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Abstract

The search of a precise measure of what hardness of SAT
instances means for state-of-the-art solvers is a relevant re-
search question. Among others, the space complexity of tree-
like resolution (also called hardness), the minimal size of
strong backdoors and of cycle-cutsets, and the treewidth can
be used for this purpose.

We propose the use of the tree-like space complexity as a
solid candidate to be the best measure for solvers based on
DPLL. To support this thesis we provide a comparison with
the other mentioned measures. We also conduct an experi-
mental investigation to show how the proposed measure char-
acterizes the hardness of random and industrial instances.
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constant-bounded, they measure the degree of a polynomial
decision algorithm.

In this paper we propose the use of another measure:
the space complexity of tree-like resolutigforan 1999;
Esteban and Téan 1999; 2001; Ben-Sasson and Galesi
2003) also callethardness of a formulan (Kullmann 1999;
2004). In this paper we will call spacefor short. Like for
the previous measures, we also prove that constant-bounded
space implies the existence of a polynomial decision algo-
rithm, being the space the degree of the polynomial (see
Theorem 6). Moreover, we prove that the space is smaller
than the size of cycle-cutsets and, under certain assungptio
also smaller than the size of backdoors.

Our project can be formalized as:

Find a measure), and an algorithm that given a formula

Even though the SAT/CSP problems are NP-Complete, there T decides satisfiability in tim&(n¥()). The smaller the

are groups of instances that can be solved quickly by state-

of-the-art solvers. For example, industrial instances may

measure is, the better it characterizes the hardness of-a for
mula.

have a huge a number of variables and still be solved in a ) )
reasonable amount of time by modern solvers. Therefore, a  The preference for smaller measures is because a bigger
better knowledge about what a hard/easy instance is, would Measure means that some instances, that could be solved ef-
help to design better practical SAT solvers. This question ficiently, are erroneously classified as hard. Therefore, ac
is related with the characterization refal-world (industrial) cording to this project, the space characterizes the hasdne
instances. This was one of the motivations of (Williams, ©f problems better than strong backdoors and cycle-cutsets
Gomes, and Selman 2003: Dilkina, Gomes, and Sabharwal e also show that there are cases where the space is arbi-
ness. They answer two key questions: (1) What is the size IS eéqual to the number of variables).

of the backdoors in real-world (industrial) instances? Ex-  We know that thewidth of a formulais smaller than the
perimentally they conclude that they are small. (2) Even space (Esteban and Eor2001; Nordstim 2006), and that
taking into account the expense of searching for backdoors, there exists an algorithm that works in tinggn" (1),

can one still obtain an overall computational advantage us- Therefore, we could conclude that, according to our project
ing them? They prove that, for constant-bounded backdoor the width is a better measure than the space. Unfortunately,
size, there exists a polynomial decision algorithm, belrgt  this algorithm also requires spa¢¥n®*¥"(")) which dis-

size of the backdoor its degree. In CSP there are two no- ables its use in real solvers, and makes the width a bad mea-
tions that can also characterize the hardness of problémms: t sure of what is hard for those real solvers.

size of cycle-cutsets, and the treewidth. These two notions  Another natural candidate measure is the logarithm of
also share the good properties of backdoors: when they arethe minimum tree-like resolution proof of a formula, noted
ts(I"). If a SAT solver tries to construct tree-like resolution
proofs, the size of the minimal of such proofs will be a good
measure of the hardness of the formula. Moreover, there is
an algorithm that works in timé(n'°s (1)) (Beame and
Pitassi 1996). However, we also prove that the space is
smaller tharlog ¢s(I"). The more unbalanced the proof tree
is, the bigger the difference between the two measures is.

“Research partially founded by the research projects TIN2006-
15662-C02-02, and TIN2007-68005-C04-01/02/03, CON-
SOLIDER CSD2007-0022, INGENIO 2010, and the grant
2005-SGR-00093. The first author was partially supported by the
program Jos Castillejo.

