
[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 1 1–46

RP-DeLP: a weighted defeasible
argumentation framework based on a
recursive semantics
TERESA ALSINET, Department of Computer Science, Universitat de Lleida,
C/Jaume II 69, 25001 Lleida, Spain.
E-mail: tracy@diei.udl.cat

RAMÓN BÉJAR, Department of Computer Science, Universitat de Lleida,
C/Jaume II 69, 25001 Lleida, Spain.
E-mail: ramon@diei.udl.cat

LLUÍS GODO, Institut d’Investigació en Intel.ligència Artificial, IIIA - CSIC,
Campus UAB, Bellaterra 08193, Spain.
E-mail: godo@iiia.csic.es

FRANCESC GUITART, Department of Computer Science, Universitat de Lleida,
C/Jaume II 69, 25001 Lleida, Spain.
E-mail: fguitart@diei.udl.cat

Abstract
In this article, we propose a recursive semantics for warranted formulas in a general defeasible logic argumentation framework
by formalizing a notion of collective (non-binary) conflict among arguments. The recursive semantics for warranted formulas
is based on the intuitive grounds that if an argument is rejected, then further arguments built on top of it should also be rejected.
The main characteristic of our recursive semantics is that an output (or extension) of a knowledge base is a pair consisting of a
set of warranted and a set of blocked formulas. Arguments for both warranted and blocked formulas are recursively based on
warranted formulas but, while warranted formulas do not generate any collective conflict, blocked conclusions do. Formulas
that are neither warranted nor blocked correspond to rejected formulas. Then we extend the framework by attaching levels of
preference to defeasible knowledge items and by providing a level-wise definition of warranted and blocked formulas. After
we consider the warrant recursive semantics for the particular framework of Possibilistic Defeasible Logic Programming
(RP-DeLP for short). Since RP-DeLP programmes may have multiple outputs, we define the maximal ideal output of an
RP-DeLP programme as the set of conclusions which are ultimately warranted, and we present an algorithm for computing
it in polynomial space and with an upper bound on complexity equal to PNP . Finally, we propose an efficient and scalable
implementation of this algorithm using SAT encodings, and we provide an experimental evaluation when solving test sets of
instances with single and multiple preference levels for defeasible knowledge.

Keywords: Defeasible reasoning, recursive semantics, collective conflict, rationality postulates, SAT encoding, efficient
implementation.

1 Introduction and motivation

Defeasible argumentation is a natural way of identifying relevant assumptions and conclusions for a
given problem which often involves identifying conflicting information, resulting in the need to look

© The Author, 2014. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
doi:10.1093/logcom/exu008

 Journal of Logic and Computation Advance Access published February 14, 2014
 at C

SIC
 on February 22, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 2 1–46

2 Recursive semantics for RP-DeLP

for pros and cons for a particular conclusion [56]. This process may involve chains of reasoning,
where conclusions are used in the assumptions for deriving further conclusions and the task of finding
pros and cons may be decomposed recursively. Logic-based formalizations of argumentation that
take pros and cons for some conclusion into account assume a set of formulas and then lay out
arguments and counterarguments that can be obtained from these assumed formulas [26].

Defeasible Logic Programming (DeLP) [42] is a formalism that combines techniques of both logic
programming and defeasible argumentation. As in logic programming, knowledge is represented in
DeLP using facts and rules; however, DeLP also provides the possibility of representing defeasible
knowledge under the form of weak (defeasible) rules, expressing reasons to believe in a given
conclusion. In DeLP, a conclusion succeeds if it is warranted, i.e., if there exists an argument (a
consistent sets of defeasible rules) that, together with the non-defeasible rules and facts, entails
the conclusion, and moreover, this argument is found to be undefeated by a warrant procedure
which builds a dialectical tree containing all arguments that challenge this argument, and all
counterarguments that challenge those arguments, and so on, recursively. Actually, dialectical trees
systematically explore the universe of arguments in order to present an exhaustive synthesis of
the relevant chains of pros and cons for a given conclusion. In fact, the interpreter for DeLP [41]
(http://lidia.cs.uns.edu.ar/DeLP) takes a knowledge base (programme) P and a conclusion (query) Q
as input, and it then returns one of the following four possible answers: YES, if Q is warranted from
P; NO, if the complement of Q is warranted from P; UNDECIDED, if neither Q nor its complement
are warranted from P; or UNKNOWN, if Q is not in the language of the programme P.

Possibilistic Defeasible Logic Programming (P-DeLP) [5] is an extension of DeLP in which
defeasible rules are attached with weights (belonging to the real unit interval [0,1]) expressing their
relative belief or preference strength.As many other argumentation frameworks [32, 56], P-DeLP can
be used as a vehicle for facilitating rationally justifiable decision making when handling incomplete
and potentially inconsistent information. Actually, given a P-DeLP programme, justifiable decisions
correspond to warranted conclusions (to some necessity degree), i.e., those which remain undefeated
after an exhaustive dialectical analysis of all possible arguments for and against.

In [30] Caminada and Amgoud proposed three rationality postulates which every rule-based
argumentation system should satisfy. One of such postulates (called Indirect Consistency) requires
that the set of warranted conclusions must be consistent (w.r.t. the underlying logic) with the set of
strict facts and rules. In [30] a number of rule-based argumentation systems were identified in which
such postulate does not hold (including DeLP [42] and Prakken and Sartor’s [55], among others).As a
way to solve this problem, the use of transposed rules is proposed in [30] to extend the representation
of strict rules. Recently, in [6] Amgoud proposes a new rationality postulate (called Closure under
Subarguments) which rule-based argumentation systems should satisfy. This postulate claims that
the acceptance of an argument should imply also the acceptance of all its subarguments which reflect
the different premises on which the argument is based.

Since the dialectical analysis-based semantics of (P-)DeLP for warranted conclusions does not
satisfy the Indirect Consistency postulate, our aim in this article is to provide (P-)DeLP with
a new semantics satisfying the above mentioned postulates. To this end, we consider recursive
semantics for defeasible argumentation as defined by Pollock in [53], where recursive definitions
of conflict between arguments were characterized by means of inference-graphs, representing
(binary) support and attack (pros and cons) relations among the conclusions of arguments.
Recursive semantics are based on the fact that if an argument is rejected, then all arguments
built on top of it should also be rejected. On the other hand, as stated in [53], recursive
definitions of conflict among arguments can lead to different outputs (extensions) for warranted
conclusions.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 3 1–46

Recursive semantics for RP-DeLP 3

The first contribution of this article is to define a recursive semantics for warranted conclusions
in a quite general framework (without levels of strength) by formalizing a new collective (non-
binary) notion of conflict between arguments. The main characteristic of our recursive semantics
is that an output (extension) of a knowledge base is now a pair of sets, a set of warranted and a
set of blocked formulas. Arguments for both warranted and blocked formulas are recursively based
on warranted formulas but, while warranted formulas do not generate any conflict with the set of
already warranted formulas and the strict part of the knowledge base (information we take for granted
they hold true), blocked formulas do. Formulas that are neither warranted nor blocked correspond
to rejected formulas. The key feature that our warrant recursive semantics addresses corresponds
with the closure under subarguments postulate recently proposed by Amgoud [6], claiming that if an
argument is excluded from an output, then all the arguments built on top of it should also be excluded
from that output.

The second contribution of this article is to extend the recursive semantics to a general
argumentation framework with defeasibility (preference) levels, by providing a level-wise definition
of warranted and blocked conclusions. We characterize the properties of outputs in terms of some
propagation criteria between defeasibility levels of warranted and blocked conclusions.

The third contribution of this article is to specialize the warrant recursive semantics with
defeasibility levels to the particular framework of P-DeLP, we refer to this formalism as Recursive
P-DeLP (RP-DeLP for short). Following the approach of Pollock [53], in RP-DeLP inferences from
some propositions to others and definitions of conflict are characterized by means of what we
call Warrant Dependency Graphs, representing support and (collective) conflict relations between
argument conclusions. For example, let Jones and Smith be two experts on economy discussing
about whether in our country the economy is improving or not. Jones’ opinion is that ‘the economy
improves (E) since the export surplus is increasing (ES)’, while Smith believes ‘the economy is not
improving (∼E) since the income taxes have decreased (T)’. Assuming Smith and Jones are equally
reliable, what should one believe? It seems clear that one should accept neither E nor ∼E. This
situation is represented in the warrant dependency graph of Figure 1 where dashed arrows represent
inferences and continuos arrows represent conflicts. In RP-DeLP, the direct binary attack between E
and ∼E expresses that E blocks ∼E, and vice versa.

The situation may turn more complex when conflict loops among arguments appear in the warrant
dependency graph. In such a case, the recursive semantics for warranted conclusions may result
in multiple outputs for RP-DeLP programmes. For example, assume Jones’ opinion is that ‘if the
economy improves (E) then the salaries will increase (S) and, as a consequence, the income taxes
will increase (T) as well’. On the other hand, Smith’s point of view is that ‘if the income taxes
decrease (∼T) then the public investment will decrease (I), and thus the economy will eventually
shrink (∼E)’. Assume further that some indices point out that economy is improving (E) and that the
government wants to decrease taxes (∼T), and assume again that Jones and Smith are equally reliable:
the question is what one should expect to happen in the near future? This situation is represented in

E ∼E

ES T

Figure 1. An example of warrant dependency graph.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 4 1–46

4 Recursive semantics for RP-DeLP

T

∼T

∼E

E

S I

Figure 2. An example of warrant dependency graph with a circular conflict relation.

the warrant dependency graph of Figure 2, where the basis of Smith’s argument is attacked by the
conclusion of Jones’ one, and vice versa. This cycle expresses that we have in fact two incompatible
assessments, each one leading to a different output or extension: either we should accept E and block
both T and ∼T , or accept ∼T and block both E and ∼E.

For RP-DeLP programmes with multiple outputs, we consider the problem of deciding the set of
conclusions that can be ultimately warranted. The usual sceptical approach consists of adopting the
intersection of all possible outputs. However, in addition to the computational limitation, as stated
in [53], adopting the intersection of all outputs may lead to an inconsistent output. Intuitively, for a
conclusion, to be in the intersection does not guarantee the existence of an argument that is recursively
based on ultimately warranted conclusions. To this end, based on an alternative sceptical semantics
for defining collections of justified arguments in abstract argumentation frameworks proposed by
Dung, Mancarella and Toni [35, 36], we introduce the notion of maximal ideal output for an RP-
DeLP programme. This is based on a recursive, level-wise definition, considering at each level the
maximum set of conclusions based on warranted information and not involved in either a conflict or
in a circular definition of conflict. The maximal ideal output for the previous example should accept
neither E nor ∼T , and block both E and ∼T .

The fourth contribution of the article is the development and experimental validation of a procedure
to compute the maximal ideal output for an RP-DeLP programme. To this end, first we define an
algorithm that computes the maximal ideal output in polynomial space and with an upper bound
on complexity equal to PNP. Second, we present SAT encodings for the two main combinatorial
subproblems that arise when computing warranted and blocked conclusions of the maximal ideal
output for an RP-DeLP programme, so that we can take profit of existing state-of-the-art SAT solvers
for solving instances of big size. It is worth pointing out that the way of computing warranted and
blocked conclusions with our SAT encodings allows us not only to eventually compute the maximal
ideal output, but also to produce an argument for each warranted conclusion and a blocking set
of conclusions (with their arguments) for each blocked literal. Thus, our system not only computes
answers using SAT encodings but also explains them, in accordance with one of the desirable features
of argumentation systems based on Answer Set Programming (ASP) put forward in Toni and Sergot’s
survey [58] for non-abstract argumentation frameworks.

Finally, we present empirical results obtained with an implementation of our algorithm that uses
these SAT encodings. The results show that, at least on randomly generated instances, the practical
complexity is strongly dependent on the size of the strict part of the programme. Indeed, for a
same number of variables, RP-DeLP programmes with different size for their strict part can range
from trivially solvable to exceptionally hard. Moreover, the experimental results also show that the
fraction of defeasible knowledge considered at each defeasible level is also relevant in assessing

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 5 1–46

Recursive semantics for RP-DeLP 5

the tractability and scalability of RP-DeLP programmes. In a recent work [3], we have developed
an alternative implementation of our algorithm but based on ASP encodings, but that version is
preliminary and works only with one defeasible level, so the evaluation of an ASP based version that
works with multiple levels is left as future work.

This article extends our previous work in [1, 2] by providing the characterization of the properties
of the framework, the algorithm for the computation of the maximal ideal output for an RP-DeLP
programme based on SAT encodings, experimental results and proofs for all outcomes. We also
provide new running examples that may help the reader to understand the different notions discussed
in the article. The rest of the article is organized as follows. In Section 2, we define a general
defeasible argumentation framework with recursive semantics. In Section 3, we introduce several
levels of defeasibility or preference among different pieces of defeasible knowledge. In Section 4, we
particularize the recursive warrant semantics to the case of the P-DeLP programmes and we provide
some examples in the context of political debates. In Section 5, we define the maximal ideal output for
RP-DeLP programmes and in Section 6, we present an algorithm for its computation. In Section 7, we
present SAT encodings for the two main queries performed in the algorithm and in Section 8, we study
the scaling behaviour of the (average) computational cost of our implementation. Section 9 discusses
related work, mainly in the areas of preference-based argumentation and SAT-based encodings for
argumentation frameworks. Finally, in Section 10, we present some concluding remarks.

2 A general defeasible argumentation framework with recursive semantics

We will start by considering a rather general framework for defeasible argumentation based on a
propositional logic (L,�) with a special symbol ⊥ for contradiction1. For any set of formulas A, if
A�⊥we will say that A is contradictory, while if A ��⊥we will say that A is consistent. A knowledge
base (KB) is a triplet P= (�,�,�), where �,�,�⊆L, and � ��⊥. � is a finite set of formulas
representing strict knowledge (formulas we take for granted they hold to be true),� is another finite
set of formulas representing the defeasible knowledge (formulas for which we have reasons to believe
they are true) and � denotes the set of formulas (conclusions) over which arguments can be built.
In many argumentation systems, e.g. in rule-based argumentation systems, � is taken to be a set of
literals.

The notion of argument is the usual one. Given a KB P , an argument for a formula ϕ∈� is a pair
A=〈A,ϕ〉, with A⊆� such that:

(1) �∪A ��⊥, and
(2) A is minimal (with respect to set inclusion) such that �∪A�ϕ.

If A=∅, then we will call A an s-argument (s for strict), otherwise it will be a d-argument (d for
defeasible). The notion of subargument is referred to d-arguments and expresses an incremental proof
relationship between arguments which is formalized as follows.

Definition 2.1 (Subargument)
Let 〈B,ψ〉 and 〈A,ϕ〉 be two d-arguments such that the minimal sets (with respect to set inclusion)
�ψ⊆� and �ϕ⊆� such that �ψ ∪B�ψ and �ϕ∪A�ϕ verify that �ψ⊆�ϕ . Then, 〈B,ψ〉 is a
subargument of 〈A,ϕ〉, written 〈B,ψ〉� 〈A,ϕ〉, when one of the following conditions holds:

• B⊂A (strict inclusion for defeasible knowledge),

1If not stated otherwise, in this and next sections (L,�) may be taken as classical propositional logic.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 6 1–46

6 Recursive semantics for RP-DeLP

• B=A and �ψ⊂�ϕ (strict inclusion for strict knowledge), or
• B=A, �ψ=�ϕ and ψ �ϕ but ϕ ��ψ .

More generally, we say that 〈B,ψ〉 is a subargument of a set of arguments G, written 〈B,ψ〉�G, if
〈B,ψ〉� 〈A,ϕ〉 for some 〈A,ϕ〉∈G.

Notice that if (�,�,�)= ({r},{r→p∧q},{p,q,p∧q}) and A={r→p∧q} then A1=〈A,p〉, A2=
〈A,q〉 and A3=〈A,p∧q〉 are arguments for different formulas with a same support and thus, in our
framework, A3 �A1 and A3 �A2 are the subargument relations between arguments A1, A2 and A3
since p∧q�p, p∧q�q, p ��p∧q and q ��p∧q.

A formula ϕ∈� will be called justifiable conclusion with respect to P if there exists an argument
for ϕ, i.e. there exists A⊆� such that 〈A,ϕ〉 is an argument.

The usual notion of attack or defeat relation in an argumentation system is binary. However in
certain situations, the conflict relation among arguments is hardly representable as a binary relation,
mainly (but not only) when � �=∅. For instance, consider the following KB P1= (�,�,�) with

�={¬a∨¬b∨¬p}, �={a,b,p} and �={a,b,p}.
Clearly, A1=〈{a},a〉, A2=〈{b},b〉 and A3=〈{p},p〉 are arguments that justify a, b and p respectively,
and which do not pair-wisely generate a conflict. Indeed, �∪{a,b} ��⊥, �∪{a,p} ��⊥ and �∪
{b,p} ��⊥. However, the three arguments are collectively conflicting since�∪{a,b,p}�⊥, hence in
P1 there is a non-binary conflict relation among several arguments. Notice that a collective conflict
can also happen when the strict part of a knowledge base is empty. For instance, consider now that
¬a∨¬b∨¬p is also a defeasible formula and not of a strict formula, and that ¬a∨¬b∨¬p is a
justifiable conclusion, i.e. consider the following modified KB:

�=∅, �={a,b,p,¬a∨¬b∨¬p} and �={a,b,p,¬a∨¬b∨¬p}.
Then, A1,A2,A3 and A4=〈{¬a∨¬b∨¬p},¬a∨¬b∨¬p〉 are arguments that justify a, b, p and
¬a∨¬b∨¬p respectively, and which do not generate a conflict neither pair-wisely nor three to three.
However, the four arguments together are collectively conflicting since {a,b,p,¬a∨¬b∨¬p}�⊥.

In the following, we formalize this notion of collective conflict in a set of arguments which captures
the idea of an inconsistency arising from a consistent set of justifiable conclusions W together with
the strict part of a knowledge base and the set of conclusions of those arguments.

Definition 2.2 (Conflict among arguments)
Let P= (�,�,�) be a KB and let W⊆� be a consistent set. We say that a set of arguments
{〈A1,ϕ1〉,...,〈Ak,ϕk〉} minimally conflicts with respect to W iff the two following conditions hold:

(C) The set of argument conclusions {ϕ1,...,ϕk} is contradictory with respect to W , i.e. it holds
that �∪W∪{ϕ1,...,ϕk}�⊥.

