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Abstract. In this paper our aim is to provide a short survey of main
historical developments of systems of fuzzy logic in narrow sense, today
under the umbrella of the discipline called Mathematical Fuzzy Logic,
arising from the birth of Zadeh’s fuzzy sets in 1965. Particular attention
is devoted to show how the tools of mathematical logic have allowed to
define logical systems which form the core of Mathematical Fuzzy Logic
and allow for a formalization of some topics included in Zadeh’s agenda
spanning from fuzzy sets to approximate reasoning and probability the-
ory of fuzzy events.

1 Introduction

During the 20th century, three main variations of classical logic have been pro-
posed in order to accommodate the formalization of properties and concepts
which, otherwise, would not be feasible in the classical setting. Those are modal,
intuitionistic and many-valued logics. The first one is an expansion of classi-
cal logic by means of logical operators, called modalities, intended to represent
modes of truth such as “the formula ' is necessary/possibly true”. Intuition-
istic logic is a logical system which arises from constructivism; the main idea
behind it is that proofs obtained by the reductio ad absurdum argument should
not be acceptable. By doing so, intuitionistic logic gives a di↵erent meaning, for
instance, to the negation connective (which is no longer involutive) and to the
existential quantifier: 9(x)P (x) is provable if it is possible to find a witness a

such that P (a) is provable. Finally, in many-valued logics propositions can take
intermediate truth-values between the classical “true” (1) and “false” (0) and
thus, they do not satisfy the classical tertium non datur law.

Although Aristotle already considered to adopt not bivalent logics to treat
future contingent propositions, it is common to fix the birth of many-valued
logics around 1920, when the first three-valued logics of  Lukasiewicz, Kleene,
Bochvar were firstly introduced. Remarkably, these logics are distinguishable by
the intended semantics given to the third-value, that is the new intermediate
value between 0 and 1. These three-valued logics and their further generaliza-
tions to larger truth-values sets share the property of truth-functionality, that
is, the truth-value of a compound formula is determined by the values of its
subformulas. Truth-functionality for the many-valued logics marks a clear di↵er-
ence from other non-classical graded logics which aim at formalizing uncertain
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reasoning and modeling intentional notions, such as probability logics, which are
well-known to be not truth-functional.

Among many-valued logics, the family of fuzzy logics usually denotes those
whose truth-values set is linearly ordered. In most of the cases the whole real
unit interval [0, 1], or a finite subset of it, is taken as set of truth-values. This
allows to model a notion of comparative truth underlying the interpretation of
gradual properties.

This paper focuses on many-valued systems within the scope of fuzzy logics
and, in particular, on the following topics. In the next section we will present
an historical overview on the born of fuzzy logics and their relation to Zadeh’s
fuzzy set theory and, in Subsection 3.1 in particular we will recall how the
discipline that nowadays goes under the name of Mathematical Fuzzy Logic was
initiated in the 1990’s. Section 3 is devoted to present the main propositional
logics based on continuous (BL) and left-continuous t-norms (MTL) while in
Section 4, we will recall their main schematic extensions and expansions. As for
the latter, we will show how the already powerful expressive power of the main t-
norm based fuzzy logics can be further enriched by, respectively, truth-constants,
truth-stressing and truth-depressing hedges and an involutive negation. Section
5 deals with first-order t-norm based fuzzy logics and the complexity issues for
both propositional and predicate logics. Finally, in Section 6 we will discuss on
further topics related to formal fuzzy logics and in particular on their probability
theory and fuzzy modal logics. We conclude with some final comments in Section
7.

A significant part of the material contained in this manuscript has been taken
from the handbook chapter [38] and the survey paper [64].

2 From fuzzy sets to fuzzy logics

Consider a non-empty set X of objects. A fuzzy set A in X was described by
Zadeh as a function µA, called the membership function of A, which associates
to each element x of X a real number µA(a) in [0, 1] and which represents the
grade (or degree) of membership of x to A. Fuzzy sets hence generalize (classical)
set: if µA only takes values {0, 1} then, upon identifying A with its characteristic
function, µA describes a (classical) subset of X.

Besides defining the notion of fuzzy set, in [131] Zadeh also discussed on how
to extend the usual operations of intersection, union and complementation to
this setting. The natural choice he made was the following: the intersection of
two fuzzy sets µA and µB is modeled by the minimum function, i.e. for each
x 2 X, µA\B(x) = min(µA(x), µB(x)), their union by the maximum function,
i.e. µA[B(x) = max(µA(x), µB(x)), and the complement of µA was computed as
µA(x) = 1� µA(x).

In the beginning 1980s it became common use in the mathematical fuzzy com-
munity to consider t-norms as suitable candidates for connectives upon which
generalized intersection operations for fuzzy sets should be based, see [5, 37, 120,
88, 130]. These t-norms, a shorthand for “triangular norms”, first became impor-
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tant in discussions of the triangle inequality within probabilistic metric spaces,
see the monographs [125] and later [89, 4]. They are binary operations in the
real unit interval that endow it with an structure of an ordered commutative
monoid with 1 as unit element. The three most prominent and well-known t-
norms are the so-called  Lukasiewicz, Product and Gödel t-norms, denoted respec-
tively TL, TP and TG, and defined as TL(x, y) = max{x+y�1, 0}, TP (x, y) = x·y,
and TG(x, y) = min{x, y}, for every x, y 2 [0, 1].

In an analogous way, the so-called t-conorms appeared as suitable operations
for the union operations of fuzzy sets as dual counterparts of t-norms. Indeed,
as t-norms, t-conorms are binary operations in the real unit interval providing
[0, 1] with an structure of ordered commutative monoid, but now replacing 1 by
0 as unit element. More precisely, if n : [0, 1] ! [0, 1] is a bijective involutive
order reversing mapping such that n(0) = 1 (and hence n(1) = 0), then given a
t-norm T , the operation S defined as S(x, y) = n(T (n(x), n(y)) is a t-conorm,
and viceversa, T can be defined from S and n in an analogous way. The following
are the corresponding t-conorms of TL, TP and TG t-norms for n(x) = 1 � x:
SL(x, y) = min{1, x+ y}, TP (x, y) = x+ y�x · y, and TG(x, y) = max{x, y}, for
every x, y 2 [0, 1].

The general understanding in the context of fuzzy connectives is that t-norms
form a suitable class of generalized conjunction operators.

Although today it seems completely natural to relate fuzzy set theory and
formal systems for many-valued logics, that was not the case when fuzzy sets
were introduced by Zadeh in the ’60s of the last century [131]. In fact, Zadeh
himself, although presenting fuzzy sets as a tool to model vague notions —and
by doing so he surely recognized the many-valuedness of his own approach— he
did not relate fuzzy sets to many-valued logics at the beginning. Not surprisingly,
also the overwhelming majority of fuzzy set papers that followed [131] treated
fuzzy sets in the standard mathematical context, i.e. with an implicit reference
to a naive understanding of classical logic as argumentation structure.

Goguen was the first among Zadeh’s immediate followers who emphasized
an intimate relationship between fuzzy sets and many-valued logics. In his 1969
paper [65], he considers membership degrees as generalized truth values, i.e. as
truth degrees. Additionally he sketches a “solution” of the sorites paradox, i.e.
the heap paradox, using – but only implicitly – the ordinary product in [0, 1] as
a generalized conjunction operation. Based on these ideas, he proposes, as suit-
able structures for the membership degrees of fuzzy sets, completely distributive
lattice ordered monoids (A,, ⇤, 0, 1) enriched, whenever definable, with an op-
eration ) which is the (right) residuum of the monoidal operation ⇤, and hence
characterized by the well known adjointness condition

a ⇤ b  c i↵ b  a) c , (1)

and with the “implies falsum”-negation ¬, i.e. defined as ¬a = a ) 0 In other
words, completely distributive commutative, bounded and integral residuated
lattices.
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Gottwald in [66] noticed that a monoid over the unit real interval [0, 1] defined
by a left continuous t-norm ⇤ always has residuum ), defined as

x) y = max{z 2 [0, 1] | x ⇤ z  y}.

Structures of this kind were found to be relevant examples over which one
could define a propositional language (with connectives ^,_ for the truth degree
functions min,max, and connectives &,! for a left-continuous t-norm and its
residuum) to develop fuzzy set theory within – at least as long as the comple-
mentation of fuzzy sets remains out of scope.

