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IIIA, CSIC

Campus UAB, 08193 Bellaterra, Spain
{levy,felip}@iiia.csic.es

Abstract

The search of a precise measure of what hardness of SAT
instances means for state-of-the-art solvers is a relevant re-
search question. Among others, the space complexity of tree-
like resolution (also called hardness), the minimal size of
strong backdoors and of cycle-cutsets, and the treewidth can
be used for this purpose.
We propose the use of the tree-like space complexity as a
solid candidate to be the best measure for solvers based on
DPLL. To support this thesis we provide a comparison with
the other mentioned measures. We also conduct an experi-
mental investigation to show how the proposed measure char-
acterizes the hardness of random and industrial instances.

Introduction
Even though the SAT/CSP problems are NP-Complete, there
are groups of instances that can be solved quickly by state-
of-the-art solvers. For example, industrial instances may
have a huge a number of variables and still be solved in a
reasonable amount of time by modern solvers. Therefore, a
better knowledge about what a hard/easy instance is, would
help to design better practical SAT solvers. This question
is related with the characterization ofreal-world (industrial)
instances. This was one of the motivations of (Williams,
Gomes, and Selman 2003; Dilkina, Gomes, and Sabharwal
2007), when they defined backdoors as a measure of hard-
ness. They answer two key questions: (1) What is the size
of the backdoors in real-world (industrial) instances? Ex-
perimentally they conclude that they are small. (2) Even
taking into account the expense of searching for backdoors,
can one still obtain an overall computational advantage us-
ing them? They prove that, for constant-bounded backdoor
size, there exists a polynomial decision algorithm, being the
size of the backdoor its degree. In CSP there are two no-
tions that can also characterize the hardness of problems: the
size of cycle-cutsets, and the treewidth. These two notions
also share the good properties of backdoors: when they are
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constant-bounded, they measure the degree of a polynomial
decision algorithm.

In this paper we propose the use of another measure:
the space complexity of tree-like resolution(Torán 1999;
Esteban and Torán 1999; 2001; Ben-Sasson and Galesi
2003) also calledhardness of a formulain (Kullmann 1999;
2004). In this paper we will call itspacefor short. Like for
the previous measures, we also prove that constant-bounded
space implies the existence of a polynomial decision algo-
rithm, being the space the degree of the polynomial (see
Theorem 6). Moreover, we prove that the space is smaller
than the size of cycle-cutsets and, under certain assumptions,
also smaller than the size of backdoors.

Our project can be formalized as:

Find a measureψ, and an algorithm that given a formula
Γ decides satisfiability in timeO(nψ(Γ)). The smaller the
measure is, the better it characterizes the hardness of a for-
mula.

The preference for smaller measures is because a bigger
measure means that some instances, that could be solved ef-
ficiently, are erroneously classified as hard. Therefore, ac-
cording to this project, the space characterizes the hardness
of problems better than strong backdoors and cycle-cutsets.
We also show that there are cases where the space is arbi-
trarily smaller than the treewidth (one is 2 whereas the other
is equal to the number of variables).

We know that thewidth of a formulais smaller than the
space (Esteban and Torán 2001; Nordstr̈om 2006), and that
there exists an algorithm that works in timeO(nwidth(Γ)).
Therefore, we could conclude that, according to our project,
the width is a better measure than the space. Unfortunately,
this algorithm also requires spaceO(nwidth(Γ)) which dis-
ables its use in real solvers, and makes the width a bad mea-
sure of what is hard for those real solvers.

Another natural candidate measure is the logarithm of
the minimum tree-like resolution proof of a formula, noted
ts(Γ). If a SAT solver tries to construct tree-like resolution
proofs, the size of the minimal of such proofs will be a good
measure of the hardness of the formula. Moreover, there is
an algorithm that works in timeO(nlog ts(Γ)) (Beame and
Pitassi 1996). However, we also prove that the space is
smaller thanlog ts(Γ). The more unbalanced the proof tree
is, the bigger the difference between the two measures is.