(M) The set {A1,...,Ak} is minimal with respect to set inclusion satisfying (C), i.e. if S�{ϕ1,...,ϕk},
then �∪W∪S ��⊥.

Notice that if a set of arguments G={〈A1,ϕ1〉,...,〈Ak,ϕk〉} minimally conflicts with respect to
a set of conclusions W , then the arguments 〈Ai,ϕi〉 cannot be s-arguments, i.e. for each i, Ai �=∅.
Indeed, if Ai=∅ for some i, then��ϕi, and hence G would not satisfy the minimality Condition (M).

Consider the previous KB P1, and the set of arguments {A1,A2,A3} for a, b and p, respectively,
and let W=∪i=1,...,3{ψ | 〈B,ψ〉�Ai}=∅. According to the previous definition, it is clear that the
set of arguments {A1,A2,A3}minimally conflicts with respect to�={¬a∨¬b∨¬p}. The intuition
is that this collective conflict should block the conclusions a,b and p to be warranted.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 7 1–46

Recursive semantics for RP-DeLP 7

Now, this general notion of conflict is used to define a recursive semantics for warranted conclusions
of a knowledge base. Actually we define an output of a KB P= (�,�,�) as a pair (Warr,Block)
of subsets of � of warranted and blocked conclusions respectively all of them based on warranted
information but while warranted conclusions do not generate any conflict, blocked conclusions do.

Definition 2.3 (Output for a KB)
An output for a KB P= (�,�,�) is any pair (Warr,Block), whereWarr∩Block=∅,Warr∪Block⊆�
and {ϕ∈� |��ϕ}⊆Warr, satisfying the following recursive constraints:

(1) ϕ∈Warr∪Block iff there exists an argument 〈A,ϕ〉 such that for every 〈B,ψ〉� 〈A,ϕ〉,ψ ∈Warr.
In this case we say that the argument 〈A,ϕ〉 is valid with respect to Warr.

(2) For each valid argument 〈A,ϕ〉:
• ϕ∈Block whenever there exists a set of valid arguments G such that

(i) 〈A,ϕ〉 ��G, and

(ii) {〈A,ϕ〉}∪G minimally conflicts with respect to the set W={ψ | 〈B,ψ〉�G∪{〈A,ϕ〉}}.
• otherwise, ϕ∈Warr.

The intuition underlying this definition is as follows: an argument 〈A,ϕ〉 is either warranted or
blocked whenever for each subargument 〈B,ψ〉 of 〈A,ϕ〉, ψ is warranted; then, it is eventually
blocked if ϕ is involved in some conflict, otherwise it is warranted.

Notice that if an argument 〈A,ϕ〉 is warranted, and 〈A,ψ〉 is another argument, then 〈A,ψ〉 is
warranted as well.

Example 2.4
Consider the KB P2= (�,�,�), with

�={¬a∨y,¬b∨¬c∨¬y}, �={a,b,c,¬c} and �={a,b,c,¬c,y,¬y}.
According to Definition 2.3 Warr=∅ and the arguments 〈{a},a〉, 〈{b},b〉, 〈{c},c〉 and 〈{¬c},¬c〉 are
valid. Now, for every such valid argument there exists a set of valid arguments which minimally
conflicts: indeed both sets of valid arguments {〈{a},a〉,〈{b},b〉,〈{c},c〉} and {〈{c},c〉,〈{¬c},¬c〉}
minimally conflict (since�∪{a,b,c}�⊥ and�∪{c,¬c}�⊥). Therefore a, b, c and ¬c are blocked
conclusions. On the other hand, the arguments 〈{a,b},¬c〉, 〈{a},y〉 and 〈{b,c},¬y〉 are not valid
since they are based on conclusions which are not warranted. Hence y and ¬y are considered as
rejected conclusions. Thus, the (unique) output for P2 is the pair (Warr,Block)= (∅,�). Intuitively,
this output for P2 expresses that all conclusions in � are (individually) valid; however, all together
are contradictory with respect to �.

We remark that, as it will be discussed in Section 4, a KB may have multiple outputs. For instance,
consider the KB P3= (�,�,�) with

�=∅, �={p,q,¬p∨¬q} and �={p,q,¬p,¬q}.
Then, according to Definition 2.3, the pairs

(Warr1,Block1)= ({p},{q,¬q}) and
(Warr2,Block2)= ({q},{p,¬p})

are two outputs for P3.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 8 1–46

8 Recursive semantics for RP-DeLP

It can be proven that if (Warr,Block) is an output for a KB (�,�,�), the set Warr of warranted
conclusions is indeed non-contradictory and satisfies indirect consistency with respect to the strict
knowledge.

Proposition 2.5 (Indirect consistency)
Let P= (�,�,�) be a KB and let the pair (Warr,Block) be an output for P . Then, �∪Warr ��⊥.

Proof. By Definition 2.3, for every ϕ∈Warr there does not exist a set W⊆Warr such that �∪W∪
{ϕ}�⊥, and therefore, �∪W ��⊥ for all W⊆Warr. �

In the following, we will see that the satisfaction of the closure postulate (in the sense of Caminada
and Amgoud [30]) with respect to the strict knowledge actually depends on how the set of formulas
� (over which arguments can be built up) is defined. For instance, consider the KB P4= (�,�,�),
with

�={a∧b→y}, �={a,b} and �={a,b}.
Then, the pair

(Warr,Block)= ({a,b},∅)
is the only output for P4 and {a∧b→y}∪{a,b}�y (i.e. �∪Warr�y). However, y �∈Warr since y is
not a justifiable conclusion of P4 (i.e. y �∈�).

Adifferent case occurs when�∪Warr�ϕ with ϕ∈� and there does not exist a consistent proof for
ϕ with respect to the set of warranted conclusions. For instance, consider now the KB P5= (�,�,�)
with

�={a∧b→y}, �={s→a,¬s→b,s,¬s} and �={a,b,y}.
Again,

(Warr,Block)= ({a,b},∅)
is the only output for P5 and thus, although �∪Warr�y and y∈�, y �∈Warr. The problem here is
that there does not exist an argument for y with respect to P5 since {s,¬s}�⊥ and the proof of y
should be based on a and b which are respectively based on s and ¬s. Moreover, note that since
neither s nor ¬s are in �, they cannot be used to attack the arguments for b and a respectively, and
hence a and b are (surprisingly) warranted.

Finally, it can be the case that there exists an argument for a conclusion ϕ∈� but, the argument
is not valid with respect to Warr. For instance, consider now the KB P6= (�,�,�) with

�={a∧b→y}, �={s,¬s,s→a,¬s→b,p,¬p,p→y} and �={a,b,p,¬p,y}.
Then,

(Warr,Block)= ({a,b},{p,¬p})
is the only output for P6 and, again, we can see that�∪Warr�y and y∈� but, y �∈Warr. The problem
here is that although there exists an argument for y based on p, 〈{p,p→y},y〉, this argument is not
valid with respect to Warr since p is a blocked conclusion and, as it occurs with programme P5, the
proof of y based on a and b is not consistent.

Proposition 2.6 (Closure)
Let P= (�,�,�) be a KB and let the pair (Warr,Block) be an output for P . If �∪Warr�ϕ then
ϕ∈Warr whenever there exits a valid argument for ϕ with respect to Warr.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 9 1–46

Recursive semantics for RP-DeLP 9

Proof. Assume ϕ∈� and �∪Warr�ϕ, but � ��ϕ, otherwise it is clear that ϕ∈Warr. Further,
suppose there exists a valid argument 〈A,ϕ〉 with respect to Warr. By way of contradiction, let
us suppose ϕ �∈Warr. Then, there would exist a set of valid arguments G such that 〈A,ϕ〉 is not a
subargument of any argument in G and that G∪{〈A,ϕ〉} minimally conflicts with respect to the set
W⊆Warr of conclusions of all subarguments of arguments in G∪{〈A,ϕ〉}. If G∪{〈A,ϕ〉}minimally
conflicts with respect to the set W , �∪W∪{ϕ}∪{ψ | 〈B,ψ〉∈G}�⊥ (Condition (C)), and �∪W∪
S ��⊥, for all set S⊂{ϕ}∪{ψ | 〈B,ψ〉∈G} (Condition (M)). Then, �∪W ��ϕ, and thus, there would
exist a set W ′ ⊆Warr such that W∩W ′ =∅ and �∪W∪W ′ �ϕ. Now, since the conclusions of all
subarguments of G are in W and all conclusions in Warr have valid arguments, there would exist a
conclusion φ∈W ′ such that its valid argument 〈C,φ〉 and G∪{〈D,χ〉 |χ ∈W∪(W ′\{φ})}minimally
conflict, and thus, φ �∈Warr. �

Remark that the particular behaviour of above KBs P4, P5 and P6 can be avoided with a suitable
definition of the set of justifiable conclusions �. For instance, if we extend the set of justifiable
conclusions of P4 with {y} and of P5 and P6 with {s,∼s}, we get that the pair

(Warr,Block)= ({a,b,y},∅)
is the only output for the new definition of P4, the pair

(Warr,Block)= (∅,{s,∼s})
is the only output for the new definition of P5 and the pair

(Warr,Block)= (∅,{s,¬s,p,¬p})
is the only output for the new definition of P6.

Given a set of strict and defeasible formulas � and � respectively, we define its set of justifiable
conclusions as Conc(�,�)={ϕ |�∪A�ϕ for some set A⊆� such that �∪A ��⊥}. Then KBs of
the form (�,�,�) where the set of formulas over which arguments can be built includes Conc(�,�)
enjoy the following proper Closure property.

Corollary 2.7 (Closure)
Let P= (�,�,�) be a KB such that Conc(�,�)⊆�. For any output (Warr,Block) of P , if �∪
Warr�ϕ, then ϕ∈Warr.

Proof. For every ψi∈Warr, there exists a valid argument 〈Ci,ψi〉. Then, for every B⊆Ci such that
�∪B�φ andψi ��φ, we have that 〈B,φ〉� 〈Ci,ψi〉,φ∈� andφ∈Warr. It is clear that�∪(∪iCi)�ϕ,
and let A be a minimal subset of ∪iCi such that�∪A�ϕ. Then, it easily follows that 〈A,ϕ〉 is a valid
argument with respect to Warr. �

3 Extending the framework with a preference ordering on arguments

In the previous section, we have considered knowledge bases containing formulas describing
knowledge at two epistemic levels, strict and defeasible. A natural extension is to introduce several
levels of defeasibility or preference among different pieces of defeasible knowledge, as it has first
proposed in default reasoning by Brewka [29] and then extensively used in different approaches
reasoning under inconsistency, e.g. [20–24] (see a discussion in this issue in Section 9).

A stratified knowledge base (sKB) is a tuple P= (�,�,�,�), such that (�,�,�) is a KB (in the
sense of the previous section) and� is a total pre-order on�∪� representing levels of defeasibility:
ϕ≺ψ means that ϕ is more defeasible than ψ . Actually, since formulas in� are not defeasible, � is

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 10 1–46

10 Recursive semantics for RP-DeLP

such that all formulas in� are at the top class of the ordering. For the sake of a simpler notation, we
will often refer in the paper to numerical levels for defeasible formulas and arguments rather than to
the pre-ordering �, so we will assume a mapping N :�∪�→[0,1] such that N(ϕ)=1 for all ϕ∈�
and N(ϕ)<N(ψ) iff ϕ≺ψ .2 Then we define the strength of an argument 〈A,ϕ〉, written s(〈A,ϕ〉), as
follows:

s(〈A,ϕ〉)=1 if A=∅, and s(〈A,ϕ〉)=min{N(ψ) |ψ ∈A}, otherwise.

Since we are considering several levels of strength among arguments, the intended construction of
the sets of conclusionsWarr and Block is done level-wise, starting from the highest level and iteratively
going down from one level to next level below. If 1>α1>...>αp≥0 are the strengths of d-arguments
that can be built within a sKB P= (�,�,�,�), we define: Warr=Warr(1)∪{∪i=1,pWarr(αi)}
and Block=∪i=1,pBlock(αi), where Warr(1)={ϕ |��ϕ}∩�, and Warr(αi) and Block(αi) are
respectively the sets of the warranted and blocked justifiable conclusions of strength αi. Then, we
will also write Warr(≥αi) and Warr(>αi) to denote ∪β≥αiWarr(β) and ∪β>αiWarr(β), respectively,
and analogously for Block(>αi), assuming Block(>α1)=∅.
Definition 3.1 (Output for a sKB)
An output for a sKB P= (�,�,�,�), with 1>α1>...>αp≥0 as set of strengths of d-arguments, is
any pair (Warr,Block), where the sets Warr(αi)’s and Block(αi)’s are required to satisfy the following
recursive constraints:3

(1) ϕ∈Warr(αi)∪Block(αi) iff there exists an argument 〈A,ϕ〉 of strength αi satisfying the
following three conditions:

(V1) for each subargument 〈B,ψ〉� 〈A,ϕ〉 of strength β, ψ ∈Warr(β);
(V2) ϕ �∈Warr(>αi)∪Block(>αi);
(V3) {ϕ,ψ} ��⊥ for all ψ ∈Block(>αi) and

�∪Warr(>αi)∪{ψ | 〈B,ψ〉� 〈A,ϕ〉}∪{ϕ} ��⊥.4

In this case we say that 〈A,ϕ〉 is valid with respect to the sets Warr(≥αi) and Block(>αi).
(2) For every valid argument 〈A,ϕ〉 of strength αi we have that

– ϕ∈Block(αi) whenever there exists a set G of valid arguments of strength αi such that

(i) 〈A,ϕ〉 ��G, and

(ii) G∪{〈A,ϕ〉} minimally conflicts with respect to the set
W=Warr(>αi)∪{ψ | 〈B,ψ〉�G∪{〈A,ϕ〉}}.

– otherwise, ϕ∈Warr(αi).

There are two main remarks when considering several levels of strength among arguments. On
the one hand, a d-argument 〈A,ϕ〉 of strength αi is valid whenever (V1) it is based on warranted
conclusions; (V2) there does not exist a valid argument for ϕ with strength greater than αi; and (V3)
ϕ is consistent with both each blocked argument with strength greater than αi and the set of already
warranted conclusions Warr(>αi)∪{ψ | 〈B,ψ〉� 〈A,ϕ〉}. On the other hand, a valid argument 〈A,ϕ〉

2Actually, a same pre-order � can be represented by many mappings, but we can take any of them since only the relative
ordering is what actually matters.

3Remark that if we consider a single defeasibility level α for �, Warr(>α)=Warr(1) and Block(>α)=∅, and therefore
the recursive definition of output for a sKB turns equivalent to Definition 2.3.

4When we consider a single defeasibility level, the notion of argument subsumes the condition�∪Warr(1)∪{ψ | 〈B,ψ〉�
〈A,ϕ〉}∪{ϕ} ��⊥.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 11 1–46

Recursive semantics for RP-DeLP 11

of strength αi becomes blocked as soon as it leads to some conflict among arguments with strength
αi with respect to the set of warranted conclusions with higher strengths.

Notice that Conditions (V2) and (V3) define how warranted and blocked conclusions at higher
levels are taken into account in lower levels. In particular, blocked conclusions play a key role in the
propagation mechanism between defeasibility levels. In our approach, if a conclusion ϕ is blocked
at level α, then for any lower level than α, not only the conclusion ϕ is rejected but also every
conclusion ψ such that {ϕ,ψ}�⊥.

The following examples show how warranted and blocked conclusions at higher levels are taken
into account in lower levels.

Example 3.2
Consider the KB P1= (�,�,�) in the previous section with

�={¬a∨¬b∨¬p}, �={a,b,p} and �={a,b,p},
extended with two levels of defeasibility as follows: {a,b}≺p. Assume α1 is the level of p and α2
the level of a and b, obviously with 1>α1>α2. According to Definition 3.1, Warr(1)=∅ and the
argument 〈{p},p〉 of strength α1 is valid. Since there are no more valid arguments at this level, we
get Warr(α1)={p} and Block(α1)=∅. At level α2, we have that arguments 〈{a},a〉 and 〈{b},b〉 are
valid, and thus, {a,b}⊆Warr(α2)∪Block(α2). Now, as �∪Warr(≥α1)∪{a,b}�⊥, the conclusions
a and b are blocked, and thus, Warr(α2)=∅ and Block(α2)={a,b}. Hence, the output for the sKB is
(Warr,Block)= (Warr(α1),Block(α2)).

Example 3.3
Consider the KB P2= (�,�,�) of Example 2.4 with

�={¬a∨y,¬b∨¬c∨¬y}, �={a,b,c,¬c}, and �={a,b,c,¬c,y,¬y},
extended with three levels of defeasibility as follows: ¬c≺c≺{a,b}. Assume α1 is the level of
a and b, α2 is the level of c, and α3 is the level of ¬c, with 1>α1>α2>α3. Then, Warr(1)=∅
and, at level α1, we have not only the conclusions a, b and y with valid arguments not generating
conflict but also 〈{a,b},¬c〉 is a valid argument for ¬c which does not generate conflict. Therefore,
Warr(α1)={a,b,y,¬c} and Block(α1)=∅. At level α2, we have two arguments: 〈{c},c〉 and
〈{b,c},¬y〉. Since �∪Warr(≥α1)∪{c}�⊥ (Condition (V3)), the argument 〈{c},c〉 is not valid with
respect to Warr(≥α2) and Block(>α2), and thus, c is a rejected conclusion. Then, as the argument
for ¬y is based on c (Condition (V1)), ¬y is also a rejected conclusion. Therefore, Warr(α2)=∅
and Block(α2)=∅. Finally, at level α3 we have the argument 〈{¬c},¬c〉, but since ¬c is already in
Warr(α1) (Condition (V2)), we also have Warr(α3)=∅ and Block(α3)=∅. Hence, the output for the
sKB is (Warr,Block)= (Warr(α1),∅).
Example 3.4
Consider now that the KB P2 is extended with two defeasible formulas p and ¬p∨a as follows:

�={¬a∨y,¬b∨¬c∨¬y}, �={a,b,c,¬c,p,¬p∨a}, and �={a,b,c,¬c,y,¬y,p},
and stratified into two levels of defeasibility as follows: {p,¬p∨a,¬c}≺{a,b,c}. Assume α1 is the
highest level andα2 is the lowest level. Notice that there exist two different arguments for conclusions
¬c and a: 〈{a,b},¬c〉 and 〈a,a〉 of strength α1, and 〈{¬c},¬c〉 〈{p,¬p∨a},a〉 of strength α2. Again,
Warr(1)=∅ but now, at level α1 we have that the conclusions a, b and c have valid arguments all
involved in conflicts, and thus, {a,b,c}⊆Block(α1) and arguments 〈{a},y〉 and 〈{a,b},¬c〉 of strength
α1 are not valid because the conclusions a and b are not warranted at level α1 (Condition (V1)).

