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Abstract. We propose two random generation models for MaxSAT and Partial
MaxSAT in order to produce instances more similar to the industrial benchmarks
used in the MaxSAT evaluation. Following the work of [4] and [2], we analyze
properties of industrial instances and use a non-uniform (powerlaw) distribution to
select the variables.

We also study empirically the optimum (minim number of unsatisfiable clauses)
that we obtain with these models, and the relative performanceof some MaxSAT
solvers. We observe that industrial specialized MaxSAT solvers are better on these
random formulas than random specialized solvers. We conclude that instances gen-
erated with these new models are more similar to industrial instances than the gen-
erated with the classical random models based on uniform probability distributions.
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1. Introduction

The MaxSAT and Partial MaxSAT problems are the optimizationversions of the satisfi-
ability problem. We work typically with unsatisfiable instances, and the idea is to find an
assignment that satisfies the maximum number of clauses. In the Partial MaxSAT setting,
the instance has two types of clauses: the ones that the assignment must satisfy (hard),
and the ones that may or not be satisfied (soft). Then, given a formula with hard and soft
clauses, we are looking for an assignment that satisfies all the hard clauses and satisfies
a maximum number of soft clauses. For the MaxSAT setting all the clauses are soft. In
the SAT community there are mainly two kinds of solvers that can solve MaxSAT and
Partial MaxSAT problems: branch and bound solvers, like WMaxSatz(wmsz) [11], Min-
iMaxSat(mmax) [10], IncWMaxSatz(inc. wmsz) [12], and solvers based on satisfiability
testing, like SAT4J [7], wbo and msuncore [13] and WPM1, PM2 [1,3,5]. The latest es-
sentially make use of successive calls to a SAT solver. In general, the branch and bound
solvers are more competitive on random problems, while solvers based on calls to a SAT
solver are better for industrial or real problems.

1This research has been partially founded by the CICYT research projects TASSAT (TIN2010-20967-C04-
01/03/04) and ARINF (TIN2009-14704-C03-01).



The MaxSAT and Partial MaxSAT problem are both natural combinatorial problems,
that occur in practical areas like: combinatorial auctions, scheduling and timetabling
problems, FPGA routing, software package installation, etc. To encourage the work on
good algorithms for the MaxSAT and Partial MaxSAT problems,an evaluation (compe-
tition) [6] has been organized. For the last four years, a MaxSAT evaluation has taken
place associated to the SAT conference. An important part ofthis competition is to gather
enough test instances. As in the SAT competition, the types of instances are: random,
crafted and industrial. Of course it is important for a solver to be good in the indus-
trial category. However the number of benchmarks in this category is small. Also, we
do not have an instance for every number of variables. And finally, they do not have
a parametrized degree of difficulty. On the other hand, random formulas can be easily
generated with any size, hence with the desired degree of difficulty. Moreover, they can
be generated automatically on demand, what makes their use in competitions more fair,
because they are not known in advance by participants. It would be interesting to be able
to generate instances with the good properties of both categories.

Following the work of [4], we present a model of generation ofrandom instances
that in some aspects matches the properties of the industrial instances. In [4] the gener-
ator was defined for SAT instances, and in the present work we use it for MaxSAT and
Partial MaxSAT. This time though, there are added difficulties, since the set of industrial
instances is smaller. This means that it is impossible to study some parameters of the
industrial instances, simply because we don’t have a big enough sample. By simply an-
alyzing the quotientm/n (num. clauses / num. variables) we see that it is quite smaller
than the value one could expect. This suggest that the frequency of variables is very dif-
ferent, and that the use of non-uniform probability distributions to chose these variables
can generate instances more similar to industrial ones. Also, we analyze the optimums
found in industrial instances, and they are relatively small.

We have done an extensive experimentation where we study theincrement in the
optimum with the addition of new clauses, and the dependenceof this optimum with
the percentage of hard/soft clauses. We have also analyzed the time needed by distinct
MaxSAT solvers to solve theses instances, specially by the PM2 and the wmsz solvers,
that were two of the fastest solvers in the last MaxSAT evaluation. The analysis includes
the performance of the solvers on the classical random instances, to be able to see the
effect of changing the variable selection distribution.

The non-uniform random generation models are described in Section 2. In Section 3,
we show the results on the dependence of the optimum on the number of clauses and the
ratio hard/soft clauses. In Section 4 we extend this study tothe performance of distinct
solvers, on the classical and the non-uniform models. In Section 5 we make some obser-
vations on the industrial instances used as benchmarks in the last MaxSAT evaluation.