Indeed, each (left continuous) t-norm ⇤ uniquely determines a semantical
(propositional) calculus over formulas defined in the usual way from a countable
set of propositional variables, connectives ^, & and ! and truth-constant 0
[69]. Further connectives are defined as follows:

' _  is (('!  )!  ) ^ (( ! ')! '),
¬' is '! 0̄,

' ⌘  is ('!  )&( ! ').

Evaluations of propositional variables are mappings e assigning each propo-
sitional variable p a truth-value e(p) 2 [0, 1], which extend univocally to
compound formulas as follows:

e(0) = 0

e(' ^  ) = min(e('), e( ))

e('& ) = e(') ⇤ e( )
e('!  ) = e(')) e( )

Note that, from the above defintions, e('_ ) = max(e('), e( )), ¬' = e(')) 0
and e(' ⌘  ) = e('!  ) ⇤ e( ! ').

A worthwhile comment at this point is that, due to the fact that the residu-
ation property (1) holds for the pair (⇤,)), these calculi admit a graded form of
modus ponens. Indeed, for any evaluation e and ↵,� 2 [0, 1], from lower bounds
on the value of an implication and on its premise, we can derive a lower bound
for the value of the conclusion according to the following expression:

e(') � ↵, e('!  ) � �

e( ) � ↵ ⇤ � .

Two prominent many-valued logics that fall in this class of calculi, namely
 Lukasiewicz and Gödel infinitely-valued logics, [92, 63], denoted  L and G respec-
tively, were defined much before fuzzy logic was born. They indeed correspond
to the calculi defined by  Lukasiewicz and min t-norms TL and TG respectively.
 Lukasiewicz logic  L has received much attention from the fifties, when complete-
ness results were proved by Rose and Rosser [121], and by algebraic means by
Chang [16, 17], who developed the theory of MV-algebras largely studied in the
literature. Many results about  Lukasiewicz logic and MV-algebras can be found
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in the books [29, 109]. On the other hand, a completeness theorem for Gödel
logic was already given in the fifties by Dummett [39]. Note that the algebraic
structures related to Gödel logic are linear Heyting algebras (known as Gödel
algebras in the context of fuzzy logics), that have been studied in the setting
of intermediate or superintuitionistic logics, i.e. logics between intuitionistic and
classical logic.

In fact, the type of logical setting based on left-continuous t-norms for fuzzy
set theory was considered in the 1980s and beginning of the 1990s, although in a
naive way: these early approaches were mainly semantically oriented calculi and
what was in general missing, with the exception of infinite-valued  Lukasiewicz
logic  L and Gödel logic G,1 was a systematic investigation on suitable syntactic
calculi providing adequate axiomatizations of them.

The first proposal to fill in this gap was made by Ulrich Höhle [84–86] who of-
fered in 1994 his monoidal logic ML. This common generalization of  Lukasiewicz
logic  L, intuitionistic logic and the additive fragment of Girard’s integral, com-
mutative linear logic aMALL [62], was determined by an algebraic semantics
given by the class of all M-algebras, namely the variety of commutative, integral
and bounded residuated lattices. At this point, it is interesting to notice that
Höhle’s monoidal logic belongs to the family of substructural logics, namely M-
algebras are nothing but the algebras of the logic FLew, i.e. Full Lambek calculus
with exchange and weakening. Adequate axiomatizations for the propositional
as well as for the first-order version of this logic were given in [84, 86].

3 The logics of continuous t-norms and the beginning of

“Mathematical Fuzzy Logic”

Monoidal logic intended to grasp the relationship between fuzzy set theory and
the t-norm based setting of their set-algebraic operations. But it was not strongly
enough tied with this background. In contrast to Höhle’s general approach,
Hájek’s proposal was to restrict the analysis and he devoted himself to the task
of axiomatising the common tautologies of all continuous t-norm based calculi.
In short, to define the logic of all continuous t-norms [68, 69], called Basic fuzzy
logic and usually denoted BL.

There are two crucial properties which pave the way to the original algebraic
semantics for BL and that marks a di↵erence w.r.t. the M-algebras in general.

– The first one is that for any t-norm ⇤ and their residuation operation) one
has

(a) b) _ (b) a) = 1 , (2)

with _ denoting the lattice join here, i.e. the max-operation for a linearly
ordered carrier. This equation is known as the prelinearity condition, and
it is not in general satisfied in M-algebras. For instance, if this condition
is imposed upon the Heyting algebras, which form an adequate algebraic

1 In 1996 the product logic [77] was added to this list.
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semantics for intuitionistic logic, the resulting class of prelinear Heyting al-
gebras is an adequate algebraic semantics for the infinite-valued Gödel logic.

– The second observation is that the continuity condition of a t-norm can be
given in algebraic terms: for any left-continous t-norm ⇤ and its residuum)
one has that the divisibility condition

a ⇤(a) b) = a ^ b (3)

is satisfied if and only if ⇤ is a continuous t-norm, see [85]. In the condition
above ⇤ denotes the semigroup operation and ^ the lattice meet (i.e. the min
operation on [0, 1]).

BL-algebras were then defined just as M-algebras which satisfy the prelinearity
and the divisibility conditions. In particular all BL-algebras over the real unit
interval [0, 1] are those defined by a continuous t-norm and its residuum, and
they are known as standard BL-algebras.

In his highly influential monograph [69], Hájek characterized his basic (propo-
sitional) fuzzy logic BL as the logic whose algebraic semantics is the class of
BL-algebras, and gave an axiomatization via the following set of axioms:

(AxBL1) ('!  )! (( ! �)! ('! �)) ,
(AxBL2) '& ! ' ,

(AxBL3) '& !  &' ,

(AxBL4) '&('!  )!  &( ! ') ,
(AxBL5a) ('! ( ! �))! ('& ! �) ,
(AxBL5b) ('& ! �)! ('! ( ! �)) ,
(AxBL6) (('!  )! �)! ((( ! ')! �)! �) ,
(AxBL7) 0! ' ,

and with modus ponens as its only inference rule.
Routine calculations show that the axioms AxBL5a and AxBL5b express the

adjointness condition (1). Also by elementary calculations one can show that
AxBL6 formulates the prelinearity condition (2). This was one of the interesting
reformulations Hájek gave to the standard algebraic properties. Another one
was that he recognized that the weak disjunction, i.e. the connective which
corresponds to the lattice join operation in the truth degree structures, could be
defined as

' _  =def (('!  )!  ) ^ (( ! ')! ') . (4)

Here ^ is the weak conjunction with the lattice meet as truth degree function
which can, according to the divisibility condition, be defined as

' ^  =def '&('!  ) . (5)

Hájek proved that BL logic was complete w.r.t. the whole class of BL-
algebras, but he also conjectured that the subclass of all standard BL-algebras
would be enough for completeness. Although he was very close to prove the con-
jecture, it was finally Cignoli et al. who proved the standard completeness of BL
in [31].
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Yet another fundamental property related to the BL logic was proved in [46]
by algebraic methods: for any continuous t-norm, its corresponding calculus can
be axiomatized as a finitary extension of BL. This result was later improved by
Haniková in [81] where she shows that the equational theory of an arbitrary class
of standard BL-algebras is finitely based as well.

3.1 The beginning of “Mathematical Fuzzy Logic”

Hájek’s book [69] contains not only the introduction of BL but also many logical
results related to it and some others concerning the formalization of some of the
tasks which formed Zadeh’s agenda, the so-called Fuzzy Logic in wide sense. In
fact Hájek quotes Zadeh’s preface of the book [134] where he made a very clear
distinction between the two main meanings of the term fuzzy logic. Indeed, he
writes:

The term “fuzzy logic” has two di↵erent meanings: wide and narrow.
In a narrow sense it is a logical system which aims a formalization of
approximate reasoning. In this sense it is an extension of multi-valued
logic. However the agenda of fuzzy logic is quite di↵erent from that of
traditional many-valued logic. Such key concepts in FL as the concept of
linguistic variable, fuzzy if-then rule, fuzzy quantification and defuzzifica-
tion, truth qualification, the extension principle, the compositional rule
of inference and interpolative reasoning, among others, are not addressed
in traditional systems. In its wide sense, FL, is fuzzily synonymous with
the fuzzy set theory of classes of unsharp boundaries.

Hájek, in the introduction of his monograph [69] makes the following comment
to Zadeh’s quotation:

Even if I agree with Zadeh’s distinction (. . . ) I consider formal calculi of
many-valued logic to be the kernel of fuzzy logic in the narrow sense and
the task of explaining things Zadeh mentions by means of this calculi to
be a very promising task.