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 12 1–46

12 Recursive semantics for RP-DeLP

Hence, Warr(α1)=∅ and Block(α1)={a,b,c}. At level α2, we have arguments for p, a, ¬c and y:
〈{p},p〉, 〈{p,¬p∨a},a〉 , 〈{¬c},¬c〉 and 〈{p,¬p∨a},y〉. The argument for p is valid and does not
conflict with any set of arguments, and thus, p∈Warr(α2). However, the argument for a, which is based
on 〈{p},p〉, is not valid because the conclusion a has been blocked at levelα1 (Condition (V2)), and the
argument for¬c is not valid because the conclusion c has been blocked at level α1 (Condition (V3)).
Finally, the argument for y, which is based on 〈{p,¬p∨a},a〉 , is not valid because the conclusion a is
not warranted at level α2 (Condition (V1). Therefore, Warr(α2)={p} and Block(α2)=∅ and hence,
the output for the sKB is (Warr,Block)= ({p},{a,b,c}).

The above examples show that blocked conclusions play a key role in the propagation mechanism
between defeasibility levels. In our approach, if a conclusion ϕ is blocked at level α, then for any
lower level than α, not only the conclusion ϕ is rejected but also every conclusion ψ such that
{ϕ,ψ}�⊥, as has happened in Example 3.4 with conclusions a and ¬c at level α2. Intuitively, our
mechanism is based on the idea that, if a conclusion is warranted at level α, so it could also be at any
higher level. A different approach could have been to consider that blocked conclusions at one level
are not propagated to lower levels. In such a case, it could happen to have a conclusion ϕ blocked
at a given level and to have ϕ or ψ , with {ϕ,ψ}�⊥, warranted at a lower level. For instance, in
Example 3.4, if Conditions (V2) and (V3) are not checked, conclusions a and¬c would be warranted
at level α2 although arguments for conclusions a and c are valid at level α1 but involved in a conflict.

The following results provide an interesting characterization of the relationship between warranted
and blocked conclusions in stratified knowledge bases.

Proposition 3.5
Let P= (�,�,�,�) be a sKB and let (Warr,Block) be an output for P . Then:

(1) If ϕ∈Warr(α)∪Block(α), then there exists an argument 〈A,ϕ〉 of strength α such that for all
subargument 〈B,ψ〉� 〈A,ϕ〉 of strength β, ψ ∈Warr(β).

(2) If ϕ∈Warr(α)∪Block(α), then for any argument 〈A,ϕ〉 of strength β, with β>α, there exists
a subargument 〈B,ψ〉� 〈A,ϕ〉 of strength γ and ψ �∈Warr(γ).

(3) If ϕ∈Warr, then ϕ �∈Block and ψ �∈Block, for all ψ such that {ϕ,ψ}�⊥.
(4) If ϕ �∈Warr∪Block, then eitherψ ∈Block with {ϕ,ψ}�⊥, or for all argument 〈A,ϕ〉 there exists

a subargument 〈B,ψ〉� 〈A,ϕ〉 such that ψ �∈Warr or �∪Warr(>αi)∪{ψ | 〈B,ψ〉� 〈A,ϕ〉}∪
{ϕ}�⊥.

Proof.

(1) The proof follows directly from Condition (V1).
(2) If ϕ∈Warr(α)∪Block(α), by Condition (V2), ϕ �∈Warr(β)∪Block(β), for all β>α. Suppose

that there exists an argument 〈A,ϕ〉 of strength β, with β>α, verifying Condition (V1). Now,
as ϕ �∈Warr(γ)∪Block(γ) for all γ >β, Condition (V3) must fail for 〈A,ϕ〉, and thus, Condition
(V3) also must fail for any argument 〈B,ϕ〉 of strength α. Hence, Condition (V1) fails for any
argument 〈A,ϕ〉 of strength β, with β>α.

(3) Suppose that ϕ∈Warr(α) and ϕ∈Block(β). By Conditions (V2) and (V3), if β>α, ϕ �∈Warr(α)
and, if β<α, ϕ �∈Block(β). Then, it must be that ϕ∈Warr(α) and ϕ∈Block(α), and thus, there
exists two valid arguments of strength α such that one is involved in a conflict and the other is
not. Suppose that 〈A,ϕ〉 is a valid argument involved in a conflict. Then, there should exist a
set G of valid arguments of strength α such that 〈A,ϕ〉 is not a subargument of arguments in G

and G∪{〈A,ϕ〉} minimally conflicts. Hence, every valid argument 〈B,ϕ〉 is not a subargument

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 13 1–46

Recursive semantics for RP-DeLP 13

of arguments in G, and thus, 〈B,ϕ〉 is involved in a conflict. Proof that ψ �∈Block, for all ψ
such that {ϕ,ψ}�⊥, follows directly from Condition (V3).

(4) If ϕ �∈Warr∪Block, then for all argument 〈A,ϕ〉 either Condition (V1) fails or, otherwise
Condition (V3) fails. �

4 A particular case: recursive P-DeLP

In this section, we particularize the recursive warrant semantics we have presented above for stratified
knowledge bases to the case of the P-DeLP programmes. As mentioned in Section 1, P-DeLP is a
rule-based argumentation system extending the well-known DeLP system [42] in which weights are
attached to defeasible rules expressing their belief or preference strength. For a detailed description
of the P-DeLP argumentation system based on dialectical trees the reader is referred to [5].

Although the original syntax and inference of P-DeLP are a bit different (e.g. the weights are
explicit in the formulas and arguments), here we will present them in a way so to adapt them
to the framework introduced in the previous sections. We will refer to this particular framework
as RP-DeLP (recursive P-DeLP). Hence we define the logic (LR,�R) underlying RP-DeLP as
follows.

The language of RP-DeLP is inherited from the language of logic programming, including the
notions of atom, literal, rule and fact. Formulas are built over a finite set of propositional variables
p,q,... which is extended with a new (negated) atom ‘∼p’ for each original atom p. Atoms of the
form p or ∼p will be referred as literals, and if P is a literal, we will use ∼P to denote ∼p if P
is an atom p, and will denote p if P is a negated atom ∼p. Formulas of LR consist of rules of the
form Q←P1∧ ...∧Pk , where Q,P1,...,Pk are literals. A fact will be a rule with no premises. We
will also use the name clause to denote a rule or a fact. The inference operator �R is defined by
instances of the modus ponens rule of the form: {Q←P1∧ ...∧Pk,P1,...,Pk}�R Q. A set of clauses
� is contradictory, denoted ��⊥, if , for some atom q, ��R q and ��R∼q.

An RP-DeLPprogramme P is just a stratified knowledge base (�,�,�,�) over the logic (LR,�R),
where � consists of the set of all literals of LR. As already pointed out, we will assume that � is
representable by a mapping N :�∪�→[0,1] such that N(ϕ)=1 for all ϕ∈� and N(ϕ)<N(ψ) iff
ϕ≺ψ , so we will often refer to numerical weights for defeasible clauses and arguments rather than
to the pre-ordering �. Also, for the sake of a simpler notation we will get rid of � of a programme
specification.

In the rest of this section, we first provide an extensive example of use of RP-DeLP in a scenario
of political debates, showing how RP-DeLP can deal with different hypothesis about the scenario.
In particular in one of them it is shown a situation where the argumentation system provides several
outputs as result. Then in the second subsection, we characterize those RP-DeLP programmes with
a single output.

4.1 Using RP-DeLP: a practical example

In this section, we explore the application of the RP-DeLP argumentation framework to the extraction
of consistent information out of political debates. Suppose we have two opposite parties of the sphere
of Spanish politics: a left-wing party (PSOE) and a right-wing party (PP). The idea is to see whether
one can find consistent information based on solid arguments both in agreement with the law and
their particular beliefs. In the following, we prefix the rules with a label to make easier to mention
them in arguments.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 14 1–46

14 Recursive semantics for RP-DeLP

First suppose the parties are involved in a debate about possible ways to increase the Gross
domestic product (GDP) of Spain (target represented by the literal GDP_UP). To reach this goal, the
government may consider to undertake the following policies:

G1: increase the education expenditure
G2: increase the infrastructures expenditure
G3: decrease taxes for private companies

Assume further the current Spanish law only allows two of the previous actions to be executed at
most, so executing all three actions is forbidden by law. So, at the strict level we have the following
hard constraints:

� = { R1 :∼G1←G2∧G3,
R2 :∼G2←G1∧G3,
R3 :∼G3←G1∧G2 }

Since they are only possible policies, we consider {G1,G2,G3} as defeasible facts. Moreover, the
left-wing party believes that executing G1 and G2 will increase the GDP, and that the same result
will happen if executing G1 and G3. On the other hand, the right-wing party believes that executing
G2 and G3 will increase the GDP. So we have the following defeasible rules:

PSOE1 :GDP_UP←G1∧G2
PSOE2 :GDP_UP←G1∧G3
PP1 : GDP_UP←G2∧G3

Next we consider different scenarios arising when different defeasibility levels are assigned to the
above defeasible facts and rules.

Scenario 1. A first scenario results from considering that all the above set of defeasible facts and rules
are at the same defeasibility level, so we have a programme P1= (�,�1) with only one defeasibility
level, where

�1={G1,G2,G3,PSOE1,PSOE2,PP1 }.
It is clear that in P1= (�,�1) we have no strict warrants, i.e. Warr(1)=∅. Moreover, it turns out
that 〈{G1},G1〉, 〈{G2},G2〉 and 〈{G3},G3〉 are valid arguments, but each one is blocked by the
others two due to the strict knowledge (i.e. �∪{G1} ��⊥, �∪{G2} ��⊥ and �∪{G3} ��⊥ but, �∪
{G1,G2,G3}�⊥), so we end up with an empty warrant set and with the actions G1, G2 and G3
blocked:

Warr=∅ and Block={G1,G2,G3}.
As a consequence, all the arguments for the literal GDP_UP are rejected and the target GDP_UP

cannot be warranted.

Scenario 2. Suppose we have a stronger preference for implementing action G1 than actions G2 and
G3. In this case, we can stratify �1 in two defeasibility levels: α1 and α2 with 1>α1>α2>05 as
follows:

level α1: {G1,PSOE1,PSOE2,PP1} level α2: {G2,G3}.

5As it is assumed in many scenarios of non-monotonic reasoning or belief revision, defeasibility levels are specified by
the knowledge engineer according to their (subjective) priority or preference: the higher is the priority, the higher is the level.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 15 1–46

Recursive semantics for RP-DeLP 15

Let us denote by �2 this two-level defeasible knowledge base, and we define P2= (�,�2). So in
this case G1 is the only warranted action at level α1 (i.e. Warr(α1)={G1}), but the actions G2 and
G3 become blocked at level α2 because�∪Warr(α1)∪{G2,G3}�⊥. But, even if now the action G1
is warranted, this is not enough to have a valid argument for GDP_UP with any of the rules (i.e. all
the arguments for GDP_UP are based on some blocked argument), and thus, we finally get for P2:

Warr={G1} and Block={G2,G3}.
Scenario 3. Suppose now there is a stronger preference for implementing the actions G1 and G2
than action G3. In this case, the defeasible knowledge �3 becomes:

level α1: {G1,G2,PSOE1,PSOE2,PP1} level α2: {G3}.
It is clear that in the programme P3= (�,�3), G1 and G2 are warranted actions at level α1, and
consequently so are the literals GDP_UP and ∼G3 because the arguments

〈{G1,G2,PSOE1},GDP_UP〉 and 〈{G1,G2},∼G3〉
are valid at level α1, and thus, the action G3 becomes invalid (rejected) at level α2. Therefore, for
P3 we have the following output:

Warr={G1,G2,GDP_UP,∼G3} and Block=∅.
Scenario 4. Finally suppose that the right-wing party introduces a new argument (in the informal
sense) into the debate by claiming that ‘increasing the education expenditure will cause the GDP to
not increase’. This new information is represented by the defeasible rule

PP2 :∼GDP_UP←G1

and is incorporated with the same strength than the previous rules into the debate. So, the new
defeasible knowledge �4 becomes:

level α1: {G1,G2,PSOE1,PSOE2,PP1,PP2} level α2: {G3}.
In this case, the programme P4= (�,�4) warrants G1 and G2 at level α1 as in the previous scenario,
and thus, we have valid arguments for both GDP_UP and ∼GDP_UP at level α1. So at level α1,
GDP_UP and ∼GDP_UP become blocked. Finally, as in Scenario 3, ∼G3 is warranted at level α1
and the action G3 is rejected at level α2. Therefore, P3 has the following output:

Warr={G1,G2,∼G3} and Block={GDP_UP,∼GDP_UP}.
Remark that if we would instead consider the rule PP2 weaker than the other rules (i.e. if we would
move it to level α2) and hence the defeasible knowledge �5 would become:

level α1: {G1,G2,PSOE1,PSOE2,PP1} level α2: {G3,PP2},
the argument 〈{G1,G2,PSOE1},GDP_UP〉 would be warranted at level α1 in the programme P5=
(�,�5). Moreover, the argument 〈{G1,PP2},∼GDP_UP〉 would be rejected at level α2 because it
is inconsistent with the previous warrant set (i.e. �∪Warr(α1)∪{∼GDP_UP}�⊥). So, in this case
the programme P5 would have the following output:

Warr={G1,G2,GDP_UP,∼G3} and Block=∅.
Scenario 5. Assume now the law changes and rules R1, R2 and R3 are no longer strict but become
a sort of recommendations, so in this sense they become defeasible. Thus, we consider rules R1, R2
and R3 to be defeasible to a level α0<1.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 16 1–46

16 Recursive semantics for RP-DeLP

As in Scenario 1, consider that {G1,G2,G3,PSOE1,PSOE2,PP1} are all at a same defeasibility
level α1 with α1<α0. So we have in this case two defeasibility levels 1>α0>α1>0, and the
corresponding stratified knowledge base is as follows:

level α0: {R1,R2,R3} level α1: {G1,G2,G3,PSOE1,PSOE2,PP1}.
In this case, Warr(1)=Warr(α0)=Block(α0)=∅ and 〈{G1},G1〉, 〈{G2},G2〉 and 〈{G3},G3〉 are valid
arguments of strength α1, but each one can be warranted if and only if one of the other two is blocked.
Hence, we have three possible outputs: (Warr1,Block1), (Warr2,Block2) and (Warr3,Block3) where

Warr1={G1,G2,GDP_UP}, Block1={G3,∼G3},
Warr2={G1,G3,GDP_UP}, Block2={G2,∼G2},
Warr3={G2,G3,GDP_UP}, Block3={G1,∼G1}.

4.2 RP-DeLP programmes with single outputs

As we have mentioned in Section 2, in some cases the output (Warr,Block) for a knowledge base in
general, and for an RP-DeLP programme in particular, is not unique, due to some recursive definitions
of conflict that emerge when considering inference (support) and conflict relations among arguments.
The above example in the above Scenario 5 shows such a case. In this section, we first identify what
are the recursive definitions of conflict in RP-DeLPthat ultimately cause programmes having multiple
outputs and then, based on this, we provide necessary and sufficient condition for a programme to
have a single output. We call this Unique Output Property.

Actually we characterize recursive definitions of conflict by means of what we call Warrant
Dependency Graphs. In [53] similar graph structures, called inference-graphs, were defined to
represent inference (support) and defeat relations among arguments allowing to detect recursive
defeat relations when considering recursive semantics for defeasible reasoning. The main difference
between both approaches is that in our case we handle collective conflicts among arguments in order
to preserve indirect consistency and closure among warranted conclusions with respect to the strict
knowledge.

Intuitively, the characterization of the unique output property for an RP-DeLP programme P=
(�,�,�) is done level-wise, starting from the highest level and iteratively going down from one
level to the next level below. At each level α, it consists of checking whether the warranty of a
literal L recursively depends on itself, based on the topology of a warrant dependency graph built
for a given suitable set of valid arguments of strength α and a given suitable set of what we call
almost valid arguments of strength α. A valid argument captures the idea of a non-rejected argument
(i.e. warranted or blocked, but not rejected) while an almost valid argument captures the idea of an
argument whose rejection is conditional to the warranty of some other valid argument.

The following definition makes use of a slight generalization of the notion of valid argument as
introduced in (1) of Definition 3.1,6 where we use this notion relative to an arbitrary subset W⊆Warr
of warranted conclusions and a subset of B⊆Block of blocked conclusions. We also use the same
abbreviations W (α), W (≥α) and W (>α) to denote the subsets of warranted conclusions from W
with strength α, greater or equal than α and greater than α respectively. Analogous abbreviations are
also used for B.

6Remember (1) of Definition 3.1: an argument 〈A,Q〉 of strength α is valid with respect to Warr(≥αi) and Block(>αi)
if it satisfies Conditions (V1) – (V3); i.e. (V1) for all subargument 〈C,R〉� 〈A,Q〉 of strength β, R∈Warr(β); (V2)
Q �∈Warr(>α)∪Block(>α); (V3) Q �=∼R for all R∈Block(>α) and �∪Warr(>α)∪{R | 〈C,R〉� 〈A,Q〉}∪{Q} ��⊥.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 17 1–46

Recursive semantics for RP-DeLP 17

Definition 4.1 (Almost valid argument)
Let P= (�,�,�) be an RP-DeLP programme, let W and B be two sets of warranted and blocked
conclusions, respectively, and let A be a set of valid arguments of strength α with respect to W(≥αi)
and B(>αi). An argument 〈F,P〉 of strength α is almost valid with respect to A if it satisfies the
following six conditions:

(AV1) for any subargument 〈C,R〉� 〈F,P〉 of strength β>α, R∈W(β);
(AV2) P �∈W(>α)∪B(>α);
(AV3) ∼P �∈B(>α) and �∪W(>α)∪{R | 〈C,R〉� 〈F,P〉}∪{P} ��⊥;
(AV4) there does not exist a valid argument for conclusion P of strength α;
(AV5) for any subargument 〈C,R〉� 〈F,P〉 of strength α such that R �∈W(α), it holds that 〈C,R〉∈A,

otherwise R and ∼R �∈B(≥α); and
(AV6) there exists at least an argument 〈C,R〉∈A such that 〈C,R〉� 〈F,P〉.

