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Abstract.
Neural network-based treatment effect estimation algorithms are well-known in

the causal inference community. Many works propose new designs and architectures
and report performance metrics over benchmarking data sets, in a Machine Learning
manner. Nevertheless, most authors focus solely on binary treatment scenarios.
This is a limitation, as many real-world scenarios have a multivalued treatment.
In this work, we present a novel approach where we generalize a top-performing,
neural network-based algorithm for binary treatment effect estimation to a multi-
valued treatment setting. Our approach yields an estimator with desirable asymptotic
properties, that delivers very good results in a wide range of experiments. To the
best of our knowledge, this work is opening ground for the benchmarking of neural
network-based algorithms for multi-valued treatment effect estimation.

Keywords. Causal Inference, Multi-valued Treatment Effect Estimation, Neural
Networks

1. Introduction

Machine learning and neural networks are becoming a common choice for performing
causal analysis tasks (causal inference, causal discovery) due to their power and flexi-
bility for modelling complex functions, especially when dimensionality of the data is
high[1]. Several authors have investigated specific network architectures, loss functions,
regularization methods, etc. to tackle the task of inferring causal quantities using neural
networks[2][3][4]. The performance of those algorithms is being benchmarked in the
scientific literature, by using specific data sets and common metrics to achieve comparable
results [5][6]. These advancements are happening almost exclusively in binary treatment
scenarios. Nevertheless, often real-life applications have multiple-valued treatments (for
instance, multi-armed clinical trials) or continuous treatments that can be discretized to
multiple values [7][8]. This highlights the need to explore neural network-based causal
inference methods for multi-valued treatments, both at the theoretical and empirical levels.
In the present work, we select a top performance, neural network-based, binary average
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treatment effect estimation algorithm named Dragonnet[9] and test its generalizability to
n-valued treatment settings. To the best of our knowledge, this[10] is the first attempt to
establish a benchmark for this type of algorithm in the aforementioned setting. We present
the theoretical and mathematical formulation, we develop a framework for experiments,
and we provide the results obtained in different scenarios.

2. Problem Statement

Let the treatment of interest be a discrete random variable T ∈ [0..k] that can take k+1
different values. Let the outcome be a continuous random variable Y ∈ R, and let the
covariates (i.e. the variables affecting both the treatment and the outcome) be a random
vector X ∈ R j. Thus, our set of data points is (Yi,Ti,Xi), i ∈ [1..N], generated indepen-
dently and identically. This set of data points constitutes our body of observational data.
We define the causal effect of the treatment t over the outcome Y as, µt = E[Y |do(T = t)],
using Pearl’s do-calculus notation [11], which denotes intervention. It can be shown that,
if our data meets certain conditions, we can estimate causal (interventional) quantities
based on observational data. Those conditions are known as the identifiability conditions:
positivity, consistency and "no hidden confounder" conditions. For a more detailed expla-
nation, see [11]. Under such conditions, µt = E[Y |X = x,T = t], which is a quantity that
is inferrable from our body of observational data. Along the rest of the section we assume
that the identifiability conditions are fulfilled.

We define the conditional outcome as the expectation of the outcome given the
treatment and the covariates, Q(t,x) = E[Y |t,x]. Based on Q, we can construct a simple
estimator µ̂t of µt as µ̂t =

1
N ∑i Q(t,xi). In the following, we will be interested in approxi-

mating Q. Let Q̂ be an approximation of Q. We define µ
Q̂
t = 1

N ∑i Q̂(t,xi) as the estimator
of µt obtained replacing Q by its estimation Q̂. Furthermore, we define the Generalized
Propensity Score (GPS[12]), expressed as G(x) = [g0(x),g1(x), . . . ,gk(x)] ∈ Rk+1, with
gt(x) = P(T = t|x).