Copyright(© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.



As a first step in the formulated research project we can
justify the optimality of our measure respect to solvershbas
on tree-like resolutioh We use the following argumenta-
tion: a problem iseasyfor a solver based on tree-like res-
olution, if there is asmall measuresuch that, instantiating
one of the variables (smartly selected) by one truth value,
the measure strictly decreases, and instantiating by tex ot
truth value, it doesn’tincrease. This is the minimum reguir
ment for ensuring polynomial solvability (in the measung) b

tree search (being the degree of the polynomial the value of
the measure). This is precisely the definition of space. Con-

trarily, in the definition of strong backdoors we force the
measure to decreasehnthsub-trees, and the selected vari-

ables to be the same in all the branches (the ones belonging

to the backdoor). Instead, for space, selected variablgs do
have to be the same in all branches.
The fact we talk about tree-like proofs in our definition of

(3) The Strahler of a tree is the minimum number of pointers
(memory) that we need in order to traverse it, minus one.

The Strahler of a tree is bounded by its maximal depth,
and by the logarithm of its size, and the three measures are
equal in perfectly balanced trees.

Definition 2 The space of a unsatisfiable CNF formula
noteds(T"), is equal to the minimum among all the Strahlers
of tree-like refutations of the formula.

Notice that the space of a formula is bounded by the num-
ber of variables. However, as observed in the experiments,
in real-world instances, the space is quite small, compared
with the number of variables.

Lemma 3 The space satisfies the following three properties
1) s(Tu{d}) =0
(2) For any unsatisfiable formul®, and any partial truth

space is not a big issue, despite the fact that most modern @ssignmend, we haves(¢(I')) < s(I').

SAT solvers are not simply DPLL. This is because our no-

(3) For any unsatisfiable formul®, if [1 ¢ I', then there

tion of space is compared with other measures in terms of a €Xists a variabler and an assignment : {z} — {0,1},

project goal where nothing is said about the proof system.

The Space of an Unsatisfiable Formula

The tree-like space complexity of a formula is defined
in (Esteban and Tan 1999; 2001) as the space needed to
construct a tree-like resolution proof of the formula. Bgin

the space the maximum number of clauses that have to be

kept in memory simultaneously. The definition is not very
intuitive, thus we give here an equivalent definition based o
the minimum Horton-Strahler number of a tree-like resolu-
tion proof of the formula.

The Horton-Strahler number of a tregStrahler of a tree,
for short) (Horton 1945; Strahler 1952) was originally de-
fined in the area of geology to study the morphology of
rivers. Later, it was re-invented, in the area of computer
science (Ershov 1958), as the minimum number of regis-

ters needed by a CPU to evaluate an arithmetic expression

(built up from binary operations) and represented as a bi-
nary treé. The notion is quite natural, but sometimes badly
known, which has propitiated that it was re-invented sdvera
times. It is calledd.. in (Esteban and Tan 1999) andev-
eled heightin (Kullmann 1999). These are three equivalent
definitions of the Strahler of a tree.

Definition 1 (1) The Strahler of a (binary) tree is defined
recursively as follows.

hs(e) =0
° hS(Tl) +1 if hS(Tl) = hS(TQ)
hs 611“ *TQ z{

max{hs(Ty),hs(T»)}  otherwise

wheree is a node and’; andT; are trees.

(2) The Strahler of a tre&” is the depth of the biggest com-
plete tree (i.e. tree where all branches have the same I¢ngth
that can be embedded infa

IA second step would be to define a measure and the corre-

sponding algorithms for solvers based on learning.
2In fact the minimum number of register is the Strahler plus
one.

such thats(¢(T")) < s(T') — 1.

The space of a formula is the minimum measure on formulas
that satisfy (1), (2) and (3). In other words, we could define
the space as:

s(I') = min { max{s([z — b](T))+1, s([z — B](I')} }

x, T

whenJ ¢ T, ands(l"U {(d}) = 0.