Intuitively, an almost valid argument captures the idea of an argument based on valid arguments and
which status is warranted (not rejected) whenever these subarguments are warranted, and rejected,
otherwise. In particular, Condition (AV1) corresponds to a smoothed version of Condition (V1).
Conditions (AV2) and (AV3) are equivalent to Conditions (V2) and (V3), respectively. Condition (V4)
ensures that there does not exist a valid argument for the literal, and Conditions (AV5) and (AV6)
ensure that the status of an almost valid argument depends on the status of at least one valid argument.

For instance, in the above example of Scenario 5, 〈{G1},G1〉, 〈{G2},G2〉 and 〈{G3},G3〉 are valid
arguments, while

〈{G2,G3,R1},∼G1〉, 〈{G1,G3,R2},∼G2〉 and 〈{G1,G2,R3},∼G3〉
are almost valid arguments based on them.

At this point, we are ready to define the warrant dependency graph for a set of valid arguments
and a set of almost valid arguments.

Definition 4.2 (Warrant dependency graph)
Let P= (�,�,�) be an RP-DeLP programme and let W and B be two sets of warranted and blocked
conclusions, respectively. Moreover, let A1=〈A1,Q1〉,...,Ak=〈Ak,Qk〉 be valid arguments of
strength α with respect to W(≥αi) and B(>αi), and let F1=〈F1,P1〉,...,Fn=〈Fn,Pn〉 be arguments
of strength α that are almost valid with respect to {A1,...,Ak}. The warrant dependency graph (V ,E)
for {A1,...,Ak} and {F1,...,Fn} is defined as follows:

(1) For every literal L∈{Q1,...,Qk}∪{P1,...,Pn}, the set of vertices V contains one vertex vL .
(2) For every pair of literals (L1,L2)∈{Q1,...,Qk}×{P1,...,Pn} such that the argument of L1 is a

subargument of the argument of L2, the set of directed edges E includes one edge (vL1 ,vL2).7

(3) For every pair of literals (L1,L2)∈{P1,...,Pn}×{Q1,...,Qk} such that L1=∼L2, the set of
directed edges E includes one edge (vL1 ,vL2).8

(4) For every strict rule R←R1∧ ...∧Rp∈� such that {∼R,R1,...,Rp}⊆W (≥α)∪{Q1,...,Qk}∪
{P1,...,Pn}, the set of directed edges E includes one edge (vL1 ,vL2) for every pair of literals
(L1,L2)∈{P1,...,Pn}×{Q1,...,Qk} such that the argument of L2 is not a subargument of the

7The directed edge (vL1 ,vL2) represents an inference (subargument) relation from a valid argument to an almost valid
argument.

8The directed edge (vL1 ,vL2) represents a direct conflict, inconsistency due to defeasible rules, between an almost valid
argument and a valid argument.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 18 1–46

18 Recursive semantics for RP-DeLP

G1 ∼G1

G2 ∼G2

G3 ∼G3

1

3

2

4

Figure 3. Recursion case from the example in Scenario 5.

argument of L1, L1∈{∼R,R1,...,Rp} and, either L2∈{∼R,R1,...,Rp} or, L2 is a subargument
of the argument of L3, for some L3∈{P1,...,Pn} such that L3∈{∼R,R1,...,Rp}.9

(5) Elements of V and E are only obtained by applying the above construction rules.

Intuitively, the warrant dependency graph for {A1,...,Ak} and {F1,...,Fn} represents conflict and
support relationships among these sets of arguments of strength α with respect to the set W (≥α) of
warranted conclusions of equal or higher strength.

Figure 3 shows the warrant dependence graph for the example of Scenario 5. Remember that

〈{G1},G1〉, 〈{G2},G2〉 and 〈{G3},G3〉
were valid arguments, while

〈{G2,G3,R1},∼G1〉, 〈{G1,G3,R2},∼G2〉 and 〈{G1,G2,R3},∼G3〉
were almost valid arguments based on them. Conflict and support relationships among these
arguments are represented as dashed and solid arrows, respectively. The graph contains many cycles.
For instance, the set of edges

{(∼G1,G1),(G1,∼G2),(∼G2,G2),(G2,∼G1)}

expresses that (1) the warranty of G1 depends on a (possible) conflict with ∼G1 (direct conflict
between G1 and ∼G1 if ∼G1 was valid); (2) the support of ∼G2 depends on G1 (i.e. the validity of
∼G2 depends on the warranty of G1); (3) the warranty of G2 depends on a (possible) conflict with
∼G2 (direct conflict between G2 and ∼G2 if ∼G2 was valid); and (4) the support of ∼G1 depends
on G2 (i.e. the validity of ∼G1 depends on the warranty of G2).

The following example shows a recursive definition of conflict which arises from the strict
knowledge.

Example 4.3
Consider the RP-DeLP programme PR1= (�,�,�) with

�={y,∼y←p∧r,∼y←q∧s} and �={p,q,r←q,s←p},
and a single defeasibility level α for �.

9The directed edge (vL1 ,vL2) represents an indirect conflict, inconsistency due to strict rules, between an almost valid
argument and a valid argument.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 19 1–46

Recursive semantics for RP-DeLP 19

p q

r s

1 3
24

Figure 4. Warrant dependency graph for PR1.

Consider the sets W (1)={Q |��R Q}={y}, B(1)=∅, W (α)=∅ and B(α)=∅. Now consider
arguments for conclusions p and q; i.e.

A1=〈{p},p〉 and A2=〈{q},q〉.
Finally, consider arguments for conclusions r and s; i.e.

F1=〈{q,r←q},r〉 and F2=〈{p,s←p},s〉.
Obviously, A1 and A2 are valid arguments with respect to W (≥α) and B(>α), and F1 and F2

are almost valid arguments with respect to {A1,A2}. Figure 4 shows the warrant dependency graph
for {A1,A2} and {F1,F2}. The cycle of the graph expresses that (1) the warranty of p depends on
a (possible) conflict with r; (2) the support of r depends on q; (3) the warranty of q depends on a
(possible) conflict with s; and (4) the support of s depends on p.

Proposition 4.4 (RP-DeLP programme with unique output)
Let P= (�,�,�) be an RP-DeLP programme and let (Warr,Block) be an output for P . (Warr,Block)
is the unique output for P iff, for any defeasibility level α and literal L∈Warr(α), there is no cycle
in the warrant dependency graph for the set of arguments A and the set of arguments F, where

– A is the set of all d-arguments of strength α that are valid with respect to Warr(≥α)\{L} and
Block(>α), and

– F is the set of all d-arguments of strength α that are almost valid with respect to A.

Proof. Suppose that (Warr,Block) is the unique output for P and there is a cycle in the graph for
some literal L∈Warr(α). On the one hand, if (Warr,Block) is the unique output for P , there does not
exist a pair (Warr′,Block′) that satisfies Definition 3.1 and Warr′ �=Warr or Block′ �=Block, and thus,
every literal is either warranted, or blocked, or rejected. On the other hand, given L∈Warr(α), A is
the set of arguments of strength α which are valid with respect to Warr(≥α)\{L} and Block(>α),
hence, arguments in A do not depend on L and there is an argument for L in A. Similarly, F is the set
of arguments of strength α that are almost valid with respect to A, hence, the support of arguments
in F depends on L or some argument in A. Now, according to Definition 4.2, if there is a cycle in the
warrant dependency graph, it must be that the warranty of the argument for L depends on the validity
of at least an argument 〈F,P〉∈F, which depends on the warranty of some argument 〈A,L′〉∈A

with L �=L′, which depends on the validity of at least an argument 〈F′,P′〉∈F with P′ �=P, which
in turn depends on the warranty of L. Then, according to Definition 3.1, either L is warranted and
L′ is blocked, or L′ is warranted and L is blocked, and therefore, there exists at least two different
outputs for P . Finally, if for all defeasibility level α and literal L∈Warr(α), there is no cycle in the
the warrant dependency graph with respect to Warr(≥α)\{L} and Block(>α), there exists a unique
warranty evaluation order between arguments, and thus, there exists a unique output for P . �

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 20 1–46

20 Recursive semantics for RP-DeLP

Example 4.5
Consider the RP-DeLP programme PR1 from Example 4.3. According to Definition 3.1, Output=
(Warr,Block) with Warr=Warr(1)∪Warr(α), Warr(1)={y}, Warr(α)={p} and Block=Block(α)=
{q,∼s}, is an output for PR1. Then, as p∈Warr(α), defining W=Warr(≥α)\{p}=Warr(1)={y} and
B=Block(>α)=∅, we get that A={A1,A2} is the set of all valid arguments with respect to W
and B, and F={F1,F2} is the set of all almost valid arguments with respect to A. Moreover, the
warrant dependency graph for A and F contains a cycle (see Figure 4), proving that the output for
PR1 is not unique. Indeed, notice that Output′ = (Warr′,Block′) with Warr′ =Warr(1)∪Warr′(α),
Warr′(α)={q} and Block′ =Block′(α)={p,r}, is also an output for PR1. Moreover, as Warr′(≥
α)\{q}=Warr(≥α)\{p}=Warr(1)={y} and Block′(>α)=Block(>α)=∅, the warrant dependency
graph for q∈Warr′(α) also corresponds to the graph in Figure 4.

In the rest of the article, we tackle the problem of which output one should consider for an RP-
DeLP programme with multiple outputs. To this end, in Section 5, we define the maximal ideal
output of an RP-DeLP programme as the set of conclusions which are ultimately warranted, and in
Section 6 we design an algorithm for computing them in polynomial space and with an upper bound
on complexity equal to PNP.

5 Maximal ideal output

In the previous section, we have characterized the unique output property for the particular framework
of RP-DeLP programmes. Now in this section we are interested in the problem of deciding the set
of conclusions that can be ultimately warranted in RP-DeLP programmes with multiple outputs. The
usual sceptical approach corresponds to adopt the intersection of all possible outputs. However, in
addition to the computational limitation, as stated in [53], adopting the intersection of all outputs
may lead to an inconsistent output (in the sense of violating the base of the underlying recursive
warrant semantics) in case some particular recursive situation among literals of a programme occurs.
Intuitively, for a conclusion, to be in the intersection does not guarantee the existence of an argument
for it that is recursively based on ultimately warranted conclusions.

For instance, consider the following situation involving three conclusions P, Q and T , where P
can be warranted whenever Q is blocked, and vice versa. Moreover, suppose that T can be warranted
when either P or Q are warranted. Then, according to the warrant recursive semantics, we would get
two different outputs: one where P and T are warranted and Q is blocked, and the other one where
Q and T are warranted and P is blocked. Then, adopting the intersection of both outputs we would
get that T would be ultimately warranted, however T should be in fact rejected since neither P nor
Q are ultimately warranted conclusions.

According to this example, one could take then as the set of ultimately warranted conclusions
of RP-DeLP programmes those conclusions in the intersection of all outputs which are recursively
based on ultimately warranted conclusions. However, as in RP-DeLP there might be different levels
of defeasibility, this approach could lead to an incomplete solution, in the sense of not being the
biggest set of ultimately warranted conclusions with maximum strength.

For instance, consider the above example extended with two defeasibility levels as follows.
Suppose that P can be warranted with strength α whenever Q is blocked, and vice versa. Moreover,
suppose that T can be warranted with strength α whenever P is warranted at least with strength α,
and that T can be warranted with strength β, with β<α, independently of the status of conclusions
P and Q. Then, again we get two different outputs: one output warrants conclusions P and T with
strength α and blocks conclusion Q, and the other one warrants conclusions Q and T with strengths

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 21 1–46

Recursive semantics for RP-DeLP 21

α and β, respectively, and blocks P. Now, by adopting conclusions of the intersection which are
recursively based on ultimately warranted conclusions, we get that conclusion T is finally rejected,
since T is warranted with a different argument and strength in each output. However, as we are
interested in determining the biggest set of warranted conclusions with maximum strength, it seems
quite reasonable to reject T at level α but to warrant it at level β.

Therefore, we are led to define the maximal ideal output for an RP-DeLPprogramme P= (�,�,�)
as a pair (Warr,Block) of respectively warranted and blocked conclusions, with a maximum strength,
such that:

(i) the arguments of all conclusions inWarr∪Block are recursively based on warranted conclusions;
(ii) a conclusion is warranted (at level α) if it does not generate any conflict with the set of already

warranted conclusions (at a level β>α) and it is not involved in any cycle of a warrant
dependency graph; otherwise, it is blocked; and

(iii) a conclusion is rejected if it can be neither warranted nor blocked to any level.

In fact, in a different context, this idea corresponds to the maximal ideal extension defined by Dung,
Mancarella and Toni [35, 36] as an alternative sceptical basis for defining collections of justified
arguments in the abstract argumentation frameworks promoted by Dung [34] and Bondarenko et
al. [28].

Definition 5.1 (Maximal ideal output)
The maximal ideal output for an RP-DeLP programme P= (�,�,�), with defeasibility levels 1>
α1>...>αp, is a pair (Warr,Block) such that, for every valid argument 〈A,Q〉 of strength αi with
respect to Warr(≥αi) and Block(>αi), the following recursive constraint is satisfied:

(1) Q∈Block(αi) whenever one of the two following cases holds:

Case 1 There exists a set G of valid arguments of strength αi such that the two following
conditions hold:

(i) 〈A,Q〉 ��G, and

(ii) G∪{〈A,Q〉} minimally conflicts with respect to the set
W=Warr(>αi)∪{P | 〈B,P〉�G∪{〈A,Q〉}}.

Case 2 There exists a set H of valid arguments of strength αi such that the three following
conditions hold:

(i) 〈A,Q〉 ��H.

(ii) There exists a set of arguments F of strength αi that are almost valid with respect to H∪
〈A,Q〉 and such that there is a cycle in the warrant dependency graph (V ,E) for H∪〈A,Q〉
and F, and any argument 〈C,R〉∈H is such that R is either a vertex of the cycle or 〈C,R〉
does not satisfy Case 1.

(iii) For some vertex v∈V of the cycle, either v is the vertex of conclusion Q or v is the vertex of
some other conclusion in H, and there exists a path from v to the the vertex of conclusion Q.

(2) Otherwise, Q∈Warr(αi).

The intuition underlying the maximal ideal output definition is as follows. The conclusion of every
valid (not rejected) argument 〈A,Q〉 of strengthαi is either warranted or blocked. Then, it is eventually
blocked if either (Case 1) it is involved in some conflict with respect to Warr(>αi) and a set G of
valid arguments whose supports do not depend on 〈A,Q〉, or (Case 2) the warranty of 〈A,Q〉 depends

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 22 1–46

22 Recursive semantics for RP-DeLP

on some circular definition of conflict between a set of valid arguments H whose supports do not
depend on 〈A,Q〉 and a set of almost valid arguments F whose supports depend on some argument in
H∪〈A,Q〉. In fact, the idea here is that if the warranty of 〈A,Q〉 depends on some circular definition
of conflict between the arguments of H and F, one could consider two different outputs (status) for
conclusion Q: one with Q warranted and another one with Q blocked. Therefore, conclusion Q is
blocked for the maximal ideal output. In general, the arguments of H and F involved in a cycle are
respectively warranted and rejected for the maximal ideal output.

For instance, consider again the recursion case in the example of Scenario 5 from Section 4.1.
Figure 3 showed the warrant dependency graph for the set of valid arguments

H={〈{G1},G1〉,〈{G2},G2〉,〈{G3},G3〉}
and the set of almost valid arguments

F={〈{G2,G3,R1},∼G1〉,〈{G1,G3,R2},∼G2〉,〈{G1,G2,R3},∼G3〉}.
Then, since for every valid argument in H there is a a cycle, the maximal ideal output for the RP-DeLP
programme is Warr=∅ and Block={G1,G2,G3} and the goal GDP_UP is rejected.

As a matter of another example, consider the RP-DeLPprogramme PR1 from Example 4.3. Figure 4
showed the warrant dependency graph for the set of valid arguments

H={〈{p},p〉,〈{q},q〉}
and the set of almost valid arguments

F={〈{q,r←q},r〉,〈{p,s←p},s〉}.
Again, since for every valid argument there is a cycle, the maximal ideal output for PR1, is Warr={y}
and Block={p,q}.

Finally, consider the extension of PR1 with the following set of defeasible rules:

{t,t←p,t←q},
so we have now the RP-DeLP programme PR2= (�,�,�) with

�={y,∼y←p∧r,∼y←q∧s}, �={p,q,t,r←q,s←p,t←p,t←q},
and with � being stratified as follows:

{t}≺{p,q,r←q,s←p,t←p,t←q}.
Assumeα1 is the corresponding lower level andα2 is the upper level, with 1>α1>α2>0. Obviously,
Warr(1)={y} and, at level α1, H1=〈{p},p〉 and H2=〈{q},q〉 are valid arguments. Moreover,
F1=〈{q,r←q},r〉, F2=〈{p,s←p},s〉, F3=〈{q,t←q},t〉 and F4=〈{p,t←p},t〉 are almost valid
arguments with respect to {H1,H2}. Figure 5 shows the warrant dependency graph for {H1,H2} and
{F1,F2,F3,F4}. As for every valid argument there is a cycle, p and q are blocked, while r and s are
rejected for the maximal ideal output. Remark that t is also rejected at level α1 since the support of
F3 depends on p, the support of F4 depends on q, and p and q are blocked. Therefore, Warr(1)={y},
Warr(α1)=∅ and Block(α1)={p,q}. Finally, at level α2, 〈{t},t〉 is the unique valid argument and
therefore t is warranted, hence, Warr(α2)={t} and Block(α2)=∅. Therefore, the maximal ideal
output for PR2 is Warr={y,t} and Block={p,q}.

Next proposition shows that the maximal ideal output for an RP-DeLP programme is unique.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 23 1–46

Recursive semantics for RP-DeLP 23

p q

r s t

Figure 5. Warrant dependency graph for PR2 at level α1.

Proposition 5.2 (Unicity of the maximal ideal output)
Let P= (�,�,�) be an RP-DeLP programme. The pair (Warr,Block) of warranted and blocked
conclusions that satisfies the maximal ideal output characterization for P of Definition 5.1 is unique.