In a binary treatment setting, under the identifiability conditions, the Average Treat-
ment Effect (ATE) is one of the most common causal quantities of interest, and it is
defined as ψ = µ1 −µ0. Given an approximation Q̂ of Q, we could easily estimate ψ as
ψ Q̂ = µ

Q̂
1 − µ

Q̂
0 . In a multi-valued treatment setting, a wider class of causal quantities

of interest can be defined, and all the conditional outcomes must be computed together
in order to obtain valid estimates of those quantities[12]. In this work, we define such
quantities of interest as the pair-wise average differences between the several treatments
and a treatment considered the control (note that, in practice, the control treatment does
not necessarily mean absence of treatment). Thus, we define a vector of ATEs ψ ∈ Rk,
ψ = [ψ1,ψ2, . . . ,ψk], with ψt = µt −µ0. We can approximate these quantities in a similar
fashion as shown before, the t-th element of the vector being ψ

Q̂
t = µ

Q̂
t −µ

Q̂
0 . Note that if

the causal quantity of interest was ψi, j = µi −µ j, we could easily compute it based on the
previous definition, as ψi, j = ψi −ψ j, due to the linearity of the expectation operator.

The subject of interest in this the paper is the estimation of the vector of ATEs
ψ . In the next section we generalize the estimation method provided in [9], which has
the objective of estimating the ATE in the binary case, to the estimation of ψ in the
multivalued treatment case presented above.
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Figure 1. Hydranet architecture, where Z is the representation layer, and the k+2 heads correspond to the k+1
potential outcomes, Q̂(k, ·), and the Generalized Propensity Score, Ĝ(·).

3. From Dragonnet to Hydranet

Dragonnet is a high-capacity, end-to-end neural network architecture for estimating binary
treatment effects[9]. We present here the variation of the architecture, mathematical
formulations and proofs for adapting Dragonnet to a multivalued treatment setting. We
call this adaptation Hydranet.

3.1. Architecture

The architecture of Hydranet can be seen in Figure 1. It consists of two parts: the repre-
sentation part, formed by the input layer and two hidden layers, and the heads, formed by
k+2 ends. Out of those, k+1 correspond to the conditional outcomes, and are formed by
two more hidden layers plus the output layer. The remaining head corresponds to the GPS,
G(x) = [g0(x),g1(x), . . . ,gk(x)] ∈ Rk+1, with gt(x) = P(T = t|x), consisting on just the
output layer. All layers are fully connected. Recall that we approximate the t-th element
of the vector of ATEs as ψ

Q̂
t = 1

N ∑i Q̂(t,xi)− Q̂(0,xi).
The baseline objective function has the shape

R̂(θ) =
1
N ∑

i
[(Qnn(ti,xi;θ)− yi)

2 +αCrossEntropy(gnn
t (xi;θ), ti)] (1)

where the quadratic term relates to the errors of the potential outcomes’ heads and
the cross entropy term relates to the errors of the propensity score’s head. The model
parameters are

θ̂ = argmin
θ

[R̂(θ)] (2)
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3.2. Targeted Regularization

Now, following the reasoning in [9], we present targeted regularization. Targeted regu-
larization is a modification of the objective function that introduces an extra parameter,
epsilon. In our setting, ε is a vector in Rk,ε = (ε1,ε2, ...εk), and the new objective function
is

F̄(θ ,ε) = R̂(θ)+β
1
N ∑

i
γi(yi, ti,xi;θ ,ε), where (3)

γi(yi, ti,xi;θ ,ε) = (yi − Q̄i(θ ,ε))
2, and (4)

Q̄i(θ ,ε) = Qnn(ti,xi)+ ε1

(
I(T = 1)
gnn

1 (xi)
− I(T = 0)

gnn
0 (xi)

)
+ . . .+ εk

(
I(T = k)
gnn

k (xi)
− I(T = 0)

gnn
0 (xi)

)
(5)

with I(T = t) the indicator function, and thus the sought model parameters are defined
by

θ̂ , ε̂ = argmin
θ ,ε

[R̂(θ)+β
1
N ∑

i
γi(yi, ti,xi;θ ,ε)] (6)

But why this modification in the first place? The answer lies in semiparametric
estimation theory (SET) and targeted maximum likelihood estimation (TMLE). Very
generally, SET provides us with conditions that ensure desirable properties of our estimator
ψ when they are fulfilled, and TMLE is an efficient method to achieve the fulfillment
of those conditions. The conditions are the set of non-parametric estimating equations,
defined as

0 =

[
1
N ∑

i
ϕi,1,

1
N ∑

i
ϕi,2, ...