PROOE (1), (2) and (3) are easy to prove. For the last part,
suppose that andb are the values that give us the mini-
mal. W.l.o.g. assume that= 1. From the proof tree of

[z — b)(T") F O, adding the literafz in the clauses where

[« — b] has removed it, but preserving the structure of the
proof tree, we get a proof df - Z. Since we preserve
the structure, we also preserve the Strahler of the tree. We
proceed similarly fofz — b)(T") - [J. Adding a cut ofz

to these two tree proofs, we get a prooflof- [1, where

the Strahler is the maximum between one of the original
Strahlers, and the other plus one. Hence, it satisfies the
equality. [ |

Lemma 3 helps us understand the good properties of the
notion of space: when we are forced to try two distinct as-
signments for a variable, if we are smart enough selecting
the variable, we can get, in at least one of the sub-trees; a fo
mula with a strictly smaller space (and the same or smaller
in the other). This ensures that, if the space is small, wie wil
avoid the combinatorial explosion of the worst-case.

Instances with Small and Big Space

The DPLL algorithm, as well as all its sequels, introduce im-
portant features that make the solvers more efficient than a
simple blind check of all possible variable instantiatiolms
particular, they use the so-called “unit clause propagatio
The following lemma characterizes the set of clauses that

Notice that, sincé is unsatisfiable, it either contaitg or it
contains a variable with both signs.



can be proved unsatisfiable only using unit propagation, as
the formulas with space one. This set of clauses is equal
to the set ofHorn renamableclauses (Henschen and Wos
1974), i.e. the set of clauses that using a renaming of vari-
ables can be transformed into Horn clauses.

Lemma 4 A formulal is Horn renamable ifs(T") < 1.
PrROOF The equivalence between Horn renamable clauses

and formulas that can be proved only using unit propaga-
tion is found in (Henschen and Wos 1974). And the equiv-

alence between these ones and formulas that can be proved ongsor

by linear tree-like resolution is found in (Beame, Kautzj an
Sabharwal 2004). Now, it is easy to see that linear tree-like
resolution proofs have space equal to one. [ |

Lemma5 For every unsatisfiable-CNF formula T’ we
haves(T") < 2.

PROOF If a 2-CNF formula is unsatisfiable, then either it
can be proved with unit clause propagation, or we have a
cycle of implications:
r—olh = ol oT ol . ol -
for some variabler and a list of pair-wise distinct literals
(variables with sign}y, . .., 1. and a similar list}, ... ..

In such case, we can construct the following proof with
space two:

LVl _ZVh Ev!&) zV I
‘f_\/z _$.V2
— o _ .
lT\/.Ki‘/JC\/lr lLvae —_zVis
JJ\ 4”/1,
| [ ]

Ben-Sasson and Galesi (2003) prove that for randem
CNF formulas oven variables, withy n clauses (being: <
4.506), with probability tending td asn tends toxo, resolu-

tion requires spac@ (/= zlolifn). Since the space for gen-
eral resolution is smaller than or equal to the space for tree
like resolution, this big lower bound explains why random
formulas are difficult SAT instances. Likewise, (d0r1999;
Esteban and Téan 2001) show that the pigeonhole principle

formulasPH P +! require spac€(n).

Proving Instances with Small Space
The algorithm that we propose is a variation of the Beame-

function try_strahler(, s, ¢) returns (bool, prooftree)
if s = 0thenreturn (false, )
if ¢ falsifies a claus€' € T"
then return (true, hypothesis(C))
if ¢ satisfies all clauses a@f
then print ¢
return (true, )
foreachvariablez ¢ domair(¢) and b € {true, false} do
(found, t,) = try_strahler(’, s — 1, ¢ U [z — b])
if found
then (found, t2) = try_strahler(’, s, ¢ U [z +— —b])
return (found, cut(z,t1,t2))

return (false, )
endfunction

function beamepitassi(’)
proved := false
s:=1
while s < numuvarsof(I') and —proved do
(proved, proof) := try_strahler(T, s, [])
s:=s+1
endwhile
exit (unsat, proof)
endfunction

Figure 1: The decision algorithm.

