DipGame: a challenging negotiation testbed

Angela Fabregues and Carles Sierra

IITA-CSIC: Institut d’Investigacid en Intel-ligéncia Artificial del CSIC,
Campus UAB, E-08193 Bellaterra, Barcelona, Spain.

Abstract

There is a chronic lack of shared application domains to test advanced re-
search models and agent negotiation architectures in Multiagent Systems. In
this paper we introduce a friendly testbed for that purpose. The testbed
is based on The Diplomacy Game where negotiation and the relationships
between players play an essential role. The testbed profits from the existence
of a large community of human players that know the game and can easily
provide data for experiments. We explain the infrastructure in the paper and
make it freely available to the AI community.

Keywords: Multiagent Systems, Negotiation, Testbed, Diplomacy Game

1. Introduction

Current research trends in multiagent systems (MAS) include models of
trust [1], reputation [2, 3], and argumentation [4, 5] to improve negotiating
strategies [6, 7, 8]. Research progress in the development of these theoretical
models has made them very sophisticated (based on cognitive, information
or game theoretical grounds) and has enabled software agents to interact
with and help humans in a more efficient and believable way. Agents are be-
ing endowed with techniques to decide how and when to interact, argue and
negotiate, as well as whom to trust and why. Unfortunately, the practical
impact of the models has been lower than expected. This is partly due to
the fact that researchers lack rich-enough use cases to compare the models.
The use cases described in the MAS literature tend to be rather artificial and
usually biased to a particular negotiation model. Rich enough testbeds are
urgently needed to simulate the latest sophisticated models without having
to oversimplify them. In particular, software agents must be able to interact

Preprint submitted to Engineering Applications of Artificial Intelligence (EAAI) JournalApril 4, 2011

not just with other software agents but also with humans and in realistic sce-
narious. The testbed that we present in this paper, DipGame, is rich enough
to be useful in negotiation contexts with: (1) a huge space of solutions, such
that purely strategic thinking is not feasible; (2) a partially observable en-
vironment, where agents cannot observe all actions made by other agents
(e.g. offers); (3) the environment changes continuously due to the actions of
other agents, agents decide moves autonomously that affect our future ac-
tion repertoire; and (4) decision making in time-bounded. These properties
are common in realistic scenarios and are not particular to any negotiation
model.

The field of negotiation is very broad. Why humans co-operate and how
they reach agreements has been since long a fascinating area of inquiry. It
has been studied from many different perspectives: game theory [9, 10], psy-
chology [11, 12], business [13], neuroeconomics [14], or psychopharmacology
[15] just to mention a few. From an artificial intelligence perspective two
main approaches have been followed. First, approaches based on game the-
ory, where agents are assumed to follow a constructivist sort of rationality
[16], are selfish and look for some sort of ‘fair’ allocation. In this approach
models assume perfect rationality and complete information [17], so that if
the optimal solution is known to the players then it is adopted. These as-
sumptions are, unfortunately, not very common in practice. To overcome
these difficulties, negotiation strategies have been, to a large extend, based
on heuristics that try to use the available information about the problem and
the opponents to approximate the ‘ideal’ game theoretical results [18, 19].
Usually, these heuristics look for solutions that are close to the pareto-efficient
frontier without revealing all preferences [6]. The heuristics are applied in
negotiation frameworks with simple protocols (e.g. the classical alternating
protocol [17], or slightly more sophisticated ones as in [20]) and over simple
negotiation domains (e.g. the “AMPO vs City domain” in [21]). A recent
comparison of these heuristics can be found in [8].