2. Description of the Models

We generalize the (uniform) randomk-CNF model used in the MaxSAT evaluation to
non-uniform distributions, using the ideas of [4]. We will describe two models, that we
call powerlawk-CNF model and double-powerlaw model.

The main idea in both models is to assign a different probability to each variable
i of the formula, following a discrete and finite probability distributionP (X = i;n),



wheren is the number of variables. Therefore,n is a parameter of the distribution, and
we need in fact a family of probability distribution functions, one for each value ofn. In
the particular case of the uniform distribution, for everyn, we haveP (X = i;n) = 1/n.

In [4], it is described how we can obtain a family of probability distributionsP (X =
i;n), with discrete domaini = {1, . . . , n}, from a continuous probability distributionφ
with domain

[

0, 1
]

, taking

P (X = i;n) =
φ(i/n)

∑n

j=1
φ(j/n)

i.e.P (X = i;n) is defined to beφ(i/n) with the appropriated normalization.
It has been observed that defining the probability distributions this way, allows us to

generate formulas that have a phase transition phenomena [4].
Different continuous probability distributions can be used as a basis for the dis-

crete distributions of the models. [2] observed that the powerlaw distribution is the one
that best fits an important number of instances of the SAT competition. The power-
law distribution is obtained from the continuous probability distributionφpow(x;β) =
(1 − β)x−β . However, this function is not defined inx = 0, so a small change is nec-
essary in order to ensure thatφ(x) is defined for allx ∈ [0 1], and the existence of the
phase-transition phenomena. We use the interval

[

0 + ǫ, 1 + ǫ
]

, for a small value ofǫ, or
equivalently we use the function

φpow(x;β) =
1− β

(1 + ǫ)1−β − ǫ1−β
(x+ ǫ)−β

Usingφpow and normalizing we obtain the following family of discrete probability
distributions:

P (X = i;β, n) =
(i+ ǫ · n)−β

∑n

j=1
(j + ǫ · n)−β

Input: n,m, k, β
Output: ak-SAT instance withn variables andm clauses
F = ∅;
for i = 1 to m do

repeat
Ci = ;
for j = 1 to k do

Choose a variablev with probabilityP (X = v;β, n)
Choose a signs ∈ {1,−1} with P (s) = 1/2
Ci = Ci ∨ s · v;

until Ci is not a tautology or simplifiable
F = F ∪ {Ci}

return F

Figure 1. Powerlawk-CNF generator.



Powerlawk-CNF formulas may be generated with the algorithm in Figure 1. No-
tice that, sinceφpow(x;β = 0) = 1, the powerlawk-CNF model is a generalization
of the uniformk-CNF model. In [4] (Theorem 1) it is proved that with this model we
generate formulas where the frequency of occurrences of variables follows a powerlaw
distribution with exponentα = 1/β + 1.

Our second model, the double-powerlaw model, constructs a formula by repeating
the following process. It chooses a variable and a clause following two (not necessarily
equal) powerlaw distributions,P (X = v;βv, n) for variables, andP (X = c;βc,m) for
clauses. Then, the selected variablev is included in the selected clausec, with an arbitrary
sign, whenever the clause does not already contain the variable. This process is repeated
km times to ensure that the mean size of clauses isk. As for the previous model, in [4] it
is proved that this model generates formulas where the frequency of variables follows a
powerlaw distribution with exponentαv = 1/βv + 1, and the clauses sizes also follow a
powerlaw distribution with exponentαc = 1/βc + 1. The powerlaw distribution, in fact,
refers to thetail of the distribution. Therefore, we still have some freedom to chose the
first values of the distribution. If we use the random generation algorithm as has been
described above, we tend to obtain variables with zero occurrences and clauses with very
small size (even empty clauses). To avoid this problem, we can fix a minimal number
of occurrences for each variableminv and a minimal size for each clauseminc. Notice
that this is compatible with a powerlaw distribution because it only affects the first values
(not the tail) of the distribution. The double-powerlaw generation algorithm is described
in Figure 2.

These models can be used to generate MaxSAT instances, ifm is chosen greater
thanc n, wherec is the phase transition point. In order to generate apartial MaxSAT
instance withmh hard clauses andms soft clauses, we generate (using one or the other
model) a formula withm = mh +ms clauses, and interpret the firstmh clauses as hard
clauses, and the rest as soft clauses. In this case, we takemh < cn < mh+ms to ensure
that the hard subformula is satisfiable, and the whole formula unsatisfiable.