PROOF. Using the algorithm of Fig. 1. Lef'(s,n) be
the worst-case time needed by the_styahler function to
check a formula withn variables and space We can es-
tablish the recurrenc&(s,n) < 2nT(s — 1,n — 1) +
T(s,n — 1). The solution of this recurrence can be found
in (Beame and Pitassi 1996), andli$s,n) = O(n®). For
the beamepitassi function the worst-case time needed is
> O(n) = O(n**1). m

In DPLL we proceed by selecting a variable, instantiating
it by a truth value, and later by the contrary, generating two
sub-trees in our proof search tree. This process, in thetwors
case, generates an exponential refutation proof tree,en th
number of variables. In the absence of backjumping, clause
learning, and other features of modern solvers, ptuof-
search treehas a size similar to the size of tipeoof tree
resulting form the search. In some cases, it would be worth
searching for a smaller proof tree, even on the expense of
having a proof search tree bigger than the proof tree. In fact

Pitassi algorithm (Beame and Pitassi 1996), that can be alsothis is the case with the Beame-Pitassi algorithm:

found in (Kullmann 1999). Given an unsatisfiable formula,
the algorithm searches its space, starting with space £qual
to one. This is done in the function bearpiassi. For each
particular possible space it applies the procedurstrghler.

In this procedure we cycle trough alln possible literals
trying to recursively figure out if the formula resulting fno
falsifying this literal has space one less. Once we find such
a literal, we recursively call tngtrahler only once with the
opposite literal and the same space. If a satisfying assign-
ment is found with some of the instantiations, the algorithm
aborts execution.

Theorem 6 Satisfiability of a CNF formuld” can be de-
cided in timeQ(n*M+1),

The size of the proof tree computed by the Beame-Pitassi
algorithm is dominated by the recursion:

S(s,n) <S(s—1,n—1)+S(s,n—1)+1

with solutionS(s,n) = 237, (%) = O(n®). For small
values ofs, this upper bound is tight. Therefore, for formu-

las with small space, the size of the proof t&@:°), and the

time needed by the algorithm to finddt(n**1) are similar.

However, fors close ton, the size of the proof tree 8(2"),
and the time needed by the algorithm to fin@in™). This
last upper bound is bigger than t&¥2™) needed by DPLL,

which is more competitive than Beame-Pitassi for instances
with big space.



Like the question of the computation of backdoors (Dilk-

failed literal rule (Freeman 1995). It is applied as follows,

ina, Gomes, and Sabharwal 2007), an interesting question if after assignindz — b], whereb € {0, 1}, and performing

here is the study of heuristics leading to the construction o
the proof tree with smallest Strahler.

The Space Needed for Satisfiable Formulas

unit propagation we get a conflict, then we assign— b|.
This rule together with the unit clause propagation rulecha
acterizes the set of formulas with space two.

Lemma 11 A formulal' can be proved unsatisfiable only

There are several natural extensions of the space definition using unit propagation and the failed literal rule, if, andlg

to satisfiable formulas. Here we propose two of them, re-
spectively denoted by® ands®. The following are some
standard and preliminary definitions.

Definition 7 Let ¢ be a partial assignment, we define the
clause associated t0, notedCy, as\/ ;. _o V'V 4(,)=1 ¥-
Given a formulal” and a partial assignment, the formula
o(T) is the set resulting fron" after removing all clauses
containing a literalz such thatp(z) = 1, and removing all
literals 2 such thatp(z) = 0.

A partial assignmentp is said to satisfy a formuld” if

o(T) = 0.
Definition 8 LetI be a satisfiable or unsatisfiable formula,

we propose the following two alternative definitions of gen-
eralized space:

5(I") = maXassignmenss {$(¢(I)) | ¢(I') - LI}
s"(T) = s(CU{Cy | ¢(T") = 0})
Notice that both definitions are extensions of the space
definition for unsatisfiable formulas: I is unsatisfiable,

thens(I') = s*(I') = s*(I"). We can also prove the follow-
ing results.