Second, and more recently, an increasing interest on the psychological and
cultural aspects of negotiation has been observed in the field. For instance,
agent negotiation architectures inspired in human relationship building [22],
or analysis of cultural influences in negotiation strategies [23]. The com-
munity of social simulation has also studied negotiation models in as much
as they help in defining policies (e.g. [24] in an environmental setting) or
norms [25]. These human-oriented approaches follow an ecological model of
rationality [16] based on two basic notions: everything in the world is con-

2

stantly changing and not all facts can be known by an agent. This view
on rationality is in line with an evolutionary approach: knowledge evolves,
individuals evolve and societies evolve. Ecological rationality, observed in hu-
mans and human societies, seems also the right one when we face the design
of software agents. If knowledge is dynamic and evolves along time, this will
certainly be also the case for beliefs or intentions of agents that will change
constantly due to the interaction with the environment (or with evolving
societies of humans). Actually, the very same structure of the environment
where agents and services appear and disappear all the time, and where every
active component of the environment is not necessarily persistent in its goals
or intentions, makes the view of the world imperfect and necessarily evolving
along time.

We do believe that after so many years of development of negotiation
models whose validation has been made in very simple toy environments
the community requires a more realistic scenario where negotiation models
can be tested. The problem with artificial scenarios is that the behaviour of
humans is not necessarily the same as in real life. It is not the same to decide
on artificial money or on real money. That is why areas like auctions have
moved into more realistic scenarios like the different TAC competitions, or
why areas like neuroeconomics [26] or experimental economics in general have
moved into real scenarios. Current research in negotiation proposes models
far more complex than those adapted to game theoretical settings [8] and
based on an ecological rationality. Current testbeds [27, 28, 29] are rather
simple and we believe that the validation of negotiation models that aim at
human-agent interactions [4, 5, 22| require more sophisticated testbeds as
the one introduced in this paper: DipGame is a testbed that uses Diplomacy
as the negotiation environment.

We start this paper briefly introducing the rules of The Diplomacy Game
and discussing why we think that this game is ideal for testing the research
work on negotiation; sections 2 and 3. Then we introduce the negotiation
language and the infrastructure, sections 4 and 5. Then, the methodology
for building negotiation agents is presented together with an example of use
of the testbed, section 6. And in section 7 we describe how do we involve
humans in the experiments. We finally end the paper with a description of
the related work, section 8, and a discussion on the future work, section 9.

2. Diplomacy in a nutshell

In Diplomacy, players negotiate with the aim of conquering Europe. The
rules of the game are unambiguous and the available information about the
game is rather rich as it is a quite old game being enjoyed by several gen-
erations of players: the game appeared in 1954. It is situated on Europe
at the beginning of the 20" century, before World War 1. Each player is in
charge of the armed forces, organised in units, of a major European power
and must decide, in each turn, which movements the various units should
execute. There is a maximum of one unit per province. The game ends
when someone has an army powerful enough to control half of the special
European ‘provinces’ called supply centres. This is achieved by defeating
other players’ units, conquering their provinces and controlling an increasing
number of supply centres that allow a player to get more units.

One of the most interesting features of Diplomacy is the absence of ran-
dom movements: there are no cards and no dices. Also, this is not a turn-
taking game. That is, all players move their units simultaneously: there is
no advantage in a player being the first or last to move. All units are equally
strong and consequently, when a unit attacks another, the winner of the bat-
tle is decided by taking only into account the number of units helping the
fighting units. This feature is what makes Diplomacy so compelling for our
purposes: the most relevant skills for a player are the negotiating ability, the
intuition (knowing whom to trust) and the persuasive power.

The game splits in several years with two movement turns per year. In
every movement turn, the players decide what movements their units should
perform. Possible movements are: to move, to hold or to help another unit
supporting its hold or move. When every player has decided their movements,
those are made public at the same time and the game state is updated fol-
lowing the rules of the game.! The rules describe how to resolve conflicts
that may emerge because of the concurrent announcement of movements.
At the end of the year if you have a unit over a supply centre province, the
supply centre becomes yours. It will be yours until a unit of another power
conquers it at the end of a subsequent year period. At the end of each year,
the number of units of every player is made equal to the number of owned
supply centres by either building new units (when the player increased the
number of owned supply centres) or removing existing units (when the player

L Available at http://www.wizards.com/default.asp?x=ah/prod/diplomacy.

4

decreased the number of owned supply centres). Remember that owning half
of the supplier centres of the Continent allows you to win the game. There-
fore, the goal of the players is to increase the number of owned supply centres
every year quicker than other players do.

