HANA: a Human-Aware Negotiation Architecture

Angela Fabregues and Carles Sierra

Institut d’Investigacid en Intel-ligéncia Artificial, IITA-CSIC,
Campus Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain.

Abstract

In this paper we propose HANA, a software architecture for agents that need
to bilaterally negotiate joint plans of action in realistic scenarios. These
negotiations may involve humans and are repeated along time. The archi-
tecture is based on a BDI model that represents the uncertainty on the
environment as graded beliefs, desires and intentions. The architecture is
modular and can easily be extended by incorporating different models (e.g.
trust, intimacy, personality, normative, ...) that update the set of beliefs,
desires or intentions. The architecture is dynamic as it monitors the envi-
ronment and updates the beliefs accordingly. We introduce an innovative
search&negotiation method that facilitates HANA agents to cope with huge
spaces of joint plans. This method implements an anytime search algorithm
that generates partial plans to feed the negotiation process. At the same time
the negotiation guides the search towards joint plans that are more likely to
be accepted.

Keywords: multiagent systems, automated negotiation, software
architecture, practical reasoning, testbed, Diplomacy Game

1. Introduction

Since the development of software shifted towards networked systems in
the mid 90s a lot of work has been done on automated bilateral negotiations
[1, 2]. In most previous work autonomous software agents, usually selfish, in-
teract using utility maximisation strategies [3, 4, 5]. These strategies usually
work well when negotiation happens between software agents but not nec-
essarily when humans are involved in the negotiations as recent work shows
[6]. This is in part because humans do not follow a constructivist sort of

Preprint submitted to DSS May 31, 2012

rationality [7, 8]. For instance, human decisions depend a lot on their so-
cial relationships [9], on emotions [10] and are contextualised in a particular
culture [11].

Our long term research goal is to build software agents capable of ne-
gotiating with humans in complex real scenarios. More concretely, on how
to negotiate joint plans of action among software agents and humans when
bilateral negotiations can be intermingled. In this work we contribute to this
agenda by formally describing the negotiation problem and by providing a
concrete agent architecture. The architecture contains a number of elements
that make it suitable for non-constructivist negotiations —by incorporating
emotions, and apt for negotiating over large spaces of joint plans —by con-
currently negotiating and searching for solutions. The architecture is inspired
by an ecological type of rationality [12] as developed in the LOGIC theory
of agency [9] and goes beyond it by proposing a concrete computational so-
lution.

More concretely, we address in this paper the complex problem of simul-
taneous, repeated and bilateral negotiations in competitive environments.
The agents are either software or human agents that compete but that can
occasionally co-operate. The negotiation objects are joint plans of action.
We are specially interested in negotiation domains that have a very large set
of potential joint action plans as these are those with potential commercial
interest (e.g. time tabling, team formation, supply chain management, gam-
ing). In these scenarios, agents (and humans) need to negotiate joint action
plans to improve their outcome. For instance, two teachers swapping time
slots in their class schedules, or two members of a potential team negotiating
the tasks to be performed. The environment is generally observable but the
internal state of the other agents and their negotiations are usually private,
that is, every agent can see the messages that it sends or receives but not the
messages exchanged between any two other agents. In open systems, that
is systems that allow unrestricted access of autonomous entities (either soft-
ware agents or humans), reaching agreements on joint action plans is the way
to figure out what our counterparts will do, and even this only to a certain
extent as in some domains defection is possible. For instance, in Diplomacy,
the case study used in this paper, a promise made by a player to perform a
certain action may not materialise.

Negotiations are usually time framed. There is a deadline by which a
negotiation process has to be finished. When these deadlines are tight, nego-
tiators need to search quickly for good enough negotiation proposals instead

of looking for optimal proposals. For large solution spaces it is either not
possible or too long to find them. This is, in fact, very common in humans’
everyday life. Humans do not hesitate to take good enough decisions instead
of waiting to be sure that the decision to take is the best one. Humans behave
well in uncertain and competitive environments, as we are unsure of what the
others will do and taking decisions quickly may be advantageous as the more
time we wait the less opportunities to close a deal may be there. If an agent
waits too long others may have reached agreements that are incompatible
with the plans the agent likes.

The scenarios we are interested in witness repeated negotiations, for in-
stance teachers negotiate every semester, or members of teams negotiate tasks
for each problem to solve. These repeated interactions permit agents to build
relationships, check whether the agreements are kept and act accordingly. If
an agent breaks an agreement, it may become untrustworthy and the other
agent involved in the agreement may penalise it, [13, 14]. A good way to
penalise an agent is ignoring it, rejecting every proposal it makes as it makes
little sense to reach agreements with someone that is untrustworthy: it will
probably break the deal.

In summary, we address the problem of simultaneous bilateral negotiation
of joint plans of action in competitive environments with repeated negotiation
encounters and repeated rounds of plan execution. In these environments
negotiation speed is crucial because as time goes by the number of available
joint plans that can be accepted decreases.

The paper is structured as follows. We start providing a formal specifi-
cation of the problem including the negotiation protocol and our case study
in Section 2. Then, we introduce the agent architecture in Section 3 and
describe its components in sections 4, 5 and 6. Finally, we conclude with a
discussion and future work in Section 7.

2. Resource negotiation problems

In this section we formalise bilateral resource negotiation problems (RNP),
that is, scenarios where agents negotiate about which actions to perform on
the resources they control. The environment is dynamic, as it changes due to
the uncontrollable actions of others. At each point in time its state contains
a partition of the resources where each set of the partition corresponds to the
resources controlled by a particular agent. The actions executed by agents

make the environment evolve. We model this evolution as a transition func-
tion between environment states. We assume without loss of generality that
actions are performed synchronously at particular points in time. Also, we
assume that negotiations between agents are iterative over a two-step process:
(i) agents sign agreements on what actions to perform, and (ii) they execute
the actions of the agreements. In the following two subsections we provide
the formal specification of the environment and the negotiation protocol, and
in the last subsection we introduce the game Diplomacy as an example of
RNP. Diplomacy will be the case study used throughout the paper.

2.1. Environment

We consider environments that are fully observable and regulated by a set
of rules (physical or otherwise) that determine their evolution. Environments
are populated by agents A that control resources R and are always in one of
several possible states.

Definition 1. Given a set A of agents and a set R of resources, an envi-
ronment state w C A X R is a set of agent-resource pairs. We denote by W
the set of all possible environment states, that is W = 2A%E

(cr, 7y € w means that agent a controls resource r and thus is the only agent
that can act upon it.! We assume the existence of a finite set of operators Op
that agents can apply to the resources they control. For instance, consuming
the resource or transforming it. We thus define the set of possible actions as
follows.

Definition 2. The set of actions is the set A=A x Op X R.

We restrict the model to environments where no more than one operator
can be applied to a resource simultaneously. This naturally leads to the
definition of compatibility between actions.

Definition 3. Two actions a,b € A such that a = («,0p.,T.) and b =
(B, opy, Tp), are compatible, denoted by comp(a,b), if and only if op, = opy
implies ro, # 3.

'We will use the notation (-) to denote elements of cartesian products.

Controlling a resource means that only the agent that controls the re-
source can act upon it. This is our notion of action feasibility.

Definition 4. An action a = {(a,op,r) € A is feasible in state w € W,
denoted by feasible(a,w), if and only if (a,r) € w.

Actions are naturally grouped in sets, that we call plans, that without
losing generality we can assume are executed at a given instant of time. Note
that an agent can control more than one resource.

Definition 5. A plan p C A is a set of actions. The set of all possible plans
is denoted by P = 24.

We extend the notion of feasibility to plans in a natural way.

Definition 6. Given a state w € W we say that plan p € P 1is feasible in
state w, denoted feasible(p,w), if and only if for all a,b € p, feasible(a,w)
and comp(a, b) hold. The set of all feasible plans in state w is denoted by P*.