Also, Novák et al., in the introduction of their monograph [115], write:

Fuzzy logic in narrow sense is a special many-valued logic which aims at
providing formal background for the graded approach to vagueness.

Actually, the book by Hájek [69] has been considered as a sort of o�cial start
of the new discipline called Mathematical Fuzzy Logic, with the goal of provid-
ing rigorous, logical foundations to fuzzy logic in narrow sense. This branch of
mathematical logic has had a great development over the past twenty years and
from many points of view (logical, algebraic, proof-theoretical, functional rep-
resentation, complexity analysis, etc.), as witnessed by a number of important
monographs that have appeared in the literature at the beginning of this cen-
tury see [69, 67, 115, 98], and culminated more recently by the series of three
handbooks [32–34].
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3.2 The logic of all left-continuous t-norms

Only a short time after Hájek’s axiomatization of BL (the logic of continuous t-
norms), Esteva and Godo in [42] introduced the logic MTL (for Monoidal t-norm
based Logic) inspired by the following basic property that we already recalled in
Section 2:

– A t-norm has residuum if and only if it is left-continuous.

Let us observe that, in general, left-continuous t-norms do not satisfy the
divisibility property (3) and hence, in MTL, the weak conjunction connective
^ cannot be defined in terms of the strong conjunction & (interpreted by a
left-continuous t-norm ⇤) and the implication ! (modeled by the residuum of
⇤), whence it has to be introduced as primitive connective. Indeed, the axioms
of MTL are obtained from those of BL by replacing axiom (AxBL4) by the three
following ones:

(AxMTL4a) ' ^  ! '

(AxMTL4b) ' ^  !  ^ '
(AxMTL4c) '&('!  )! ' ^  

The algebraic semantics of the logic MTL is the variety of MTL-algebras,
which can either be obtained by removing the divisibility equation (3) from the
equations of Hájek BL-algebras, or as the subvariety of those Höhle’s M-algebras
which satisfy the prelinearity condition (2).

As Hájek did for BL, also Esteva and Godo conjectured that MTL was the
logic of all left-continuous t-norms, that is, standard MTL-algebras form a com-
plete semantics for the monoidal t-norm based logic. That claim was confirmed
a short later by Jenei and Montagna who, in the paper [87], actually proved that
MTL is complete with respect to the class of standard MTL-algebras over [0, 1].

The semantic calculi defined by each left-continuous t-norm and its residuum
correspond to di↵erent extensions of MTL. Some of them have been studied and
axiomatized (e.g. the case of nilpotent minimum t-norm) but there are no general
results, as in the case of continuous t-norms, about the axiomatization of these
calculi.

Remark 1. All t-norm based fuzzy logics, except Gödel logic, belong to the
framework of substructural logics as they fail to satisfy the structural rule of
contraction, equivalent in this framework to the contraction axiom '! '&'.

4 Distinguished extensions and expansions

In this section we introduce a summary of the main extensions and expansions
of the basic systems of t-norms based fuzzy logics. The logics so defined are
intended to cope with the main notions of the agenda proposed by Zadeh.
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4.1 Main axiomatic extensions of t-norm based fuzzy logics

As we recalled in Section 3.2, the logic MTL can be regarded as the weakest t-
norm based logic, in the sense of Hájek. This means, among other things, that the
other logics, such as BL, or Gödel, product and  Lukasiewicz logic can be obtained
as axiomatic extension from MTL. Basic references for this topic are [69] where
 Lukasiewicz, product and Gödel logic are presented as schematic extension of
BL; [42] which, in addition to MTL, also introduces the logics IMTL (involutive
MTL), NM (nilpotent minimum), WNM (weak nilpotent minimum) and SBL
(strict BL). The logic ⇧MTL (product MTL) was defined in [71], while SMTL
(strict MTL) was introduced and studied in [40]. An exhaustive and systematic
treatment of MTL and its schematic extension can be found in [110].

The following table collects some of the axioms schema which allow to obtain,
starting from MTL, some of its most relevant extensions.

Name Formula

Involution (Inv) ¬¬'! '

Pseudocomplementation (PC) ' ^ ¬'! ?
Cancellation (⇧1) ¬¬�! (('&�!  &�)! ('!  ))

Weak Nilpotent Minimum (WNM) ('& ! ?) _ (' ^  ! '& )
Divisibility (Div) ' ^  ! '&('!  )
Contraction (Con) '! '&'

Before recalling how the main extensions of MTL can be obtained (they
will be collected in the following Table 1), let us briefly comment on the above
axioms.

The first one, involution, forces the negation of a logic to be involutive, as
the classical negation. Also the second axiom schema, pseudocomplementation,
forces a logics to have a classical behavior. Indeed, if a logic satisfies (PC) it then
enjoys the contradiction law with respect to the lattice operation of meet. Divis-
ibility, the peculiar axiom of BL, allows a logic to define the lattice operations,
and the ^ in particular, in terms of the t-norm and its residuum. Contraction
can be understood as idempotency. It can be shown, in fact, that if a logic sat-
isfies the contraction schema, then '&'$ ' ^ ' and hence '&'$ ' ^ '$ '

since ^ is idempotent. As for (⇧1), (WNM), let us explain them on the standard
semantics based on [0, 1]. The latter defines t-norms which behave similarly to
the usual product between real numbers. Indeed, for a cancellative t-norm, either
an element c is 0 (this fact is expressed by the first part of the formula: ¬¬�) or
a ⇤ c = b ⇤ c gives that a = b (second part: ('&� !  &�) ! (' !  )). Thus,
if c is not 0, then one can cancel it on the right and on the left of a ⇤ c = b ⇤ c.
Finally, the axiom (WNM) indeed captures the behavior of a (weak) nilpotent
minumum t-norm: either a ⇤ b = 0, or a ⇤ b coincides with min{a, b}.

Figure 2 presents the main extensions of the logic MTL within the framework
of substructural logics where the t-norm based fuzzy logics, are those logics in
the blue oval.
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MTL extension Additional axioms schema

IMTL (Inv)
SMTL (PC)
⇧MTL (PC) and (⇧1)
WNM (WNM)
NM (Inv) and (WNM)
BL (Div)
SBL (Div) and (PC)

 L (Div) and (Inv)
G (Con)
P (Div), (PC) and (⇧1)

Fig. 1. The main schematic extensions of MTL (names on the left) and the axioms
schema which characterizes each of them.

INTUITIONISTICINTUITIONISTIC
MTLMTL

IMTLIMTL  SMTL SMTL

BLBL

LUKASIEWICZLUKASIEWICZ

   SBLSBL

MONOIDAL (MONOIDAL (FLFLewew  , , IntuitionisticIntuitionistic without contraction) without contraction)

    

PRODUCT PRODUCT GGÖÖDELDEL

Con

Inv

Inv

        PC

Con

CLASSICAL LOGICCLASSICAL LOGIC

Div

Lin

Lin

Div

Div
    PC

Π1

aMALLaMALL

Inv

Div

Π1 ΠΠMTLMTL
Inv

Lin

Framework of t-norm based fuzzy logics

Fig. 2. Main t-norm based fuzzy logics as extensions of MTL and Höhle monoidal logic.
In particular, the main extension of MTL are those logics in the blue oval. Further
notice that Lin stands for the prelinearity axiom that we discussed in Section 3.

4.2 Expansions of t-norm based fuzzy logics

By an expansion of a logic L, we intend a logical system whose language is
endowed with additional symbols intended to model operations or constants
that would not be otherwise definable in the initial language of the logic L.

The first expansions of t-norm based fuzzy logics we consider are by truth
constants, that is symbols which ideally corresponds to real, or rational, truth-
values for formulas. The logics arising in this way hence allow to handle partial
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truth directly at the syntactical level. It is worth to recall that the first work in
this direction is the one put forward by Pavelka in [119].

Second we expand basic systems with unary connectives that model linguis-
tic qualifiers called truth stressing and truth depressing hedges. In particular the
maximal stressing hedge is the so called Baaz-Monteiro projection � that se-
mantically correspond to the crisp connective �(1) = 1 and �(x) = 0 for every
x 6= 1 firstly introduced in [7].

Finally, we present a way to expand t-norm based fuzzy logics with an involu-
tive negation. Recall in fact that the negation connective defined by ¬' = '! 0
usually fails to be involutive. Indeed, it is involutive if and only if the logic is an
extension of IMTL as for instance NM and  Lukasiewicz logics.