1
N ∑

i
ϕi,k

]
(7)

and they employ the elements of the vector of efficient influence curves, defined as
ϕ ∈ Rk,ϕ = [ϕ1,ϕ2, ...ϕk], with

ϕi,t = Qnn(t,xi)−Qnn(0,xi)+

(
I(T = t)
gnn

t (xi)
− I(T = 0)

gnn
0 (xi)

)
(yi −Qnn(t,xi))−ψt (8)

Finally, recall that what we want is that the minimization of the modified objective
function ensures the fulfillment of the non-parametric estimation equations. This can be
expressed mathematically as

B. Velasco-Regulez and J. Cerquides / Hydranet: A Neural Network for the Estimation 19



0 = ∇F̄ |
ε̂
=

[
∂ F̄
∂ε1

,
∂ F̄
∂ε2

, ...
∂ F̄
∂εk

]∣∣∣∣
ε̂

=

[
β

N ∑
i

ϕi,1,
β

N ∑
i

ϕi,2, ...
β

N ∑
i

ϕi,k

]
(9)

and the proof can be found in the supplementary material. This warrants the aforemen-
tioned desirable properties of the estimator ψ , i.e. double robustness, fast convergence,
and efficiency.

4. The Data and the Metrics

We have tested Hydranet in two datasets, a fully synthetic one and a semi-synthetic one. In
the remainder of the text we will refer to them as the synthetic dataset (or SynD for short)
and the IHDP dataset, respectively. In order to generate these datasets we have designed
and implemented algorithms mimicking different Data Generating Processes (DGP). For
the synthetic dataset, the covariates, treatments and outcomes have been synthetically
generated, and we have taken inspiration from [13]. For the IHDP dataset, the covariates
are taken from a study with real participants, while the treatments and outcomes are
synthetically generated. Those real covariates were collected for a Randomized Controlled
Trial (RCT) carried out in 1985 [14], and are routinely used for benchmarking causal
inference algorithms, usually following the configuration in[15]. We have followed a
similar strategy but adapting the DGP to our needs (a multi-valued treatment scenario).
With both datasets the number of treatments has been set to 5. In the remainder of this
section we provide a more detailed explanation of the DGP of each dataset and its output.

4.1. Synthetic Dataset DGP

For generating fully synthetic data, we have designed DGPs with tunable parameters of
dataset size D, bias size B and number of confounders NC. The number of treatments has
been set to 5. The potential covariates are constituted by vectors x ∈ R30 with each value
sampled from a uniform distribution U (−1,1). The number of such vectors is equal to
the data size parameter D, forming a matrix X ∈ RDx30. The actual confounders, i.e., the
variables that participate in the determination of both the treatment and the outcome, are
the first NC (number of confounders) elements of each covariate vector, thus forming a
matrix C ∈ RDxNC. The treatment for each datapoint has been obtained in two steps. First,
we square the confounder vector element-wise and sum the elements, apply a min−max
scaler to the range [0,4] (for 5 treatments), and round to the closest integer. Then, in order
to fulfill the positivity condition, we draw the final treatment value from a categorical
distribution such that

p(t|c) =

{
0.8, if t = m(c)
0.2
k−1 , otherwise

with m(·) the operation defined in the first step. Finally, for computing the potential
outcomes, we have defined three outcome functions (la(t,x), lb(t,x), lc(t,x)) that map a
combination of the covariates and the treatment to the output space, for each datapoint.
The outcome functions have the shape
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la(t,x) = 30vT
0 x+10 t2 vT

t x+ ε

lb(t,x) = 20vT
0 x+5 B t vT

t x+ ε

lc(t,x) = 10vT
0 x+5log(|B t vT

t x|)+ ε

with B the bias parameter, v0 the baseline effect parameter, defined as u0/||u0|| with
|| · || the euclidean norm and u0 ∼ U (0,1) a randomly sampled vector (u0 ∈ R30),
and ε ∼ N (0,1). Recall that a potential outcome, denoted yt , is the outcome that
a datapoint would have had, had it been treated with a particular treatment t. The
matrix of potential outcomes Y ∈ RDx5 is defined as Y = [Y0,Y1,Y2,Y3,Y4] =
[la(0,X)T , lb(1,X)T , lc(2,X)T , lb(3,X)T , la(4,X)T ], with 0 = (0,0, ...0) ∈ RD, 1 =
(1,1, ...1) ∈ RD, etc.