Two feasible plans are compatible if their actions are pair-wise compati-
ble. That is, if its union is feasible.

Definition 7. Given a state w € W and plans p,q € P, we say that plans
p and q are compatible, denoted comp(p,q), if and only if their union is
feasible, that is, comp(p,q) < pUq € PY.

When an action is selected for each resource the plan is complete.

Definition 8. Given a state w € W and a plan p € P, we say that plan p is
a complete plan for w if and only if feasible(w, p) holds and for all {a,7) € w
then (o, op,r) € p for some op € Op. We denote the set of all complete plans
for state w by P* C P¥ and by P the projection of complete plans for a.

Now we have all the ingredients to define environments as a type of deter-
ministic transition system. That is, as a finite state machine with an initial
state, with a set of final states, and with complete plans labeling the arcs
between states.

Definition 9. A state transition system is a tuple
Q= <A7 R7 Opa W7 P7 TJ Wo, Wf>

where:

A is a set of agents

R is a set of resources

Op is a set of operators

- W = 24%R s g set of states

P = 24XOpPXE js set of plans

-T: W x P — W is a transition function such that T(w,p) is defined
for all p € P¥

- wo € W is the initial state

- Wy C W s the set of final states.

The evolution of such a transition system is determined by a history of
complete plans ? being executed moving the state of the system away from
the initial state and eventually reaching a final state.

Definition 10. Given a transition system Q = (A, R,Op, W, P, T, wy, Wy),
a history is a sequence of complete plans H = (po,p1,...,Pn) Such that for
all 0 < i < n, T(...(T(wo,p0),---),Pic1) = w;i and p; € P¥. A history
then implicitly defines an environment state history that is a sequence of
states Wy = {(wo, T(wo, po), T(T(wo, po),p1),---) that we refer to as Wy =

<LUO,(U1,LU2,...>.

2.2. Negotiation Protocol

We define the negotiation in an RNP to be bilateral and satisfy a partic-
ular protocol. As an environment contains many agents, multiple bilateral
negotiations can take place even simultaneously. The set of plans over which
two agents negotiate is the set of feasible plans containing just actions per-
formed by them. The plans involving up to two agents are called negotiation
options, or options to simplify.

2Notice that in some application domains, there are default actions that do not need
to be explicitly executed by agents as they are assumed. For example, in Diplomacy units
are assumed to hold as default. Or in time tabling, agents are assumed to continue with
the current scheduling of its events. The default actions are part of the problem definition
and thus they are know by all the agents.

Definition 11. A feasible plan 6 € P is called a negotiation option if and

only if
0< |{a e Al{a,op,r) €6} <2

We denote by O C P¥ the set of negotiating options in state w and by
0% 5 C P the negotiation options involving o and 3.

When two agents enact a negotiation protocol, they propose options that
involve the two agents. Agents alternate on the sending of proposals and
accepting or rejecting them until time expires. The possible messages ex-
changed between two agents are called negotiation utterances.

Definition 12. Given a transition system Q@ = (A, R,Op, W, P,'T,wy, Wy),
a negotiation utterance in a state w € W is a tuple p = (0, «, 3,0) where
0 € {propose, accept, reject}, a € A is the source and f € A is the receiver
of the utterance and 6 € Of 5. We denote by M, 5 the set of all possible
negotiation utterances between o and [in state w.

In the following we indistinctively represent utterances as tuples or pred-
icates, e.g. (propose,a, 3,9) = propose(a, 3,0). We define negotiation dia-
logues as sequences of utterances sorted by time.

Definition 13. Given a transition system 2, a negotiation dialogue ¥ in
state w between o and B is a sequence W = (pg, {1, - - ., fln) Such that p; €
M(‘;j’ﬁ forall0 <i<n.

The negotiation protocol illustrated in Figure 1 determines what can be
said and in which order. Dialogues are formed as sequences of utterance so
that each one is feasible with respect to the protocol. The next definition
determines what utterances are feasible given a partial dialogue.

Definition 14. Given a state w € W, a dialogue ¥ = (ug, pi1, ..., fin—1)
and an utterance p, = (0, «, 5,0) we say that p, is feasible for dialogue ¥,
denoted by feasible(V, u,), if and only if:

e U= () — 6 = propose
e 1,1 = (propose, B, a,0) = @ # propose

® /i, # (propose, ., .,) == 0 = propose

propose(a, 3, 0) l propose(3, a, d)

[tma.lr] [tma.lr]

accept(B, a, d), reject(B, a, o) accept(a, B,0), reject(a, B,9)

Figure 1: Negotiation protocol. Proposals are replied by accepts and rejects.
It is not possible to send a proposal when a previous one is not yet replied.
[tmaz| Tepresents the end of the negotiation round.

The outcome of a successful negotiation that ended with an accept is a
set of commitments on future actions to be performed by the negotiating
agents. When an option being offered by agent « is accepted by agent f3, it
means that agents a and § commit to perform their actions in the option.

Definition 15. Given a negotiation dialogue W = (g, fi1, - .., ftn) we say
that an action a € A is a commitment if p; = (accept, ., ,0) € ¥ and a € 0.
We denote by C¥ the set of commitments in W.

2.8. Case study: Diplomacy

To illustrate the application of the agent architecture to a concrete case
and to perform experiments we use the Diplomacy Game.? It is an exam-
ple of the class of problems we intend to solve. It involves several players
that repeatedly negotiate. All players perform their actions at the same time
and the actions are made public so anyone can check whether its negoti-
ating counterparts honoured the commitments reached at negotiation time.
Its popularity,* the absence of random moves, the key role of negotiations
during the game and the existence of literature on the strategy and tactics®

3The Diplomacy board game official website is http://www.wizards.com/default.
asp?x=ah/prod/diplomacy.Accessed25January2012.

4Ranked 229 at http://boardgamegeek.com/ by 5906 players.

5The Diplomatic Pouch ’zine is the online magazine for the players of Diplomacy:
http://www.diplom.org/Zine/. It contains articles analysing the strategy and tactics of
the game.

make it the perfect case study to study concurrent bilateral negotiations. To
perform experiments involving humans and software agents we have devel-
oped a testbed based on this game called DipGame that is freely available
at http://www.dipgame.org [15, 16].

Diplomacy is played by seven players that control units spread over a
map of Europe. Each player incarnates one of seven Great Powers: England,
France, Italy, Germany, Austria, Russia and Turkey. The map is divided
into several provinces that can be occupied by at most one unit. Players
should strategically move their units over the map in order to build more
units and thus eventually conquer Europe, which in practical terms means
controlling at least eighteen provinces. The game spans several years and
a year is composed of different phases. We focus on the movement phase
of each year when players decide which movements should each one of their
controlled units perform. The allowed movements of a unit are: (i) to hold,
(ii) to move to an adjacent province, (iii) to hold and support a holding
unit, and (iv) to hold supporting a moving unit. Supports are the only way
to strengthen a unit that takes part in a battle. A battle happens when
two (or more) units aim at being in the same province as a result of their
movements (unit orders). As mentioned before, the announcement of orders
is simultaneous. The movements over the board and the outcome of battles
affect the creation of new units and thus determine the progress of players
in the game. An in-depth description of the game can be found in [17].

Diplomacy is an RNP. The agents are the players (powers) and the units
are the resources that they control. The operators that can be applied to
resources are the different types of orders, that is, the name of unit move-
ments according to the rules of the game (http://en.wikibooks.org/wiki/
Diplomacy/Rules). Unit orders are the actions. During a movement phase
the agents concurrently enact bilateral negotiations to reach agreements over
the movements that they may jointly perform (e.g. getting the support of
another player’s unit to strengthen one of our units that will most probably
get into battle in exchange of moving another of our units away from a cer-
tain province). At the end of a negotiation round all the agents announce
their actions and as a consequence the board state changes.

