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Abstract. We propose two random generation models for MaxSAT and Partia
MaxSAT in order to produce instances more similar to the inthldtenchmarks
used in the MaxSAT evaluation. Following the work of [4] arf],[we analyze
properties of industrial instances and use a non-unifoilmwéplaw) distribution to
select the variables.

We also study empirically the optimum (minim number of unsatiéi@lauses)
that we obtain with these models, and the relative performahseme MaxSAT
solvers. We observe that industrial specialized MaxSAVesslare better on these
random formulas than random specialized solvers. We coachat instances gen-
erated with these new models are more similar to industrigirtgts than the gen-
erated with the classical random models based on unifornapitity distributions.
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1. Introduction

The MaxSAT and Partial MaxSAT problems are the optimizatiersions of the satisfi-
ability problem. We work typically with unsatisfiable instzes, and the idea is to find an
assignment that satisfies the maximum number of clausd®e IRartial MaxSAT setting,
the instance has two types of clauses: the ones that thenamsig must satisfy (hard),
and the ones that may or not be satisfied (soft). Then, givemauia with hard and soft
clauses, we are looking for an assignment that satisfieealiard clauses and satisfies
a maximum number of soft clauses. For the MaxSAT settinghalldauses are soft. In
the SAT community there are mainly two kinds of solvers that solve MaxSAT and
Partial MaxSAT problems: branch and bound solvers, like W&&x(wmsz) [11], Min-
iMaxSat(mmax) [10], IncWMaxSatz(inc. wmsz) [12], and sob/based on satisfiability
testing, like SAT4J [7], wbo and msuncore [13] and WPM1, PM3H]. The latest es-
sentially make use of successive calls to a SAT solver. Ieggnthe branch and bound
solvers are more competitive on random problems, whileesslizased on calls to a SAT
solver are better for industrial or real problems.

1This research has been partially founded by the CICYT rekgamojects TASSAT (TIN2010-20967-C04-
01/03/04) and ARINF (TIN2009-14704-C03-01).



The MaxSAT and Partial MaxSAT problem are both natural coratarial problems,
that occur in practical areas like: combinatorial auctjcscheduling and timetabling
problems, FPGA routing, software package installatioo, & encourage the work on
good algorithms for the MaxSAT and Partial MaxSAT problears evaluation (compe-
tition) [6] has been organized. For the last four years, a $#dxevaluation has taken
place associated to the SAT conference. An important paniw€ompetition is to gather
enough test instances. As in the SAT competition, the typaésstances are: random,
crafted and industrial. Of course it is important for a solte be good in the indus-
trial category. However the number of benchmarks in thiegaty is small. Also, we
do not have an instance for every number of variables. Andlyiithey do not have
a parametrized degree of difficulty. On the other hand, remétrmulas can be easily
generated with any size, hence with the desired degreefafuliiy. Moreover, they can
be generated automatically on demand, what makes theinug®ipetitions more fair,
because they are not known in advance by participants. Ild\miinteresting to be able
to generate instances with the good properties of both cetey

Following the work of [4], we present a model of generatiorraridom instances
that in some aspects matches the properties of the induesiances. In [4] the gener-
ator was defined for SAT instances, and in the present worksgatdor MaxSAT and
Partial MaxSAT. This time though, there are added diffiesltisince the set of industrial
instances is smaller. This means that it is impossible tdysaome parameters of the
industrial instances, simply because we don't have a biggmgample. By simply an-
alyzing the quotientn/n (num. clauses / num. variables) we see that it is quite smalle
than the value one could expect. This suggest that the fregua variables is very dif-
ferent, and that the use of non-uniform probability disitibns to chose these variables
can generate instances more similar to industrial one®, Ale analyze the optimums
found in industrial instances, and they are relatively smal

We have done an extensive experimentation where we studypchement in the
optimum with the addition of new clauses, and the dependefdtieis optimum with
the percentage of hard/soft clauses. We have also analjeddrte needed by distinct
MaxSAT solvers to solve theses instances, specially by #h2 &d the wmsz solvers,
that were two of the fastest solvers in the last MaxSAT evanaThe analysis includes
the performance of the solvers on the classical randomrioeta to be able to see the
effect of changing the variable selection distribution.

The non-uniform random generation models are describeddtid 2. In Section 3,
we show the results on the dependence of the optimum on thberuwhclauses and the
ratio hard/soft clauses. In Section 4 we extend this studhiggerformance of distinct
solvers, on the classical and the non-uniform models. Iti@e6 we make some obser-
vations on the industrial instances used as benchmarke lashMaxSAT evaluation.