Proof. Suppose that (Warr,Block) and (Warr′,Block′) are pairs of warranted and blocked conclusions
that satisfy the maximal ideal output characterization for P stated in Def. 5.1. Obviously, Warr(1)=
Warr′(1). Suppose that for some α, Warr(α) �=Warr′(α) and Warr(β)=Warr′(β), for all β>α. As
Warr(α) �=Warr′(α), suppose that 〈A,Q〉 of strength α is valid with respect to (Warr,Block) and
(Warr′,Block′) but Q �∈Warr(α) and Q∈Warr′(α). Then, Q∈Block(α) and 〈A,Q〉 is either

Case 1: involved in a conflict with respect to Warr(>α) and a set G of valid arguments of
strength α which supports do not depend on 〈A,Q〉, or
Case 2: the warranty of 〈A,Q〉 depends on a circular definition of conflict between a set H of
valid arguments which supports do not depend on 〈A,Q〉 and a set F of almost valid arguments
which supports depend on some argument in H∪〈A,Q〉.

Moreover, as Q∈Warr′(α), 〈A,Q〉 is not involved in a conflict nor in a cycle with respect toWarr′(>α).
As all sets G and H of valid arguments of strength α whose supports do not depend on 〈A,Q〉

are also valid with respect to (Warr′,Block′), and all sets G′ and H′ of valid arguments of strength
α which supports do not depend on 〈A,Q〉 are also valid with respect to (Warr,Block), there should
exist at least an argument 〈B,P〉 such that

(i) it is almost valid with respect to a set H of valid arguments that satisfy Condition (b) for
argument 〈A,Q〉 and output (Warr,Block), and

(ii) it is not almost valid with respect to H.

Therefore, 〈B,P〉 should violate Condition (AV5) with respect to H and Warr′ and Block′, and thus, for
some subargument 〈C,R〉� 〈B,P〉 of strength α it must hold that R �∈Warr′(α) and 〈C,R〉 �∈H and R or
∼R∈Block′(≥α). Now, as 〈C,R〉 �∈H and 〈B,P〉 is almost valid with respect to H, either R∈Warr(α),
or R,∼R �∈Block(≥α). If R∈Warr(α), because of the recursive warrant semantics, 〈A,Q〉 �� 〈C,R〉,
and thus, R∈Warr′(α). If R �∈Warr(α), we have R,∼R �∈Block(≥α) and R or ∼R∈Block′(≥α). As
Block(β)=Block′(β) for allβ>α, R,∼R �∈Block(α) and R or∼R∈Block′(α). Then either R∈Warr(α)
or 〈C,R〉 is not valid with respect to (Warr,Block), and thus, 〈A,Q〉� 〈C,R〉. Now, as the warranty
of 〈A,Q〉 depends on a circular definition of conflict between the set H and a set F of almost valid
arguments which supports depend on some argument in H∪〈A,Q〉 with 〈B,P〉∈F, there is a cycle in
the warrant dependency graph (V ,E) for H and F and any argument C∈H is such that the conclusion
of C is either a vertex of the cycle or C does not satisfy Condition (a). Then, if R or ∼R∈Block′(α)
and 〈C,R〉 �∈H, R or ∼R∈Block(α). Hence, Warr(α)=Warr′(α) and Block(α)=Block′(α) for all
defeasibility level α. �

Next we show that for the case of RP-DeLP programmes with unique output, the maximal ideal
output corresponds with the (unique) output.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 24 1–46

24 Recursive semantics for RP-DeLP

Proposition 5.3 (Maximal ideal and unique outputs)
If an RP-DeLP programme has a single output then it coincides with the maximal ideal output.

Proof. The proof is straightforward from Proposition 4.4. If a RP-DeLP programme has a unique
output, for any defeasibility level there does not exist a warrant dependency graph with a cycle, and
thus, Definition 5.1 and Definition 3.1 are equivalent. �

When we restrict ourselves to the case of RP-DeLP programmes with a single defeasibility level,
we get the following property of the maximal ideal output.

Proposition 5.4 (Programmes with a single defeasibility level)
Let P be an RP-DeLP programme with a single defeasibility level, and let (Warr,Block) be the
maximal ideal output for P . Then, for each output (Warr′,Block′) for P , we have Warr⊆Warr′ and
Block⊆Warr′ ∪Block′.

Proof. Obviously, Warr(1)=Warr′(1), for each output (Warr′,Block′) for P . Since we are
considering a single defeasibility level, 〈A,Q〉 is a valid argument with respect to Warr iff P∈Warr
for all 〈B,P〉� 〈A,Q〉. Suppose that 〈A,ϕ〉 is valid with respect to Warr and not valid with respect to
Warr′. Then, there should exist an argument 〈B,P〉 such that 〈B,P〉� 〈A,Q〉 and 〈B,P〉∈Warr but,
〈B,P〉 �∈Warr′ and 〈B,P〉 is valid with respect to Warr′. Hence, there should exist a set of arguments
G valid with respect to Warr′ such that 〈B,P〉 ��G and {〈B,P〉}∪G minimally conflicts with respect
to the set W={R | 〈C,R〉�G∪{〈B,P〉}}. If each argument in G was valid with respect to Warr, then
{〈B,P〉} �∈Warr. Then, there should exist an argument 〈C,R〉∈G such that 〈C,R〉 is valid with respect
to Warr′ and not valid with respect to Warr, and thus, there should exist an argument 〈D,T〉 such that
〈D,T〉� 〈C,R〉 and 〈D,T〉∈Warr′ but, 〈D,T〉 �∈Warr and 〈B,P〉 is valid with respect to Warr. Hence,
there should exist a cycle in a warrant dependency graph and vertices for 〈B,P〉 and 〈C,R〉 should
be vertices of the cycle and there should exist a path from some vertex of the cycle to the vertex
of 〈B,P〉, and thus, 〈B,P〉 �∈Warr. Hence, Warr⊆Warr′. Finally, as each argument 〈A,Q〉 valid with
respect to Warr is also valid with respect to Warr′ and each valid argument is either warranted or
blocked, Block⊆Warr′ ∪Block′. �

The following example shows that in case we consider multiple defeasibility levels for �, a
conclusion can be warranted for the maximal ideal output at some level α and, due to the set of
warranted conclusions at higher levels, rejected for each output (extension).

Example 5.5
Consider the RP-DeLP programme PR3= (�,�,�) with

�={y,∼y←p∧s,∼y←q∧s} and �={p,q,∼q←p,∼p←q,s},
where � is stratified in two defeasibility levels (1>α1>α2>0) as follows:

level α1: {p,q,∼q←p,∼p←q} level α2: {s}.
Obviously, Warr(1)={y}. Then, at level α1, we have two valid arguments:

H1=〈{p},p〉 and H2=〈{q},q〉.
and two almost valid arguments with respect to {H1,H2}:

F1=〈{p,∼q←p},∼q〉 and F2=〈{q,∼p←q},∼p〉.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 25 1–46

Recursive semantics for RP-DeLP 25

∼p ∼q

p q

Figure 6. Warrant dependency graph for PR3.

Figure 6 shows the warrant dependency graph for {H1,H2} and {F1,F2}. The cycle expresses that
either p or q can be warranted, but not both. Hence, at level α1, we have two possible outputs for PR3:

Warr1(α1)={p}, Block1(α1)={q,∼q},
Warr2(α1)={q}, Block2(α1)={p,∼p}.

Then at level α2, the argument 〈{s},s〉 violates Condition (V3), and thus, s is rejected in both outputs.
Therefore, the two possible outputs for PR3 are as follows:

Warr1={y,p}, Block1={q,∼q},
Warr2={y,q}, Block2={p,∼p}.

Let us consider now the maximal ideal output for PR3, in which valid arguments involved in cycles are
blocked and almost valid arguments involved in cycles are rejected. Obviously Warrmaximal(1)={y},
and at level α1 the maximal ideal output for PR3 is:

Warrmaximal(α1)=∅, Blockmaximal(α1)={p,q}.

Now, at level α2 we have that the argument 〈{s},s〉 is valid and it is not involved in a cycle nor in a
conflict, and thus, s is warranted at level α2 for the maximal ideal output. Hence, the maximal ideal
output for PR3 is:

Warrmaximal={y,s}, Blockmaximal={p,q}.
Therefore, in the programme PR3, s is not warranted in any of their two outputs Warr1 and Warr2,
but still s is warranted in the maximal ideal output.

In Section 3, we have seen that in case we consider multiple defeasibility levels, the set of
conclusions that are warranted and blocked at each level is decisive for determining which arguments
are valid at lower levels. Then, since the maximal ideal output for an RP-DeLP programme
corresponds to a sceptical criterion regarding warranted conclusions, it is very interesting to analyse
the status of the Closure Postulate for the maximal ideal output for RP-DeLP programmes with
multiple defeasibility levels.

Proposition 5.6 (Closure for the maximal ideal output)
Let P= (�,�,�) be an RP-DeLP programme with defeasibility levels 1>α1>...>αp>0, and let
(Warr,Block) be the maximal ideal output for P . Then, if�∪Warr(≥αi)�R Q and�∪Warr(>αi) ��R
Q, then either Q∈Warr(αi), or Q∈Block(>αi), or ∼Q∈Block(>αi).

Proof. Suppose that for some αi, �∪Warr(≥αi)�R Q, �∪Warr(>αi) ��R Q, Q �∈Warr(αi), and
Q,∼Q �∈Block(>αi). Then, since �∪Warr ��⊥, �∪Warr(≥αi)∪{Q} ��⊥, there exists a valid

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 26 1–46

26 Recursive semantics for RP-DeLP

argument 〈A,Q〉 for Q of strength αi. Now, since Q �∈Warr(αi), according to Def. 5.1 there are
two possible cases:

Case 1 There is a set G of valid arguments of strength αi such that (i) 〈A,Q〉 ��G, and (ii)
G∪{〈A,Q〉} generates a conflict with respect to W=Warr(>αi)∪{P | 〈B,P〉�G∪{〈A,Q〉}}. If
G∪{〈A,Q〉} generates a conflict with respect to W , Conditions (C) and (M) hold for W , and
thus,�∪W∪{Q}∪{P | 〈B,P〉∈G}�⊥ and�∪W∪S ��⊥, for all S⊂{Q}∪{P | 〈B,P〉∈G}. Consider
W ′ ={R | 〈B,R〉� 〈A,Q〉}. Then, as W ′ ⊆W and �∪W ′ �R Q, if �∪W∪{Q}∪{P | 〈B,P〉∈G}�⊥,
then �∪W∪{P | 〈B,P〉∈G}�⊥, and thus, either Q is warranted at level αi or Q is rejected at level
αi because Q or ∼Q are blocked at a level β with β>αi. In other words, either Q∈Warr(αi) , or
Q∈Block(>αi), or ∼Q∈Block(>αi).

Case 2 There is a set of valid arguments H of strength αi such that (i) there is a set of arguments
F of strength αi that are almost valid with respect to H∪{〈A,Q〉}, (ii) there is a cycle in the warrant
dependency graph (V ,E) for H∪{〈A,Q〉} and F, and any argument 〈C,R〉∈H is either a vertex of the
cycle or 〈C,R〉 does not generate any conflict, and (iii) the vertex vQ for Q is a vertex of the cycle or
there is a path from a vertex for some conclusion in H to vQ. Then, according to Definition 4.2, there
is an almost valid argument for conclusion ∼Q in F or an strict rule ∼Q←L1∧ ...∧Lm∈� such
that {L1,...,Lm}⊆Warr(≥αi)∪{H | 〈E,H〉∈H}∪{F | 〈J,F〉∈F}, and thus, there is an almost valid
argument 〈D,∼Q〉 for conclusion ∼Q in F, and an edge from the vertex v∼Q to the vertex vQ. Now,
since�∪Warr(≥αi)�R Q and Q �∈Warr(≥αi), there exists a strict rule Q←L′1∧ ...∧L′p∈�with all
the L′j’s in Warr(≥αi). Moreover, as�∪Warr(>αi) ��R Q, there is at least one literal L′ ∈{L′1,...,L′p}
such that L′ ∈Warr(αi), and thus, there is a valid argument 〈J,L′〉 for L′ of strength αi and 〈A,Q〉 ��
〈J,L′〉. Then, there is a cycle in the warrant dependency graph (V ′,E′) for H∪{〈A,Q〉}∪{〈J,L′〉}
and F and an edge from the vertex v∼Q to the vertex vL′ , and thus, L′ �∈Warr(αi). Hence, either
Q∈Warr(αi) , or Q∈Block(>αi), or ∼Q∈Block(>αi). �

As a direct consequence, we have the following simpler form of the Closure Postulate for the
particular case of programmes with a single defeasibility level.

Corollary 5.7 (Closure for RP-DeLP programmes with a single defeasibility level)
Let P be an RP-DeLP programme with a single defeasibility level and let (Warr,Block) be the
maximal ideal output for P . Under this hypothesis, if �∪Warr�R Q, then Q∈Warr.

The following example shows the closure result for the maximal ideal output.

Example 5.8
Consider the RP-DeLP programme PR4= (�,�,�) with

�={∼s←q,∼r←h} and �={q←r,h←s,r,s,q,h},
and two defeasibility levels for �: α1 and α2 with 1>α1>α2>0. Consider that � is stratified as
follows:

level α1: {q←r,h←s,r,s} level α2: {q,h}.
Obviously, Warr(1)=∅. Then, at level α1, we have two valid arguments:

H1=〈{r},r〉 and H2=〈{s},s〉.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 27 1–46

Recursive semantics for RP-DeLP 27

q h ∼s ∼r

r s

Figure 7. Warrant dependency graph for PR4.

and four almost valid arguments with respect to {H1,H2}:
F1=〈{r,q←r},q〉, F3=〈{r,q←r},∼s〉,
F2=〈{s,h←s},h〉, F4=〈{s,h←s},∼r〉.

Figure 7 shows the warrant dependency graph for {H1,H2} and {F1,F2,F3,F4}. The cycles express
that either r or s can be warranted, but not both. Hence, at level α1, we have two possible outputs
for PR4:

Warr1(α1)={r}, Block1(α1)={s,q},
Warr2(α1)={s}, Block2(α1)={h,r}.

Then at level α2, all arguments are rejected in both outputs, and thus, Warr1(α2)=Warr2(α2)=∅ and
Block1(α2)=Block2(α2)=∅. Therefore, the two possible outputs for PR3 are:

Warr1={r}, Block1={s,q},
Warr2={s}, Block2={h,r}.

Consider now the maximal ideal output for PR4 in which valid arguments involved in cycles are
blocked and almost valid arguments involved in cycles are rejected. Obviously, Warr(1)maximal=∅
and, at level α1, the maximal ideal output for PR4 is:

Warrmaximal(α1)=∅, Blockmaximal(α1)={r,s}.

Now, at level α2 we have that arguments

〈{q},q〉 and 〈{h},h〉
are valid and none of them is involved in a cycle neither in a conflict, and thus, q and h are warranted
conclusions at level α2 (i.e. {q,h}⊆Warrmaximal(α2)). Finally, although arguments

〈{q,∼s←q},∼s〉 and 〈{h,∼r←h},∼r〉
are recursively based on warranted conclusions, both violate Condition (V3) (i.e. s,r∈Blockmaximal(≥
α1)), and thus, both arguments are rejected since they are not valid. Hence, at level α2, s and r are
rejected for the maximal ideal output:

Warrmaximal(α2)={q,h}, Blockmaximal(α2)=∅.

Hence, the maximal ideal output for PR4 is:

Warrmaximal={q,h}, Blockmaximal={r,s}.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 28 1–46

28 Recursive semantics for RP-DeLP

Therefore, due to the fact that the set of conclusions that are warranted and blocked at each level
determines which arguments are valid at lower levels, we get that �∪Warrmaximal�R∼s and �∪
Warrmaximal�R∼r, but ∼s,∼r �∈Warrmaximal since s,r∈Blockmaximal(α1).

6 On the computation of the maximal ideal output

From a computational point of view, the maximal ideal output of an RP-DeLP programme can be
computed by means of a level-wise procedure, starting from the highest level and iteratively going
down from one level to next level below. Then, at every level it is necessary to determine the status
(warranted or blocked) of each valid argument. Next we design an algorithm which implements this
level-wise procedure computing warranted and blocked conclusions by checking the existence of
conflicts between arguments and cycles at some warrant dependency graph. In the following we
use the simpler notation W , W (1), W (α) and W (≥α) for Warr, Warr(1), Warr(α) and Warr(≥α)
respectively, and B, B(α) and B(≥α) for Block, Block(α) and Block(≥α), respectively.

Algorithm Computing warranted conclusions
Input P= (�,�,�): An RP-DeLP programme
Output (W ,B): maximal ideal output for P
Method

W (1) := {Q |��R Q}
B := ∅
α := maximum_level(�)
while (α>0) do

level_computing(α, W , B)
α := next_level(�)

end while
end algorithm

The algorithm Computing warranted conclusions first computes the set of warranted
conclusions W (1) form the set of strict clauses �. Then, for each defeasibility level 1>α>0, the
procedure level_computing determines all warranted and blocked conclusions with strength α.
Remark that for every level α, the procedure level_computing receives W (>α) and B(>α) as
input and produces W (≥α) and B(≥α) as output.

Procedure level_computing (in α; in_out W , B)
VA : = {〈A,Q〉 with strength α | 〈A,Q〉 is valid}
while (VA �=∅) do

while (∃〈A,Q〉∈VA | ¬ cycle(α, 〈A,Q〉, VA, W , almost_valid(α, VA, W , B))
and ¬ conflict(α, 〈A,Q〉, VA, W , not_dependent(α, 〈A,Q〉, VA, W , B)) do

W (α) := W (α)∪{Q}
VA := VA\{〈A,Q〉}∪{〈C,P〉 with strength α | 〈C,P〉 is valid}

end while
I := {〈A,Q〉∈VA | conflict(α, 〈A,Q〉, VA, W , ∅)

or cycle(α, 〈A,Q〉, VA, W , almost_valid(α, VA, W , B))}
B(α) := B(α)∪{Q | 〈A,Q〉∈ I}
VA := VA\I

end while
end procedure

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 29 1–46

Recursive semantics for RP-DeLP 29

For any levelα, the procedurelevel_computingfirst computes the setVA of valid arguments with
respect to W (>α) and B(>α). Then, this set of valid arguments is dynamically updated depending
on new warranted and blocked conclusions with strength α. The procedure level_computing
finishes when the status for every valid argument is computed. The status of a valid argument is
computed by means of the four following auxiliary functions.