Expansions with truth constants T-norm based fuzzy logics are basically
logics of comparative truth. In fact, as already mentioned, the residuum ) of a
(left-continuous) t-norm satisfies for all x, y 2 [0, 1] the condition

x) y = 1 if, and only if, x  y.

This means that a formula '!  is a logical consequence of a theory if the truth
degree of ' is at most as high as the truth degree of  in any interpretation which
is a model of the theory. In fact, the logic of continuous t-norms as it is presented
in Hájek’s seminal book [69] only deals with valid formulae and deductions taking
1 as the only truth value to be preserved by inference (in the sense of yielding true
consequences from true premises for each interpretation). This line is followed by
the majority of logical papers written from then in the setting of Mathematical
Fuzzy Logic. However, in general, these truth-preserving logics do not exploit in
depth neither the idea of comparative truth nor the potentiality of dealing with
explicit partial truth that a many-valued logic setting o↵ers.

In some situations one might be also interested to explicitly represent and
reason with intermediate degrees of truth. A way to do so, while keeping the
truth preserving framework, is to introduce truth-constants into the language.
This approach actually goes back to Pavelka [119] who built a propositional
many-valued logical system which turned out to be equivalent to the expansion
of  Lukasiewicz logic obtained by adding into the language a truth-constant r for
each real r 2 [0, 1], together with some additional axioms. Pavelka proved that
his logic is strongly complete in a non-finitary sense (known as Pavelka-style
completeness), heavily relying on the continuity of  Lukasiewicz truth-functions.

Hájek [69] showed that Pavelka’s logic PL could be significantly simplified
while keeping the completeness results. Indeed, Rational Pavelka Logic (RPL)
is defined as the expansion of  Lukasiewicz logic  L by adding a truth constant r
for each rational r 2 [0, 1] together with the following two book-keeping axioms
for truth constants:

(RPL1) r&s$ r ⇤ L s

(RPL2) r ! s$ r ) L s

Archives for Soft Computing 37Issue 2/2019



12 Francesc Esteva, Tommaso Flaminio, and Llúıs Godo

where ⇤ L and ) L are  Lukasiewicz t-norm and implication respectively.
An evaluation e of propositional variables by reals from [0, 1] extends to an
evaluation of all formulas as in  Lukasiewicz logic over the standard MV-algebra
[0, 1]⇤ L provided that e(r) = r for each rational r.

Notice that a formula of the form r ! ' gets value 1 by an evaluation
e whenever ' gets a value by e greater or equal than r. Therefore, the RPL-
formula r ! ' expresses that the truth-value of ' is at least r. Similarly, '! r

expresses that the truth-value of ' is at most r.
A theory T over RPL is just a set of formulas. The notion of proof denoted

`RPL is defined as usual from the axioms of RPL and modus ponens.
Given a theory T , the truth degree of a formula ' in T is defined as

||'||T = inf{e(') | e is a model of T, i.e. e( ) = 1 for all  2 T},

and the provability degree of ' over T as

|'|T = sup{r rational of [0, 1] | T `RPL r ! '}.

Note that the provability degree is a supremum, which is not necessarily attained
as a maximum; for an infinite T , |'|T = 1 does not always imply T ` '. (For
finite T it does, see e.g. [69, 3.3.14]).

Pavelka style completeness was proved for RPL (see [119, 69]), namely: for
any theory T and formula ' of RPL,

||'||T = |'|T .

The proof is strongly related to the fact that in  Lukasiewicz logic truth-functions
are continuous. Similar expansions with truth-constants for other propositional
t-norm based fuzzy logics can be analogously defined but Pavelka-style com-
pleteness cannot be obtained since, in contrast to the  Lukasiewicz case, not all
truth-functions are continuous.

A more general approach has been developed in a series of papers, see e.g.
[47, 41, 123, 48], where rather than Pavelka-style completeness the authors have
focused on the usual notion of completeness of a logic. It is interesting to note
that in this approach: (1) the logic to be expanded with truth-constants has to
be the logic of a given left-continuous t-norm; (2) the expanded logic is still a
truth-preserving logic, but its richer language admits formulae of type r ! '

saying that, when evaluated at 1, the truth degree of ' is greater or equal than r;
and (3) the expanded logic is still algebraizable in the sense of Blok and Pigozzi.
A summary of all results in this topic can be found in the book chapter [44].

In all these works, special attention has been paid to formulas of the kind r !
', where r denotes the truth-constant r and ' is a formula without additional
truth-constants. Actually, this kind of formulas have been extensively considered
in other frameworks for reasoning with partial degrees of truth, like in Novák’s
evaluated syntax formalism based on  Lukasiewicz Logic (see e.g. [115]) or in
fuzzy logic programming (see e.g. [128]). In particular, these formulas can be
seen as a special kind of Novák’s evaluated formulas, which are expressions a/A
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where a is a truth value (from a given algebra) and A is a formula that may
contain truth-constants again, and whose interpretation is that the truth-value
of A is at least a. Hence the formula r ! ' would be expressed as r/' in
Novák’s evaluated syntax. We invite the reader to consult Subsection 6.3 for
further details.

Finally, truth-degrees in the syntax also appear in the Gerla’s framework
of abstract fuzzy logics [61] which is based on the notion of fuzzy consequence
operators over fuzzy sets of formulas, where the membership degree of formulas
are again interpreted as lower bounds of their truth degrees.

Expansions with truth-stressing and truth-depressing hedges Typical
examples of fuzzy truth-values in the sense of Zadeh (see [133]) are “very true”,
“quite true”, “more or less true”, “slightly true”, etc. They are represented in
fuzzy logic in narrow sense as fuzzy subsets on the set of truth values, typically
the real unit interval. In order to cope with these fuzzy truth values in the
setting of mathematical fuzzy logic, Hájek proposes in [70] to understand them
as truth functions of new unary connectives called either truth-stressing or truth
depressing hedges (depending on whether they reinforce or weaken a truth value).
The intuitive interpretation of a truth-stressing (resp. depressing) hedge like
very true (resp. slightly true) on a chain of truth-values is a subdiagonal (resp.
superdiagonal) non-decreasing function preserving 0 and 1, called hedge functions
from now on. Notice that the projection operator � (introduced independently
first by Monteiro in the context of intuitionistic logic [103] and posteriorly by
Baaz in the context of Gödel logics [7]) is a limit case of a truth stresser since,
over a chain, it sends 1 to 1 and all the other elements to 0, and the intuitive
interpretation would be definitely true.

Hájek [70] and Vychodil [129] propose an axiomatization of truth-stressing
and depressing hedges respectively as expansions of BL (and of some of their
prominent extensions, like  Lukasiewicz, Product or Gödel logics) by new unary
connectives vt, for very true, and st, for slightly true, respectively. The logics they
define are shown to be algebraizable and to enjoy completeness with respect to
the classes of chains of their corresponding varieties. However the axiomatics
that Hájek proposes (also used by Vychodil) is quite restrictive since not any
BL-chain expanded with a hedge function is a model of the proposed logic,
as one would expect from the traditional use of hedges in fuzzy logic in wide
sense. Moreover, the defined logics are not proved to enjoy general standard
completeness, except for the case of logics over Gödel logic. One of the main
reasons for both problems is the presence in the axiomatizations of the axiom
K for the vt connective i.e. vt(' !  ) ! (vt(') ! vt( )), which puts quite a
lot of constraints on the hedges to be models of these logics without a natural
algebraic interpretation.

Quite simple and general axiomatizations with very intuitive properties and
nice completeness results are given in [50]. Indeed, let L be t-norm based fuzzy
logic, and consider LS the expansion of L with a new unary connective s (for
stresser) defined by the following additional axioms:
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(VTL1) s'! ',
(VTL2) s1,

and the following additional inference rule:

(MON) from ('!  ) _ � infer (s'! s ) _ �.

Observe that monotonicity rule (MON) has a rather complicate expression
(with the addition of the _�). In fact it is only a technical addition to assure
linearity. In [50] it is proved that LS is complete w.r.t. the chains of the cor-
responding quasi-variety. Moreover it is also standard complete but, in general
only for finite set of premises. In the same paper an axiomatization of truth
depresser hedges is presented in a similar way than the one for truth stressers.
Nevertheless the problem is not dual from truth stressers since, in general, the
negation is not involutive.