Lemma 9 For any formulal’, we haves®(T") < s?(I")

PROOF Sketch: Let$ be an assignment Amaximizing
{s(o(I)) | o(I') = O}. Hence,s"(I') = s(¢(I')) and
o(I') = O. Now, since¢ transform the clause€’; of
the definition ofs® into tautologies, we have(¢(T'))

s(p(DU{Cy | ¢(T) = 0})). Finally, from

S(H(TU{C, | 6(T) = 0})) < s(TU{C | 4(T) = 0}) = 5(T)
we deduce the inequality. [

Lemma 10 The adaptation of the Beame-Pitassi algorithm
of Figure 1, given a satisfiable formulB, finds in time

O(n*" ™) a complete set of satisfying assignments.

PrROOF Sketch: The algorithm does a similar work for
and forl' U {C,, | ¢(I") = 0}. The only difference is that,
in one case uses the clauses frof), | ¢(I') = 0} to get a
contradiction, whereas in the other case prints the saitfy
assignment. [ |

An example ofeasy satisfiable formulas are commer-
cial sudokus encoded as SAT formulas. The complexity
of this problem is studied in (Lynce and Ouaknine 2006;
Ansbtegui et al. 2006). In particular, they give the percent-

if, s(T') < 2.

PROOF. The proof of the equivalence is similar to the proof
of Lemma 4. We only need to notice that the resolution steps
corresponding to this restricted form of inference have the
following form:

.\./.
In other words, the failed literal
'\/’ rule corresponds to a resolution
P step where one (_)f the_ premises
cu{z} . has space one, since it is proved
N only using unit clause propaga-
c tion. [

Since all the sudokus analyzed in (Lynce and Ouaknine
2006), using the so-called extended encoding (i.e. adding
some redundant clauses that make the problem easier), can
be solved only using unit clause propagation and the failed
literal rule, we can conclude that all these (extended) &nco
ings have space two.

Comparison with Backdoors
and the Minimum Proof Tree Size

In this section we compare our results about the space of an
unsatisfiable formula with the size of the minimwgtiong
backdoor of the formula. In what follows, when we say
backdoor we meastrongbackdoor.

Given a sub-solverd, and a unsatisfiable formule a
strong backdoor (Williams, Gomes, and Selman 2003, Def-
inition 2.4) is a subse$ of the variables such that, for every
partial variable assignmeut: S — {0, 1}, the sub-solver
concludes unsatisfiability faf(3) in polynomial time.

The first thing that must be noticed is that this definition
depends on the given sub-solver. First, we will assume that
it only performs unit clause propagation, i.e. we will as-
sume that, if the sub-solver accepts a formula, and deter-
mines its unsatisfiability, then this formula has space one.
Later we will discuss how to extend the comparison in gen-
eral. In (Williams, Gomes, and Selman 2003, Theorem 4.1),
it is proved that deciding if a formula with a backdoor of
sizeb is satisfiable is inO(p(n) (ﬁ%)b), wherep(n) is a
polynomial, related with the performance of the sub-solver
In our case, we will assume thatrn) = n, as it is the case
for the sub-solvers we are considering.

Compared with the performance obtained with the
Beame-Pitassi algorithm (Theorem 6) this complexity is bet
ter, since we havé'/? in the denominator. However, for

age of problems (from a database of sudoku problems) that constant backdoors sizes and constant space, we have poly-
can be solved with unit propagation and other forms of re- nomial complexity in both cases, being the space and the
stricted inference rules. One of these rules is the sodalle backdoor size the exponent of the polynomial.