As a first step in the formulated research project we can
justify the optimality of our measure respect to solvers based
on tree-like resolution1. We use the following argumenta-
tion: a problem iseasyfor a solver based on tree-like res-
olution, if there is asmall measuresuch that, instantiating
one of the variables (smartly selected) by one truth value,
the measure strictly decreases, and instantiating by the other
truth value, it doesn’t increase. This is the minimum require-
ment for ensuring polynomial solvability (in the measure) by
tree search (being the degree of the polynomial the value of
the measure). This is precisely the definition of space. Con-
trarily, in the definition of strong backdoors we force the
measure to decrease inbothsub-trees, and the selected vari-
ables to be the same in all the branches (the ones belonging
to the backdoor). Instead, for space, selected variables don’t
have to be the same in all branches.

The fact we talk about tree-like proofs in our definition of
space is not a big issue, despite the fact that most modern
SAT solvers are not simply DPLL. This is because our no-
tion of space is compared with other measures in terms of a
project goal where nothing is said about the proof system.

The Space of an Unsatisfiable Formula
The tree-like space complexity of a formula is defined
in (Esteban and Torán 1999; 2001) as the space needed to
construct a tree-like resolution proof of the formula. Being
the space the maximum number of clauses that have to be
kept in memory simultaneously. The definition is not very
intuitive, thus we give here an equivalent definition based on
the minimum Horton-Strahler number of a tree-like resolu-
tion proof of the formula.

TheHorton-Strahler number of a tree(Strahler of a tree,
for short) (Horton 1945; Strahler 1952) was originally de-
fined in the area of geology to study the morphology of
rivers. Later, it was re-invented, in the area of computer
science (Ershov 1958), as the minimum number of regis-
ters needed by a CPU to evaluate an arithmetic expression
(built up from binary operations) and represented as a bi-
nary tree2. The notion is quite natural, but sometimes badly
known, which has propitiated that it was re-invented several
times. It is calleddc in (Esteban and Torán 1999) andlev-
eled heightin (Kullmann 1999). These are three equivalent
definitions of the Strahler of a tree.

Definition 1 (1) The Strahler of a (binary) tree is defined
recursively as follows.

hs(•) = 0

hs
( •
T1 T2

)

=

{

hs(T1) + 1 if hs(T1) = hs(T2)

max{hs(T1), hs(T2)} otherwise

where• is a node andT1 andT2 are trees.
(2) The Strahler of a treeT is the depth of the biggest com-
plete tree (i.e. tree where all branches have the same length)
that can be embedded intoT .

1A second step would be to define a measure and the corre-
sponding algorithms for solvers based on learning.

2In fact the minimum number of register is the Strahler plus
one.

(3) The Strahler of a tree is the minimum number of pointers
(memory) that we need in order to traverse it, minus one.

The Strahler of a tree is bounded by its maximal depth,
and by the logarithm of its size, and the three measures are
equal in perfectly balanced trees.

Definition 2 The space of a unsatisfiable CNF formulaΓ,
noteds(Γ), is equal to the minimum among all the Strahlers
of tree-like refutations of the formula.

Notice that the space of a formula is bounded by the num-
ber of variables. However, as observed in the experiments,
in real-world instances, the space is quite small, compared
with the number of variables.

Lemma 3 The space satisfies the following three properties
(1) s(Γ ∪ { }) = 0
(2) For any unsatisfiable formulaΓ, and any partial truth
assignmentφ, we haves(φ(Γ)) ≤ s(Γ).
(3) For any unsatisfiable formulaΓ, if 6∈ Γ, then there
exists a variablex and an assignmentφ : {x} → {0, 1},
such thats(φ(Γ)) ≤ s(Γ) − 1.

The space of a formula is the minimum measure on formulas
that satisfy (1), (2) and (3). In other words, we could define
the space as:3

s(Γ) = min
x,x∈Γ

b∈{0,1}

{max{s([x 7→ b](Γ))+1 , s([x 7→ b](Γ))} }

when 6∈ Γ, ands(Γ ∪ { }) = 0.