Parameter settings. In all the experiments that follow, we have used either the uniform
k-CNF generation model withk = 3, the powerlawk-CNF generation model withk = 3
andβ = 1, or the double-powerlaw generation model withk = 5, βv = βc = 0.75,
minv = 1 andminc = 2.

We have decided not to work with2-CNF partial MaxSAT formulas (although2-
CNF MaxSAT is NP-hard) because industrial instances tend tohave larger clauses.

In all the graphics that follow, all the points have been computed generating100 in-
stances with the corresponding models and different seeds.We compute means of optima
and medians of times.2

3. Optimum

In this section we study how the minimum number of unsatisfiable clauses depends on
the number of variablesn, the number of clausesm and the fractionmh/ms of hard and
soft clauses. We call the minimum number of unsatisfiable clauses, theoptimumof the
formula, and, from now on, we will abbreviate it aso.

2We use medians in the case of times because the variability in this case is very big.



Input: n,m, k, βv, βc,minv,minc

Output: a SAT instance withn variables,m clauses, and clause mean sizek
for i = 1 to m do Ci := ; F := F ∪ {Ci}
for v = 1 to n do

for i = 1 to minv do
repeat

Choose a clausec with probabilityP (X = c;βc,m)
Choose a signs ∈ {1,−1} with P (s) = 1/2

until v ∈ Cc

Cc := Cc ∨ s · v
for c = 1 to m do

for i = 1 to minc do
repeat

Choose a variablev with probabilityP (X = v;βv, n)
Choose a signs ∈ {1,−1} with P (s) = 1/2

until v ∈ Cc

Cc := Cc ∨ s · v;
for i = 1 to k ∗m−minv ∗ n−minc ∗m do

repeat
Choose a variablev with probabilityP (X = v;βv, n)
Choose a clausec with probabilityP (X = c;βc,m)
Choose a signs ∈ {1,−1} with P (s) = 1/2

until v ∈ Cc

Cc := Cc ∨ s · v
return F

Figure 2. Double-powerlaw generator.

In the SAT context, the main question is whether a CNF formulais satisfiable or not.
For randomk-CNF generation models, it is well known the existence of a phase transition
phenomena. There exits a valuec such that most formulas withm/n < c are satisfiable
and most formulas withm/n > c are unsatisfiable. In random generation models with
a different probability distribution for variables, phasetransition phenomena have also
been observed experimentally [4]. In general, in these models the phase transition point
c is smaller than in the classical (uniform) models.

In the MaxSAT context, the main question is what is the optimum assignment in
terms of the minimal number of clauses that have to be falsified. Therefore, given a
random generation model, it is natural to study how the optimum depends on the number
of clauses and variables of the formula. This question was theoretically studied in [8]
for Max-2-SAT and using the classical uniform distribution. [14] reproduce these results
experimentally. They show that, for big values ofm/n the optimum increases as

0.25m/n− 0.343859
√

m/n+O(1) & o/n & 0.25m/n− 0.509833
√

m/n

The reason for the0.25m/n term is that, for big values ofm/n, a random assign-
ment satisfies almost as many clauses as the optimal assignment; and a random assign-
ment falsifies a randomly chosen clause of sizek with probability1/2k. For Max-2-SAT



we have1/22 = 0.25. Therefore, fork-CNF, we can expect an asymptotic behavior of
o/n dominated by1/2k m/n.

For values ofm/n at the left of the phase transition pointc, i.e.m/n < c, almost all
formulas are satisfiable and the optimum is close zero. Form/n = c half of the formulas
are satisfiable, and half unsatisfiable (most of them with optimum one), so the average
optimum is close too ≈ 0.5.

For values ofm/n & c, [8] prove that, for Max-2-SAT and the classical uniform
distribution, we have

o/n . 1/3 (m/n− c)3
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Figure 3. Mean optimum/num. variables (o/n) as a function of num. clauses/num. variables (m/n). Above:
for the uniform3-CNF model withmh = 4n hard clauses.Left: for the powerlaw3-CNF model with
mh = 1.66n hard clauses.Right: for the double-powerlaw model withmh = 1.5n hard clauses.

We have observed experimentally (see Figure 3) thato/n grows withm/n with
a rate smaller than1/2k. This growth rate increases withm/n, i.e. the dependence of
o/n with m/n defines a convex function. This is compatible with the theoretical results
proved for classical Max-2-SAT.