The following lemma will help us compare the space of a The backdoor size satisfies the following property: for

formula with the size of backdoors and cycle-cutsets. any formula I', there exists a variabler, such that
Lemma 12 Given a formulal’, a set of variabless, and a for any assignmentp : {z} — {0,1}, we have
valuek > 0, if for any assignmens : S — {0, 1} we have backdoorsize($(I')) < backdoorsize(I') — 1. There-
s(¢(I')) < k, thens(I') < k + |S]. fore, the backdoor size decreases in both subtrees of the

proof. Notice that this property is similar to property (3) o
PrROOF. For each¢, we construct a tree-like resolution lemma 3, but more restrictive. This explains why it results

proof ¢(I") + [, with space bounded by. Now, from ¢, into a bigger measure.

we construct the clause that falsifies the assignmgnt= As we have already said, in very basic SAT solvers, the
V@)=0 V V(=1 Y- Adding some of the literals af’y proof treeand thesearch treeare similar. In the DPLL algo-

to the clauses of(I") we can gef’. Doing the same to the rithm, for instance, both trees are equal except for the unit
proof ¢(T') - [J, we get a proof” - C’,, Where(J;b C Oy, propagation. This means that the Strahler of the search tree

with the same structure, hence space, as the original proof, €8N be one unit smaller than the Strahler of the proof'tree
Therefore, for each one of theS! clausesC built up from T_he bigger the inference in each node is, the bigger is this
the variabies oF, we have a subclaus®’ C C, and a proof difference between the Strahlers of the proof and the search

I' = C’. Now, cutting the variables of we can construct trees.h\tNe CaI\ZII define tlpﬁ?c?catljspigeas the Strahler Ofkthti.
a proof tree of maximal depthS| that derives the empty Ze?rqt' ree. ore(:v_er, It?] or t‘;"C loors, Wg _catrrl] mla € 'Sf
clause from the clauses’. The composition of these trees ~ 9€!NItION parametric on the Sub-Solver used in e leaves o

results in a tree with space boundediby- |S| that derives :Ee search trlee. Ttr;]ese su?sol_v ersKol? the lefggg WC:UI? pltay
the empty clause frorfi e same role as the oracles in (Kullmann ). In fact,

in the experiments of the last section, we estimate the space
Lemma 13 Given a sub-solver! that only accepts formu- as the Strahler of the search tree. Then, since the size of
las with spacé, if the subset of variableS is a strong back- ~ the backdoor roughly corresponds to the hight of the search
door of the formuld’, thens(T) < |S| + k. tree, and this is always bigger than its Strahler (spgcially
Notice that this lemma concludes that, according to our ynbalanced trees), we can COF‘C'“de that the practical space
project goal, the size is a better measure than the minimal IS smaller.than the backdoor SIz€. -
backdoor size. However, the result is conditioned by an as- According to our project, the logarithm of the minimum

sumption. If the sub-solvers only accepts Horn clauses, the tree-like resolution proof of a formu_la, notéat; ¢s(I') IS a
the result is true with: — 1. If the sub-solver works on  900d and also natural, measure of its hardness. This is be-

polynomial time, then it is reasonable to assume that it only €34S€ there exists an algorithm (the original E?fgit?g' Pitass
accepts formulas with an space bounded by the degree of @gorithm) that decides satfisfiability in tim@(n )-

this polynomial. However, according to this project, the space proposed in
On the other hand, the space may be arbitrarily smaller OUr Paper is dettermeasure, because for any formila

tsr;]e:)r\:vtge size of strong backdoors, as the following example s(I) < logts(T') < s(I) - logn

Example 14 Assume that the following family of unsatisfi- ~ Wheren is the number of variables df. .