PROOF: (1), (2) and (3) are easy to prove. For the last part,
suppose thatx and b are the values that give us the mini-
mal. W.l.o.g. assume thatb = 1. From the proof tree of
[x 7→ b](Γ) ⊢ , adding the literalx in the clauses where
[x 7→ b] has removed it, but preserving the structure of the
proof tree, we get a proof ofΓ ⊢ x. Since we preserve
the structure, we also preserve the Strahler of the tree. We
proceed similarly for[x 7→ b](Γ) ⊢ . Adding a cut ofx
to these two tree proofs, we get a proof ofΓ ⊢ , where
the Strahler is the maximum between one of the original
Strahlers, and the other plus one. Hence, it satisfies the
equality.

Lemma 3 helps us understand the good properties of the
notion of space: when we are forced to try two distinct as-
signments for a variable, if we are smart enough selecting
the variable, we can get, in at least one of the sub-trees, a for-
mula with a strictly smaller space (and the same or smaller
in the other). This ensures that, if the space is small, we will
avoid the combinatorial explosion of the worst-case.

Instances with Small and Big Space
The DPLL algorithm, as well as all its sequels, introduce im-
portant features that make the solvers more efficient than a
simple blind check of all possible variable instantiations. In
particular, they use the so-called “unit clause propagation”.
The following lemma characterizes the set of clauses that

3Notice that, sinceΓ is unsatisfiable, it either contains or it
contains a variable with both signs.



can be proved unsatisfiable only using unit propagation, as
the formulas with space one. This set of clauses is equal
to the set ofHorn renamableclauses (Henschen and Wos
1974), i.e. the set of clauses that using a renaming of vari-
ables can be transformed into Horn clauses.

Lemma 4 A formulaΓ is Horn renamable iffs(Γ) ≤ 1.

PROOF: The equivalence between Horn renamable clauses
and formulas that can be proved only using unit propaga-
tion is found in (Henschen and Wos 1974). And the equiv-
alence between these ones and formulas that can be proved
by linear tree-like resolution is found in (Beame, Kautz, and
Sabharwal 2004). Now, it is easy to see that linear tree-like
resolution proofs have space equal to one.

Lemma 5 For every unsatisfiable2-CNF formula Γ we
haves(Γ) ≤ 2.

PROOF: If a 2-CNF formula is unsatisfiable, then either it
can be proved with unit clause propagation, or we have a
cycle of implications:
x→ l1 → · · · → lr → x→ l′1 → . . .→ l′s → x
for some variablex and a list of pair-wise distinct literals
(variables with sign)l1, . . . , lr and a similar listl′1, . . . , l

′
s.

In such case, we can construct the following proof with
space two:

x
lr ∨ x x ∨ lr

x ∨ l2

l1 ∨ l2 x ∨ l1

x
l′s ∨ x x ∨ l′s

x ∨ l′2

l′
1
∨ l′2 x ∨ l′1

Ben-Sasson and Galesi (2003) prove that for randomk-
CNF formulas overn variables, withαn clauses (beingα <
4.506), with probability tending to1 asn tends to∞, resolu-
tion requires spaceΩ(

√

n
α

log n
α

2 logn ). Since the space for gen-
eral resolution is smaller than or equal to the space for tree-
like resolution, this big lower bound explains why random
formulas are difficult SAT instances. Likewise, (Torán 1999;
Esteban and Torán 2001) show that the pigeonhole principle
formulasPHPn+1

n require spaceΩ(n).

Proving Instances with Small Space
The algorithm that we propose is a variation of the Beame-
Pitassi algorithm (Beame and Pitassi 1996), that can be also
found in (Kullmann 1999). Given an unsatisfiable formula,
the algorithm searches its space, starting with space equals
to one. This is done in the function beamepitassi. For each
particular possible space it applies the procedure trystrahler.
In this procedure we cycle trough all2n possible literals
trying to recursively figure out if the formula resulting from
falsifying this literal has space one less. Once we find such
a literal, we recursively call trystrahler only once with the
opposite literal and the same space. If a satisfying assign-
ment is found with some of the instantiations, the algorithm
aborts execution.