Expansions with an involutive negation In the logico-algebraic framework,
the problem of extending a relevant class of algebras with an involutive negation
probably goes back as early as Moisil in 1942 [99], who considered the expansion
of Heyting algebras with an involution. These algebras were extensively investi-
gated by Monteiro under the name of symmetric Heyting algebras [103]. They
were also considered by Sankappanavar [122], and more recently in [30] in the
more general framework of residuated lattices.

In the framework of t-norm based fuzzy logics, the negation connective ¬ is
defined from the implication ! and the truth constant 0̄, namely ¬' is '! 0̄.
However, this negation may have a very di↵erently behaviour in di↵erent varieties
of algebras. Indeed, for instance, the associated negation function is involutive in
any IMTL chain (in particular in algebras associated to  Lukasiewicz logic) but
it is not any longer involutive outside the variety of IMTL-algebras. The most
paradigmatic case are the chains of the variety of SMTL-algebras, where ¬ is
interpreted by the so-called Gödel’s negation nG, defined by:

nG(x) = x) 0 =

⇢
1, if x = 0
0, otherwise

In what follows we will summarize results on the expansion of any t-norm based
fuzzy logic with an independent involutive negation ⇠. Particularly interesting
are the cases of SMTL⇠ and their axiomatic extensions G⇠ and ⇧⇠, where �
is definable as a composition of the two negations (residuated and involutive)
defined there.

Notice that having an involutive negation in the logic enriches, in a non
trivial way, the representational power of the logical language. For instance, in
the enriched language we can define:

– a strong disjunction ' _  is definable now by duality, i.e. as ⇠(⇠' &⇠ ),
with truth function in real algebras [0, 1]⇤ defined by the dual t-conorm �
defined as x � y = n(n(x) ⇤ n(y))
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– a contrapositive implication ' ,!  is definable as ⇠' _  , with truth
function the strong implication function

c) defined as x
c) y = ⇠x � y.

The first paper studying this topic in the context of Mathematical Fuzzy
logic is [43] where the authors defined the expansion of the logic SBL (that has
a negation ¬) with an involutive engation ⇠. Recall that with both negations
the projection connective � is definable since �' is ¬⇠'.

In the paper the authors gives an axiomatization of what is called SBL⇠ by
the axioms of SBL plus

– ⇠⇠' ⌘ '

– ¬'! ⇠'
– �('!  )! �(⇠ ! ⇠')
– �(') _ ¬�(')
– �(' _  )! (�' _ � )
– �('!  )! (�'! � )

and modus ponens and necessitation for � as inference rules (where � is the
abreviation for ¬⇠).

In this setting it is possible to prove completeness with the chains of the
corresponding variety. Only in the case of Gödel logic it is also possible to prove
standard completenes with respect to the real unit interval with Zadeh con-
nective max,min, 1 � Id and the corresponding residuated implication. In the
paper the authors give an example that such standard completeness is not true
for Product Logic with an involutive negation. Flaminio and Marchioni in [57]
studied the more general case of adding an involution to MTL� and their ax-
iomatic extensions. On the other hand, Cintula et al. investigate in [25, 26] the
lattice of subvarieties generated by SBL⇠-chains and ⇧⇠-chains, and Haniková
and Savický [82] go further in the study of subvarieties generated by SBL⇠-chains
studying isomorphisms between pairs formed by a (SBL) t-norm and di↵erent
involutive negations.

5 Predicate fuzzy logics

The extensions of propositional t-norm based logics to first-order ones follows
the standard lines of approach: one has to start from a first-order language L
with the two standard quantifiers 8, 9 and a suitable commutative, residuated,
integral lattice ordered monoid A over a bounded lattice,2 and has to define
A-interpretations M by fixing a nonempty domain M = |M| and by assigning
to each predicate symbol of L an A-valued relation in M (of suitable arity) and
to each constant an element from (the carrier of) A.

The satisfaction relation is also defined in the standard way. The quantifiers
8 and 9 are interpreted as taking the infimum or supremum, respectively, of all
the values of the relevant instances.
2 Integrality means that the monoidal unit coincides with the upper bound of the
lattice.
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Unfortunately, infima and suprema do not always exist in lattices. So one
could suppose to consider only complete lattices. A less restrictive assumption is
to assume that, for any formula, all the infima and suprema do exist which have
to be considered for any evaluation this formula. Interpretations which satisfy
this last condition are called safe by Hájek [69].

The first-order version BL8 of Hájek’s logic BL is obtained by adding the
following axioms and rules to the propositional system (see [69])

(81) (8x)'(x)! '(t), where t is substitutable for x in ',
(91) '(t)! (9x)'(x), where t is substitutable for x in ',
(82) (8x)(�! ')! (�! (8x)'), where x is not free in �,
(92) (8x)('! �)! ((9x)'! �), where x is not free in �,
(83) (8x)(� _ ')! � _ (8x)', where x is not free in �,

and the rule of generalization.
Here, substitutability and the rule of generalization have the same meaning

as in classical first-order logic.
Then he was able to prove the following general chain completeness theorem:

A first-order formula ' is a theorem of BL8 i↵ it is valid in all safe interpretations
over BL-chains.

That result can be extended to elementary theories as well as to a lot of other
first-order fuzzy logics, e.g. to MTL8. For this logic MTL8 one has also a strong
standard completeness result [102]: a formula ' is MTL8-provable from a set T
of formulas i↵ ' holds true in all safe A-interpretations M which are models of
T and are based a standard MTL-algebra.

We will not discuss further completeness results here but rather we refer to
the extended survey [10]. Anyway it should be mentioned that, as suprema are
not always maxima and infima not always minima, the truth degree of an existen-
tially/universally quantified formula may not be the maximum/minimum of the
truth degrees of the instances. It is, however, interesting to have conditions which
characterize models in which the truth degrees of each existentially/universally
quantified formula is witnessed as the truth degree of an instance. This problem
was first considered by Hájek in the framework of fuzzy description logics [72],
later studied by Cintula and Hájek in [23], and surveyed in [10] as well.

5.1 The Complexity issue

A key problem for a logic is to determine the complexity of the set of its theorems.
Usually, the way to perform that analysis is semantic. Indeed, if a logic L is
complete with respect a class of structures K (or models in the first order case)
deciding if a formula ' is a theorem of L is the same as deciding if ' is a
tautology of K. It is conveniente to define the following sets, for a given class K
of MTL-algebra

– TAUT

1(K) is the set of K-tautology. A formula ' is a K-tautology if for
every A 2 K and for every A-valuation v, v(') = 1;
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– TAUT

>0(K) is the set of a positive K-tautology. A formula ' is a positive
K-tautology if for every A 2 K and for every A-valuation v, v(') > 0;

– SAT

1(K) is the set of K-satisfiable formulas, that is, the set of formulas '
for which there exists A 2 K and a A-valuation v such that v(') = 1;

– SAT

>0(K) is the set of positively K-satisfiable, that is, the set of formulas '
for which there exists A 2 K and a A-valuation v such that v(') > 0;

Clearly TAUT

1({0, 1}) = TAUT

>0({0, 1}) and SAT

1({0, 1}) = SAT

>0({0, 1}).
Moreover, in classical propositional and first-order logic, a formula ' is a {0, 1}-
tautology i↵ ' is a {0, 1}-positive tautology i↵ ¬' is not {0, 1}-satisfiable i↵ '

is not positively {0, 1}-satisfiable. By Cook’s theorem, [35], deciding if a propo-
sitional formula ' is {0, 1}-satisfiable is an NP-complete problem and hence
deciding if ' is a {0, 1}-tautology is coNP-complete, while, for the first-order
case, Church-Turing theorem shows that TAUT

1({0, 1}) is undecidable.

As for t-norm based logics, however, TAUT

1(K) 6= TAUT

>0(K),
SAT

1(K) 6= SAT

>0(K) and K-satisfiable formulas and K-tautologies do not
form dual sets in the above sense. Indeed, the formula x _ ¬x in  Lukasiewicz
logic neither is a [0, 1]MV -tautology as witnessed by the valuation x 7! 1/2,
nor its negation ¬x ^ x is [0, 1]MV -satisfiable since for all ↵ 2 [0, 1] one has
min{↵, 1� ↵}  1/2.