able formulag’ — {C{ ., CJ )} are difficult for the sub- The first inequality holds because the Strahler of a tree is

equal to the logarithm of the size of the the maximal com-
plete tree that can be embedded into the tree (see Defini-
tion 1), hence smaller that the logarithm of the size of the
tree. The second inequality comes from the fact th@t) is
smaller than the size of the tree computed by Beame-Pitassi
algorithm, and this is bounded by (") +!. For small space
instances théog(n) factor is important. For instance, for
To get an easy formula for the sub-solver we have to in- Horn formulas, the space is alwayswhereas the size of
stantiate all variables of some backdoor of each subformula the minimal tree-like proof can be
hence the size of minimal backdoorslofs 37 | /. How-

solver, forj = 1,...,m, and assume that they have disjoint
variables. Let)’ be the minimal size of backdoors bf.
Let us define the following unsatisfiable formula

r={civ---veriul J{cd,....ci )

Jj=1

ever, the space df is bounded bynax’", {s(T7)} + 1. To Comparison with Cycle-CutSets and
E{)?WVS’ etre1e statement, we can construct the following refuta- Treewidth
cly ... v omem. cm The cycle-cutset technique consists in breaking cycles in
1 1 2 fim graphs of variable dependencies (here, two variables are de
clv=.yert pendent if they share the same clause) by instantiating some
of the variables. A cycle-cutset is a set of variables that af
cive: o3 cz, ter instantiation transform the dependency graph intoe tre
011/021 """" Cwlz,l “For instance, for Horn formulas, the Strahler of the proof tree

is one, whereas the Strahler of the search tree —there is only one
U node-—is zero.



Once we have a tree of dependencies, we can apply simple
methods to get the instances of the rest of variables. There-
fore, the size of minimal cycle-cutsets gives an idea of how
hard a problem is, in fact the method has a time complex-
ity O(n2¢), wheren is the number of variables, andthe
cycle-cutset size. However, we can prove that the space is
smaller than the size of the cycle-cutset:

Lemma 15 For any formulal’, with a cycle-cutsetS we
haves(I') < |S| + 1.

ProoOF Sketch: The proof is similar to Lemma 13. Af-
ter instantiating the cycle-cutset variables, we get a tdam
with a dependency graph with tree shape. This formula is
Horn renamable, hence its space is at most one. [ |

Example 16 The following unsatisfiable formula

EZVbL THVbTL
bi\/a,;_H U bn \/(171
Ai+1 \/Ci alvcn
¢ Va; Cp Vap

=1,...,

has space two (since it is a 2-CNF). However, its graph
of variable dependencies contaimsindependent cycles.
Therefore, the cycle-cutset sizenis

The previous lemma and example show that, for SAT as
a particular case of CSP, the space of a formula is always
smaller than the cycle-cutset size, and can be arbitrarily
smaller. Therefore the space is a better measure.

In the tree decomposition method (Dechter and Pearl
1989), we put some variables into clusters of variables and
structure those clusters as a tree satisfying (1) for every
clause, all its variables are inside some of the clusters, an
(2) for every variable, the set of clusters containing tlais-v
able induces a (connected) subtree. With this method we
get a complexityO(n 4% °8"), wheren is the number of
variables, andv is the treewidth of the decomposition (i.e.
the size of the biggest cluster). As it is proved in (Gottlob,
Leone, and Scarcello 2000), this methodetterthan the
cycle-cutset method. However, like cycle-cutsets, it abar
terizes tractability due to the structure, not to the caistr
relation. This makes easy to find, similarly to Example 16,
an unsatisfiable set of clauses where every variable is re-
lated with every variable by a binary clause. This formula
has space, but the treewidth is equal to the number of vari-
ables.

Experimental Results

We have conducted a set of experiments on random and
industrial SAT instances, with a modified version of the
SAT solver satz (Li and Anbulagan 1997) that we will call
strahler-satz. For unsatisfiable instances strahlerrsptrts

#vars () | spacef) | 100-s/n
100 5 5
150 6.5 4.33
200 8.1 4.05
250 9.77 3.90
300 11.28 3.76
350 12.8 3.67
400 14.62 3.65

Table 2. Space at the peak in the phase transition region of
random 3-SAT instances, rati@clauses/#vars = 4.25
(with 20 instances per point).