Theorem 6 Satisfiability of a CNF formulaΓ can be de-
cided in timeO(ns(Γ)+1).

function try strahler(Γ, s, φ) returns 〈bool, prooftree〉
if s = 0 then return 〈false, 〉
if φ falsifies a clauseC ∈ Γ
then return 〈true, hypothesis(C)〉
if φ satisfies all clauses ofΓ
then print φ

return 〈true, 〉
foreachvariablex 6∈ domain(φ) and b ∈ {true, false} do
〈found, t1〉 = try strahler(Γ, s − 1, φ ∪ [x 7→ b])
if found
then 〈found, t2〉 = try strahler(Γ, s, φ ∪ [x 7→ ¬b])

return 〈found, cut(x, t1, t2)〉
endfor
return 〈false, 〉

endfunction

function beamepitassi(Γ)
proved := false
s := 1
while s ≤ numvarsof(Γ) and¬proved do
〈proved, proof〉 := try strahler(Γ, s, [ ])
s := s + 1

endwhile
exit 〈unsat, proof〉

endfunction

Figure 1: The decision algorithm.

PROOF: Using the algorithm of Fig. 1. LetT (s, n) be
the worst-case time needed by the trystrahler function to
check a formula withn variables and spaces. We can es-
tablish the recurrenceT (s, n) ≤ 2nT (s − 1, n − 1) +
T (s, n − 1). The solution of this recurrence can be found
in (Beame and Pitassi 1996), and isT (s, n) = O(ns). For
the beamepitassi function the worst-case time needed is
∑s
i=1 O(ni) = O(ns+1).

In DPLL we proceed by selecting a variable, instantiating
it by a truth value, and later by the contrary, generating two
sub-trees in our proof search tree. This process, in the worst
case, generates an exponential refutation proof tree, on the
number of variables. In the absence of backjumping, clause
learning, and other features of modern solvers, theproof-
search treehas a size similar to the size of theproof tree
resulting form the search. In some cases, it would be worth
searching for a smaller proof tree, even on the expense of
having a proof search tree bigger than the proof tree. In fact,
this is the case with the Beame-Pitassi algorithm:

The size of the proof tree computed by the Beame-Pitassi
algorithm is dominated by the recursion:

S(s, n) ≤ S(s− 1, n− 1) + S(s, n− 1) + 1

with solutionS(s, n) = 2
∑s
i=1

(

n
i

)

= O(ns). For small
values ofs, this upper bound is tight. Therefore, for formu-
las with small space, the size of the proof treeO(ns), and the
time needed by the algorithm to find itO(ns+1) are similar.
However, fors close ton, the size of the proof tree isO(2n),
and the time needed by the algorithm to find itO(nn). This
last upper bound is bigger than theO(2n) needed by DPLL,
which is more competitive than Beame-Pitassi for instances
with big space.



Like the question of the computation of backdoors (Dilk-
ina, Gomes, and Sabharwal 2007), an interesting question
here is the study of heuristics leading to the construction of
the proof tree with smallest Strahler.

The Space Needed for Satisfiable Formulas
There are several natural extensions of the space definition
to satisfiable formulas. Here we propose two of them, re-
spectively denoted bysa andsb. The following are some
standard and preliminary definitions.

Definition 7 Let φ be a partial assignment, we define the
clause associated toφ, notedCφ, as

∨

φ(x)=0 x∨
∨

φ(y)=1 y.
Given a formulaΓ and a partial assignmentφ, the formula
φ(Γ) is the set resulting fromΓ after removing all clauses
containing a literalx such thatφ(x) = 1, and removing all
literals x such thatφ(x) = 0.
A partial assignmentφ is said to satisfy a formulaΓ if
φ(Γ) = ∅.

Definition 8 LetΓ be a satisfiable or unsatisfiable formula,
we propose the following two alternative definitions of gen-
eralized space:

sa(Γ) = maxassignmentφ{s(φ(Γ)) | φ(Γ) ⊢ }

sb(Γ) = s(Γ ∪ {Cφ | φ(Γ) = ∅})

Notice that both definitions are extensions of the space
definition for unsatisfiable formulas: ifΓ is unsatisfiable,
thens(Γ) = sa(Γ) = sb(Γ). We can also prove the follow-
ing results.