The propositional case As for the propositional t-norm based logics whose de-
cision problem has been settled (this is the case of continuous t-norm based logics
such as BL, product, Gödel,  Lukasiewicz logics) the situation is not dissimilar to
the classical case. Indeed, with respect to the class of standard algebras, we have
that both SAT

1 and SAT

>0 are NP-complete while TAUT

1 and TAUT

>0 are
coNP-complete. However, complexity results for left-continuous t-norm based
logics are much more fragmented: the SAT

1 and SAT

>0 are NP-complete for
both the NM and the WNM logics, while for MTL, SMTL, ⇧MTL and IMTL,
we only know that their the above sets are decidable, but no complexity bounds
have been established so far. The following table collects known complexities
for the main extension of MTL with respect to the class of their standard alge-
bras. Complexity results for the propositional logics mentioned below have been
established in a series of paper by multiple authors, [8, 24, 79, 94, 104]. We also
invite the interest reader to consult [80] for a concise and exhaustive treatment.
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TAUT

1
TAUT

>0
SAT

1
SAT

>0

MTL decidable decidable decidable decidable
IMTL decidable decidable decidable decidable
SMTL decidable decidable decidable decidable
⇧MTL decidable decidable decidable decidable
NM co-NP-complete coNP-complete NP-complete NP-complete

WNM co-NP-complete co-NP-complete NP-complete NP-complete
BL co-NP-complete co-NP-complete NP-complete NP-complete
 L co-NP-complete co-NP-complete NP-complete NP-complete
G co-NP-complete co-NP-complete NP-complete NP-complete
P co-NP-complete co-NP-complete NP-complete NP-complete

The first-order case Not surprisingly, first order t-norm based logics, besides
few exceptions, turn out to be undecidable and hence the main problem is to
determine, for each logic, its undecidability degree. The known results in this
predicate setting much depends on the chosen semantics we may fix for each
logic.

The chapter [78] provides an exhaustive analysis on this topic considering
several semantics but focusing in particular on the general semantics, given by
the class of all chains for the logic, and the standard semantics, given by those
chains whose lattice reduct is a sublattice of the real unit interval [0, 1]. The
distinction between the general and the standard semantics is quite important.
Indeed, while for the former the undecidability degree for each logic is relatively
low (the SAT1 and SAT>0 are in ⌃1 while TAUT1 and TAUT>0 are in ⇧1), the
standard semantics o↵ers a much more variegate range of situations: for MTL,
SMTL, ⇧MTL, IMTL and G the satisfiability and the tautology problems behave
as for the general semantics, for  Lukasiewicz first order logic the undecidability
degrees of SAT1, SAT>0 and TAUT1, TAUT>0 are higher than ⌃1 and ⇧1

respectively, but still arithmetical, and for product logic and BL, all the above
sets fall outside the arithmetical hierarchy.

TAUT

1
TAUT

>0
SAT

1
SAT

>0

MTL8 ⌃1-complete ⌃1-complete ⇧1-complete ⇧1-complete
IMTL8 ⌃1-complete ⌃1-complete ⇧1-complete ⇧1-complete
SMTL8 ⌃1-complete ⌃1-complete ⇧1-complete ⇧1-complete
⇧MTL8 ⌃1-hard ⌃1-hard ⇧1-hard ⇧1-hard
NM8 ⌃1-complete ⌃1-complete ⇧1-complete ⇧1-complete

WNM8 ⌃1-complete ⌃1-complete ⇧1-complete ⇧1-complete
BL8 Non-arithmetic Non-arithmetic Non-arithmetic Non-arithmetic
 L8 ⇧2-complete ⌃1-complete ⇧1-complete ⌃2-complete
G8 ⌃1-complete ⌃1-complete ⇧1-complete ⇧1-complete
P8 Non-arithmetic Non-arithmetic Non-arithmetic Non-arithmetic

The first paper exhibiting a result of computational complexity for first-
order fuzzy logics is Scarpellini’s [124], published in 1962, showing the non-
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axiomatizability of  Lukasiewicz predicate logic. The undecidability of MTL8, as
well as any other predicate logic between MTL8 and classical predicate logic,
is proved by Montagna and Ono in [102]. A general approach to complexity
problems extending the scope predicate fuzzy logics to arbitrary semantics can
be found in [101]. We also invite the reader to consult the above mentioned
chapter [78], the references therein and also the survey paper [74].

6 Further topics and recent research lines

In this final section we will briefly review on some topics which fall under the
scope of Mathematical Fuzzy Logic and which, nowadays, constitute active re-
search areas. In specific terms we will present basic notions, result and ongoing
research directions on probability theory on fuzzy events and fuzzy modal logics.

6.1 Probability of fuzzy events

In 1968, Zadeh published a fundamental paper where he approached probability
theory for fuzzy events by addressing the following key questions: what are fuzzy
events? and how to measure their probability? Zadeh’s answers are grounded on
the observation that in a probability space of the form hRn

,B(n), P i where B(n)
stands for the �-field of Borel subsets of Rn, a classical event E is nothing else
than a Borel subset of Rn and its probability can be represented as

P (E) =

Z

Rn

�E dP, (6)

where �E denotes the characteristic function of E.
In the light of this observation, it is natural to propose the following.

Definition 1 ([132]). Let hRn
,B(n), P i be a probability space. Then a fuzzy

event in Rn is a fuzzy set F whose membership function µF : Rn ! [0, 1] is
Borel measurable. The probability of a fuzzy event F is hence defined by the
Lebesgue integral

P (F ) =

Z

Rn

µF dP. (7)

Some remarks are in order. First of all, we must observe the deep analogy between
the above equations (6) and (7). It is indeed evident that they di↵er for the
definition of event, while probabilities (of events) remain essentially unchanged.
Second, Zadeh’s definition of probability (of fuzzy events) is not axiomatic à la
Kolmogorov and, although the basic properties of normalization (P (Rn) = 1),
monotonicity (if µA  µB , then P (A)  P (B)) and finite additivity (P (A[B) =
P (A) + P (B) � P (A \ B)3) hold for a probability function on fuzzy events, in
[132] it is not proved that they indeed characterize these measures. Finally it
must be observed that the definition of fuzzy event as given in Definition 1 is

3 Where µA[B = max(µA, µB) and µA\B = min(µA, µB).
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essentially measure-theoretical and it does not rely on a specific formal logic
fixed in advance to represent fuzzy sets and fuzzy events by its formulas.

The development of formal systems in the realm of Mathematical Fuzzy
Logic provided a logical and algebraic setting upon which one can address the
question on how to axiomatically (à la Kolmogorov) capture Zadeh’s probability.
More precisely, once a fuzzy logic L is fixed, we may ask if its formulas can be
regarded as fuzzy events in the sense of the above Definition 1 and which are the
axioms that a [0, 1]-valued function f defined on the formulas of L (univocally)
characterize f as a probability according to the above Equation (7).

Although one of the first references for the axiomatic treatment of the prob-
ability of fuzzy events can be traced back to the paper [18] by Chovanec, it
is Mundici’s definition of state of an MV-algebra, [106], which paved the way,
within the community of fuzzy logicians, for a discipline that nowadays goes
under the name of state theory whose aim is, among other things, to answer the
questions above (see also [56, 109]).

The choice of MV-algebras, and hence of  Lukasiewicz logic, for Mundici’s
analysis is justified by the fact that formulas of  Lukasiewicz logic can be regarded
as [0, 1]-valued continuous, and hence Borel-measurable functions. Thus, every
formula in this setting is a fuzzy event in the above sense. A state of  Lukasi-
ewicz formulas, is hence a [0, 1]-valued function s which satisfies the following
conditions:

1. If ` L ', then s(') = 1,
2. If ` L ¬('& ), then s('_ ) = s(') + s( ),

where & and _ here denote, respectively, the strong conjunction and strong
disjunction connectives of  Lukasiewicz logic. This first axiom clearly corresponds
to the normalization axiom for probability functions on formulas of classical
logic, and it says that the state of every  Lukasiewicz theorem is 1. The second
one forces states to be additive. Indeed it says that, if it is provable in  Lukasiewicz
logic that ' and  are disjoint with respect to  Lukasiewicz strong conjunction,
then the state of the strong disjunction of ' and  coincides with the sum of their
states. It is worth noticing that the above definition of state properly generalizes
the one of classical probability on classical logic formulas. Indeed, if ' and  

are classical formulas, then the axiom (2) implies, in algebraic terms, that if
'^ = ?, then s('_ ) = s(')+ s( ) and classical Kolmogorov axioms are so
recovered.