Function almost_valid(in α, VA, W , B) return AV: set of arguments
AV := {〈C,P〉 with strength α | 〈C,P〉 satisfies Conditions (AV1)-(AV6) wrt VA}

end function

Function not_dependent(in α, 〈A,Q〉, VA, W , B)
return ND: set of almost valid arguments which do not depend on Q

AV := almost_valid(α, VA, W , B)
ND := {〈C,P〉∈AV | 〈A,Q〉 �� 〈C,P〉}

end function

Function conflict(in α, 〈A,Q〉, VA, W , ND) return con: Boolean
con := ∃S⊆VA\{〈A,Q〉}∪ND such that

�∪W (≥α)∪{P | 〈C,P〉∈S} ��⊥ and
�∪W (≥α)∪{P | 〈C,P〉∈S}∪{Q}�⊥

end function

Function cycle(in α, 〈A,Q〉, VA, W , AV) return cy: Boolean
cy := there is a cycle in the warrant dependency graph for VA and AV

and the vertex for 〈A,Q〉 is a vertex of the cycle or there exists a
path from a vertex in VA of the cycle to the vertex for 〈A,Q〉

end function

The function conflict checks (possible) conflicts among the argument 〈A,Q〉 and the set VA
of valid arguments extended with the set ND of arguments. The set ND of arguments takes two
different values: the empty set and the set of almost valid arguments whose supports depend on
some argument in VA\{〈A,Q〉}. The empty set value is used to detect conflicts between the argument
〈A,Q〉 and the arguments in VA, and thus, every valid argument involved in a conflict is blocked.
On the other hand, the value set of almost valid arguments which do not depend on argument 〈A,Q〉
is used to detect possible conflicts between the argument 〈A,Q〉 and the arguments in VA∪ND, and
thus, every valid argument involved in a possible conflict remains as valid. In fact, the function
almost_valid computes the set of almost valid arguments that satisfies Conditions (AV1)–
(AV6) with respect to the current set of valid arguments. The function not_dependent considers
almost valid arguments with respect to the current set of valid arguments which do not depend
on 〈A,Q〉. Finally, the function cycle checks the existence of a cycle in the warrant dependency
graph for the current set of valid arguments and its set of almost valid arguments, and verifies
whether the vertex of argument 〈A,Q〉 is in the cycle or there exists a path from a vertex of the
cycle to it.

One of the main advantages of the maximal ideal warrant recursive semantics for RP-DeLP is
from the implementation point of view. Warrant semantics based on dialectical trees, like DeLP [31,
33], might consider an exponential number of arguments with respect to the number of rules of a
given programme. The previous algorithm can be implemented to work in polynomial space, with a
complexity upper bound equal to PNP.

This can be achieved because it is not actually necessary to find all the valid arguments for a
given literal Q, but only one witnessing a valid argument for Q is enough. Analogously, function

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 30 1–46

30 Recursive semantics for RP-DeLP

not_dependent can be implemented to generate at most one almost valid argument, not dependent
on 〈A,Q〉, for a given literal. The only function that in the worst case can need an exponential number
of arguments iscycle, but next we show that whenevercycle returns true for 〈A,Q〉, then a conflict
will be detected with the almost valid arguments not dependent on 〈A,Q〉, so warranted literals can
be detected without function cycle. Also, blocked literals detected by function cycle can also be
detected by checking the stability of the set of valid arguments after two consecutive iterations, so it
is not necessary to explicitly compute warrant dependency graphs.

Proposition 6.1 (Optimization)
Let P= (�,�,�) be an RP-DeLP programme with defeasibility levels 1>α1>...>αp>0 for �,
and let W and B be two sets of warranted and blocked conclusions with strength ≥αi, respectively.
If VA is the set of all d-arguments of strength αi that are valid with respect to (W ,B) and AV is the
set of all d-arguments of strength αi that are almost valid with respect to VA, we get the following
results:

(i) If there is a cycle in the warrant dependency graph for VA and AV, and 〈A,Q〉∈VA is such that
the vertex of conclusion Q is a vertex of the cycle or there exists a path from a vertex of the cycle
to the the vertex of conclusion Q, then there exists a set ND⊆AV such that 〈A,Q〉 �� 〈R,P〉 for all
〈R,P〉∈ND, and there exists a set S⊆VA\{〈A,Q〉} such that �∪W∪{P | 〈B,P〉∈S}∪ND ��⊥
and �∪W∪{P | 〈B,P〉∈S}∪ND∪{Q}�⊥.

(ii) If for all 〈A,Q〉∈VA there exists a set ND⊆AV such that 〈A,Q〉 �� 〈R,P〉, for all 〈R,P〉∈ND, and
there exists a set S⊆VA\{〈A,Q〉} such that �∪W∪{P | 〈B,P〉∈S}∪ND ��⊥ and �∪W∪{P |
〈B,P〉∈S}∪ND∪{Q}�⊥, then there is at least a cycle in the warrant dependency graph for VA
and AV, and every 〈A,Q〉∈VA is such that the vertex of conclusion Q is a vertex of a cycle or
there exists a path from a vertex of a cycle to the the vertex of conclusion Q.

Proof.
(i) If the vertex of conclusion Q is a vertex of the cycle, because of the warranty dependency

graph definition, we can consider the set ND⊆AV such that the vertex of each conclusion
in ND is a vertex of the cycle and 〈A,Q〉 �� 〈R,P〉 for all 〈R,P〉∈ND, and then, there should
exist a set S⊆VA\{〈A,Q〉} such that�∪W∪{P | 〈B,P〉∈S}∪ND ��⊥ and�∪W∪{P | 〈B,P〉∈
S}∪ND∪{Q}�⊥. If the vertex of conclusion Q is not a vertex of the cycle and there exists a
path from a vertex of the cycle to the vertex of conclusion Q, we can consider the set ND⊆AV
such that the vertex of each conclusion in ND is a vertex of the cycle. Now, because of the
warranty dependency graph definition, 〈A,Q〉 �� 〈R,P〉 for all 〈R,P〉∈ND and there should
exist a set S⊆VA\{〈A,Q〉} such that�∪W∪{P | 〈B,P〉∈S}∪ND ��⊥ and�∪W∪{P | 〈B,P〉∈
S}∪ND∪{Q}�⊥.

(ii) We have that for all S⊆VA,�∪W∪{P | 〈R,P〉∈S} ��⊥ and that for all 〈A,Q〉∈VA there exists a
set ND⊆AV such that 〈A,Q〉 �� 〈R,P〉 for all 〈R,P〉∈ND, and there exists a set S⊆VA\{〈A,Q〉}
such that �∪W∪{P | 〈B,P〉∈S}∪ND ��⊥ and �∪W∪{P | 〈B,P〉∈S}∪ND∪{Q}�⊥. Then,
for all 〈A,Q〉∈VA, we have that the warranty of Q depends on a possible conflict with a set
S⊆VA\{〈A,Q〉} and a set ND⊆AV such that 〈A,Q〉 �� 〈R,P〉 for all 〈R,P〉∈ND. Therefore,
because of the warranty dependency graph definition, there should exists a cycle in the warrant
dependency graph (V ,E) for VA and AV such that the vertexes of conclusions of ND are vertexes
of the cycle and the vertexes of conclusions of S and {〈A,Q〉} are vertexes of the cycle or there
exists a path from a vertex of the cycle to the the vertex of these conclusions. �

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 31 1–46

Recursive semantics for RP-DeLP 31

Finally, observe that the following queries can be implemented with NP algorithms:

(1) Whether a literal P is a conclusion of some argument returned by
not_dependent(α, 〈A,Q〉, VA, W , B).

To check the existence of an almost valid argument 〈C,P〉 not dependent on 〈A,Q〉, we can non-
deterministically guess a subset of literals with valid arguments and a subset of rules appearing
in an almost valid argument of strength α and needed to generate literals not yet in W and
not yet valid (we call the latter α− rules10), and check in polynomial time whether, together
with set of all the warranted literals W , they actually generate the desired argument for P, as
all the conditions for an almost valid argument can be checked in polynomial time, as well as
the condition of not being dependent on the literal Q. This is because: (i) all the conditions of
an α−rule can be checked in linear time; and (ii) checking that the guessed subset of α−rules
and subset of valid literals, together with the current set of warranted literals W , generates the
desired conclusion P and no contradiction can be checked by the repeated application of the
modus ponens inference rule up to saturation.

(2) Whether the function
conflict(in α, 〈A,Q〉, VA, W , ND)

returns true. To check the existence of a conflict, we can non-deterministically guess a subset
of literals S from {P | 〈C,P〉∈VA\{〈A,Q〉}∪ND} and check in polynomial time whether (i)
�∪W (≥α)∪S ��⊥ and (ii) �∪W (≥α)∪S∪{Q}�⊥. This is again because both conditions
can be checked by the repeated application of the modus ponens rule up to saturation in
polynomial time.

Then, as the maximum number of times these queries need to be executed before the set of conclusions
associated with VA becomes stable is polynomial in the size of the input programme, the PNP upper
bound follows.

7 SAT encodings for finding warranted literals

From a computational point of view, the maximal ideal output for an RP-DeLP programme can be
computed by means of a level-wise procedure, starting from the highest level and iteratively going
down from one level to next level below. At every level, it is necessary to determine the status
(warranted or blocked) of each valid argument by checking the existence of both conflicts between
arguments, and cycles at the warrant dependence graphs. In the previous section, we showed that this
level-wise procedure can be implemented to work in polynomial space. On the one hand, this can be
achieved because it is not actually necessary to find all the valid arguments for a given literal, it is
enough to find only one. Actually, in our implementation to explain the existence of a valid argument
for a literal Q we simply record the last rule of the argument, i.e. a rule with Q as conclusion, and
with all the literals of its body as warrants. To give a full explanation for a valid argument, we
recursively give explanations for all the warrants of the body of the rule. Something similar applies
to the computation of at most one almost valid argument for a given literal. This will be done with
the first of the two SAT encodings we present next, and it allows also to explicitly give an almost
valid argument for a literal, not only to check the existence. On the other hand, the existence of
cycles in the warrant dependency graph among valid and almost valid arguments can be validated by
checking the stability of conflicts between valid and almost valid arguments, so it is not necessary to

10These are rules R satisfying: (i) either N(R)>α and Body(R)\W (>α) �=∅, or N(R)=α; (ii) Body(R)∩B(≥α)=∅; and
(iii) Head(R),∼Head(R) �∈W (≥α)∪B(≥α). (iv) There is no 〈C,Head(R)〉∈VA.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 32 1–46

32 Recursive semantics for RP-DeLP

explicitly compute the warrant dependency graphs. Hence, the procedure to find warranted literals
needs to compute two main queries during its execution: (i) whether an argument is almost valid,
and (ii) whether there is a conflict among valid and almost valid arguments.

In this section, we present SAT encodings for these two main combinatorial queries. The input and
output specification of each query is as follows:

(i) Almost valid argument: It takes as input a defeasibility degree α, a literal P, sets W
and B of warranted and blocked literals of strength≥α, respectively, a set VA of valid arguments
of strength α, and an argument 〈A,Q〉∈VA. It computes an almost valid argument 〈C,P〉 of
strength α that does not depend on 〈A,Q〉.

(ii) Conflict: It takes as input a defeasibility degree α, a set W of warranted literals of strength
≥α, a set VA of valid arguments of strength α, a valid argument 〈A,Q〉 of strength α, and a set
ND of almost valid arguments of strength α that do not depend on 〈A,Q〉. It checks (possible)
conflicts among the argument 〈A,Q〉 and the set VA of valid arguments extended with the set
ND of almost valid arguments.

7.1 Looking for almost valid arguments

The idea for encoding the problem of searching almost valid arguments is based on the same behind
successful SAT encodings for solving STRIPS planning problems [48]. In a STRIPS planning
problem, given an initial state, described with a set of predicates, the goal is to decide whether
a desired goal state can be achieved by means of the application of a suitable sequence of actions.
Each action has a set preconditions, when they hold true the action can be executed and as a result
certain facts become true and some others become false (its effects). Hence executing an action
changes the current state, and the application of a sequence of actions creates a sequence of states.
The planning problem is to find a sequence of actions such that, when executed, the obtained final
state satisfies the goal state.

In our case, the search for an almost valid argument 〈C,P〉 can be seen as the search for a plan
for producing P, taking as the initial set of facts some subset of a set of literals in which we already
trust. We call such initial set the base set of literals,11 and we say that they are true at the first step of
the argument. For looking for an almost valid argument 〈C,P〉, we will consider what rules should
be executed, such that starting from the initial set will finally obtain the desired goal P. We say that a
rule R can be executed starting from a set of literals S, when Body(R)⊆S, and that when it is executed
we obtain a new set S∪{Head(R)}. We have to consider only some rules for looking for almost valid
arguments of strength α for literals not yet warranted, as we have explained in the previous section,
that is, the α−rules we have defined before.

We use the following sets of literals and rules to define our SAT encoding. Consider first the initial
set S0:

S0={L |L∈W (≥α) or ∃〈C,L〉∈VA}
which is the base set of warranted and valid literals. If we execute all the α−rules that can be executed
from S0, that is:

R0={R | R∈α−rules , Body(R)⊆S0}
we obtain a new state S1 that contains S0 plus the heads of all the executed rules. This process can be
repeated iteratively, obtaining a sequence of sets of literals S={S0,S1,...,St} and a sequence of sets

11For an almost valid argument, the base set can contain only warranted and valid literals.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 33 1–46

Recursive semantics for RP-DeLP 33

of executed rules R={R0,R1,...,Rt−1}, until we reach a final state St in which the execution of any
possible rule does not increase the set of literals already in St . If starting from an initial set S0 that
contains all the current valid and warranted literals the final state St contains P, that means that an
almost valid argument for P could be obtained from the sequence of executed rules, if we could find
a subset of rules such that they can form an argument that satisfies all the conditions for an almost
valid argument for P.

Observe that an almost valid argument 〈C,P〉 with strength α can only exist if the following
conditions, that can be checked in polynomial time, are satisfied:

(1) P �∈W(>α)∪B(>α). This is actually condition (AV2).
(2) ∼P �∈B(>α). This is actually the first part of condition (AV3).
(3) There does not exist a valid d-argument for conclusion P of strength α. This is actually

condition (AV4).
(4) P∈St .

If the previous conditions are satisfied, we proceed the search for 〈C,P〉 with strength α with a SAT
encoding from the sequences S and R defined above.

That is, a SAT instance with variables to represent all the possible literals we can select from each
set Si:

{vi
L | L∈Si,0≤ i≤ t}

plus variables to represent all the possible rules R we can select from each set Ri:

{vi
R | R∈Ri,0≤ i< t}

In order to check that the variables set to true represent an almost valid argument, we add clauses for
ensuring that:

(1) If variable vi
L is true, then either vi−1

L is true or one of the variables vi−1
R , with Head(R)=L, is

true.
(2) If a variable vi

R is true, then for all the literals L in its body vi
L must be true.

(3) If variable vi
L is true, then vi+1

L is also true.
(4) The variable vt

P must be true.
(5) No two contradictory variables vt

L and vt∼L can be both true.

In addition, in order to satisfy the consistency of the literals of the argument with respect to the
closure of the strict knowledge�, we create also an additional set of variables V� and set of clauses
R�. The set of variables V� contains a variable v�L for each literal that appears in the logical closure
of the set St∪W with respect to the strict rules.

Then, we add the following clauses to check the consistency with �:

(1) If a literal is selected for the argument (vt
L set to true) then v�L must also be true.

(2) For any L∈W , v�L must be true.
(3) For any rule R∈� that was executed when computing the logical closure, if for all the literals

L in its body v�L is true, then v�Head(R) must be true.

(4) No two contradictory variables v�L and v�∼L can be both true.

Observe that this layered encoding for searching almost valid arguments allows to explicitly
recover the full structure of the argument, because we have both the literals and the rules that have
generated them at each step of the argument.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 34 1–46

34 Recursive semantics for RP-DeLP

We next show that any solution for a formula obtained with this SAT encoding gives an almost
valid argument 〈C,P〉; i.e. we show that 〈C,P〉 satisfy Conditions (AV1)–(AV6):

(AV1) Given that the only possible rules that can be selected for building the almost valid argument
are those defined as α-rules, the conclusion of an α-rule can only become valid with strength
at most α. So, the only possible subarguments with strength greater than α are the ones
corresponding to literals that can selected from the set S0. Observe that the literals in the
set S0 are all the literals at the current set W (≥α) plus the current set of literals with valid
arguments with strength α. It follows that the only subarguments of strength β>α that can be
implicitly used are the ones corresponding to warranted literals.

(AV2) This condition is actually checked before creating the SAT encoding. That is, if the condition
is not satisfied, we answer that there is no such almost valid argument.

(AV3) The first part of this condition∼P �∈B(>α) is also checked before creating the SAT encoding.
For the second part, first observe that for any subargument 〈C,R〉� 〈B,P〉, vt

R will be true,
due to the clauses in (A3), as long as vt

P (due to the clauses in (A4)). Then the clauses in (B1)
ensure that for any literal L with vt

L true, the corresponding variable v�L of the second part of
the encoding will be also true. Finally, the clauses in (B2), (B3) and (B4) will ensure that all
such true literals are consistent with �∪W .

(AV4) As in the condition (AV2), this condition is checked before creating the SAT encoding.
(AV5) Any literal L that is part of the argument (vt

L= true) will be either generated by an α-rule, so
it holds that L,∼L �∈W (≥α)∪B(≥α)∪VA, or it is already true at the initial set (v0

L= true), so
it is warranted or valid.

(AV6) Observe that there is no R∈α-rules such that Head(R)∈B∪W∪VA, then it cannot be that all
the rules used in the argument for P depend only on warranted literals from S0 because that
would mean that P is indeed valid (so P would have to be in VA). So, from the initial set S0 at
least one valid, but not warranted, literal will be activated, if any almost valid argument for P
exists.

7.2 Looking for collective conflicts

We reduce the query computed by function conflict, to a query where we consider finding the set
of conflict literals that are the conclusions of the corresponding conflict set of arguments. Basically,
for finding this conflict set of literals S for a valid argument 〈A,Q〉 from the base set of literals
considered in function conflict, i.e. the set G={P | 〈C,P〉∈VA\{〈A,Q〉}∪ND}, we have to find
two arguments 〈A1,L〉 , 〈A2,∼L〉 using only rules from �, literals W∪{Q} and a subset S from G,
but such that when Q is not used, no conflict (generation of L and ∼L for any L with strict rules) is
produced with such set S. So, this can be seen as a simple extension of the previous query, where now
we have to look for two arguments, instead of only one, although both arguments must be for two
contradictory literals. That is, the SAT formula contains variables for encoding arguments that use
as base literals W∪G∪{Q} and rules from � (with the same scheme of the previous SAT encoding
for almost valid arguments), with an additional set of conflict variables to encode the set of possible
conflicts that can be, potentially, generated from W∪G∪{Q} using rules from�, in order to be able
to force the existence of at least one conflict. There is also an additional set of variables and clauses
for encoding the subproblem of checking that S, when Q is not used, does not generate any conflict.