Lemma 9 For any formulaΓ, we havesa(Γ) ≤ sb(Γ)

PROOF: Sketch: Let φ̂ be an assignment maximizing
{s(φ(Γ)) | φ(Γ) ⊢ }. Hence,sa(Γ) = s(φ̂(Γ)) and
φ̂(Γ) ⊢ . Now, sinceφ̂ transform the clausesCφ of
the definition ofsb into tautologies, we haves(φ̂(Γ)) =

s(φ̂(Γ ∪ {Cφ | φ(Γ) = ∅})). Finally, from

s(φ̂(Γ∪{Cφ | φ(Γ) = ∅})) ≤ s(Γ∪{Cφ | φ(Γ) = ∅}) =
b
s(Γ)

we deduce the inequality.

Lemma 10 The adaptation of the Beame-Pitassi algorithm
of Figure 1, given a satisfiable formulaΓ, finds in time
O(ns

b(Γ)) a complete set of satisfying assignments.

PROOF: Sketch: The algorithm does a similar work forΓ
and forΓ ∪ {Cφ | φ(Γ) = ∅}. The only difference is that,
in one case uses the clauses from{Cφ | φ(Γ) = ∅} to get a
contradiction, whereas in the other case prints the satisfying
assignment.

An example ofeasy satisfiable formulas are commer-
cial sudokus encoded as SAT formulas. The complexity
of this problem is studied in (Lynce and Ouaknine 2006;
Ansótegui et al. 2006). In particular, they give the percent-
age of problems (from a database of sudoku problems) that
can be solved with unit propagation and other forms of re-
stricted inference rules. One of these rules is the so-called

failed literal rule (Freeman 1995). It is applied as follows,
if after assigning[x→ b], whereb ∈ {0, 1}, and performing
unit propagation we get a conflict, then we assign[x → b].
This rule together with the unit clause propagation rule char-
acterizes the set of formulas with space two.

Lemma 11 A formulaΓ can be proved unsatisfiable only
using unit propagation and the failed literal rule, if, and only
if, s(Γ) ≤ 2.

PROOF: The proof of the equivalence is similar to the proof
of Lemma 4. We only need to notice that the resolution steps
corresponding to this restricted form of inference have the
following form:

C

C ∪ {x}

• •

• •

• •

•
In other words, the failed literal
rule corresponds to a resolution
step where one of the premises
has space one, since it is proved
only using unit clause propaga-
tion.

Since all the sudokus analyzed in (Lynce and Ouaknine
2006), using the so-called extended encoding (i.e. adding
some redundant clauses that make the problem easier), can
be solved only using unit clause propagation and the failed
literal rule, we can conclude that all these (extended) encod-
ings have space two.

Comparison with Backdoors
and the Minimum Proof Tree Size

In this section we compare our results about the space of an
unsatisfiable formula with the size of the minimumstrong
backdoor of the formula. In what follows, when we say
backdoor we meanstrongbackdoor.

Given a sub-solverA, and a unsatisfiable formulaΓ a
strong backdoor (Williams, Gomes, and Selman 2003, Def-
inition 2.4) is a subsetS of the variables such that, for every
partial variable assignmentφ : S → {0, 1}, the sub-solver
concludes unsatisfiability forφ(Σ) in polynomial time.

The first thing that must be noticed is that this definition
depends on the given sub-solver. First, we will assume that
it only performs unit clause propagation, i.e. we will as-
sume that, if the sub-solver accepts a formula, and deter-
mines its unsatisfiability, then this formula has space one.
Later we will discuss how to extend the comparison in gen-
eral. In (Williams, Gomes, and Selman 2003, Theorem 4.1),
it is proved that deciding if a formula with a backdoor of

sizeb is satisfiable is inO(p(n)
(

2n
b1/2

)b
), wherep(n) is a

polynomial, related with the performance of the sub-solver.
In our case, we will assume thatp(n) = n, as it is the case
for the sub-solvers we are considering.

Compared with the performance obtained with the
Beame-Pitassi algorithm (Theorem 6) this complexity is bet-
ter, since we haveb1/2 in the denominator. However, for
constant backdoors sizes and constant space, we have poly-
nomial complexity in both cases, being the space and the
backdoor size the exponent of the polynomial.