The negotiation that takes place during the movement phases is usually
performed in a natural language —English, for instance— as it is a game
that is normally played by humans. The DipGame testbed contains a web
application that allows people to talk to other people and to software agents
by using of a formal language. The formal language is a standard of com-

9

(b) Joint plan

Figure 2: Two examples of plans.

munication among software agents using the testbed®. A standard is needed
as software agents may be developed by different programmers. The testbed
incorporates a translation library from (a reduced set of) English to the for-
mal language and vice versa [15]. To illustrate the notion of plan we use the
simplest of the formal languages and a simple ontology that only allows to
represent orders [16].

In Figure 2 we graphically represent two plans, on 2a an individual plan
for France and on 2b a joint plan between Italy and Austria.

The plan for France is to move from Paris to Burgandy, from Brest to Mid-
Atlantic Ocean and from Marseilles to Spain. Thus the plan p = {ay, as, as}
is a set of movements expressed in the formal language as:”

a; = mto(Unit(fra, Region(par, amy)), Region(bur, amy))
ay = mto(Unit(fra, Region(bre, f1t)), Region(mao, sea))
a3 = mto(Unit(fra, Region(mar, amy)), Region(spa, amy))

In Diplomacy we cannot move the same unit to two different regions at
the same time. This is an example of incompatibility of actions. Thus,
given the action a4 below, comp(ay, as) does not hold and therefore neither
feasible(p) holds if p contains a; and a4 nor comp({a;}, {az}) holds.

6The formal language is actually a language hierarchy with increasing complexity. For
this paper we focus on the first level language that is the simplest of them.

"To simplify notation we represent the names of powers and provinces in a compressed
way. For instance, France is “fra”, Paris is “par” and Mid-Atlantic Ocean is “mao”.

10

as = mto(Unit(fra, Region(par, amy)), Region(gas, amy))

Assuming that Austria controls only two units, Figure 2b illustrates an
example of joint plan for Austria p = {as, ag, a7, ag} where actions are rep-
resented as:

as = mto(Unit(ita, Region(tyr, amy)), Region(ven, amy))
ag = sup(Unit(aus, Region(tri, f1t)),
mto(Unit(ita, Region(tyr, amy)), Region(ven, amy)))
a7 = mto(Unit(aus, Region(vie, amy)), Region(tyr, amy))
ag = sup(Unit(ita, Region(mar, amy)),
mto(Unit(aus, Region(vie, amy)),Region(tyr, amy)))

Given this plan, Italy could propose Austria different options:

e propose(ita, aus, [Commit(aus,ita, Do(ag))]). Italy proposes Austria
a deal where Austria commits to support the Italian move from Tyrol
to Venice. As Italy does not give anything in exchange it may not be
effective.

e propose(ita, aus, [Commit(ita,aus, Do(as)), Commit(aus,ita, Do(ag))]).
This looks more balanced but Italy is actually not providing anything
beneficial to Austria.

e propose(ita, aus, [Commit(ita,aus, Do(as)), Commit(aus,ita, Do(as)),
Commit(aus,ita, Do(ar)), Commit(ita,aus, Do(ag))]). This proposal
is more balanced as Italy is also helping Austria.

Which one of these options should Italy actually send to Austria is what
the architecture of a software agent and its negotiation strategy determine.
3. Agent architecture

In this section we propose a software architecture to build agents capable
of participating in RNPs. We introduce here its main modules and then
we give details for each of them in subsequent sections. We refer to the

11

Environment |« Age‘nts

A A

— State | Actions | | Messages | Time

A A
| y

Interface

Plan Plan | Negotiation |
generator ranking strategy
|—> i t
tion Option
- . — | Plan > g;perator = rasking
Other incorporated models: Beliefs Desires evaluator
- Personality T
- Relationship Plan search -
- Trust | Option
- Normative evaluator
Intentions
Negotiation
World model

Figure 3: Graphical representation of HANA. Arrows represent data flows.
Coloured boxes represent the modules that form part of the agent, and white
boxes are components of those modules.

architecture as HANA and to the agents designed according to HANA as
HANA agents.® The architecture is graphically represented in Figure 3.

In Section 2 we assumed that RNPs happen in fully observable environ-
ments that agents can perceive and where agents can execute actions whose
(deterministic) consequences are also observable. Furthermore, the environ-
ment allows for agents to exchange messages. Thus, the first component of
HANA is an interface module that situates the agents in their environment,
that is, it allows to observe the environment state, observe and execute ac-
tions, and exchange messages with other agents. In other words, this module
contains the sensors and actuators of the agent. Which actions to execute
and which messages to send is decided by the negotiation module.

The design philosophy behind HANA is to provide some means to negoti-
ate as humans do, as the negotiation counterparts could be humans. In par-
ticular, there are two capabilities that we think realistic agents should show:
dealing with emotions and dealing with uncertainty, [18]. The architecture

8SHANA is an acronym for Human-Aware Negotiation Architecture. We call the archi-
tecture this way to stress the aim of negotiating with humans in realistic scenarios that
motivated the design of this agent architecture.

12

incorporates emotions as this is an important part of the non-constructivist
rationality approach, we need to understand emotional reactions of the other
negotiators. Although the environment is fully observable, the actions to be
executed by the other agents can only be guessed analysing the other agents’
previous behaviour. To cope with this uncertainty, we decided to represent
the world as a graded BDI model, that is with graded beliefs, desires and
intentions following the g-BDI model [19]. In Section 4 we provide a more
in-depth description of the world model module that is the one containing
the emotions and BDI components.

The space of plans and negotiation options that an agent can execute and
propose, respectively, is potentially huge, as for example in The Diplomacy
Game. Thus, we assume that the space is large enough and the negotiation
time short enough to preclude obtaining the optimal. That means that any
architecture for this type of negotiation needs to give the means to look for
good enough solutions. Moreover, the longer it takes to decide what to pro-
pose the less probable it is the proposal to be accepted. As time goes by,
the agents reach agreements that increase the amount of commitments and
reduce the set of options compatible with the commitments. The increase
of acquired commitments increases in turn the probability that our desired
plans will not be compatible any longer. Consequently, the architecture must
allow to start negotiating from the very beginning of a negotiation round.
Dealing with huge solution spaces is not an inconvenient for human agents,
e.g. in playing Chess or Go. Humans do work with good enough solutions in
their everyday lives. Time constraints, boredom, or tiredness make humans
accept good enough solutions. To start negotiating from the very beginning,
HANA proposes to perform a search&negotiation method that assumes the
plan search to go hand in hand with the negotiation. The plan search module
executes an anytime algorithm that provides a periodically updated ranking
of good enough plans. The ranking takes into account the commitments
obtained by the negotiation module. And the negotiation module proposes
options generated from the previously found good enough plans that contain
actions to be executed by other agents. In this way, HANA agents can start
the negotiation from the very beginning proposing options that, once negoti-
ated, will provide new information —because the option will be accepted or
rejected— to focus the search on the generation of new and better evaluated
plans. As can be seen in Figure 3, the plan and option evaluators depend
not only on the commitments but on the whole world module. Thus, those
evaluation functions are also updated taking into account the intentions gen-

13

erated from new observations. The intentions trigger the decisions of the
agent. In the following sections we provide a more in-depth description of
the modules, their components and the decisions to be taken by the agent.

The execution of HANA consists of several concurrent processes for: the
interface (to receive messages and observe the results of actions and the
environment state), the world model (to update the world model given the
perceived changes), the plan search (to continuously update the ranking of
plans), and the negotiation (to generate options from plans and determine
what to do next).