2. Description of the Models

We generalize the (uniform) randomCNF model used in the MaxSAT evaluation to
non-uniform distributions, using the ideas of [4]. We wilstribe two models, that we
call powerlawk-CNF model and double-powerlaw model.

The main idea in both models is to assign a different proligtitt each variable
i of the formula, following a discrete and finite probabilitistlibution P(X = i;n),



wheren is the number of variables. Thereforejs a parameter of the distribution, and
we need in fact a family of probability distribution functis, one for each value of In
the particular case of the uniform distribution, for everywe haveP(X = i;n) = 1/n.

In [4], itis described how we can obtain a family of probafiliistributionsP (X =
i;m), with discrete domain = {1, ...,n}, from a continuous probability distributiah
with domain|0, 1], taking

ol
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i.e. P(X = i;n) is defined to be(i/n) with the appropriated normalization.

It has been observed that defining the probability distiilms this way, allows us to
generate formulas that have a phase transition phenomgna [4

Different continuous probability distributions can be dises a basis for the dis-
crete distributions of the models. [2] observed that theqrtaw distribution is the one
that best fits an important number of instances of the SAT etitign. The power-
law distribution is obtained from the continuous probapitiistribution p?°* (z; 5) =
(1 — B) x=”. However, this function is not defined in= 0, so a small change is nec-
essary in order to ensure thafz) is defined for allz € [0 1], and the existence of the
phase-transition phenomena. We use the inte[ﬁ/al €1+ e] , for a small value o, or
equivalently we use the function

1-— _
P (x5 B) = i e)l—ﬁﬂ— e (x+¢)P

Using ¢P°* and normalizing we obtain the following family of discretepability
distributions:

(i+e-n)P
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Input: n,m,k, 3
Output: ak-SAT instance withn variables andn clauses
F =0
for i =1tomdo
repeat
C; =0,
for j=1tokdo
Choose a variable with probability P(X = v; 8,n)
Choose a sign € {1, —1} with P(s) =1/2
C;=C;Vs-v,
until C; is not a tautology or simplifiable
F=FU{C;}
return ¥

Figurel. Powerlawk-CNF generator.



Powerlawk-CNF formulas may be generated with the algorithm in Figur&ld-
tice that, sincep?*”(z; 8 = 0) = 1, the powerlawk-CNF model is a generalization
of the uniformk-CNF model. In [4] (Theorem 1) it is proved that with this mbde
generate formulas where the frequency of occurrences @fhtas follows a powerlaw
distribution with exponentt = 1/ + 1.

Our second model, the double-powerlaw model, construatsrauia by repeating
the following process. It chooses a variable and a clausenfirlg two (not necessarily
equal) powerlaw distributions?(X = v; 3,,n) for variables, and®(X = ¢; 8., m) for
clauses. Then, the selected variablg included in the selected clausavith an arbitrary
sign, whenever the clause does not already contain theblariBhis process is repeated
k m times to ensure that the mean size of clausésAss for the previous model, in [4] it
is proved that this model generates formulas where the &mguof variables follows a
powerlaw distribution with exponent, = 1/, + 1, and the clauses sizes also follow a
powerlaw distribution with exponent. = 1/4. + 1. The powerlaw distribution, in fact,
refers to theail of the distribution. Therefore, we still have some freedonshiose the
first values of the distribution. If we use the random genenaalgorithm as has been
described above, we tend to obtain variables with zero oeoaes and clauses with very
small size (even empty clauses). To avoid this problem, wefizaa minimal number
of occurrences for each variabiein, and a minimal size for each clausen.. Notice
that this is compatible with a powerlaw distribution beait®nly affects the first values
(not the tail) of the distribution. The double-powerlaw geation algorithm is described
in Figure 2.

These models can be used to generate MaxSAT instancesjsfchosen greater
thancn, wherec is the phase transition point. In order to generatsmdial MaxSAT
instance withm,, hard clauses anch, soft clauses, we generate (using one or the other
model) a formula withn = m;, + m clauses, and interpret the first, clauses as hard
clauses, and the rest as soft clauses. In this case, weitakecn < m;, +m, to ensure
that the hard subformula is satisfiable, and the whole fommuokatisfiable.

Parameter settings. In all the experiments that follow, we have used either thigoom
k-CNF generation model with = 3, the powerlawk-CNF generation model with = 3
andg = 1, or the double-powerlaw generation model with= 5, 3, = 8. = 0.75,
min, = 1 andmin, = 2.

We have decided not to work wittkCNF partial MaxSAT formulas (althougk+
CNF MaxSAT is NP-hard) because industrial instances teiméwe larger clauses.