All units have always the same strength. When there is an attack, it is
resolved taking into account the number of supports that the attacking and
defending units got from other units. Players can support the movements of
other players’ units. In fact, these are the basics of the game: the players
must convince other players to be their allies and to help them. This is done
by negotiations that take place in parallel among all the players. In those
negotiations, players ask others for help and sign deals on future plans of
action like attacking together a unit of a player that they agree is a common
enemy. From a player’s point of view, the most important aspect of the game
is the negotiation process: deciding allies, selecting whom to ask for help,
arguing with other players to get information about their objectives or to
find out what they know, building trust and reputation, deciding when to
honour a deal, maintaining relationships, and so on.

3. Diplomacy for negotiation

Diplomacy is a strategically simple game for humans to play in com-
parison to other classic games like Chess or Go. This is because the true
complexity of the game lies in the management of the relationships among
players. Relationships are constantly changing and may appear at first sight
difficult to analyze. However, humans negotiate constantly in their every day
life, and they are used to do it. Diplomacy is thus not perceived by humans
as a difficult game to play, but it is really difficult for a computer as it cannot
take advantage from massive computations. The search space is huge and the
key for success relies on the information obtained from negotiation rounds
and on the persuasive capability of the player.

Focusing just on the possible moves that the units can perform on the
board, the combinations are very large. There is an average of 30 units on
the board during a game. A movement has to be assigned to each one of
these units per turn. The movements that a unit can perform depend on the
number of direct neighbours and neighbour units.? Assuming an adjacency

2By direct neighbour we refer to units that are in an adjacent region. And neighbour

factor of 4 and a neighbourhood factor® of 2, we obtain that the number of
possible movements per turn is 30 - 15.* Overall, a branching factor of 450.
The branching factor of the search is thus so high that even a no-press (with-
out negotiation) game cannot be treated by standard search mechanisms.
Neither can we reasonably use game theory to strategically solve the prob-
lem. Think that the branching factor for chess is around 35. Besides that, the
execution of the movements in Diplomacy depend on the movements done by
the other units. The moves that a player performs are not independent from
the ones performed by other players. All players perform their moves at the
same time, hence a player cannot be sure about the outcome of a move be-
cause there can be conflicts between different players’ movements. Therefore,
it is very difficult to predict the outcome of a movement without information
about the opponent’s intentions. In fact, the essence of Diplomacy relies on
the diplomatic moves that were not taken into account when analyzing the
complexity above. Taking every single negotiation step into consideration,
the number of possible moves is simply overwhelming [30].

From the point of view of Al research, Diplomacy is a MAS environment
where competitive self interested agents need to cooperate to improve the
outcome. This is done by the signature of agreements where agents involved
commit to do a plan of action. Agreements in such environments are reached
as the result of successful negotiation processes in which agents exchange
proposals and information with the aim of convincing the other agent to
accept a deal, sometimes using argumentation. Because of the repetition
of negotiation dialogues, negotiations get quicker since agents can learn the
preferences of others from previous discussed agreements. The agents can
guess which are the beliefs, desires and intentions of other agents just ana-
lyzing the past dialogues and the state of the game. And as time goes by,
agents can observe how their counterparts honour up the agreements they
sign. This information can be used to build a model of the other agents’
behaviour. This model will help in future negotiations, even to decide which
agent should we negotiate with. Concepts like trust, honour, sincerity, and

is used for those units that are placed in a region that is at distance two, that is, they are
units that are direct neighbours of a direct neighbour.

3The average number of neighbour units.

4The average number movements for a unit in every turn are: 1 hold, 4 movements to
the 4 adjacent regions, 2 supports to hold to the 2 neighbors and 4 - 2 supports to move
for every two neighbors of our 4 adjacent regions. Therefore 1 +4+2+ 4.2 = 15.

others can summarize the perception that we have of an agent. The repu-
tation of an agent can also be taken into account because agents can also
talk (gossip) about other agents performance, promises, intentions, ... The
problem is really rich.