A natural question is how the fraction of hard/soft clauses affects the value of the
optimum. Suppose that we have two partial MaxSAT problems with identical sets of
clauses but one with higher percentage of hard clauses



F1 = {(∞, C1), . . . , (∞, Cmh
),(∞, Cmh+1),. . . ,(∞, Cm′

h
),(1, Cm′

h
+1), . . . , (1, Cm)}

F2 = {(∞, C1), . . . , (∞, Cmh
),(1, Cmh+1), . . . ,(1, Cm′

h
), (1, Cm′

h
+1), . . . , (1, Cm)}

where we indicate hard clauses with aweight∞, and soft clauses with a weight1.
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Figure 4. Mean optimum/num. variables (o/n) as a function of num. clauses/num. variables (m/n), with
distinct number of hard clausesLeft: for the uniform3-CNF model.Right: for the powerlaw3-CNF model.

An optimal assignment forF1 will be a possible assignment forF2, in the sense that
it satisfies all hard clauses ofF2. This assignment will satisfy the same number of soft
clauses of both formulas. Therefore, the minimum number of unsatisfiable soft clauses of
F2 (optimum ofF2) is less or equal than the optimum ofF1. The opposite is not true. In
general, given two random partial MaxSAT formulas, with thesame number of variables
and total number of clauses, but different number of hard clauses, the one with a smaller
number of hard clauses will have a smaller optimum. This is experimentally shown in
Figure 4. On the other hand, for the previous example, we can expect that solvingF2

takes a longer time than solvingF1. This is because forF2 we have to check a bigger
number of possible assignments than forF1.

4. Time

The MaxSAT solvers that participate in the MaxSAT evaluation [6] can be divided in
two types: solvers based on a branch-and-bound schema, likewmsz [11], inc. wmsz [12]
and mmax [10]; and those based on successive calls to a SAT solver, like WPM1 [3],
PM2 [3], wbo [13], msuncore [13] and SAT4J [7]. With some exceptions, in the MaxSAT
evaluation it has been observed that solvers based on branch-and-bound tend to perform
better in the category of random formulas, and that the SAT-based solvers tend to be
better in the industrial category. We have conducted a series of experiments with all these
solvers and formulas generated with the uniform3-CNF model, the powerlaw3-CNF
model and the double-powerlaw model.

Our experiments have been run on machines with the followingspecs; Operat-
ing System: Rocks Cluster 4.0.0 Linux 2.6.9, Processor: AMDOpteron 248 Processor,
2 GHz and compilers, Memory: 0.5 GB and Compilers GCC 3.4.3, javac JDK 1.5.0.

Figure 5 shows the results. The graphics start with values ofm/n very close to the
phase transition point, where the optimum is approximatelyzero, and finish for values
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Figure 5. Median time as a function of number clauses/number variables, for distinct solvers.Left: for the
powerlaw3-CNF model withn = 3000, mh = 5000 andms = 100, 200, . . . , 1500. Right: for the
double-powerlaw model withn = 5000, mh = 7500 andms = 5500, 6500, . . . , 10500.

of m/n farther away from the phase transition point, where most of the executions over-

pass a time cutoff of1200s. Observing Figure 3, this cutoff corresponds more or less to

formulas with an optimum close to30, for both models.

We have observed that WPM1, wbo and msuncore, have an almost identical behav-

ior, because all three are implementations of the Fu&Malik [9] algorithm (with small

differences). Therefore, we have decided to show the data for only one of them (the

faster in each case). We also observe that wmsz and inc. wmsz have also almost identical

behavior. Therefore, in this case we have decided to show thedata only for the wmsz.

As a general trend, we observe that SAT-based solvers are more sensitive to the

value of the optimum than branch-and-bound solvers. Thus, whereas for optimums close

to zero SAT-based solvers (except SAT4J) are 10 times fasterthan branch-and-bound

solvers, when the optimum is close to30 the situation reverses, and branch-and-bound

solvers outperform SAT-based solvers. For the double-powerlaw model, the situation is

similar. However, in this case although SAT-based solvers are again up to10 times faster

than branch-and-bound solvers in the area close to the phasetransition point, when the

optimum is close to30, the times for both kinds of solvers are comparable and close

to the 1200s cutoff. Observe also that, for points close to the phase transition point, the

three solvers implementing versions of the Fu&Malik algorithm, and the PM2 have the

same performance. But they diverge for points with bigger optima.