So, the SAT formula contains two different parts.Afirst part is devoted to checking that the selected
set of literals S plus {Q} is a conflict set (i.e. if �∪W (≥α)∪S∪{Q}�⊥). This set of variables and
clauses is similar to the previous one for finding almost valid arguments, but in this case is used for

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 35 1–46

Recursive semantics for RP-DeLP 35

finding two arguments starting from a subset of W∪G and forcing the inclusion of {Q}. That is, the
SAT clauses of this first part are as follows:

(1) A clause that states that the literal Q must be true at the first step.
(2) A clause that states that at least one conflict variable cL must be true.
(3) For every conflict variable cL , a clause that states that if cL is true then literals L and ∼L must

be true at the final step of the argument.
(4) The rest of clauses are the same ones described in the first part of the previous encoding, except

the clauses of the item 5 that are not included, but now considering as possible literals and rules
at every step the ones computed from the base set W∪G∪{Q} and using only strict rules.

The process for computing the possible literals and rules that can be potentially applied in every
step of the argument is the same forward reasoning process presented for the previous encoding.
This same process is used for discovering the set of conflict variables cL that need to be considered,
because we can potentially force the conflict cL if at the end of this process both L and∼L appear as
reachable literals.

A second part of the SAT formula is devoted to checking that the selected set of variables and
clauses S at the first step, without using Q, does not cause any conflict with the strict rules. So this
second part of the formula contains a variable for any literal that appears in the logical closure of
G∪W with respect to the strict rules. Actually, this second part of the formula is analogous to the
second part of the formula for the previous encoding.

Observe that this encoding for searching conflicts for Q not only allows to check the existence of
conflicts, but it also gives an explicit conflict set: the variables set to true that represent the chosen
set S, together with almost valid arguments for those literals in S that have arguments in ND. So, we
can explain the reasons for each conflict detected.

8 Average computational cost and easy/hard problem instances

To study the scaling behaviour of the (average) computational cost of our PNP algorithm as the size
increases, as well as how different characteristics of the problem instances affect its computational
cost, we have implemented our algorithm and conducted a series of experiments.

The main algorithm has been implemented with python, but for solving the SAT formulas presented
in the previous section, the algorithm uses a SAT solver, that can be either MiniSAT [39] or
Glucose [18]. However, our architecture easily allows to use any other SAT solver that appears in the
future. Minisat is one of the publicly available SAT solvers which implements most of the current
state-of-the-art solving techniques such as conflict-clause recording and conflict-driven backjumping,
among others. Glucose, that has some common parts with MiniSAT, implements some new learning
mechanisms which made it award winning on SAT 2011 competition. As we have mentioned in
the Introduction, we have a preliminary version of the algorithm that works with ASP encodings [3]
instead of with SAT encodings, although the currentASPbased version only works with one defeasible
level. In the near future, we plan to improve the ASP based version to be able to work with multiple
levels.

In the experiments, the algorithm solves different test-sets of problem instances obtained with
a random generation algorithm. To study and analyse how our RP-DeLP algorithm behaves as
different characteristics of the problem change, we generated our instances using one and two levels
of defeasibility and changing the other parameters of the problem instances.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 36 1–46

36 Recursive semantics for RP-DeLP

8.1 Random generation of RP-DeLP problem instances

We used different parameters to control the generation of random RP-DeLP problem instances with
different sizes, defeasibility levels and other characteristics. We focused or experimented first on
one set of problems with only one defeasible level and then on another set with two defeasible
levels. In both cases, we were interested in how the resolution time differs when the ratio of clauses
to the number of variables increases. Then, in the first case with only one defeasible level, we were
also interested in the results when the fraction of clauses of the programme at the strict knowledge
level is modified, ranging from no strict knowledge at all to all clauses at the strict knowledge level.
For the case of two defeasible levels, we have investigated the effect of modifying the fraction
of clauses between the two defeasible levels. We next explain the generation of our problem instances.

Generation of instances with one defeasible level: Given a number of variables (V), a maximum
clause length (ML), a ratio of clauses to variables (C/V), and a fraction (f), between 0.0 an 1.0, of
strict knowledge, the algorithm generates an RP-DeLP problem instance by generating C clauses,
such that the length of every clause is selected uniformly at random from [1,ML] (clauses with
length 1 are facts). The variables of the literals of a clause are selected uniformly at random without
repetition, and are negated with probability 0.5. From the C clauses, f ·C clauses are in the strict
knowledge and the rest in the defeasible set.

Two defeasible levels instance generation: Similar to the previous instance generator with a number
of variables (V), a maximum clause length (ML), a ratio of clauses to variables (C/V), now we fix
the fraction of strict knowledge (f) to 0.1. Then two defeasible levels are built assigning a fraction l
between 0.0 and 1.0 of the total number of defeasible clauses to the first defeasible level and 1-l to
the second defeasible level.

8.2 Test instances considered

We generated two different groups of test sets: test sets with one defeasible level and test sets with
two defeasible levels. In both groups, test instances were created with a number of variables (V)
selected from {20,30},12 and with maximum clause length (ML) selected from {2,4}.

In the case of one defeasible level, for each combination (V ,ML), different test sets of instances
were created by selecting a number of total clauses, such that the ratio C/V ranged from 1 to 12 in
steps of 1, and the fraction of clauses in the strict knowledge ranged from 0 to 0.9 in steps of 0.1. So,
the total number of test sets for each combination (V ,ML) was 90. The number of instances generated
in each test set was 50.

In the case of two defeasible levels, for each combination (V ,ML) and an strict knowledge fraction
set to 0.1, different test sets of instances were created by selecting a number of total clauses, such
that the ratio C/V ranged from 1 to 12 in steps of 1, and the fraction of clauses in the first level l
ranged from 0.1 to 0.9 in steps of 0.1.

8.3 Empirical results

For one defeasible level, we analyse the results for instances with 30 variables and maximum clause
length 2. The left plot of Figure 8 shows the median time to solve the instances with our algorithm

12Notice that the total number of literals will be two times the number of variables.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 37 1–46

Recursive semantics for RP-DeLP 37

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 2 4 6 8 10 12 14

st
ric

t k
no

w
. (

re
sp

ec
t t

o
#c

la
us

es
)

C/V

Variables = 30; MaxClauseLength = 2

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1000

tim
e

(s
.)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

st
ric

t k
no

w
. (

re
sp

ec
t t

o
#c

la
us

es
)

C/V

Variables = 30; MaxClauseLength = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

%
 u

ns
at

is
fia

bi
lit

y

Figure 8. Median time to solve the instances (left) and fraction of inconsistent instances (right) for
V=30,ML=2.

when solving instances with different ratio of the number of total clauses to number of variables
(axis labelled with C/V in the plots) and with different fraction of strict knowledge (axis labelled with
strict knowledge). The plot shows that for a strict knowledge fraction of 0.0, there is an increase of
the median time as the total number of clauses increases. In contrast, as the strict knowledge fraction
increases, the time increases only up to certain value of the number of total clauses, and then drops
significantly. This is probably because of two causes. The more strict knowledge we have, the more
possibilities to have inconsistent instances, which are detected in polynomial time by our algorithm,
and the more unacceptable arguments and blocked literals we can have.

To check the possible role of inconsistent instances on the complexity of the problem, we have also
computed what fraction of the instances, for each test set of 50 instances, are inconsistent (��R⊥).
The right plot of Figure 8 shows this information. The colour scale ranges from points with a fraction
of instances with inconsistent strict knowledge equal to 0 (dark blue colour) to points with such
fraction equal to 1.0 (red colour). Apart for the obvious case of strict knowledge fraction equal to
0.0, where there are never inconsistent instances, for a fraction of strict knowledge equal to 0.1 up
to the ratio C/V=6 no inconsistent strict knowledge is generated, but the time needed to solve the
instances is smaller than the one needed for instances with no strict knowledge at all.

As the fraction of strict knowledge increases, test instances with inconsistent strict knowledge
appear more frequently for a lower ratio C/V and the interval of values of C/V with instances with
significant computation time (greater than 0) decreases. Also, the highest computation time obtained
decreases as the fraction of strict knowledge increases.

To further understand the reasons for such differences on the computation time, we have also
studied the average ratio of warranted literals and average ratio of blocked literals, with respect to
the total number of variables, for each test set. The left plot of Figure 9 shows the ratio of warranted
literals and the right plot the ratio of blocked literals. Looking at both plots, we observe that for
instances with low C/V , if its strict knowledge fraction is also low, we have a small, but non-
negligible, fraction of warranted literals, that starts to increase as we increase C/V , but only up to
certain limit C/V (around 2.0), and above that limit the fraction of warranted literals starts to decrease,
coinciding with an increase in the fraction of blocked literals. A plausible explanation for this is that
for very low C/V instances have very few valid arguments, so few warranted and blocked literals
are produced. As C/V increases, more valid arguments start to appear, but obviously as the number
of valid arguments increases more and more of them will be part of a conflict set of arguments. So, it

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 38 1–46

38 Recursive semantics for RP-DeLP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 2 4 6 8 10 12 14

st
ric

t k
no

w
. (

re
sp

ec
t t

o
#c

la
us

es
)

C/V

Variables = 30; MaxClauseLength = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

W
ar

r
/ V

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

st
ric

t k
no

w
. (

re
sp

ec
t t

o
#c

la
us

es
)

C/V

Variables = 30; MaxClauseLength = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

B
lo

ck
 /

V

Figure 9. Warranted literals (left) and blocked literals (right) for V=30,ML=2.

seems that the highest computation times are found for instances with enough clauses such that many
valid arguments are found, but many of them are also found to be part of a collective conflict set.

When the strict knowledge fraction increases, as the fraction of instances with inconsistent strict
knowledge increases, it is clear that on average warranted and blocked literals will decrease, and this
is observed on both plots. It is also natural that even on instances with a consistent strict knowledge,
when this fraction is larger, less literals will have valid arguments, because consistency with the
strict knowledge will hold for less arguments. However, we still find remarkable the increase of easy
instances for a strict knowledge fraction of only 0.2, because at this strict knowledge fraction for
C/V up to 5.0 instances still have warranted literals. A possible explanation for this increase of easy
instances even when we still have a considerable number of warranted literals, is that the fraction
of strict knowledge produces the pruning of larger arguments, so the arguments found for warranted
literals are shorter and easier to find.

Next, we analyse the effect on complexity of having two defeasible levels, instead of just one.
For these instances, we have fixed the strict knowledge fraction to 0.1 because we wanted to test the
hardest possible instances we can have when there is a fraction of strict knowledge greater than zero,
so we still can have non-trivial conflicts between arguments due to the role of the strict knowledge
on collective conflicts.

The left plot of Figure 10 shows the median time to solve the instances with our algorithm when
solving instances with different ratio of the number of total clauses to number of variables (axis
labelled with C/V in the plots) and with different fraction of defeasible knowledge at the first defeasible
level (axis labelled with fraction l). The right plot of the same figure shows the percentage of consistent
instances. We observe that as before, just up to the ratio where almost all instances are inconsistent,
there is an increase on the median time.

However, the lowest computation times are found on a range of values for the first-level fraction
around 0.5, and where this fraction is near 0 or 1 the computation time increases. A possible
explanation for this concentration of the hardest instances when the defeasible knowledge is
unbalanced (concentrated almost in one level) may be the following.

When almost all the clauses are in one level, we have more possible acceptable arguments in that
level. Then, the space of possible collective conflicts at that level is also larger, so the computation
times for the conflict queries will be higher. However, there is an slight difference in the computational
cost when (l≈0) and when (l≈1). Despite in both cases we have the same unbalance of clauses
between levels, having (l≈0) means that the contribution to the output of the programme due to the

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 39 1–46

Recursive semantics for RP-DeLP 39

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10 12 14

1s
t r

es
pe

ct
 to

 2
nd

 le
ve

l

C/V

Variables = 30; MaxClauseLength = 2

 0

 20

 40

 60

 80

 100

 120

 140

 160

tim
e

(s
.)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10 12 14

1s
t r

es
pe

ct
 to

 2
nd

 le
ve

l

C/V

Variables = 30; MaxClauseLength = 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

%
 u

ns
at

is
fia

bi
lit

y

Figure 10. Average computational cost (left) and fraction of inconsistent instances (right) for V=
30,ML=2, fraction of strict knowledge = 0.1 and two defeasible levels.

first level will be small and quickly computed. At the second level, where the input will include the
warrants from the strict part plus some warrants obtained from the first defeasible level, we will have
less possible acceptable arguments from the second level than we would have if the first defeasible
level would be empty. So, the total computational effort should be smaller than if all the defeasible
knowledge would be only at one level. When we have the situation where (l≈1), almost all the
defeasible knowledge is at the first level, so the computational effort to compute the output of the
first level increases. That is, the input for the first defeasible level will contain only the warrants from
the strict part, so the set of possible acceptable arguments will be larger (compared with the second
defeasible level when (l≈0)) and the set of possible warrants and blocked literals to check will be
larger. Observe that the plot for blocked literals at the right of Figure 11, shows a larger ratio |B|/V
for l=0.9, as the number of clauses increases, than for l=0.1.

So, when the fraction of clauses at the two defeasible levels is near 0.5, the number of warrants
obtained from the first defeasible level will increase with respect to l=0.1, but the number of blocked
literals will be smaller than for l=0.9, because the number of clauses at the first defeasible level is
smaller. At the second defeasible level, the warrants and blocked literals will decrease, with respect
to the case l=0.1, given the input from the previous level. Looking at the left plot of Figure 11, that
shows the ratio of warranted literals and the right plot the ratio of blocked literals, we clearly observe
that more warranted literals are obtained around l=0.5 but less blocked literals than at the extreme
values of l.

Those results show that when defeasible levels are balanced in terms of number of clauses, there
are less conflicts between arguments at the same level. That means that more literals can be warranted,
and as it has been shown the lack of conflicts decreases the computation time of the output.

9 Related work

Different features and techniques in the RP-DeLP argumentation framework presented in this article
are based on or traced back to other approaches proposed in the literature. In this section, we
contextualize them and compare RP-DeLP with related approaches.

RP-DeLP, as well as its predecessor P-DeLP [4, 5], builds on top of Defeasible Logic Programming
argumentative system (DeLP) [42], and extends it by introducing different levels of preference or

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 40 1–46

40 Recursive semantics for RP-DeLP

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10 12 14

1s
t r

es
pe

ct
 to

 2
nd

 le
ve

l

C/V

Variables = 30; MaxClauseLength = 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

W
ar

r
/ V

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10 12 14

1s
t r

es
pe

ct
 to

 2
nd

 le
ve

l

C/V

Variables = 30; MaxClauseLength = 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

B
lo

ck
 /

V

Figure 11. Warranted literals (left) and blocked literals (right) for V=30,ML=2, fraction of strict
knowledge = 0.1 and two defeasible levels.

priority at the object language level by means of weights. In this approach, arguments are sets of
weighted formulas that support a goal, and weights are used to compute the strength of an argument
and then, to resolve conflicts among contradictory conclusions.

Actually, introducing preferences in argumentation frameworks goes back to Simari and Liou [57].
In that work, the authors defined an argumentation framework in which arguments are built from
a propositional knowledge base. The arguments grounded on specific information are considered
stronger than the ones built from more general information. This preference relation is used then
to solve conflicts between a pair of conflicting arguments. Nonetheless, the way RP-DeLP (and P-
DeLP) makes use of preferences, to define the strength of arguments by stratifying the formulas
in a programme (or knowledge base), directly stems from Brewka’s preferred subtheories based
approach [29] to non-monotonic reasoning, where the different levels in which default theories are
stratified represent different degrees of reliability. This idea has been used in many other approaches
to reasoning with inconsistent information, mainly in those related to possibilistic logic [21–24], but
also in a somewhat different style in the area of logic programming [16]. In particular, the notion
of argumentative inference introduced in [22] is based on a measure of strength of arguments that
is in fact the one used in RP-DeLP. On the other hand, Prakken and Sartor [55] formalized the
role of preferences in the underlying logical formalisms that instantiate Dung’s seminal theory of
argumentation [34].

Other approaches have formalized the role of preferences at an abstract level. In Amgoud
and Cayrol’s preference-based argumentation frameworks (PAFs) [10, 11], Dung’s framework is
augmented with a preference ordering on the set of arguments, so that an attack by an argument
X on an argument Y is successful only if Y is not preferred to X. In Bench-Capon’s value-based
Argumentation Frameworks [19], Dung’s framework is augmented with values and value orderings,
so that an attack by X on Y is successful only if the value promoted by Y is not ranked higher than
the value promoted by X according to a given ordering on values. On the other hand, Modgil [49]
extends Dung’s theory to accommodate arguments that claim preferences between other arguments,
thus incorporating meta-level argumentation-based reasoning about preferences at the object level.
Recently, Kaci [46] and Amgoud and Vesic [12–15] have addressed the issue of how consistency
postulates [30] can be ensured for instantiations of PAFs. They all argue that instantiations of standard
PAFs have problems with unsuccessful asymmetric binary attacks. Kaci [46] argues that all attacks
should therefore be symmetric. However, Amgoud and Besnard [7, 8] show that for logic-based

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 41 1–46

Recursive semantics for RP-DeLP 41

argumentation systems this would still lead to inconsistency problems, and they show that in order
to satisfy the consistency postulates an attack relation should be valid, in the sense that when two
arguments have jointly inconsistent premises, they should attack each other.

Regarding the kind of logical language used, following the terminology used in [30], RP-DeLP
can be seen as a member of the family of rule-based argumentation systems, as it is based on a
language defined over a set of literals and of strict and (weighed) defeasible rules. In this sense,
RP-DeLP is very close in spirit to the well-known ASPIC argumentative framework [9, 30], that
was developed in response to the fact that the abstract nature of Dung’s theory gives no guidance as
to what kinds of instantiations satisfy intuitively rational properties. ASPIC adopts an intermediate
level of abstraction between Dung’s fully abstract level and concrete instantiating logics, by making
some minimal assumptions on the nature of the logical language and the inference rules, and then
providing abstract accounts of the structure of arguments, the nature of attack, the use of preferences
and rationality postulates a well-behaved system should satisfy [30]. Prakken [54] further develops
the ASPIC framework (ASPIC+) as a general abstract model of argumentation with, among other
features, structured arguments and preferences on , showing that under some assumptions, rationality
postulates were satisfied. when applying preferences to resolve attacks. ASPIC+ has been further
generalized by Modgil and Prakken [50, 51] to accommodate classical logic instantiations extended
with preferences.