We have generated datasets under varying values of the three parameters of interest,
bias size B = [2,5,10,30], dataset size D = [1000,2000,5000,10000] and number of
confounders NC = [2,5,10,18], varying one parameter at a time. When kept fixed, the
values have been set to B = 20, D = 2000 and NC = 2.

4.2. IHDP Dataset DGP

For generating the IHDP dataset, we have followed a similar strategy, but fixing NC = 2
and B = 10, and D = 985 being the size of the original IHDP covariate set. The treatment
assignment function is based in two variables present in the set, mom ethnicity and weeks
preterm. We assign treatment 0 to individuals with mom ethnicity equalling "black",
treatment 1 to individuals with mom ethnicity equalling "white", treatment 2 to individuals
with mom ethnicity equalling "hispanic", treatment 3 to individuals with mom ethnicity
equalling "hispanic" and weeks preterm being bigger than 6, and treatment 4 to individuals
with mom ethnicity equalling "black" and weeks preterm smaller than 6. Note that this
setting is completely made up and has no connection with any real-life situation. Then,
the final treatment is sampled from a probability distribution as explained in the previous
section. The outcome functions are defined as

l1(t,x) = exp(xβ )+B∗MB+ t2 + ε

l2(t,x) = log(|xβ |)+B∗MW ∗ t + ε

l3(t,x) = xβ +B∗MH + t2 + ε

l4(t,x) = exp(xβ )+B∗WP+ t + ε

l5(t,x) = log(|xβ |)+B∗WP∗ t + ε

where β is a vector of parameters, B is the bias parameter, MB, MW and MH are the
components of the one-hot encoding of mom ethnicity, and WP is weeks preterm.

4.3. Metrics

For performance benchmarking purposes, we have employed the sum of errors of the
vector of ATEs. This is computed as the sum of the absolute values of the differences of
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all estimated ATE components with respect to their true values, E = ∑
k
t=1 |ψt − ψ̂t |. This

choice allows to have a single real number as a final result, making comparisons simpler.
All values have been computed as averages across 20 dataset realizations to increase
the robustness of the results, and 95% confidence intervals have been computed with
Bootstrapping.

5. Experiments and Results

In the case of binary treatment settings, there are de facto benchmarking datasets and
metrics, i.e., datasets and metrics that are widely used in the literature and thus serve
for algorithmic performance comparison purposes. The IHDP dataset and the metrics
presented in[15] are an example of this. This is not the case in multi-valued treatment
settings, where comparators are scarce. Nevertheless, we have developed and implemented
algorithms that can be considered comparable to Hydranet, to benchmark its performance.
Thus, in every experiment, we present the results of the following algorithms: 1) Naive,
a naive estimator of the treatment effect that employs only the observable data, without
controlling, and serves to visualize the impact of confounding 2) B2BD, back to back
Dragonnets, a strategy that uses 4 Dragonnets (with the same setup as in [9]), each one
estimating one element of the vector of ATEs ψ , 3) T-learner, a T-learner [16] estimator
that employs a gradient boosting machine (GBM) model2, and finally 4) Hydranet, both
in its baseline form and with targeted regularization. Hydranet performs well in all the
tested scenarios and outperforms the comparators, both with in-sample (train set) data and
with out-sample (test set) data, reaching low or very low error values for different dataset
sizes, bias sizes and number of confounders. The employed training scheme consists of
a first stage with the ADAM optimizer and a second stage with the Stochastic Gradient
Descent (SGD) optimizer, with hyperparameters similar to [9].