4

9% strahler / vars

9% strahler / vars

35

7.5 100

ratio clauses / var

Figure 2: (Left) Evolution of the ratioh00 - space/#vars
with respect to#clauses/#vars for random 3-SAT in-
stances.

(Right) Evolution of the quotient00 - space/#vars with
respect to#tvars for random 3-SAT instances with fixed ra-
tio #clauses/#vars = 4.25.

the Strahler of the proof tree generated by satz. Since the
space of a formula is defined as the minimum Strahler of a
proof tree, strahler-satz gives an upper bound on the space
(we have checked the program on instances with known
space and saw that the upper bound almost coincides with
the real value). For satisfiable instances strahler-satz co
putes the Strahler of the partial proof tree constructed unt
the satisfying assignment is found. This value is, in gen-
eral, smaller thars® defined for satisfiable instances, be-
causes® corresponds to the Strahler of the proof search tree
that needs to be generated to figtl the satisfying assign-
ments, not just the first one as strahler-satz does. Theteffec
of this underestimation in the computation of the space of
satisfiable instances is a shift of the peak of the phase tran-
sition to the right.

Table 1 shows the evolution of the space across the phase
transition for random 3-SAT instances. As we can see the
maximum value of the space is a bit more to the right of
the phase transition poidt25. We conjecture that thesal
(theoretical) space has a peak exactly in the phase ti@amsiti
point. In this table we also show the space filtering satisfi-
able instances (with an underestimated computation af thei
space) to show that, for unsatisfiable instances, the space i
bigger at4.25 than at4.5.

Table 2 shows the evolution of the space for random 3-
SAT instances generated at the peak in the phase transition



#clauses/#vars
#vars 2513135 4 4.25 4.5 5 55 6 10 15
200 | sat & unsat 2|1 2| 23| 4.05 6.5 7.55 6.55 6.05| 555 | 4.05| 3.15
only unsat - - - - 81| 755| 6.55| 6.05| 5.55| 4.05| 3.15
400 | sat & unsat 21225 7.8 | 12.65 13.4 ] 11.55| 10.35 9.1 5.8 | 4.15
only unsat - - - - | 14.62 13.4 | 11.55| 10.35 9.1 5.8 | 4.15
500 | sat & unsat 212129 9.8 15 | 16.25| 13.85| 12.35| 10.9 6.3 | 4.85
only unsat - - - - 17.8 | 16.25| 13.85| 12.35| 10.9| 6.3 | 4.85

Table 1: Space across the phase transition region for raBd8AT instances20 instances per point).

instance | unsat/saf #varsg) [ space ) [ 100 - s/n
sat solver competition 2005
vmpc27 sat 729 5 0.68
vmpc30 sat 900 4 0.44
depots3ks99i sat 1037 7 0.67
driverlog2.vOli sat 763 6 0.81
ferry6_ks99i sat 1425 13 0.91
ferry6_ks99a sat 701 4 0.57
ferry7_ks99a sat 960 11 1.14
satellite2vOli sat 853 8 0.93
www.satlib.org

ssa2670-141.cnf unsat 986 16 1.62
s$sa2670-130.cnf unsat 1359 15 1.10
ssa0432-003.cnf unsat 435 7 1.6
bf2670-001.cnf| unsat 1393 6 0.43
bf1355-075.cnf| unsat 2180 7 0.32
bf0432-007.cnf| unsat 1040 6 0.57
bf1355-638.cnf| unsat 2177 7 0.32

Table 3: Space at industrial instances.

region, ratio4.25. We can see that the Strahler grows pro-
portionally to the number of variables in the SAT instances.
In other words, the quotienpace/#vars seems to tend to
0.036 for big random instances at the phase transition region
(see Fig. 2 right).

Finally, Table 3 shows the space for some satisfiable and
unsatisfiable industrial instances. As we can observe the ra
tio space/#vars is smaller for the industrial instances than

for random instances generated at the peak of the phase tran-

sition region.
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