int)) Int

(impl x 0))

;conjunction min (x, y)

(define -fun con ((x Int) (y Int)) Int

(min x y))

;disjunction max (x, y)

(define -fun dis ((x Int) (y Int)) Int

(max x y))

(declare -fun x () Int)

(declare -fun y () Int)

(declare -fun z () Int)

(assert (< x 2) )

(assert (< y 2) )

(assert (< z 2) )

(assert (or (< (impl (impl x1 x2)

(impl (impl x2 x3) (impl x1 x3))) 0)

(= (impl (impl x1 x2)

(impl (impl x2 x3) (impl x1 x3))) 1)) )

(check -sat)

A.3 Validity of (A3) (p3&q3)→ (q3&p3) in BL

(set -logic QF_LRA)

; min(x,y)

(define -fun min ((x Real) (y Real)) Real

(ite (> x y) y x))

; max(x,y)

(define -fun max ((x Real) (y Real)) Real

(ite (> x y) x y))

;tnorm

(define -fun tnorm ((x Real) (y Real)) Real

(ite (and (>= x (/ 0 3)) (<= x (/ 1 3))

(>= y (/ 0 3)) (<= y (/ 1 3)))

(+ (/ 0 3) (max 0 (- (+ x y) (+ (/ 0 3) (/ 1 3)))))

(ite (and (>= x (/ 1 3)) (<= x (/ 2 3))

(>= y (/ 1 3)) (<= y (/ 2 3)))

(+ (/ 1 3) (max 0 (- (+ x y) (+ (/ 1 3) (/ 2 3)))))

(ite (and (>= x (/ 2 3)) (<= x (/ 3 3))

(>= y (/ 2 3)) (<= y (/ 3 3)))

(+ (/ 2 3) (max 0 (- (+ x y) (+ (/ 2 3) (/ 3 3)))))



(min x y)))))

;implication (Residuum)

(define -fun impl ((x Real) (y Real)) Real

(ite (<= x y) 1

(ite (and (>= x (/ 0 3)) (<= x (/ 1 3))

(>= y (/ 0 3)) (<= y (/ 1 3)))

(- (+ y (/ 1 3)) x)

(ite (and (>= x (/ 1 3)) (<= x (/ 2 3))

(>= y (/ 1 3)) (<= y (/ 2 3)))

(- (+ y (/ 2 3)) x)

(ite (and (>= x (/ 2 3)) (<= x (/ 3 3))

(>= y (/ 2 3)) (<= y (/ 3 3)))

(- (+ y (/ 3 3)) x)

y)))))

;negation (not x = x -> 0)

(define -fun neg ((x Real)) Real

(impl x 0))

;conjunction min (x, y)

(define -fun con ((x Real) (y Real)) Real

(min x y))

;disjunction max (x, y)

(define -fun dis ((x Real) (y Real)) Real

(max x y))

(declare -fun x () Real)

(declare -fun y () Real)

(assert (and (>= x 0) (<= x 1)) )

(assert (and (>= y 0) (<= y 1)) )

(assert (< (impl (tnorm (tnorm x x) (tnorm y y))

(tnorm (tnorm y y) (tnorm x x))) 1) )

(check -sat)

A.4 Logical consequence over  Lukasiewicz for
x1 → x2, x2 → x3 |= x1 → x3

(set -logic QF_LRA)

; min(x,y)

(define -fun min ((x Real) (y Real)) Real

(ite (> x y) y x))

; max(x,y)

(define -fun max ((x Real) (y Real)) Real

(ite (> x y) x y))

;tnorm

(define -fun tnorm ((x Real) (y Real)) Real

(ite (and (>= x 0) (<= x 1)

(>= y 0) (<= y 1))

(+ 0 (max 0 (- (+ x y) (+ 0 1))))

(min x y)))

;implication (Residuum)

(define -fun impl ((x Real) (y Real)) Real



(ite (<= x y) 1

(ite (and (>= x 0) (<= x 1)

(>= y 0) (<= y 1))

(- (+ y 1) x)

y)))

;negation (not x = x -> 0)

(define -fun neg ((x Real)) Real

(impl x 0))

;conjunction min (x, y)

(define -fun con ((x Real) (y Real)) Real

(min x y))

;disjunction max (x, y)

(define -fun dis ((x Real) (y Real)) Real

(max x y))

(declare -fun x1 () Real)

(declare -fun x2 () Real)

(declare -fun x3 () Real)

(assert (and (>= x1 0) (<= x1 1)) )

(assert (and (>= x2 0) (<= x2 1)) )

(assert (and (>= x3 0) (<= x3 1)) )

(assert (= (impl x1 x2) 1) )

(assert (= (impl x2 x3) 1) )

(assert (< (impl x1 x3) 1) )

(check -sat)

A.5 Satisfiability testing and model generation on  Lukasiewicz of
the set of formulas {v0 ∗ v0 = 0.5, v1 ∗ v1 = v0, v2 ∗ v2 = v1}

(set -option :produce -models true)

(set -logic QF_LRA)

;.... Lukasiewicz connectives definitions (see Appendix A.4)

(declare -fun v0 () Real)

(declare -fun v1 () Real)

(declare -fun v2 () Real)

(assert (<= v0 1) )

(assert (>= v0 0) )

(assert (<= v1 1) )

(assert (>= v1 0) )

(assert (<= v2 1) )

(assert (>= v2 0) )

(assert (= (tnorm v0 v0) 0.5) )

(assert (= (tnorm v1 v1) v0) )

(assert (= (tnorm v2 v2) v1) )

(check -sat)

(get -value (v0))

(get -value (v1))

(get -value (v2))


	An SMT-based solver for continuous t-norm based logics (extended version) 