5.1. Synthetic Data Experiments

Figure 2 and Table 1 show the error of the different algorithms for varying values of
bias. As it can be seen, Hydranet performs better than the comparators. Hydranet is only
mildly affected by the increasing size of the bias, while the comparators show bigger error
increases. Similarly, Figure 3 and Table 2 show the performance of the algorithms for
varying dataset sizes. As expected, all algorithms reduce their error with bigger data set
sizes, but Hydranet with targeted regularization outperforms the rest, and shows a smaller
error even for small dataset sizes, proving its (data) efficiency. Note that in this experiment,
the output of Baseline Hydranet has been plugged into an Augmented Inverse Probability
Weighting (A-IPTW) estimator, instead of the simple estimator presented in Section 1. The
purpose of this change was to test the performance of Baseline Hydranet for delivering a
plug-in estimator that is doubly robust. As it can be seen, this estimator fails for smaller
dataset sizes, due to a well-reported phenomenon of finite-sample instability. This fact
motivates the development and implementation of Targeted Regularization-equipped
Hydranet. Finally, experiments with varying number of confounders show similar results,
with Hydranet outperforming the alternatives.

2https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html
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(a) In sample (b) Out sample

Figure 2. Errors w.r.t. bias size

Table 1. Errors of the different algorithms w.r.t. bias size

Bias 5 10 30
In-Sample Out-Sample In-Sample Out-Sample In-Sample Out-Sample

Naive 48.83 ± 16.04 24.47 ± 5.27 70.16 ± 20.39 31.91 ± 9.67 69.46 ± 18.28 50.84 ± 9.82
B2BD base. 17.18 ± 3.74 15.19 ± 2.61 17.47 ± 4.25 16.55 ± 3.5 39.12 ± 8.91 25.7 ± 4.81
B2BD t-reg. 14.48 ± 5.38 14.48 ± 4.7 17.56 ± 4.22 17.56 ± 3.49 23.78 ± 9.35 23.78 ± 4.7
T-learn 26.44 ± 5.45 26.49 ± 5.44 33.09 ± 7.8 33.23 ± 7.82 57.48 ± 11.17 58.93 ± 12.48

Hydranet base. 8.08 ± 2.41 8.01 ± 2.83 7.48 ± 2.56 6.64 ± 2.55 9.88 ± 2.13 8.46 ± 2.09
Hydranet t-reg. 9.75 ± 2.6 9.75 ± 2.74 6.34 ± 2.81 6.34 ± 2.46 8.64 ± 2.77 8.64 ± 2.87

Table 2. Errors of the different algorithms w.r.t. dataset size

Data Size 2000 5000 10000
In-Sample Out-Sample In-Sample Out-Sample In-Sample Out-Sample

Naive 77.23 ± 17.96 35.29 ± 8.46 23.45 ± 7.5 13.35 ± 3.93 30.34 ± 7.51 16.07 ± 3.5
B2BD base. 30.97 ± 5.3 19.95 ± 3.65 19.39 ± 4.2 12.46 ± 3.43 15.59 ± 3.73 11.83 ± 2.46
B2BD t-reg. 22.74 ± 5.11 22.74 ± 5.35 9.04 ± 4.15 9.04 ± 3.28 5.87 ± 2.63 5.87 ± 1.84
T-learn 37.85 ± 9.01 40.44 ± 8.81 13.95 ± 5.34 16.11 ± 5.52 21.76 ± 4.15 23.01 ± 4.34
Hydranet base. 130.98 ± 22.48 81.93 ± 16.15 16.83 ± 20.88 6.04 ± 7.29 2.43 ± 1.19 2.94 ± 1.10

Hydranet t-reg. 7.76 ± 2.61 7.76 ± 2.76 2.74 ± 1.9 2.74 ± 1.91 1.57 ± 1.07 1.57 ± 1.04

5.2. IHDP Data Experiments

Table 3 shows the error of the different algorithms with the IHDP dataset. Similarly
as with synthetic data, Hydranet (both baseline and targeted regularization) outperform
the comparators. The targeted regularization algorithm has a slightly bigger error than
the baseline algorithm, but the difference is considered negligible. These results prove
the efficacy of Hydranet with semi-synthetic data, showing its suitability for real-world
scenarios.
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(a) In sample (b) Out sample