One could now wonder whether the above definition also gives, in the special
case of MV-algebras and  Lukasiewicz logic, also a notion of probability of fuzzy
events as in Definition 1. The answer is a�rmative. Indeed, the following result,
which has been independently proved by Kroupa [90] and Panti [118], shows that
for every state s of  Lukasiewicz formulas there exists a unique regular Borel, and
hence �-additive, probability measure P such that s is the Lebesgue integral with
respect to P .

Theorem 1. For every state s of  Lukasiewicz formulas (on m variables) there
exists a unique regular, Borel probability measure P on [0, 1]m such that, for
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every  Lukasiewicz formula ',

s(') =

Z

[0,1]m
f' dP.4

This theorem, in addition to show the correctness of Zadeh’s intuition, inspired
a line of research which aims at providing similar characterizations for other
t-norm based fuzzy logics.

Recent results in this direction shows that similar results to Theorem 1 can
be obtained for states defined on the two other fundamental logics based on a
continuous t-norms, i.e. Gödel and Product fuzzy logics. We want to recall the
following articles in which axioms and an integral representation for states have
been quite intensively studied:

– States on formulas of Gödel logic have been introduced by Aguzzoli, Gerla
and Marra in [3]. In the same paper the authors also extend the foundational
theorem of de Finetti to the framework of Gödel events.5

– States for Product logic were studied by Flaminio, Godo and Ugolini in [55].
There, also a modal logic for reasoning about the uncertainty of product
events has been introduced and completeness result has been established.

– For the case of the t-norm based logic of nilpotent minimum, states have
been studied by Aguzzoli and Gerla in [1]. This logical setting is particularly
interesting since nilpotent minimum is an example of a non-continuous but
left-continuous t-norm, and with an involutive negation.

Entering in a detailed discussion on the axiomatization of states in the above
recalled logical realms is out of the scope of the present paper. However, it is
worth to point out the following things: (1) In contrast to the case of  Lukasie-
wicz logic in which all formulas correspond to continuous functions, formulas of
Gödel, product and nilpotent minumum logics do not. However they are repre-
sentable by Borel measurable, and hence Lebesgue integrable, functions; (2) the
di↵erent kinds of fuzzy events which each of the above logical system is able to
represent, inevitably forces di↵erent axiomatizations of states. Each of these ax-
iomatizations, however, collapses to Kolmogorov’s axioms of classical probability
functions as a special case.

The main definitions and results for state theory on MV-algebras can be
found in the book [109] and the book chapter [56]. In particular, the former also
contains a concise treatment on foundational approaches to the probability of
fuzzy ( Lukasiewicz) events, and the latter also recalls how conditional probability
[91, 100, 108] and internal states [58] can be approached in the realm of MV-
algebras and  Lukasiewicz logic.

4 Here, f' denotes the continuous, and hence Borel-measurable function defined on a
certain cube [0, 1]m which represent the formula ' in the Lindenbaum-Tarski algebra
of formulas of  Lukasiewicz logic, see [107] for more details.

5 De Finetti’s theorem for  Lukasiewicz events was generalized by Mundici in [107].
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6.2 Fuzzy modal logics

Fuzzy modal logic is an active and rapidly growing area of research that aims at
generalizing classical modal logic to a many-valued, or fuzzy, framework. The first
attempts to generalize modal logic to a many-valued setting can be traced back to
the papers by Ostermann [116, 117] and Fitting [59, 60]. In particular, the latter
papers start by generalizing the relational semantics of classical modal logics to
the many-valued setting, and defines two families of many-valued modal logics:
the first one is characterized by Kripke models with a classical (two-valued)
accessibility relations in which at each possible world formulas are evaluated by
a finite many-valued logic; the second one allows also the accessibility relation
to be many-valued.

These works on many-valued modal logics paved the way to the birth of fuzzy
modal logic as a discipline and inspired several other researches who, following
these ideas, further generalized classical modal logic to the ground of infinite-
valued fuzzy logics and in the formal setting of Mathematical Fuzzy Logic. For
instance, Hájek’s book [69] already contains a chapter dedicated to present a
generalization of the modal logic S5 to a fuzzy framework. This approach was
then further generalized by Hájek himself in [73].

The language of a fuzzy modal logic is not particularly di↵erent form that of
classical modal logics and it can be defined as the expansion of the basic language
of the logic MTL by two unary modalities which, following the tradition, are
denoted by ⇤ and }. Modal formulas are hence defined as usual. However, the
relational semantics of fuzzy modal logic is significantly more general than the
classical one and it consists of a MTL-algebra A = (A,^,_,�,!, 0, 1) upon
which one can define an A-frame as a triple (W,A, R) where W is a non-empty
set of worlds and R : W ⇥W ! A is a A-valued accessibility relation on W . If
for all w,w0 2W , R(w,w0) 2 {0, 1}, then R is said to be crisp.

A-frames (W,A, R) extend to A-Kripke models by adding a valuation map V

from propositional formulas to the fixed MTL-algebra A. Thus, a modal formula
� is evaluated in a A-model (W,A, R, V ), at a given world w 2W (and we will
write k�kw to denote its truth-value), by the following inductive conditions:

– If p is a propositional variable, kpkw = V (p);
– If � =  &�, then k�kw = k kw � k�kw;
– If � =  ! �, then k�kw = k kw ) k�kw;
– If � = ⇤ , then k�kw =

V
w02W {R(w,w0)) k kw0};

– If � = } , then k�kw =
W

w02W {R(w,w0)� k kw0}.

It is worth noticing that, if the MTL-algebra A is the Boolean chain {0, 1}, then
A-frames are classical Kripke frames and the evaluation of modal formulas in a
model are as in the classical modal setting.

The very general definition of relational semantics for fuzzy modal logics,
can be specified by choosing a precise class of algebras such as BL, MV, Gödel
algebras and so forth. By doing so, the general problems related to axiomatiz-
ability and proof-theoretic questions have been addressed. In these respects, it is
worth to remember the general approaches of Bou, Esteva, Godo and Rodriguez
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[12] in which the authors axiomatize the minimal modal logic of A-models in
which A is, in particular, a finite MTL-chain. Further works which follow Fit-
ting’s ideas of generalizing Kripke models to the fuzzy environment and focus
on modal expansions of specific propositional logics are also worth to recall. In
particular that by Caicedo and Rodriguez [15] that investigate bi-modal expan-
sion of Gödel logic; the paper [83] by Hansoul and Teheux that instead consider
modal expansions of propositional  Lukasiewicz logic, and that by Vidal, Esteva
and Godo [127] where the propositional base is fixed in product fuzzy logic.

Concerning computability and decidability, in [13, 14] it is proved that the
minimal (local) modal Gödel logics with both and ⇤ and } modal operators
are decidable (both over models with a crisp accessibility relation and with a
[0, 1]-valued one). In the same papers, Caicedo, Metcalfe, Rodriguez and Rogger
also showed that the S5 extension of the previous logic with crisp accessibility
(equivalent to the one-variable fragment of predicate Gödel logic) is decidable
too. As for the case of modal  Lukasiewicz and product logics, the decidability
problems are addressed in the forthcoming paper by Vidal [126].

Finally, it is interesting to recall that a weaker modal expansion of  Lukasi-
ewicz propositional logic can be used to model probabilistic reasoning on both
classical and fuzzy events. The first modal logic of this kind was axiomatized in
1995 by Hájek, Esteva and Godo in [76] and then it has been further generalized
and extended (see [53] for an overview). The basic idea which lies at the ground
of a fuzzy-modal approach to uncertainty (and probability in particular) is to
consider modal formulas of the form U(') to be read “the formula ' is uncertain”
and provide axioms for U in such a way that the truth-degree of the formula
U(') becomes the uncertain degree of '. Specific axioms for the modality U

can be provided to model the specific measure we are interested in. Thus, for
instance, U can be axiomatized to behave as a probability function by imposing
normalization and finite additivity [69, 76], but alternative axiomatizations for
more general uncertainty measures on both classical or fuzzy events such as
possibility and necessity measures [52], belief functions [54], lower and upper
probabilities [93] are also feasible.

6.3 A brief recap of additional developments

Finally, we briefly overview some further topics and research lines, still under
the umbrella of Mathematical Fuzzy Logic, that have also been developed and
contributed to extend this field in several directions.