4. World model

For negotiation decisions to be effective they need to be based on an
accurate assessment of the state of the environment and on the preferences
of the other agents. Although the environment may be precisely known
in certain domains, the preferences of others may be unknown, or may be
uncertain. Moreover, specially in competitive scenarios, agents may lie about
their preferences. This imposes the requirement that the world model has
to be based on some uncertainty reasoning mechanism. During the last
decade, some of the most successful representation models have been based
on BDI representations. Most work on BDI models has concentrated on
providing agent-oriented programming frameworks and languages such as
Jason [20], Jack [21], AgentSpeak [22, 23], 3APL [24] or 2APL [25]; and
on logical approaches to the BDI model such as modal logic [26], first-order
logic [22], or belief degrees [27, 28]. BDI is based on the theory of human
practical reasoning [29] and has well-founded logical semantics [30]. The
work of Casali et al. [19] on what they denoted by g-BDI, gives a powerful
generic representation for degrees of belief, degrees of desire (preferences)
and degrees of intention (active goals). We adapt this work to our problem
and incorporate the beliefs, desires and intentions as the main components
of the world model.

We consider that desires and intentions are derived from beliefs. What
happens in the world determines whether we desire it to change into a dif-
ferent world and whether we intend to make that happen. In this section
we concentrate on how HANA agents represent their beliefs about the next
environment state. The most important aspect of the uncertain evolution
of the world is what an agent expects to happen in the environment due
to the decisions of other agents. This is so because the natural evolution

14

of environments is subject to shared knowledge on physical laws and thus
known by every agent. Therefore, the evolution of the world can be due to
either actions, A, or utterances, M, of other agents. We denote those events
(actions and utterances) by ® = M U A. The agent has at all time a belief
degree assigned to every element of ® meaning how certain is the agent that
that event will happen. We decided to model these degrees as probabilities
because the data for them comes from the previous interactions with the
other agents and thus those data can be statistically processed. Axiomatics
on how to represent probabilities are provided in [19].

Definition 16. Given ® = MUA, a belief is a tuple (o, p,9) € AxPx[0, 1]
where ¥ is a’s belief degree on ¢ happening. We denote by B the set of all
possible beliefs and by B, C B the set of possible beliefs of a.”

We define the feasibility of ¢ € ® as an extension of the feasibility on
utterances and actions.

Definition 17. Given the current state w € W and the current dialogue W,
we define feasibility for ¢ € ® as:

: | feasible(w,¢) if pe€ A
feasible(p) = { feasible(¥, @) if @€ M

The particular type of problem studied here gives some restrictions on
over what it is feasible to happen. All agents know the physical laws of the
world, thus they all know that non feasible events will not happen. The
degree of belief on a non feasible event would be then the minimum, 0. Also
for plans: non feasible plans will not happen as those plans contain non fea-
sible or non compatible actions. In the following we show two constraints for
values of the belief model that are derived from the notion of feasibility and
compatibility. In particular, only one operator can be applied to a resource.
Two feasible actions operating on the same resource are non compatible and,
thus, they cannot both happen at the same time. As we decided to represent
degrees as probabilities, the summation of probabilities on all those actions
to be operated on the same resource must be 1:

Vw ¥{a,r) € w. > Beo(a;) =1 (1)

{ai=(a,op;,r)|feasible(a;,w) and op;€0p}

9We will note («, p,9) € B as B, (¢) = 1 when useful.

15

Moreover, the negotiation protocol proposed in this work imposes that
only feasible utterances are possible.

Vi Y Balu) =1)
{ui|feasible(¥,u;)}

For a given environment state w, the belief degree of o on an action a
happening is B,(a). Recall that plans are considered sets of actions that are
to be executed at the same time. The belief on the execution of a feasible plan
p={ai,as,...,a,} € P¥ is thus naturally modelled according to HANA as
the belief on the conjunction of the execution of each action that is then
modelled as the product.

B.(p) = Ba(ar ANag A -+ Nay,) = y,epBala;) (3)

When new observations of the environment are made, HANA agents up-
date their beliefs. From the many possible belief review functions available in
the literature [31, 32, 28] HANA uses a recency based belief revision defined
as follows.

Definition 18. Given an agent o € A a belief review function, denoted by
o 2B x 2Ba 5 9Ba s any function satisfying:

° 0_(6/7 B//) — B///
e 3 is the original belief set

e " is a new belief set

If (p,0) € B, (0,0 € B" and 9 # V' then (p,9') € B*

If (p, V) € B" and (p,) ¢ B" then (p,V) € B*

Nothing else belongs to B*

e B" is the normalization'® of B*

0To normalise, we follow the work done in [33] and compute the minimum relative
entropy probability distributions with respect to the distributions in B’ that consider the
new beliefs in B” as constraints to satisfy and that satisfy equations 1 and 2.

16

Desires, intentions and emotions!! are also updated via a similar update
method that for brevity we omit here. The arrows in Figure 3 show the
influence between the different motives: changes in the environment provoke
updates in the belief set that generate updates in the emotions that update
the desires. The new set of beliefs and desires determines new intentions.

The world model architecture allows to represent complex behaviours as
next example show.

Example 1. The HANA agent Revenger plays Diplomacy and is configured
to have a sensitive and aggressive personality. It comes to believe that the
agent Beth is an enemy as it ezecuted a movement that attacks one of Re-
venger’s units and never accepted any proposal in the past three negotiation
rounds. Its personality rules for revenge trigger a desire (with a high degree)
to damage Beth that will in turn give an intention (again with high degree)
to attack one of Beth’s units although it is a very difficult task and there are
other alternative plans that would be easier to reach and would give Revenger
a higher rational utility.

Although only a few components in Figure 3 are interconnected to build
up the world model of HANA agents (beliefs, desires, intentions and emo-
tions), other models might be incorporated. The world model is based on
multicontext systems [19] that are modular structures that allow for an easy
interconnection of different (logical) models, using transition functions be-
tween them, to build even more complex agents. For instance, a trust model
may impact on intentions as the intention degree to satisfy a desire via a
plan with an untrustworthy agent should be low. Also, a social model might
impact on intentions as we might want to have a higher intention degree on
plans involving an agent with whom we would like to increase the level of
intimacy [9] than otherwise.

As defined in Section 2.2, the agents must fulfil a negotiation protocol in
order to be able to negotiate with other agents. The rules or constraints that
the protocol provides can be incorporated in the agent as internal norms to

"To model emotions we follow [34] and represent emotional states or moods. The
personality of the agent is part of the emotional model and determines how to update
the mood of the agent according to the beliefs about the environment. Personality may
connect for instance frustration (a belief on a failed negotiation) with retaliation (a desire
of a non-rational future negotiation).

17

follow. This is done according to HANA with a high desire degree on fulfilling
the negotiation protocol and some transition functions between this desire
and several beliefs that modify the degree of what we call basic intentions:
reply 6 (when the agent beliefs that it received proposal §), propose (when
there is time left in the negotiation round) and ezecuteActions (when we are
approaching the end of the negotiation round).

5. Plan search

The interplay between search and negotiation is the most important con-
tribution of HANA. In most multi-issue negotiation problems the space of
potential solutions is determined by the admissible values of issues, that is,
potential solutions are elements of the cartesian product of the admissible
values for each issue [35]. Differently, in RNPs the space of potential solu-
tions is defined as the combination of feasible actions that are compatible.
Only certain subsets of the space of actions constitute feasible solutions and
finding which ones are feasible is not straightforward. Good and bad solu-
tions are not placed together nicely as in continuously valued attributes (e.g.
if a certain low price is good, nearby low prices will be similarly good). Some-
times a small change in a plan makes it go from excellent to catastrophic.
Moreover, the space of potential solutions in real domains is frequently huge.
What HANA brings in to address in this type of negotiation problem is
a search&negotiation method that enables the negotiation to start as soon
as possible over reasonably good solutions. We explain the details of how
solutions are sought in this section.