The following lemma will help us compare the space of a
formula with the size of backdoors and cycle-cutsets.

Lemma 12 Given a formulaΓ, a set of variablesS, and a
valuek ≥ 0, if for any assignmentφ : S → {0, 1} we have
s(φ(Γ)) ≤ k, thens(Γ) ≤ k + |S|.

PROOF: For eachφ, we construct a tree-like resolution
proof φ(Γ) ⊢ , with space bounded byk. Now, fromφ,
we construct the clause that falsifies the assignmentCφ =
∨

φ(x)=0 x ∨
∨

φ(y)=1 y. Adding some of the literals ofCφ
to the clauses ofφ(Γ) we can getΓ. Doing the same to the
proofφ(Γ) ⊢ , we get a proofΓ ⊢ C ′

φ, whereC ′
φ ⊆ Cφ,

with the same structure, hence space, as the original proof.
Therefore, for each one of the2|S| clausesC built up from
the variables ofS, we have a subclauseC ′ ⊆ C, and a proof
Γ ⊢ C ′. Now, cutting the variables ofS we can construct
a proof tree of maximal depth|S| that derives the empty
clause from the clausesC ′. The composition of these trees
results in a tree with space bounded byk + |S| that derives
the empty clause fromΓ.

Lemma 13 Given a sub-solverA that only accepts formu-
las with spacek, if the subset of variablesS is a strong back-
door of the formulaΓ, thens(Γ) ≤ |S| + k.

Notice that this lemma concludes that, according to our
project goal, the size is a better measure than the minimal
backdoor size. However, the result is conditioned by an as-
sumption. If the sub-solvers only accepts Horn clauses, then
the result is true withk = 1. If the sub-solver works on
polynomial time, then it is reasonable to assume that it only
accepts formulas with an space bounded by the degree of
this polynomial.

On the other hand, the space may be arbitrarily smaller
than the size of strong backdoors, as the following example
shows.

Example 14 Assume that the following family of unsatisfi-
able formulasΓj = {Cj1 , . . . , C

j
nj
} are difficult for the sub-

solver, forj = 1, . . . ,m, and assume that they have disjoint
variables. Letbj be the minimal size of backdoors ofΓj .
Let us define the following unsatisfiable formula

Γ = {C1
1 ∨ · · · ∨ Cm1 } ∪

m
⋃

j=1

{Cj2 , . . . , C
j
nj
}

To get an easy formula for the sub-solver we have to in-
stantiate all variables of some backdoor of each subformula,
hence the size of minimal backdoors ofΓ is

∑m
j=1 b

j . How-
ever, the space ofΓ is bounded bymaxmj=1{s(Γ

j)} + 1. To
prove the statement, we can construct the following refuta-
tion tree.
C1

1 ∨ · · · ∨ Cm1 Cm2 Cmnm

C1
1 ∨ · · · ∨ Cm−1

1

C1
1 ∨ C2

1 C2
2 C2

n2

C1
1 C1

2 C1
n1

The backdoor size satisfies the following property: for
any formula Γ, there exists a variablex, such that
for any assignmentφ : {x} → {0, 1}, we have
backdoorsize(φ(Γ)) ≤ backdoorsize(Γ) − 1. There-
fore, the backdoor size decreases in both subtrees of the
proof. Notice that this property is similar to property (3) of
lemma 3, but more restrictive. This explains why it results
into a bigger measure.

As we have already said, in very basic SAT solvers, the
proof treeand thesearch treeare similar. In the DPLL algo-
rithm, for instance, both trees are equal except for the unit
propagation. This means that the Strahler of the search tree
can be one unit smaller than the Strahler of the proof tree4.
The bigger the inference in each node is, the bigger is this
difference between the Strahlers of the proof and the search
trees. We can define thepractical spaceas the Strahler of the
searchtree. Moreover, like for backdoors, we can make this
definition parametric on the sub-solver used in the leaves of
the search tree. These subsolvers on the leaves would play
the same role as the oracles in (Kullmann 1999). In fact,
in the experiments of the last section, we estimate the space
as the Strahler of the search tree. Then, since the size of
the backdoor roughly corresponds to the hight of the search
tree, and this is always bigger than its Strahler (speciallyin
unbalanced trees), we can conclude that the practical space
is smaller than the backdoor size.