Figure 3. Errors w.r.t. dataset size

Table 3. Performance with IHDP dataset

Out-Sample In-Sample

Naive 14.81 ± 0.97 17.51 ± 2.07
B2BD base. 22.75 ± 1.92 22.74 ± 2.38
B2BD t-reg. 22.22 ± 1.9 22.81 ± 2.68
T-learn 13.53 ± 1.22 13.7 ± 1.2

Hydranet base. 3.09 ± 0.56 3.03 ± 0.69
Hydranet t-reg. 3.82 ± 0.88 3.8 ± 0.87

6. Discussion

In this work, we have generalized a top-performing, neural network-based algorithm for
ATE estimation from a binary treatment setting to a n-valued treatment setting. We have
developed and implemented synthetic and semi-synthetic DGPs for algorithmic bench-
marking purposes, and we have developed comparator algorithms for evaluating the per-
formance of Hydranet. We show that Hydranet (both baseline and targeted regularization)
performs well under different bias sizes, dataset sizes, and number of confounders, and we
provide both theoretical and empirical evidence of the motivation for developing targeted
regularization-equipped Hydranet. In addition, we show the good performance of the
algorithm with semi-synthetic data. The direct generalizability of neural network-based
algorithms for ATE estimation from binary settings to n-valued treatment settings is a
common claim in the literature, but we show that it has its own challenges and that the
behavior of the algorithms in each particular scenario requires its own interpretation. As
far as we know, this paper is opening ground on the proposal of benchmarking results for
neural network-based ATE estimation in multivalued treatment scenarios.

The main limitations of this work are twofold: on one hand, we have been forced
to construct the competitor algorithms of Hydranet ourselves, due to the scarcity of
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benchmarking data in the literature. On the other hand, we have only tested this algorithm
for a 5-valued treatment scenario. It is a line of future work to adapt the algorithm and
perform experiments for k-valued scenarios. Finally, we have run into some instabilities
during neural network training in some of the experiments. It is also a line of future work
to correct them and ensure the stability of the training process.
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A. Supplementary material

A.1. Hydranet

We want to prove that

∂ F̄
∂εt

∣∣∣∣
ε̂t

=
1
N ∑

i
ϕi,t , ∀ t in[0,k] (10)

Proof. On one hand, using equations (3), (4) and (5) we get

∂ F̄
∂εt

∣∣∣∣
θ̂ ,ε̂t

=
∂

∂εt

(
R̂(θ)+β

1
N ∑

i
γi(yi, ti,xi;θ ,ε)

)∣∣∣∣∣
θ̂ ,ε̂t

=
β

N ∑
i

∂

∂εt
γi(θ ,ε)

∣∣∣∣∣
θ̂ ,ε̂t

=
2β

N ∑
i
(yi − Q̄i(θ ,ε))

∂ Q̄i(θ ,ε)

∂εt

∣∣∣∣∣
θ̂ ,ε̂t

=
2β

N ∑
i

[
(yi − Q̄i(θ ,ε))

(
I(T = t)
gnn

t (θ)
− I(T = 0)

gnn
0 (θ)

)]∣∣∣∣∣
θ̂ ,ε̂t

=
2β

N ∑
i

[
(yi − Q̂(t,xi)

(
I(T = t)

ĝt
− I(T = 0)

ĝ0

)]
(evaluate at θ̂ , ε̂)

=
2β

N ∑
i

(
Q̂(t,xi)− Q̂(0,xi)

)
− β

N ∑
i

(
Q̂(t,xi)− Q̂(0,xi)

)
+

β

N ∑
i

[
(yi − Q̂(t,xi))

(
I(T = t)

ĝt
− I(T = 0)

ĝ0

)]
(add and subtract term)

=
2β

N ∑
i

[
Q̂(t,xi)− Q̂(0,xi)+(yi − Q̂(t,xi))

(
I(T = t)

ĝt
− I(T = 0)

ĝ0

)
− ψ̂t

]
(group sums)

On the other hand, by substituting the definition of the efficient influence curves (8) in the
set of non-parametric estimation equations (9), multiplying by β and particularizing at
Q̂, ĝ, ψ̂ (the functions modelled by the neural network at the optimal point of the parameter
space), we obtain an expression equal to the one in the last line of the proof. Thus, the
non-parametric estimation equations (9) are satisfied, and the proof is complete.
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