The outcome of the search process is a continuously refreshed ranking of
candidate plans. The plan ranking is made by the plan generator thanks
to a utility function that represents the preferences of the agent and that is
implemented within a component of the architecture called plan evaluator,
see Figure 3. Preferences are determined by the world model and thus take
into account personality traits or relationships between agents for instance,
not just an individual position improvement.

Every agent « in a state transition system (2 must decide what actions
to perform, that is, what complete plan p, to perform. Remember that
given a state w, next state w’ is computed by a state transition function
T: W x P — W. T(w,p) is defined for complete plans, p € P“, that are
those that can be obtained from the union of complete plans for every agent
controlling resources in the current state: p = ﬁgAﬁg. To decide what plan

18

to perform, a must know what is the utility that every plan would provide.

If o knew the plans of the other agents,) = 5 X{ }]55, it could compute
S a
the utility of o performing the complete plan p, using its utility function,

U, : W —[0,1], as:

ua(vaa) = ua(T(Wa Q Uﬁa))

However, whilst agents may have a clear idea of their preferences and
hence can build up a utility function, it is usually impossible to know what
the plans of other agents will be. Therefore, instead of using the deterministic
transition function, T : W x P — W, « has to use a probabilistic state
transition function.

Definition 19. Given a transition system Q2 = (A, R, Op, W, P, T, wy, W),
a probabilistic transition function, denoted by T(w'|w,p) € P(W) is any
conditional probability distribution over W givenw € W and p € P, such that
for every complete plan p € P then T(T(w,p)|w,p) = 1 and T(w'|w,p) = 0
for all W' # T(w,).

In RNPs the state transition function T : W x P — W is fixed and
common to all the agents. Instead, a probabilistic transition function has to
be particular for each agent as it necessarily depends on the interpretation of
the past behaviours of other agents. Therefore, we will denote by T, (w'|w, p)
the probabilistic transition function of agent a. Then, the utility of a plan,
complete or not, for an agent can be estimated as follows:

ElUa(w,p)] =) Talwilw, p) x Ua(w) (4)

w,eW

The complexity here relies on the evaluation of T, (W' |w, p).

We can identify the problem of learning the probabilistic state transition
function for all complete plans for a given agent o € A as a Markov Decision
Process (MDP), [36]. A MDP is a tuple (S, A, L : Ax S xS — [0,1,R :
A x S xS — [0,1]), where S is a finite set of states, A is a finite set of
actions, L(a, s, s") is the probability that action a in state s will lead to state
s, and R(a, s, ') is the immediate reward received after transition to state s’
from state s with transition probability L(a, s, s’). The interpretation as an
MDP is based on having S =W, A= P, L =T and R(p,w,w') = U,(w') —
U,(w). Learning T requires a wealth of data that is usually not available

19

and an initially random behaviour that may produce very negative outcomes
in RNPs. Moreover, there is a required feature for any MDP problem that
is not verified in our case: the Markov property. The transition function
could depend on the past as other agents could learn from previous states
and modify their decision function.

We propose an alternative to model the problem as an MDP that is to
infer the probability state transition function from beliefs on the execution
of plans as defined in Section 4. From belief degrees on particular actions
happening we can compute the belief degree of complete plans. Also, beliefs
easily integrate other sources of information that are missing in a MDP,
such as emotions or previous commitments. That is, the belief degree on
an action happening may be determined, for instance, by knowing that the
other agent is of a revenge type or that the other agent reached an agreement
with another agent whom we trust and told us so. Moreover, as new sources
of information can be easily incorporated into the world model this makes
the architecture highly flexible and modular. For all those reasons we define
the expected utility not for a plan in particular but for a set of beliefs hold
in a particular state as follows:

Definition 20. We define the expected utility for a € A holding the set of
beliefs B' C B, in state w € W as:

Z pePY Bl(ﬁ)

ElUo(w,B)) = Y gw’p’j},@) X U (w;) (5)

The previous definition does not require that o has made up his decision of
what actions to perform. That is, the equation can be used at the beginning
of the negotiation process —when « is still uncertain on what to do, and when
all the bi-lateral negotiation processes have been finished and o knows what
to do. The expected utility of a plan p is computed at any time assuming
that the plan will be executed: E[U,(w, (B, {{a,a,1)]a € p}))]*?. Actually,
the richer the world model the more accurate the utility functions can be. We
measure the level of information in a belief set as the average of Shannon’s
entropy among the probability distributions of actions to be operated on

12Plans are executed at the end of the negotiation round when the certainty on the
actions to be executed use to be high.

20

resources. Notice that the higher the uncertainty the higher the entropy and
thus, the less information.

Definition 21. The uncertainty on a set of beliefs B C B, given the set of
predicates @ that partition it, is measured as:

|<I>\Z |¢| Z 9; In 9, (6)

The uncertainty on actions to be executed is usually high at the beginning
of a negotiation round, as an agent does not have enough information about
each agent decisions, to 0 when the complete plan is actually performed and
observed by all agents. Negotiation is the means to reduce the uncertainty
on the belief model. By reaching agreements on negotiation options agents
commit to the execution of their actions in the negotiating option and thus
reduce the uncertainty by making equal to zero the probability of executing
incompatible actions on the same resource.'?

The task of the plan search module is to find good enough plans to be
executed by the agent, but also to provide good enough plans to negotiate
with other agents. Plans to be executed are complete plans for the agent, that
is, plans containing actions involving all the resources controlled by the agent
in the current environment state. The plans to negotiate with other agents
are extensions of those complete plans containing actions to be performed by
other agents.

Definition 22. Given a transition system Q@ = (A, R,Op, W, P, T, wy, W)
and the current state w € W, a joint plan in state w is a plan p € P¥
involving at least two agents, |{a|{a,op,r) € p}| > 2, and complete for one
of them, that is, there is p € UaeaP¥ such that p C p We denote the set of

joint plans in w by P¥ and the set of joint plans with a complete plan for o
by PY.

The bilateral nature of the interactions force options to contain actions to
be done by, at least, two agents. In HANA, joint plans involving more than

I3Tf a trust model is used and the trust in the opponent is not complete, then the belief
on that agent executing an action incompatible with its commitment may not be zero.
Similarly, low trust values on an agent increase the intention of not negotiating with it.

21

two agents can be negotiated (either concurrently or sequentially) proposing
several options generated from the joint plan. In Section 6 we explain how
options are generated from joint plans. In this section we focus on the plan
search. As introduced before, plans can be evaluated by their expected utility.
Notice that this measure assumes that the plan will be executed. When joint
plans are evaluated, we can also assume that the HANA agent will execute
its part of the plan. Even though, we must be cautious about the actual
execution of the actions in the plan assigned to other agents. We define the
confidence of a plan in order to measure the degree of belief on the execution
of a joint plan assuming that the HANA agent will perform its part of the
plan.

Definition 23. Given a set of beliefs B C B, hold by agent o € A, and a
feasible plan p € P¥, a’s confidence on p is defined as:

Ca(B',p) = B{(B,0p,7)|(8,0p,7) € p and # a})

Note that for all p, € P¥, Co(B', po) = 1.1

The output of the plan search is a plan ranking. The confidence measure
can be used by HANA agents to rank joint plans. HANA agents can rank the
joint plans by their utility (how good are they for me) filtering out those joint
plans that do not reach a minimum level of confidence (the agent does not
think that other agents will perform their actions in the plan). This minimum
level of confidence may increase as time goes by and the negotiation round
deadline approximates in order to focus on joint plans which confidence is
high.

To generate plans we need a search algorithm that is: (i) capable to search
in a huge space of solutions —as required by most real scenarios, (ii) anytime
—as required by the time bounds, (iii) capable to generate several solutions
instead of just one —we are looking for several plans, and (iv) guided by a
dynamic heuristic —as the set of beliefs evolves with the agent interaction.
We decided to implement HANA’s plan generator with an evolutionary algo-
rithm that constantly optimise the set of plans in the ranking. Concretely we
use a genetic algorithm (GA) as these algorithms allow to efficiently explore
large spaces of solutions and produce successive populations of solutions that
are increasingly better adapted to the environment even when it is chang-
ing along the search process. For us, each single solution, a chromosome in

14This is so because B(()) = B(true) = 1.