The output for an RP-DeLP programme is a rank-ordered set of warranted and blocked conclusions
which satisfy the consistency postulates [30]. In contrast to DeLP and other argument-based
approaches, the RP-DeLP semantics is based on a (not necessarily binary) general notion of collective
conflict among arguments and on the fact that if an argument is warranted it must be that all its
subarguments also are warranted.

Collective conflicts has also been considered in several papers, e.g. in [52], while in [7, 8] discuss
to some extent the problems binary attacks can cause. On the other hand, the idea of defining a warrant
semantics on the basis of conflicting sets of arguments was proposed in [59] and [52]. The difference
between these approaches and our notion of collective conflict is that in [59] the notion of conflict
is not relative to a set of already warranted conclusions and [52] defines a generalization of Dung’s
abstract framework with sets of attacking arguments not relative to the strict part of the knowledge
base. Although the RP-DeLP semantics for warranted conclusions is sceptical, circular definitions of
conflict between sets of arguments can lead to situations in which multiple evaluation orders exist,
giving rise to different outputs of warranted and blocked conclusions. Following Pollock’s recursive
semantics for defeasible argumentation [53], circular definitions of conflict between sets of arguments
have been characterized by means of dependency graphs representing support and collective conflict
relations between the conclusions of arguments and the strict part of the knowledge base.

RP-DeLP recursive semantics draws from the so-called ‘ideal semantics’ promoted by Dung,
Mancarella and Toni [35, 36] as an alternative basis for sceptical reasoning within abstract
argumentation settings. Informally, ideal acceptance not only requires an argument to be sceptically
accepted in the traditional sense but further insists that the argument is in an admissible set all of whose
arguments are also sceptically accepted. While the original proposal was couched in terms of the so-
called preferred semantics for abstract argumentation, in [38] the notion of ‘ideal acceptability’ has
been extended to arbitrary semantics, showing that standard properties of classical ideal semantics,
e.g. unique status, continue to hold in some extension-based semantics (see also [37] for an analysis
of the computational complexity of the ideal semantics within abstract argumentation frameworks
and assumption-based argumentation frameworks). In RP-DeLP, the maximal ideal output for an
RP-DeLP programme is defined in terms of the maximum rank-ordered set of warranted and blocked
conclusions recursively based on warranted information and not involved in neither a conflict nor

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 42 1–46

42 Recursive semantics for RP-DeLP

a circular definition of conflict. The idea is that if a conclusion is warranted at a given level β, so
it could also be at any higher level. A different approach could have been to consider that blocked
conclusions at one level are not propagated to lower levels. In such a case, an alternative semantics
for our system could therefore be defined following a similar line to the one in [44].

Finally, the use of SAT/ASP technology for solving reasoning problems in argumentation
frameworks was first advocated in [25], where the authors present different ways to solve the
acceptability problem of extensions in abstract argumentation frameworks using propositional logic
encodings.Arelated approach can be found in [40] where, in the context of logic-based argumentation
frameworks (built on top of a generic monotonic deductive system), the authors propose to implement
them based on the satisfiability problem of quantified Boolean formulas (QBFs). For the specific
case of abstract argumentation frameworks, a QBF approach has also been recently proposed
in [17]. Finally, in [27], in the context of logic-based argumentation, the authors use quantified
Boolean formulae (QBFs) to characterize various problems (arguments, undercut, argument trees)
in argumentation based on classical logic, and use them to obtain new computational complexity
results.

10 Conclusions and future work

In this article, we have introduced a new recursive semantics for determining the warranty status of
arguments in defeasible argumentation. The distinctive features of this semantics, e.g. with respect
to Pollock’s critical link semantics, are: (i) it is based on a non-binary notion of conflict in order
to preserve consistency with the strict knowledge and (ii) besides the set of warranted and rejected
conclusions, we introduce the set of blocked conclusions, which are those conclusions which are
based on warranted information but they generate a conflict with other already warranted arguments
of the same strength.

We have also contributed an efficient implementation of the algorithm, which computes the
maximal ideal output for an RP-DeLP programme and is based on SAT encodings for the two
NP queries that need to be resolved during the computation of the output: looking for almost valid
arguments and looking for collective conflicts. So far, with this implementation we have studied
the behaviour of RP-DeLP programmes on randomly generated instances, where parameters such as
number of clauses, number of variables and size of levels (strict and defeasible), have been changed
on different test sets to try to understand how these parameters affect the problem complexity. For
instances with only one defeasible level, we have seen that as the fraction of clauses on the strict
part increases, more instances become inconsistent for the same total number of clauses. When we
look only at the consistent instances, the computation time increases when more conflicts arise (the
number of blocked literals at the output increases). However, only when the fraction of clauses on the
strict part is very small we observe really computationally challenging instances with many blocked
literals. For instances with two defeasible levels, we have a similar situation. As more blocked
literals appear at the output, the computation time increases. But we have also seen that the balance
on the number of clauses between defeasible levels affects the output and its computation time. That
is, the more balanced the defeasible levels are, the more warranted literals, the less blocked literals
and the less computation time we have.

As future work, we plan to improve the efficiency of the algorithm we have already designed
and implemented by minimising the effective number of NP queries that have to be made during its
execution. Also, with the aim of obtaining an algorithm able to scale up with problem size, we will
improve a preliminary implementation based on ASP encodings [3], to be able to solve problems

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 43 1–46

Recursive semantics for RP-DeLP 43

with multiple defeasible levels, as we have done with the SAT-based version we have presented
here. We believe that using ASP encodings in the most general case of multiple defeasible levels
will be helpful to improve the performance of the system, given that the preliminary results in the
above mentioned work indicate that ASP encodings can be competitive with SAT encodings for our
problem, at least for the case of a single defeasible level. Regarding the efficiency of our implemented
algorithm, it is worth to mention that the scaling behaviour we have observed in our experiments
could be very specific to the random generator of instances we have used. Results found in the
AI literature about the relation of problem instances structure with algorithm efficiency for NP-hard
problems, see e.g. [43, 45, 47], suggest that in our problem we could observe significant differences in
solving performance between random instances and instances with some particular structure. That is,
instances generated from some particular application domain. So, we plan to study the generation of
instances obtained from some particular domains, in order to check whether instances with particular
structure could be solved more efficiently with our algorithm or with specialized new versions of our
algorithm.

Acknowledgements

The authors are very thankful to the anonymous reviewers for their helpful and constructive
comments. This research was partially supported by the Spanish projects ARINF (TIN2009-
14704-C03-01), TASSAT (TIN2010-20967-C04-03), EdeTRI (TIN2012-39348-C02-01) and AT
(CONSOLIDER- INGENIO 2010, CSD2007-00022).

References
[1] T. Alsinet, R. Béjar, and L. Godo. A characterization of collective conflict for defeasible

argumentation. In Computational Models of Argument: Proceedings of COMMA 2010, volume
216 of Frontiers in Artificial Intelligence and Applications, pp. 27–38. IOS Press, 2010.

[2] T. Alsinet, R. Béjar, L. Godo, and F. Guitart. Maximal ideal recursive semantics for defeasible
argumentation. In Proceedings of the 5th International Conference on Scalable Uncertainty
Management (SUM 2011), pp. 96–109, 2011.

[3] T. Alsinet, R. Béjar, L. Godo, and F. Guitart. Using answer set programming for an scalable
implementation of defeasible argumentation. In Proceedings of Tools with Artificial Intelligence
(ICTAI), 2012 24th IEEE International Conference on, pp. 1016–1021, 2012.

[4] T. Alsinet, C. I. Chesñevar, L. Godo, S. Sandri, and G. R. Simari. Formalizing argumentative
reasoning in a possibilistic logic programming setting with fuzzy unification. International
Journal of Approximate Reasoning, 48, 711–729, 2008.

[5] T. Alsinet, C. I. Chesñevar, L. Godo, and G. R. Simari. A logic programming framework for
possibilistic argumentation: formalization and logical properties. Fuzzy Sets and Systems, 159,
1208–1228, 2008.

[6] L.Amgoud. Postulates for logic-based argumentation systems. In Proceedings of the ECAI-2012
Workshop WL4AI, pp. 59–67, 2012.

[7] L.Amgoud and P. Besnard. Bridging the gap between abstract argumentation systems and logic.
In SUM, pp. 12–27, 2009.

[8] L. Amgoud and P. Besnard. A formal analysis of logic-based argumentation systems. In SUM,
pp. 42–55, 2010.

[9] L. Amgoud, L. Bodenstaff, M. Caminada, P. McBurney, S. Parsons, H. Prakken, J. van Veenen,
and G. Vreeswijk. Final review and report on formal argumentation system. Technical report,

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 44 1–46

44 Recursive semantics for RP-DeLP

Deliverable D2.6, ASPIC IST-FP6-002307, http://www.cs.bris.ac.uk/Teaching/Resources/
COMS70301/RuleInduction.pdf, 2006.

[10] L. Amgoud and C. Cayrol. Inferring from inconsistency in preference-based argumentation
frameworks. Journal of Automated Reasoning, 29, 125–169, 2002.

[11] L. Amgoud and C. Cayrol. A reasoning model based on the production of acceptable arguments.
Annals of Mathematics and Artificial Intelligence, 34, 197–215, 2002.

[12] L. Amgoud and S. Vesic. Repairing preference-based argumentation frameworks. In IJCAI,
pp. 665–670, 2009.

[13] L. Amgoud and S. Vesic. Generalizing stable semantics by preferences. In COMMA, pp. 39–50,
2010.

[14] L.Amgoud and S. Vesic. Handling inconsistency with preference-based argumentation. In SUM,
pp. 56–69, 2010.

[15] L. Amgoud and S. Vesic. A new approach for preference-based argumentation frameworks.
Annals of Mathematics and Artificial Intelligence, 63, 149–183, 2011.

[16] K. R.Apt, H.A. Blair, andA. Walker. Towards a theory of declarative knowledge. In Foundations
of Deductive Databases and Logic Programming, J. Minker ed., pp. 89–148. Morgan Kaufmann,
1988.

[17] O. Arieli and M. W. A. Caminada. A QBF-based formalization of abstract argumentation
semantics. Journal of Applied Logic, 11, 229–252, 2013.

[18] G. Audemard and L. Simon. Predicting learnt clauses quality in modern sat solvers. In
Proceedings of the 21st International Jont Conference on Artifical intelligence, IJCAI’09,
pp. 399–404, San Francisco, CA, USA, 2009. Morgan Kaufmann Publishers Inc.

[19] T. J. M. Bench-Capon. Persuasion in practical argument using value-based argumentation
frameworks. Journal of Logic Computation, 13, 429–448, 2003.

[20] S. Benferhat, D. Dubois, and H. Prade. The possibilistic handling of irrelevance in
exception-tolerant reasoning. Annals of Mathematics and Artificial Intelligence, 35, 29–61,
2002.

[21] S. Benferhat, C. Cayrol, D. Dubois, J. Lang, and H. Prade. Inconsistency management and
prioritized syntax-based entailment. In Proceedings of IJCAI 1993, pp. 640–647, 1993.

[22] S. Benferhat, D. Dubois, and H. Prade. Argumentative inference in uncertain and inconsistent
knowledge base. In Proceedings of the 9th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-93), pp. 411–419, San Francisco, CA, 1993. Morgan Kaufmann.

[23] S. Benferhat, D. Dubois, and H. Prade. How to infer from inconsisent beliefs without revising?
In Proceedings of IJCAI 1995, pp. 1449–1457, 1995.

[24] S. Benferhat, D. Dubois, and H. Prade. Reasoning in inconsistent stratified knowledge bases.
In Proceedings of the 26th International Symposium on Multiple-Valued Logic, (ISMVL-93),
pp. 184–189. IEEE Press, 1996.

[25] P. Besnard and S. Doutre. Checking the acceptability of a set of arguments. In 10th International
Workshop on Non-Monotonic Reasoning (NMR 2004), pp. 59–64, 2004.

[26] P. Besnard and A. Hunter. Elements of Argumentation. The MIT Press, 2008.
[27] P. Besnard, A. Hunter, and S. Woltran. Encoding deductive argumentation in quantified boolean

formulae. Artificial Intelligence, 173, 1406–1423, 2009.
[28] A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abstract, argumentation-theoretic

approach to default reasoning. Artificial Intelligence, 93, 63–101, 1997.
[29] G. Brewka. Preferred subtheories: an extended logical framework for default reasoning. In

Proceedings of IJCAI 1989, pp. 1043–1048, 1989.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 45 1–46

Recursive semantics for RP-DeLP 45

[30] M. Caminada and L. Amgoud. On the evaluation of argumentation formalisms. Artificial
Intelligence, 171, 286–310, 2007.

[31] L. A. Cecchi, P. R. Fillottrani, and Guillermo R. Simari. On the complexity of DeLP through
game semantics. In Proceedings of 11th International Workshop on Nonmonotonic Reasoning
(NMR 2006), pp. 386–394, May 2006.

[32] C. I. Chesñevar,A. G. Maguitman, and R. P. Loui. Logical models of argument. ACM Computing
Surveys, 32, 337–383, 2000.

[33] C. I. Chesñevar, G. R. Simari, and L. Godo. Computing dialectical trees efficiently in possibilistic
defeasible logic programming. In LPNMR, pp. 158–171, 2005.

[34] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77, 321–358, 1995.

[35] P. M. Dung, P. Mancarella, and F. Toni. A dialectic procedure for sceptical, assumption-based
argumentation. In Computational Models of Argument: Proceedings of COMMA 2008, Vol. 172
of Frontiers in Artificial Intelligence and Applications, pp. 145–156. IOS Press, 2006.

[36] P. M. Dung, P. Mancarella, and F. Toni. Computing ideal sceptical argumentation. Artificial
Intelligence, 171, 642–674, 2007.

[37] P. E. Dunne. The computational complexity of ideal semantics. Artificial Intelligence, 173,
1559–1591, 2009.

[38] W. Dvorák, Paul E. Dunne, and S. Woltran. Parametric properties of ideal semantics. In IJCAI,
pp. 851–856, 2011.

[39] N. Eén and N. Sörensson. An extensible sat-solver. In SAT, Vol. 2919 of LNCS, pp. 502–518.
Springer, 2003.

[40] U. Egly and S. Woltran. Reasoning in argumentation frameworks using quantified boolean
formulas. In Computational Models of Argument: Proceedings of COMMA 2006, pp. 133–144,
2006.

[41] A. J. García, J. Dix, and G. R. Simari. Argument-based logic programming. In I. Rahwan and
G. R. Simari, eds, Argumentation in Artificial Intelligence, Chap. 8, pp. 153–171. Springer,
2009.

[42] A. J. García and G. R. Simari. Defeasible logic programming: an argumentative approach.
Theory and Practice of Logic Programming, 4, 95–138, 2004.

[43] C. P. Gomes. Structure, duality, and randomization: common themes in ai and or. In Proceedings
of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on on
Innovative Applications of Artificial Intelligence, pp. 1152–1158, 2000.

[44] G. Governatori, M. J. Maher, G. Antoniou, and D. Billington. Argumentation semantics for
defeasible logic. Journal of Logic Computation, 14, 675–702, 2004.

[45] J. Hoffmann, C. P. Gomes, and B. Selman. Structure and problem hardness: goal asymmetry
and dpll proofs in sat-based planning. Logical Methods in Computer Science (LMCS), 3, 1–41,
2007.

[46] S. Kaci. Refined preference-based argumentation frameworks. In COMMA, pp. 299–310, 2010.
[47] H. A. Kautz, Y. Ruan, D. Achlioptas, C. P. Gomes, B. Selman, and M. E. Stickel. Balance

and filtering in structured satisfiable problems. In Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence, IJCAI 2001, pp. 351–358, 2001.

[48] H. A. Kautz and B. Selman. Unifying sat-based and graph-based planning. In IJCAI,
pp. 318–325, 1999.

[49] S. Modgil. Reasoning about preferences in argumentation frameworks. Artificial Intelligence,
173, 901–934, 2009.

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

[10:43 12/2/2014 exu008.tex] LogCom: Journal of Logic and Computation Page: 46 1–46

46 Recursive semantics for RP-DeLP

[50] S. Modgil and H. Prakken. Revisiting preferences and argumentation. In IJCAI, pp. 1021–1026,
2011.

[51] S. Modgil and H. Prakken. A general account of argumentation with preferences. Artificial
Intelligence, 195, 361–397, 2013.

[52] S. H. Nielsen and S. Parsons. A generalization of Dung’s abstract framework for argumentation:
arguing with sets of attacking arguments. In ArgMAS, pp. 54–73, 2006.

[53] J. L. Pollock. A recursive semantics for defeasible reasoning. In I. Rahwan and G. R. Simari,
es, Argumentation in Artificial Intelligence, Chap. 9, pp. 173–198. Springer, 2009.

[54] H. Prakken. An abstract framework for argumentation with structured arguments. Argument &
Computation, 1, 93–124, 2010.

[55] H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible
priorities. Journal of Applied Non-classical Logics, 7, 25–75, 1997.

[56] H. Prakken and G. Vreeswijk. Logical systems for defeasible argumentation. In D. Gabbay and
F. Guenther, eds, Handbook of Philosophical Logic, pp. 219–318. Kluwer, 2002.

[57] G. R. Simari and R. P. Loui. A mathematical treatment of defeasible reasoning and its
implementation. Artificial Intelligence, 53, 125–157, 1992.

[58] F. Toni and M. Sergot. Argumentation and answer set programming. In M. Balduccini and
T. Son, eds, Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning,
Vol. 6565 of Lecture Notes in Computer Science, pp. 164–180. Springer, 2011.

[59] G. Vreeswijk. Abstract argumentation systems. Artificial Intelligence, 90, 225–279, 1997.

Received 1 May 2013

 at C
SIC

 on February 22, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

	RP-DeLP: a weighted defeasible argumentation framework based on a recursive semantics
	1 Introduction and motivation
	2 A general defeasible argumentation framework with recursive semantics
	3 Extending the framework with a preference ordering on arguments
	4 A particular case: recursive P-DeLP
	5 Maximal ideal output
	6 On the computation of the maximal ideal output
	7 SAT encodings for finding warranted literals
	8 Average computational cost and easy/hard problem instances
	9 Related work
	10 Conclusions and future work