In all the graphics that follow, all the points have been categ generating00 in-
stances with the corresponding models and different s&¥églsompute means of optima
and medians of times.

3. Optimum

In this section we study how the minimum number of unsatiiatauses depends on
the number of variables, the number of clauses and the fractionn, /m of hard and
soft clauses. We call the minimum number of unsatisfiablasga, theoptimumof the
formula, and, from now on, we will abbreviate it as

2We use medians in the case of times because the variabilitisicabe is very big.



Input: n,m,k, By, Be, Ming, min,
Output: a SAT instance withy variablesyn clauses, and clause mean size
fori=1tomdoC;:=0; F := FU{C;}
forv=1tondo
for ¢ = 1tomin, do
repeat
Choose a clausewith probability P(X = ¢; 8., m)
Choose a sign € {1, —1} with P(s) =1/2
until v € C,
C.,.=C.,Vs-v
for c=1tomdo
for ¢ = 1tomin, do
repeat
Choose a variable with probability P(X = v; 3,,n)
Choose asign € {1, —1} with P(s) =1/2
until v € C,
C.:=C.Vs-v,
for i = 1tok x m — min, *n — min. * m do
repeat
Choose a variable with probability P(X = v; 5,,n)
Choose a clausewith probability P(X = ¢; 5., m)
Choose a sign € {1, —1} with P(s) =1/2

untilv € C,
C..=C,Vs-v
return F

Figure 2. Double-powerlaw generator.

In the SAT context, the main question is whether a CNF fornsusatisfiable or not.
For randonk-CNF generation models, it is well known the existence ofasgitransition
phenomena. There exits a valusuch that most formulas withv/n < ¢ are satisfiable
and most formulas withn/n > ¢ are unsatisfiable. In random generation models with
a different probability distribution for variables, phasansition phenomena have also
been observed experimentally [4]. In general, in these tsdtle phase transition point
c is smaller than in the classical (uniform) models.

In the MaxSAT context, the main question is what is the optimassignment in
terms of the minimal number of clauses that have to be fadsifldhnerefore, given a
random generation model, it is natural to study how the amtindlepends on the number
of clauses and variables of the formula. This question wasr#tically studied in [8]
for Max-2-SAT and using the classical uniform distributi§t¥] reproduce these results
experimentally. They show that, for big valuesrofn the optimum increases as

0.25m/n — 0.343859y/m/n + O(1) Z o/n 2 0.25m/n — 0.509833+/m/n
The reason for th8.25 m/n term is that, for big values of./n, a random assign-

ment satisfies almost as many clauses as the optimal assigramd a random assign-
ment falsifies a randomly chosen clause of gizeith probability 1 /2%. For Max-2-SAT



optimum/variables (o/n)

we havel /22 = 0.25. Therefore, fork-CNF, we can expect an asymptotic behavior of
o/n dominated byl /2% m /n.

For values oin/n at the left of the phase transition poini.e.m/n < ¢, almost all
formulas are satisfiable and the optimum is close zeronFor = ¢ half of the formulas
are satisfiable, and half unsatisfiable (most of them witlimmpi one), so the average
optimum is close t@ =~ 0.5.

For values ofm/n 2 ¢, [8] prove that, for Max-2-SAT and the classical uniform
distribution, we have

o/n <1/3(m/n —c)?
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Figure 3. Mean optimum/num. variables (n) as a function of num. clauses/num. variables/¢). Above:
for the uniform3-CNF model withm;, = 4n hard clausesLeft: for the powerlaw3-CNF model with
my, = 1.66 n hard clauseRight: for the double-powerlaw model wittn;, = 1.5 n hard clauses.

We have observed experimentally (see Figure 3) thiat grows with m/n with
a rate smaller tham/2"*. This growth rate increases with/n, i.e. the dependence of
o/n with m/n defines a convex function. This is compatible with the thecakresults
proved for classical Max-2-SAT.

A natural question is how the fraction of hard/soft clausiscts the value of the
optimum. Suppose that we have two partial MaxSAT problenth wientical sets of
clauses but one with higher percentage of hard clauses



optimum/variables (o/n)

F1 = {(OO7 Cl), N (OO7 C’mh),(oo, th+1),. .. ,(OO, Cm;l),(l, Cm;f'"l)’ ey (17 Cm)}
F2 = {(OO7 01)7 ey (OO7 th)7(1, th+1), e 7(1, Cm;L), (1, Cm;L+1), ceey (17 Cm)}

where we indicate hard clauses witlvaightoo, and soft clauses with a weight
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Figure 4. Mean optimum/num. variable®(n) as a function of num. clauses/num. variables/¢), with
distinct number of hard clauségft: for the uniform3-CNF model Right: for the powerlaw3-CNF model.