22

the GA, represents a complete or joint plan for the agent. The idea is to
generate the plan ranking from the current population of solutions taking all
or a subset of the best ones, preferably the latter. This population is up-
dated generation after generation by the crossover, mutation and selection
operators. It is important to guarantee the feasibility of the generated plans
when applying crossover and mutation. The evaluation of a chromosome is
done by the fitness function that computes the expected utility of the plan
represented by the chromosome. Fitness proportionate selection is used to
give more chances to good plans to take part of crossovers. HANA’s genetic
search allows to set the probability of genes being mutated. We use this to
focus the search on the joint plans looking for other agent actions that can
nicely extend the best complete plans. In fact, to represent plans of diverse
size, we use chromosomes with size equal to the size of complete plans and
let some genes to have a void value meaning that the resource corresponding
to that gene has no assigned action. The probability of void values per gene
can also be adjusted. The initial population does not need to be randomised.
We set the initial population and stop the search at any time saving the cur-
rent population. In this way, we can resume the computation later on. It is
possible to use elitism to keep the best plans alive generation after genera-
tion. Elitism in the plan generation provides a minimum of stability needed
to avoid an erratic performance of the agent during negotiation. The idea
is to keep the plan search running all the time but it can be stopped and
restarted if it is necessary.

Concluding, in this section we have argued the need of using data from
the world model to evaluate plans. We described how plans are evaluated and
how the evaluation functions change as new observations update the world
model usually reducing the agent’s uncertainty. And finally, we explained
the necessary features that a plan generation should have and how we im-
plemented the plan generation in HANA agents to generate the ranking of
plans.

6. Negotiation

The negotiation module uses the ranking of plans and the world model
to decide how to negotiate and what actions to perform. That is, what
messages to send to other agents and what actions to execute over the envi-
ronment. The world model and the plan search have independent processes
that make the world model data and the plan ranking evolve along time.

23

The negotiation module is controlled by another process that periodically
takes a snapshot of both previous processes’ data structures. We define this
snapshot as a negotiation state.

Definition 24. A negotiation state is a tuple
s={(o,w,t,B,, D, T P)
where:
- a€ Ais an agent
- w € W is an environment state

t 1s a time nstant

B., D, and I! are the beliefs, desires and intentions of « at time t

- Pt P¥ '+ [0,1] is a plan ranking

We denote the set of all possible negotiation states by S. Taking a snapshot
the negotiation process can use the data from the world model and the plan
ranking and perform a negotiation step while the plan search is looking for
even better plans'®. The workflow of the negotiation process is as follows:

1. Takes a snapshot of the current negotiation state.

2. Generates a ranking of negotiation options.

3. Executes the agent’s intentions included in the world model.
4. Goes to (1) to continue with a new negotiation state.

The negotiation process uses the option generator to build a ranking of
negotiating options satisfying the Definition 11. Options are generated from
the plan ranking P! as combinations of actions in joint plans p € ng that
are included in the plan ranking P!(p) # L. Options are evaluated by the
option evaluator that computes the next expected negotiation state assuming
the acceptance of a given option 6 € O¥. The simplest way to generate the
ranking of options, O : O% — [0,1] is as follows:

5Note that the changes in the world model and the plan ranking that are done after
taking the snapshot are considered in the next iteration of the negotiation process.

24

OL(8) = f(next(s,0))

where s € S is the current negotiation state, f : .S +— [0, 1] is a negotiation
state evaluation function, nezt : S x OY — S computes the next expected
negotiation state, and 3p € P¥ such that § C p and PL(p) # L.

An alternative is to apply a filter and generate the option ranking using
only the joint plans with value over a threshold v > 0. That is, using every
plan p € P¥ such that P!(p) > v.

Given the negotiation state s = (o, w,t, B, D!, T, Pt) and the option
d, an example of next expected negotiation state next(s,d), for a HANA
agent that always honours its commitments and fully trust the other agents,
could be the negotiation state s’ = (o, w, ', B4, DL T! PY) such that B =
o(BL, {{a,a,1)|a € 6}) and P! = {p|p € P’ and comp(p,d)}. The desires
and intentions would be updated according to this new set of beliefs.

HANA provides several evaluation functions for negotiation states. Other
functions can be used. In general, the reacher the world model the more
sophisticate the evaluation functions can be. The following functions assume
the basic world model with beliefs on actions.

o Quality of information. The higher the quality of the information that
we can reach in a negotiation state the better. A well informed state
contains joint plans that can reduce the uncertainty about the other
agents’ actions. The higher the uncertainty reduction the better. A
natural way to evaluate the quality of information is to define it as 1
minus the average uncertainty of Definition 21.

fr(s) = max(1 — H(o (B, {{,a,1)|a € p}))) (7)

pEP}

e [ndependence. The more independent an agent is the better. If an agent
can reach a high utility by its own means the better the negotiation
state is. This measure depends on the complete plans for the agent
that have been found so far, P! = {p|p € P, and P.(p) # L}. A state
is as good as the best state the agent can reach by its own means, this
is the maximum expected utility to be obtained by assuming we chose
one of the complete plans for agent a:

fuc(s) = max Elo(w, o (Bg, {{, a, 1)|a € p}))] (8)

pepry

25

e Opportunity. The more utility to be obtained with joint plans the
better. Finding joint plans that give high utility is actually the reason
of the whole negotiation process. Any state that has joint plans with
high expected utility is a good state. This measure is similar to the
previous one but using joint plans P! = {p|p € P, and P.(p) # L}:

fus(s) = max EUs(w, 0(Bg, {{a, a, 1)|a € p}))] (9)

pPEPE

o (Confidence. The more confidence in the available plans the better.
Having a high confidence in the plans found during the search the less
uncertainty on what will happen.

fe(s) = max{Ca(By, p)lp € P*, Po(p) # L} (10)

Each of these different measures, or a combination of them, allows to
evaluate negotiation states and thus rank the available options. When to use
each measure or how to combine them is what determines an agent’s negoti-
ation strategy. HANA allows to define strategies combining these measures.
The other key element of the negotiation strategy is the aspiration level, i.e.
the minimum evaluation value, that the agent has for options to be accept-
able. The options above the aspiration level should be accepted. Otherwise,
rejected. At the beginning of a negotiation round agents would usually re-
quest a high aspiration value. As time goes by and the deadline approaches,
agents become less demanding and decrease their expectations in order to
reach some agreements that improve, even in a low amount, their negotiation
state. HANA allows to define the way the aspiration level decreases as the
next definition shows.

Definition 25. Given a negotiation state s, a deadline t,,q., and current
time t, the aspiration level, denoted A(s,t), is defined as:

m

A(5,) = guan(s1) + (M) (1= grinls 1)

where T € [0, 1] is the aspiration decay rate and gmin(s,t) is the minimum
value that can be guaranteed.