According to our project, the logarithm of the minimum
tree-like resolution proof of a formula, notedlog ts(Γ) is a
good, and also natural, measure of its hardness. This is be-
cause there exists an algorithm (the original Beame-Pitassi
algorithm) that decides satisfiability in timeO(nlog ts(Γ)).
However, according to this project, the space proposed in
our paper is abettermeasure, because for any formulaΓ:

s(Γ) ≤ log ts(Γ) ≤ s(Γ) · log n

wheren is the number of variables ofΓ.
The first inequality holds because the Strahler of a tree is

equal to the logarithm of the size of the the maximal com-
plete tree that can be embedded into the tree (see Defini-
tion 1), hence smaller that the logarithm of the size of the
tree. The second inequality comes from the fact thatts(Γ) is
smaller than the size of the tree computed by Beame-Pitassi
algorithm, and this is bounded byns(Γ)+1. For small space
instances thelog(n) factor is important. For instance, for
Horn formulas, the space is always1, whereas the size of
the minimal tree-like proof can ben.

Comparison with Cycle-CutSets and
Treewidth

The cycle-cutset technique consists in breaking cycles in
graphs of variable dependencies (here, two variables are de-
pendent if they share the same clause) by instantiating some
of the variables. A cycle-cutset is a set of variables that af-
ter instantiation transform the dependency graph into a tree.

4For instance, for Horn formulas, the Strahler of the proof tree
is one, whereas the Strahler of the search tree –there is only one
node– is zero.



Once we have a tree of dependencies, we can apply simple
methods to get the instances of the rest of variables. There-
fore, the size of minimal cycle-cutsets gives an idea of how
hard a problem is, in fact the method has a time complex-
ity O(n 2c), wheren is the number of variables, andc the
cycle-cutset size. However, we can prove that the space is
smaller than the size of the cycle-cutset:

Lemma 15 For any formulaΓ, with a cycle-cutsetS we
haves(Γ) ≤ |S| + 1.

PROOF: Sketch: The proof is similar to Lemma 13. Af-
ter instantiating the cycle-cutset variables, we get a formula
with a dependency graph with tree shape. This formula is
Horn renamable, hence its space is at most one.

Example 16 The following unsatisfiable formula










ai ∨ bi
bi ∨ ai+1

ai+1 ∨ ci
ci ∨ ai











i=1,...,n−1

∪











an ∨ bn
bn ∨ a1

a1 ∨ cn
cn ∨ an











has space two (since it is a 2-CNF). However, its graph
of variable dependencies containsn independent cycles.
Therefore, the cycle-cutset size isn.

b1 b2 bn

c1 c2 cn

a2 a3

· · ·

· · ·

· · ·

an

a1

The previous lemma and example show that, for SAT as
a particular case of CSP, the space of a formula is always
smaller than the cycle-cutset size, and can be arbitrarily
smaller. Therefore the space is a better measure.

In the tree decomposition method (Dechter and Pearl
1989), we put some variables into clusters of variables and
structure those clusters as a tree satisfying (1) for every
clause, all its variables are inside some of the clusters, and
(2) for every variable, the set of clusters containing this vari-
able induces a (connected) subtree. With this method we
get a complexityO(n 4w logn), wheren is the number of
variables, andw is the treewidth of the decomposition (i.e.
the size of the biggest cluster). As it is proved in (Gottlob,
Leone, and Scarcello 2000), this method isbetter than the
cycle-cutset method. However, like cycle-cutsets, it charac-
terizes tractability due to the structure, not to the constraint
relation. This makes easy to find, similarly to Example 16,
an unsatisfiable set of clauses where every variable is re-
lated with every variable by a binary clause. This formula
has space2, but the treewidth is equal to the number of vari-
ables.