An optimal assignment faF; will be a possible assignment fék, in the sense that
it satisfies all hard clauses &%. This assignment will satisfy the same number of soft
clauses of both formulas. Therefore, the minimum numbeneétisfiable soft clauses of
F5 (optimum of F3) is less or equal than the optimum Bf. The opposite is not true. In
general, given two random partial MaxSAT formulas, with saene number of variables
and total number of clauses, but different number of hardsela, the one with a smaller
number of hard clauses will have a smaller optimum. This [Eeemmentally shown in
Figure 4. On the other hand, for the previous example, we gpact that solvingt,
takes a longer time than solvinfg,. This is because foF,; we have to check a bigger
number of possible assignments than for

4. Time

The MaxSAT solvers that participate in the MaxSAT evaluaij6] can be divided in
two types: solvers based on a branch-and-bound schemayrtilsz [11], inc. wmsz [12]
and mmax [10]; and those based on successive calls to a Skérstike WPM1 [3],
PM2 [3], wbo [13], msuncore [13] and SAT4J [7]. With some extbens, in the MaxSAT
evaluation it has been observed that solvers based on beamthound tend to perform
better in the category of random formulas, and that the S#Setd solvers tend to be
better in the industrial category. We have conducted asefiexperiments with all these
solvers and formulas generated with the unif@+@NF model, the powerla-CNF
model and the double-powerlaw model.

Our experiments have been run on machines with the followgipecs; Operat-
ing System: Rocks Cluster 4.0.0 Linux 2.6.9, Processor: ABiReron 248 Processor,
2 GHz and compilers, Memory: 0.5 GB and Compilers GCC 3.4&¢ JDK 1.5.0.

Figure 5 shows the results. The graphics start with values jof very close to the
phase transition point, where the optimum is approximately, and finish for values



median time (seg.)

1000 F T T T T 7 1000 F T T T T T T~ T T
I 3 *
I A *
100 - 100 [ -
02 4 10} B ) B
- .
. L
1| PM2 4 1f e » PM2 —+—
i / msuncore (WPM1,wbo) " AWPM1 (msuncore, wbo)
inc. wmsz ---%-- / inc. wmsz ---%--
SAT4java - - SAT4java -
mmax —#- | [ § mmax
01 1 1 1 1 0.1 k=1 1 1 1 1 1 1 1
1.7 18 1.9 2 21 2.2 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 35
clauses/variables (m/n) clauses/variables (m/n)

Figure 5. Median time as a function of number clauses/number variabdeglistinct solversL eft: for the
powerlaw 3-CNF model withn = 3000, m; = 5000 andms; = 100,200,...,1500. Right: for the
double-powerlaw model with, = 5000, m;, = 7500 andm s = 5500, 6500, . . ., 10500.

of m/n farther away from the phase transition point, where most@ftxecutions over-
pass a time cutoff 0f200s. Observing Figure 3, this cutoff corresponds more or less to
formulas with an optimum close &9, for both models.

We have observed that WPM1, wbo and msuncore, have an alneosicial behav-
ior, because all three are implementations of the Fu&Malikdlgorithm (with small
differences). Therefore, we have decided to show the datarfty one of them (the
faster in each case). We also observe that wmsz and inc. wawezaltso almost identical
behavior. Therefore, in this case we have decided to shodetzeonly for the wmsz.

As a general trend, we observe that SAT-based solvers are semsitive to the
value of the optimum than branch-and-bound solvers. Thher@as for optimums close
to zero SAT-based solvers (except SAT4J) are 10 times fésaer branch-and-bound
solvers, when the optimum is close 360 the situation reverses, and branch-and-bound
solvers outperform SAT-based solvers. For the double-dawamodel, the situation is
similar. However, in this case although SAT-based solvexsigain up td 0 times faster
than branch-and-bound solvers in the area close to the praamsition point, when the
optimum is close ta80, the times for both kinds of solvers are comparable and close
to the 1200s cutoff. Observe also that, for points close égothase transition point, the
three solvers implementing versions of the Fu&Malik altjom, and the PM2 have the
same performance. But they diverge for points with biggdinag.