26

The negotiation strategy is then determined by fixing values for g (s,t).
HANA allows to define these functions as linear combinations of the measures
defined before. That is,

Gmin(s,1) = wi(t) - 1(5) + wa(t) - ga2(s) + .. + wn(t) - gn(s)

where every g;(s) € [0, 1] is a measure over the state s and), w;(t) = 1.
Next we discuss a few negotiation strategies:

e (Conservative. An agent can guarantee a minimum utilitarian value
with its own actions that corresponds to gmin(s) = fuc(s). This strat-
egy is convenient at the end of a negotiation round as it concedes max-
imally towards the guaranteed minimum.

e Informative. A convenient strategy at the beginning of a negotiation
round is to increase the agent’s information quality. This facilitates
to explore the space of options and reduce uncertainty in the negotia-
tion. The more information an agent has the more probable its future
proposals will be accepted. This can be achieved by gmin(s) = fu(s).

e Dynamic. A combination of the previous two starting with informative
and ending with conservative.

gmin($7t) = wl(t) ' fH(S) + U)g(t) ’ fUC(S>
where wy (t) = 2= and wy(t) = 1 —wi (1)

As introduced in Section 4, the HANA agents have three basic intentions
that are: reply §, propose and executeActions. Desires and intentions are
graded and are represented similarly to how beliefs are represented. The basic
intentions are mutually incompatible, thus the aggregation of their degrees
is always 1. HANA agents satisfy the negotiation protocol defined in Section
2 providing transition functions from beliefs and desires to intentions. Those
transition functions update the degrees of the basic intentions whenever a
message is sent or the deadline is reached. The negotiation process executes
the current basic intention with the highest degree.

At the beginning of the negotiation round, the highest basic intention is
always to propose: Z! (propose) > Z! (reply 0)AZL (propose) > Zt (executeActions).
That is also the case when there is no proposal received and there is time left
before the timeout. Whenever the highest basic intention is propose, the ne-
gotiation process executes the following sentences proposing the best option
only when it is better than the current aspiration of the agent:

27

Ensure: s is the current negotiation state
8 + argmaxscow Of(9) {selects the best ranked option}
if Of,(8) > A(s,t) then
propose(d) {the interface module sends a message proposing ¢}
end if

When a proposal is received, the highest basic intention becomes to be
reply 6 that is to reply the received proposal on the negotiating option 9.
Then, the negotiation process accepts the proposal only when the next ex-
pected state provided by ¢ has a better evaluation than the current aspiration
of the agent:

Ensure: f: S+ [0,1] is the negotiation state evaluation function
Ensure: s is the current negotiation state
s’ < next(s,d) {computes the next expected state}
if f(s') > A(s,t) then
accept(d) {the interface module sends a message accepting d}
else
reject(d) {the interface module sends a message rejecting 6}
end if

Finally, when the timeout is reached, the highest basic intention is to exe-
cuteActions. Then, the negotiation protocol automatically cancel all ongoing
negotiations and the HANA negotiation process selects the best complete
plan from the plan ranking and executes it:

Pf « {plp € P& and P{(p) # L1}
P + argmaxye pt Ella(w, (B, {{a,a,1)|a € p}) {available complete plan with highest utility}
execute(p) {the interface module executes all actions in 7}

Other intentions can be used by the negotiation strategy when desired.
For example, a HANA agent with a trust model incorporated can generate the
intention to not negotiate with agent 3. In that case, Algorithm 6 should be
modified to reject any proposal from 5. And the plan evaluation of the plan
search module should be modified to poorly evaluate joint plans with plans
including . The HANA architecture is designed to be able to incorporate
new models in the world module and adjust the rest of the components. The
architecture is flexible and allows to create a high diversity of different agents.

7. Discussion and future work

In this paper we have proposed HANA, an architecture for agents in-
volved in Resource Negotiation Problems (RNP). These problems consider
realistic multiagent scenarios where agents need to bilaterally negotiate joint
plans of action possibly with humans repeatedly throughout time. The aim

28

of introducing RNP is to challenge the research community to study com-
plex real negotiation scenarios involving humans. Specially those where the
negotiation is about actions. The majority of current work focusses on the
negotiation of a fixed number of issues. Codifying an RNP as a multi-issue
negotiation problem (every resource being an issue and the values being the
concrete action on the resource) would force the negotiation process to deal
with very large and sparse negotiation objects. This would not be a practi-
cal approach. In [37] a classification of automated negotiation is made that
does not consider plans as possible negotiation objects. Although RNPs are
difficult problems we think that the automated negotiation research topic is
mature enough to start facing the challenge.

One of the most compelling issues when researching in realistic scenar-
ios with humans is experimentation. To support this task we have built the
DipGame testbed [15] based on The Diplomacy Game'¢ facilitating the devel-
opment of software agents and the execution of experiments. This initiative
is gaining relevance in the Multiagent Systems community. Several research
departments from around the world are currently using DipGame and the
number of registered users is increasing —50 user registrations during last
two months.!7

The architecture that we propose in this paper includes a BDI agent
model. This BDI model deals with uncertainty using graded beliefs, desires
and intentions [19]. The architecture is designed with the negotiation and the
plan search modules executing concurrently. The negotiation module uses the
best plans found so far by the search module to generate negotiation options,
and the plan search module uses the commitments derived from proposals
accepted by the negotiation module to prune the search space and improve
the evaluation of the plans. HANA is a modular architecture that can be
easily extended incorporating new behaviour models of personality, trust,
relationships, etc. The idea of this architecture is to provide a skeleton for
agents. Then, by fleshing out this skeleton, researchers in negotiation can
easily integrate different behaviour models to build an agent with good skills
in order to negotiate with humans.

In the LOGIC negotiation model agents act in response to a need [9].
Whenever there is a need, a LOGIC agent selects whom to negotiate with,

16The infrastructure of the DipGame testbed is available at http://www.dipgame.org.
170Only confirmed users are taken into account. Statistics at the end of January 2012.

29

prepares a negotiation strategy with relevant information (legitimacy) and
computes the acceptable options. Differently from our work, no information
is provided about how the negotiation options are generated from the needs.
Here, we also provide details about how to evaluate options. LOGIC, as
most negotiation methods, assumes that all possible negotiation partners
have similar capabilities and thus selecting a partner does not depend of the
concrete proposal to make. Here, instead, proposals determine which agents
we should interact with as the capabilities of the negotiation partners can be
different.

Our work is similar to [38] in that HANA also studies negotiation of joint
plans of action involving several agents, is based on BDI agent models and
assumes uncertainty in the actual outcome of plans. However, differently
from [38], HANA agents can deal with uncertainty in their mental state by
the use of a graded BDI model, it assumes the collaborations to be sporadi-
cal and it gives details of how plans are formulated and options negotiated.
Other interesting works that study negotiation and planning in multiagent
systems are [39, 40]. Both provide a logical framework and make assump-
tions (e.g. turn-taking dialogues and shared goals) that are difficult to find
in human-aware scenarios. HANA focus on those scenarios and provide a
flexible architecture for automated negotiation agents.

In the future we would like to study the use of a personality model like
the one presented in [41] to select how the agents should emotionally react to
observations by generating appropriate intentions. Analysing the personality
of other agents is specially challenging as our agent counterparts can be
humans. Another interesting model to incorporate is the relationship model
described in [9] where intimacy levels are computed for each other agent
and some strategies to reach a certain desired intimacy level are provided.
The next behaviour model we plan to extend the architecture with is a trust
model. The concept of trust is really important to perform negotiations. In
environments where there is no trust among agents, negotiation cannot take
place as the negotiators will not be able to belief on the actual execution of
the agreement. We plan to incorporate a version of Sierra and Debenhams’
trust model [42] (i) to provide beliefs on the agent’s trust on other agents,
(ii) to update the belief set from reached commitments, (iii) to provide the
intentions to negotiate or not with a given agent, and (iv) to exclude from
the plan ranking those joint plans with actions assigned to agents whom the
HANA agent distrusts.

30

Acknowledgments

Research supported by the Agreement Technologies CONSOLIDER project
under contract CSD2007-0022 and INGENIO 2010, by the Agreement Tech-
nologies COST Action, IC0801, and by the Generalitat de Catalunya under
the grant 2009-SGR-1434. This work is also supported under project CBIT,
which is funded by Spain’s Ministry of Science and Innovation under grant
number TIN2010-16306 and under ERA-NET project ACE.