Experimental Results
We have conducted a set of experiments on random and
industrial SAT instances, with a modified version of the
SAT solver satz (Li and Anbulagan 1997) that we will call
strahler-satz. For unsatisfiable instances strahler-satzreports

#vars (n) space (s) 100 · s/n
100 5 5
150 6.5 4.33
200 8.1 4.05
250 9.77 3.90
300 11.28 3.76
350 12.8 3.67
400 14.62 3.65

Table 2: Space at the peak in the phase transition region of
random 3-SAT instances, ratio#clauses/#vars = 4.25
(with 20 instances per point).
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Figure 2: (Left) Evolution of the ration100 · space/#vars
with respect to#clauses/#vars for random 3-SAT in-
stances.
(Right) Evolution of the quotient100 · space/#vars with
respect to#vars for random 3-SAT instances with fixed ra-
tio #clauses/#vars = 4.25.

the Strahler of the proof tree generated by satz. Since the
space of a formula is defined as the minimum Strahler of a
proof tree, strahler-satz gives an upper bound on the space
(we have checked the program on instances with known
space and saw that the upper bound almost coincides with
the real value). For satisfiable instances strahler-satz com-
putes the Strahler of the partial proof tree constructed until
the satisfying assignment is found. This value is, in gen-
eral, smaller thansb defined for satisfiable instances, be-
causesb corresponds to the Strahler of the proof search tree
that needs to be generated to findall the satisfying assign-
ments, not just the first one as strahler-satz does. The effect
of this underestimation in the computation of the space of
satisfiable instances is a shift of the peak of the phase tran-
sition to the right.

Table 1 shows the evolution of the space across the phase
transition for random 3-SAT instances. As we can see the
maximum value of the space is a bit more to the right of
the phase transition point4.25. We conjecture that thereal
(theoretical) space has a peak exactly in the phase transition
point. In this table we also show the space filtering satisfi-
able instances (with an underestimated computation of their
space) to show that, for unsatisfiable instances, the space is
bigger at4.25 than at4.5.

Table 2 shows the evolution of the space for random 3-
SAT instances generated at the peak in the phase transition



#clauses/#vars
#vars 2.5 3 3.5 4 4.25 4.5 5 5.5 6 10 15
200 sat & unsat 2 2 2.3 4.05 6.5 7.55 6.55 6.05 5.55 4.05 3.15

only unsat - - - - 8.1 7.55 6.55 6.05 5.55 4.05 3.15
400 sat & unsat 2 2 2.5 7.8 12.65 13.4 11.55 10.35 9.1 5.8 4.15

only unsat - - - - 14.62 13.4 11.55 10.35 9.1 5.8 4.15
500 sat & unsat 2 2 2.9 9.8 15 16.25 13.85 12.35 10.9 6.3 4.85

only unsat - - - - 17.8 16.25 13.85 12.35 10.9 6.3 4.85

Table 1: Space across the phase transition region for random3-SAT instances (20 instances per point).

instance unsat/sat #vars(n) space (s) 100 · s/n
sat solver competition 2005

vmpc27 sat 729 5 0.68
vmpc30 sat 900 4 0.44

depots3ks99i sat 1037 7 0.67
driverlog2v0li sat 763 6 0.81
ferry6 ks99i sat 1425 13 0.91
ferry6 ks99a sat 701 4 0.57
ferry7 ks99a sat 960 11 1.14
satellite2v0li sat 853 8 0.93

www.satlib.org
ssa2670-141.cnf unsat 986 16 1.62
ssa2670-130.cnf unsat 1359 15 1.10
ssa0432-003.cnf unsat 435 7 1.6
bf2670-001.cnf unsat 1393 6 0.43
bf1355-075.cnf unsat 2180 7 0.32
bf0432-007.cnf unsat 1040 6 0.57
bf1355-638.cnf unsat 2177 7 0.32

Table 3: Space at industrial instances.

region, ratio4.25. We can see that the Strahler grows pro-
portionally to the number of variables in the SAT instances.
In other words, the quotientspace/#vars seems to tend to
0.036 for big random instances at the phase transition region
(see Fig. 2 right).

Finally, Table 3 shows the space for some satisfiable and
unsatisfiable industrial instances. As we can observe the ra-
tio space/#vars is smaller for the industrial instances than
for random instances generated at the peak of the phase tran-
sition region.

References
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