A natural question is if this pattern in the relative perfamme of the PM2 and the
wmsz solvers is also observed for other values.@lso, we have to show the differences
between the uniform and non-uniform generation modelsitaplkt how the different
solvers perform on them. In Figure 6 we show the results, famll M2 and wmsz solvers
and different values af. The following table shows the optima at the points wherd bot
solvers have the same performance.
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Figure 6. Mean time as a function of the number of variables and of theselaariable ratio, for the PM2
and the wmsz solverébove: for the uniform3-CNF model withm;, = 4 n. Left: for the powerlan3-CNF
model withm;, = 1.66 n. Right: for the double-powerlaw model withh;, = 1.5n.

m/n )

Uniform n = 100 4.61 2.4
n = 200 443 2.4

Powerlaw n = 1500 1.95 6

n = 3000 1.94 12
Double-powerlaw n = 1250 3.8 11
n = 2500 3.7 17
n = 5000 3.4 18

The reason for this behavior is the following. The PM2 andeot8AT-based solvers
make as many calls to the underlying SAT solver as the valtieeadptimum. Therefore,
the bigger the optimum is, the longer the solvers needs tdmithe case of branch-and-
bound solvers, they are not influenced by the value of therapti. On the other hand,
they only need a bit longer time for bigger valuesobecause they have to update more
clauses. SAT-based solvers use SAT solvers very comgeitititlealing with big (indus-
trial) formulas. This makes also them competitive dealinthwig industrial MaxSAT
formulas, when the optimum is small. However, when the fdamtave a uniform dis-
tribution of variable frequencies, like in the uniform madée performance of the un-
derlying SAT solver is poor and the SAT-based solvers arpastdarmed by branch-and-



bound solvers, even for small values of the optimum. Notie industrial-specialized
SAT solvers are also good dealing with random pseudo-indbigistances [4].

It is interesting to notice that SAT4J, even been based orhansa of successive
calls to a SAT solver, shows a behavior more similar to breamodbound solvers like
wmsz than to other SAT-based solvers like PM2. The reasothi®is that SAT4J does
not make as many calls to the SAT solver as the value of thenopti. On the contrary,
it starts with an upper bound for the optimum and decreasesifiper bound each time
that the SAT solver returns satisfiable.

5. Industrial Benchmarks
The set of industrial instances in the MaxSAT evaluatiorelatively small. Therefore,

it is difficult to conclude if there exist a particular digtition in the frequencies of vari-
ables and clause sizes. All we can say is that the variaiBlityg in most instances.
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Figure7. Plotof the relations num. variables — num. clauses-¢n) and num. variables — optimum (- o)
for the industrial MaxSAT and Partial MaxSAT benchmarks usetie MaxSAT evaluation.

In Figure 7, we show the relation betweemandm in these industrial instances. It is
remarkable that the quotient/n ~ 3.2 is quite small. Notice that the average industrial
clause size 39, thus bigger than the sizzof random3-CNF formulas. However, most
uniform 3-CNF formulas withm/n < 4.25 are satisfiable. The phase transition point
of our non-uniform models is studied in [4]. There, it is shmothat this point, for the
powerlaw 3-CNF model, is smaller than the phase transition point ofuthgorm 3-
CNF model. The same is observed for other models based im digteibutions, like



the geometric distribution, and for the double-powerlandeioWe think that the higher
the variance of the distribution is, the smaller the phaaesition point is. This would
explain why we can have a so small/n ratio in an unsatisfiable formula with big
clauses, if the variability in the frequency of variablesl @tause sizes is big.
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Figure 8. Experimental cumulative distributions for the optimum of iist families of benchmarks.

We also study the value of the optima of the industrial inséan In Figure 7, we
observe that these optima are obviously smaller thaout it is difficult to observe any
other correlation. There is not a correlation betweemdm /n, either. In Figure 8, we
observe that the optima values are typically aro@6dmedian) for the industrial par-
tial MaxSAT instances, and arourids for the industrial MaxSAT instances. Compar-
ing these values with the optima obtained for the random éidemused in the random
category of the MaxSAT evaluation, we observe that they iaualer.

6. Conclusions

We have studied two random generation models (powerta@NF and double-
powerlaw) for the MaxSAT and Partial MaxSAT problems in artteproduce instances
more similar to the industrial benchmarks used in the Max8¢dluation. We have con-
ducted an experimental investigation with the best perfiognbranch-and-bound and
SAT-based Partial MaxSAT solvers. The study shows that Ig#8ed solvers, that typi-
cally are the best at the industrial categories in the Max&#dluation, can be better on
these non-classical random formulas than branch-andebsaimers, which typically are
the best for the random categories at the MaxSAT evaluation.

This study will also allow us to fix the parameters of our madel m, my,, ms, k,
o, B, andg,,) to generate pseudo-industrial instances.

As a future work we plan to extend these generation modelsaduce Weighted
MaxSAT and Weighted Partial MaxSAT instances more simdahe industrial ones.
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