References

[1] S. S. Fatima, M. Wooldridge, N. R. Jennings, An agenda-based frame-
work for multi-issue negotiation, Artificial Intelligence 152 (1) (2004) 1
—45.

[2] R. Lin, S. Kraus, J. Wilkenfeld, J. Barry, Negotiating with bounded
rational agents in environments with incomplete information using an
automated agent, Artificial Intelligence 172 (2008) 823-851.

[3] N. Matos, C. Sierra, N. R. Jennings, Negotiation strategies: An evolu-
tionary approach, in: Proc. Int. Conf. on Multi-agent Systems (ICMA’S
98), 1998, pp. 182-189.

[4] K. V. Hindriks, C. Jonker, D. Tykhonov, Towards an open negotiation
architecture for heterogeneous agents, in: Proc. of the 12th Int. Work-
shop on Cooperative Information Agents, Prague, 2008, pp. 264-279.

[5] J. Rosenschein, G. Zlotkin, Rules of Encounter, MIT Press, 1998.

[6] R. Lin, S. Kraus, From research to practice: Automated negotiations
with people, http://u.cs.biu.ac.il/ linraz/Papers/linetal-practice.pdf.

[7] V. L. Smith, Constructivist and ecological rationality in economics, The
American Economic Review 93 (3) (2003) 465-508.

[8] J. Debenham, C. Sierra, An agent supports constructivist and ecological
rationality, in: Proc. 2009 IEEE/WIC/ACM Int. Conf. on Intelligent
Agent Technology, Milano, 2009, pp. 255-258.

[9] C. Sierra, J. Debenham, The logic negotiation model, in: Proc. of 6th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2007), 2007, pp. 1026-1033.

31

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

D. Fessler, K. J. Haley, Genetic and cultural evolution of cooperation,
2003, Ch. The strategy of affect: emotions in human cooperation, pp.
7-36.

Y. Gal, B. Grosz, S. Kraus, A. Pfeffer, S. Shieber, Agent decision-making
in open mixed networks, Artificial Intelligence 174 (2010) 1460-1480.

F. A. Hayek, The Fatal Conceit : The Errors of Socialism (The Collected
Works of F. A. Hayek), University Of Chicago Press, 1991.

A. Jgsang, R. Ismail, C. Boyd, A survey of trust and reputation systems
for online service provision, Decision Support Systems 43 (2) (2007) 618—
644.

D. Kim, D. Ferrin, H. Rao, A trust-based consumer decision-making
model in electronic commerce: The role of trust, perceived risk, and
their antecedents, Decision Support Systems 44 (2) (2008) 544-564.

A. Fabregues, C. Sierra, Dipgame: a challenging negotiation testbed,
Journal of Engineering Applications of Artificial Intelligence 24 (2011)
1137-1146.

A. Fabregues, D. Navarro, A. Serrano, C. Sierra, Dipgame: a testbed
for multiagent systems (demonstration), in: Proc. of 9th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2010), 2010, pp.
1619-1620.

R. Sharp, The Game of Diplomacy, 1978, http://www.diplom.org/ di-
parch/god.htm.

M. Minsky, The emotion machine: from pain to suffering, in: Proc. of
the 3rd Conf. on Creativity & cognition (C&C ’99), ACM, 1999, pp.
7-13.

A. Casali, L. Godo, C. Sierra, A graded bdi agent model to represent and
reason about preferences, Artificial Intelligence 175 (2011) 1468-1478.

R. H. Bordini, J. F. Hiibner, M. Wooldridge, Index, 2007, pp. 269-273.

M. Winikoff, Jack intelligent agents: An industrial strength platform,
in: Multi-Agent Programming, Vol. 15, Springer, 2005, pp. 175-193.

32

22]

23]

[24]

[25]

[26]

[27]

28]

A. S. Rao, Agentspeak(l): Bdi agents speak out in a logical computable
language, in: Proc. of the 7th European workshop on Modelling au-
tonomous agents in a multi-agent world (MAAMAW ’96), 1996, pp.
42-55.

M. d’Inverno, M. Luck, Engineering agentspeak(l): A formal computa-
tional model, Logic and Computation 8 (3) (1998) 233-260.

K. Hindriks, M. d’Inverno, M. Luck, Architecture for agent program-
ming languages, in: Proc. of the 14th European Conf. on Artificial In-
telligence (ECAI 2000), 2000, pp. 363-367.

M. Dastani, 2apl: a practical agent programming language, Autonomous
Agents and Multi-Agent Systems 16 (3) (2008) 214-248.

A. S. Rao, M. P. Georgeff, Modeling Rational Agents within a BDI-
Architecture, in: Proc. of the 2nd Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’91), 1991, pp. 473-484.

S. Parsons, P. Giorgini, An approach to using degrees of belief in BDI
agents, in: Proc. of the Int. Conf. on Information Processing and Man-
agement of Uncertainty in Knowledge-Based Systems, 1999.

P. Pilotti, A. Casali, C. Chesnevar, An approach to automated agent
negotiation using belief revision, in: Proc. of thel2th Argentine Sympo-
sium on Artificial Intelligence (40th JAIIO), Cérdoba, Argentina, 2011,
pp. 202 — 212.

M. E. Bratman, Intention, Plans, and Practical Reason, Cambridge Uni-
versity Press, 1999.

A. S. Rao, M. P. Georgeff, Decision procedures for BDI logics, Journal
of Logic and Computation 8 (3) (1998) 293-342.

C. E. Alchourron, P. Gardenfors, D. Makinson, On the logic of the-
ory change: Partial meet contraction and revision functions, Journal of
Symbolic Logic 50 (1985) 510-530.

S. O. Hansson, A Textbook of Belief Dynamics: Solutions to Exercises,
Kluwer Academic Publishers, Norwell, MA, USA, 2001.

33

33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

A. Fabregues, J. Madrenas, C. Sierra, J. Debenham, Supplier perfor-
mance in a digital ecosystem, in: Proc. of the IEEE Int. Conf. on Dig-
ital Ecosystems and Technologies (IEEE-DEST 2009), Istanbul, 2009,
pp. 466-471.

W. Revelle, K. R. Scherer, Personality and emotion, in: Oxford Com-
panion to the Affective Sciences, Oxford University Press, 2010.

P. Faratin, C. Sierra, N. R. Jennings, Negotiation decision functions for
autonomous agents, Robotics and Autonomous Systems 24 (3-4) (1998)
159-182.

L. P. Kaelbling, M. L. Littman, A. R. Cassandra, Planning and acting in
partially observable stochastic domains, Artif. Intell. 101 (1998) 99-134.

R. Buttner, A classification structure for automated negotiations, in:
Proc. of the 2006 IEEE/WIC/ACM Int. Conf. on Web Intelligence and
Intelligent Agent Technology (WI-IATW ’06), IEEE Computer Society,
Washington, DC, USA, 2006, pp. 523-530.

B. J. Grosz, L. Hunsberger, S. Kraus, Planning and Acting Together.

P. Pardo, P. Dellunde, L. Godo, Argumentation-based negotiation in
t-delp-pop, in: Proc. of the 14th Int. Conf. of the Catalan Association
for Artificial Intelligence (CCIA 2011), Vol. 232, 2011, pp. 177-186.

A. C. Kakas, P. Torroni, N. Demetriou, Agent planning, negotiation
and control of operation, in: of the 16th European Conf. on Artificial
Intelligence (ECAI 2004), 2004, pp. 28-32.

L. Pena, J.-M. Pena, S. Ossowski, Representing emotion and mood
states for virtual agents, in: Proc. of the 9th German Conf. on Mul-
tiagent system technologies, 2011, pp. 181-188.

C. Sierra, J. K. Debenham, Trust and honour in information-based
agency, in: Proc. of the 5th Int. Conf. on Autonomous Agents and
Multi-agent Systems (AAMAS 2006), 2006, pp. 1225-1232.

34