A natural question is if this pattern in the relative performance of the PM2 and the

wmsz solvers is also observed for other values ofn. Also, we have to show the differences

between the uniform and non-uniform generation models looking at how the different

solvers perform on them. In Figure 6 we show the results, onlyfor PM2 and wmsz solvers

and different values ofn. The following table shows the optima at the points where both

solvers have the same performance.
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Figure 6. Mean time as a function of the number of variables and of the clause/variable ratio, for the PM2
and the wmsz solvers.Above: for the uniform3-CNF model withmh = 4n. Left: for the powerlaw3-CNF
model withmh = 1.66n. Right: for the double-powerlaw model withmh = 1.5n.

m/n o
Uniform n = 100 4.61 2.4

n = 200 4.43 2.4
Powerlaw n = 1500 1.95 6

n = 3000 1.94 12
Double-powerlaw n = 1250 3.8 11

n = 2500 3.7 17
n = 5000 3.4 18

The reason for this behavior is the following. The PM2 and other SAT-based solvers
make as many calls to the underlying SAT solver as the value ofthe optimum. Therefore,
the bigger the optimum is, the longer the solvers needs to run. In the case of branch-and-
bound solvers, they are not influenced by the value of the optimum. On the other hand,
they only need a bit longer time for bigger values ofm because they have to update more
clauses. SAT-based solvers use SAT solvers very competitive in dealing with big (indus-
trial) formulas. This makes also them competitive dealing with big industrial MaxSAT
formulas, when the optimum is small. However, when the formulas have a uniform dis-
tribution of variable frequencies, like in the uniform model, the performance of the un-
derlying SAT solver is poor and the SAT-based solvers are outperformed by branch-and-



bound solvers, even for small values of the optimum. Notice that industrial-specialized
SAT solvers are also good dealing with random pseudo-industrial instances [4].

It is interesting to notice that SAT4J, even been based on a schema of successive
calls to a SAT solver, shows a behavior more similar to branch-and-bound solvers like
wmsz than to other SAT-based solvers like PM2. The reason forthis is that SAT4J does
not make as many calls to the SAT solver as the value of the optimum. On the contrary,
it starts with an upper bound for the optimum and decreases this upper bound each time
that the SAT solver returns satisfiable.

5. Industrial Benchmarks

The set of industrial instances in the MaxSAT evaluation is relatively small. Therefore,
it is difficult to conclude if there exist a particular distribution in the frequencies of vari-
ables and clause sizes. All we can say is that the variabilityis big in most instances.
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Figure 7. Plot of the relations num. variables — num. clauses (n−m) and num. variables — optimum (n−o)
for the industrial MaxSAT and Partial MaxSAT benchmarks usedin the MaxSAT evaluation.

In Figure 7, we show the relation betweenn andm in these industrial instances. It is
remarkable that the quotientm/n ≈ 3.2 is quite small. Notice that the average industrial
clause size is19, thus bigger than the size3 of random3-CNF formulas. However, most
uniform 3-CNF formulas withm/n < 4.25 are satisfiable. The phase transition point
of our non-uniform models is studied in [4]. There, it is shown that this point, for the
powerlaw3-CNF model, is smaller than the phase transition point of theuniform 3-
CNF model. The same is observed for other models based in other distributions, like



the geometric distribution, and for the double-powerlaw model. We think that the higher
the variance of the distribution is, the smaller the phase transition point is. This would
explain why we can have a so smallm/n ratio in an unsatisfiable formula with big
clauses, if the variability in the frequency of variables and clause sizes is big.
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We also study the value of the optima of the industrial instances. In Figure 7, we
observe that these optima are obviously smaller thann, but it is difficult to observe any
other correlation. There is not a correlation betweeno andm/n, either. In Figure 8, we
observe that the optima values are typically around20 (median) for the industrial par-
tial MaxSAT instances, and around1.5 for the industrial MaxSAT instances. Compar-
ing these values with the optima obtained for the random formulas used in the random
category of the MaxSAT evaluation, we observe that they are smaller.

6. Conclusions

We have studied two random generation models (powerlawk-CNF and double-
powerlaw) for the MaxSAT and Partial MaxSAT problems in order to produce instances
more similar to the industrial benchmarks used in the MaxSATevaluation. We have con-
ducted an experimental investigation with the best performing branch-and-bound and
SAT-based Partial MaxSAT solvers. The study shows that SAT-based solvers, that typi-
cally are the best at the industrial categories in the MaxSATevaluation, can be better on
these non-classical random formulas than branch-and-bound solvers, which typically are
the best for the random categories at the MaxSAT evaluation.

This study will also allow us to fix the parameters of our models (n, m, mh, ms, k,
o, βv andβm) to generate pseudo-industrial instances.

As a future work we plan to extend these generation models to produce Weighted
MaxSAT and Weighted Partial MaxSAT instances more similar to the industrial ones.
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