The logics  L⇧,  L⇧ 1
2 . The aim at defining the logics  L⇧ and  L⇧ 1

2 was, roughly
speaking, putting together  Lukasiewicz and Product logics, that is, to define a
single logic containing both  Lukasiewicz logic connectives (related to the arith-
metic operations of addition and subtraction) and Product logic connectives
(related to the arithmetic operations of product and division). Moreover, Gödel
logic connectives are obtained for free as well. In this way, the logics obtained
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have a very high expressive power.6 The logics were formally introduced by Es-
teva, Godo and Montagna in [45] and further developed by Cintula in [19–21].
See also the handbook chapter [44] for a comprehensive survey.

Just to give a flavour, the language of the  L⇧ logic is built in the usual way
from a countable set of propositional variables, three binary connectives !L

( Lukasiewicz implication), � (Product conjunction) and !⇧ (Product implica-
tion), and the truth constant 0̄. Two negations are definable ¬⇧' := ' !⇧ 0̄,
¬ L' := ' ! L 0̄, Baaz-Monteiro operator is �' := ¬⇧¬ L', and the  connec-
tive is defined as '  := ¬ L('! L  ). Then  L⇧ is axiomatized by the adding
to the axioms of set of  Lukasiewicz and Product logics only these three axioms
and rules:

(¬) ¬⇧'! L ¬ L'

(�) �('! L  ) ⌘ L �('!⇧  )
( L⇧5) '� (  �) ⌘ L ('�  ) ('� �)

and the rule of necessitation for �: from ' infer �'. While the logic

 L⇧ 1
2 is then obtained from  L⇧ by adding a truth constant 1

2 in the language

together with the axiom: ( L⇧ 1
2 )

1
2 ⌘ ¬L

1
2 .

Weakly implicative and semilinear logics. In the last years there has been
tendency on considering more and more general systems of fuzzy logic, going
beyond MTL. For instance Cintula [22] introduced the framework of weakly im-
plicative fuzzy logics. The main idea behind this class of logics is to capture the
notion of comparative truth common to all fuzzy logics, that is to say, logics that
are complete with respect to a semantics based on linearly ordered algebras. It
actually corresponds to the main thesis of [9] that defends the claim that fuzzy
logics are the logics of chains. Along this line, with the aim of dealing in a uniform
way the variety of fuzzy logics studied in the literature, Cintula and Noguera
provide in [28, 27] a new framework (the hierarchy of the so-called implicational
logics) where one can develop in a natural way a technical notion correspond-
ing to the intuition of fuzzy logics as the logics of linearly ordered algebras of
truth-values. Indeed, they introduce the notion of implicational semilinear logic
as a property related to the implication, namely a logic L is an implicational
semilinear logic i↵ it has an implication such that L is complete w.r.t. the class
of logical matrices where the implication induces a linear order on the set of
truth-values. The above mentioned hierarchy, when restricted to the semilinear
case, provides a classification of implicational semilinear logics that encompasses
almost all the known examples of fuzzy logics.

Proof theory. Besides the development of fuzzy logics has been mainly mo-
tivated by the goal of representing and reasoning about truth-dergrees, they
also deal with a notion of proof. Although the usual axiomatic presentation for
these systems is a Hilbert-style calculus, most of fuzzy logics investigated in the
literature have a natural proof-theoretical, i.e. Gentzen-style formulation. How-

6 Indeed, all rationals in [0, 1] are definable in  L⇧ 1
2 , and Marchioni and Montagna

showed [95] that the universal theory of real closed fields is definable in the equatinal
theory of  L⇧ 1

2 -algebras.
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ever typical sequent-calculi are not enough to present fuzzy logics and an extra
step in complexity is required to hypersequents: multisets of sequents interpreted
as disjunctions. Moving from sequents to hypersequents naturally improve in
complexity, but at the same time allows to gain in expressive power. Indeed,
hypersequent-like proof systems for the majority of fuzzy logics can be obtained
by transferring sequent calculi to the hypersequent level and by adding specific
extra rules such as Avron’s communication rule (see [6]) which corresponds, in
the Hilbert-style presentation, to the prelinearity axiom. The book chapter [97]
presents a wide overview on this subject and we urge the interest reader to
consult it and the references therein.

Functional representation. In the same way formulas of classical proposi-
tional logic can be represented, in Lindenbaum-Tarski algebras, as functions
from {0, 1}n to {0, 1} (where n denotes the number of propositional variables
in the language we are dealing with), also formulas of t-norm based fuzzy log-
ics have a functional representation. The most famous result in this sense is
McNaughton theorem [96, 105] which allows to represent formulas of  Lukasiew-
icz logic as continuous, piecewise linear functions with integer coe�cients from
[0, 1]n to [0, 1]. For other t-norm based logics, similar results are known, whilst
for other the problem of their functional representation is open. The interest
reader may consult [2], and references therein, for an exhaustive treatment of
this topic and the functional representation for the logics BL, Gödel, product,
NM and WNM.

Fuzzy logic with evaluated syntax. In parallel to the development of t-norm
based fuzzy logic as initiated by Hájek, fuzzy logic with evaluated syntax, Ev L,
was developed by Novák in [111] (see also [115]) to generalize classical two-
valued logics in both its syntax and semantics. Indeed, in Ev L the axioms of
formal theories can be partially true and hence form a fuzzy set, rather than
a classical set and in the standard development of Mathematical Fuzzy Logic.
To do so, the language of Ev L, besides containing constants from a truth-value
set L (usually an MV-algebra), also allows evaluated formulas of the form a/A,
where A is a formula and a 2 L, denoting that A takes a value greater or equal
than a. As a consequence of working this generalized context, not only axioms
but also inference rules includes evaluated formulas and a n-ary inference rule r

has the form of a function over evaluated formulas:

r :
a1/A1, . . . , an/An

r

evl(a1, . . . , an)/rsyn(A1, . . . , An)

where rsyn is a partial n-ary operation on (propositional) formulas, and the eval-
uation operation r

evl is an n-ary operation on the algebra of truth-values which
is lower semicontinuous (i.e., it preserves arbitrary suprema in each variable).

The book chapter [114] presents a detailed discussion on this topic.

Fuzzy description logics. Description Logics (DLs) are a family of well es-
tablished knowledge representation formalisms whose languages are based on
concepts, roles and individuals. According to a well-defined Tarski style seman-
tics, concepts, roles and individuals are respecively interpreted as sets (or unary
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predicates), binary relations (or binary predicates), and domain elements. Fuzzy
Description Logics (FDLs) were born in the nineties as a generalization of DLs
to the fuzzy framework. The first generalizations consisted in having the same
structure as DLs, but interpreting concepts and roles as fuzzy sets and fuzzy re-
lations respectively. Although these first approaches had interesting applications
in several fields, they have no clear logical counterpart. The born of Mathemat-
ical Fuzzy Logic at the end of nineties, paved the way to a logical development
of FDLs as proposed by Hájek in [72]. The already rich hierarchy in which the
several languages of DLs are organized, further improved in the fuzzy case and
hence the main task for FDLs was to investigate the balance between the expres-
sive power from one side and the decidability of the resulting calculus from the
other. The chapter [11] presents the topic of FDLs paying particular attention
to disclose their expressive powers, the interpretation of FDLs in fragments of
first-order t-norm based fuzzy logics and issues related with their decidability.

7 Concluding Remarks

In this paper our aim has been to provide a short survey of main historical
developments of systems of fuzzy logic in narrow sense, today under the umbrella
of the discipline called Mathematical Fuzzy Logic, arising from the birth of
Zadeh’s fuzzy sets in 1965. Particular attention has been devoted to show how
the tools of mathematical logic have allowed to define logical systems which
form the core of Mathematical Fuzzy Logic and allow for a formalization of
some elements in Zadeh’s agenda of fuzzy logic, which indeed spans from fuzzy
sets to approximate reasoning and probability theory. Besides this fundamental
core, we have also presented some further topics that have allowed, and are still
allowing, this discipline to develop and grow.

Regarding the topics that we have selected to emphasize in Subsection 6.3, it
must be remarked that they indeed represent only a part of a plethora of other
interesting lines of research have been explored but, unfortunately, have been
left out of the scope of this overview. For instance, we can mention topics like
Fuzzy Type Theory [112], fuzzy/intermediate quantifiers [113], game semantics
for fuzzy logics [51] or Fuzzy/Graded Model Theory (see for instance [36, 75])
among many others.
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8. M. Baaz, P. Hájek, F. Montagna, H. Veith. Complexity of t-tautologies. Annals of
Pure and Applied Logic 113(1–3): 3–11, 2002.
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