In 1985, Daniel Lehmann decided to work on creating a software player
(bot) of the game. This ended some years later with the PhD of Sarit Kraus
and two master thesis [31]. Since then, several other researchers have also
tried to build bots but without much negotiation capabilities [32]. Despite
this little success, we think that now is the moment to continue this work.
Computer and network technologies have evolved so much in the interim that
many people now accept entertainment online from their homes as a matter
of course. Thus, it is now much easier to find people interested in playing
Diplomacy online against our agents.

4. Negotiation language

The complexity of building an agent capable to negotiate is correlated to
the complexity of the language that the agent must be able to understand.
The higher the language complexity the higher the richness of the models
underpinning agent architectures. In this section we structure the expres-
sions of increasing levels of complexity via a modular, flexible and reusable
language hierarchy L. We propose it as a standard for the dialectical commu-
nication between the agents that use the testbed and provide infrastructure
to support the language parsing. Nonetheless, other languages could be used
as the testbed is quite modular and the language tools (i.e. parsers) are
separated from the game engine.

Figure 2 graphically represents the language hierarchy L that is defined
as an eight level hierarchy; starting from L; and increasing the expressiveness
as the language level increases. Check the definition of L in Figure 1. The
higher the language level that we use, the more complex the actions and the
predicates, and thus the expressivity. If it is desired, some of the levels could
be skiped, such us for instance Level 5 of sharing feelings. By this way, you
can reach level 8 corresponding to argumentation without expressing any
feelings. We kept a linear approach for two reasons. One for simplicity, as it
gives you a clear roadmap to building ever more complex negotiation agents.
Second, to follow the familiar level ordering in the languages proposed by

Level 1: Negotiating a deal

Ly ::= propose(a, 3, deal1) | accept(a, 8, dealy) |
reject(a, B, dealy) | withdraw(a, 3)

deal; = Commit(a, 3,¢)T | Agree(s,)

¢ ::= predicate | Do(action) | ¢ A ¢ | =p
B:=at

o = agent

Level 2: Sharing information

Ly ::= Ly | inform(c, 3, infoz)

infop ::= dealy | Obs(c, B, ¢) | Belief(a, ¢) |
Desire(a, ¢) | infoz A infoz | —infos

Level 3: Asking for direct information

L3 ::= La | inform(c, 3, infos) | query(a, 3, infos) |
answer(a, 3, infos)

infos ::= infog | Unknown(q, infog) | infos A infos | —infos

Level 4: Asking for indirect information

L4 ::= L3 | inform(e, B, infoy) | query(e, B, infoy) |
answer(a, 8, infoy) | inform(a, 5, Ls) | uery(a, 8, La) |
answer(c, 3, La)

infoy ::= infos | Unknown(c, info;) | Unknown (e, Ly) |
info; A infoy | —~infoy

Level 5: Sharing feelings

Ls ::= Ly | inform(a, B, infos) | query(a, 8, infos) |
answer(a, 3, infos) | inform(a, 8, Ls) | query(c, 3, Ls) |
answer (e, 3, Ls)

infos ::= infoy | Unknown(c, infos) | Unknown(«, Ls) |
Feel(a, feeling) | infos A infos | —infos

feeling ::= VeryHappy | Happy | Sad | Angry

Level 6: Taking into account the passage of time

L¢ ::= L5 | propose(a, 3, deals, t) | accept(a, 8, dealg,) |
reject(a, B, deals, t) | withdraw(a, 8,t) | inform(c, 8, infog, t) |
query(ay /87 inf067 t) | answer(oz, ﬁ’ ’l:nng, t) | inform(a, ﬁ7 L67 t) |
querY(av B, Le, t) I answer(oz, B, Le, t)

infos ::= infos | deals | Obs(a, B, pe,t) | Belief(c, s, t) |
Desire(a, ¢s,t) | Unknown(a, infos,t) | Unknown(w, L, t) |
Feel(a, feeling, t) | infos A infos | —infos

deals := deals | Commit(a, 3, v6,t)T | Agree(B, v6,t)

e = predicate | Do(action,t) | pe A @6 | ~¢6 | v6; 6

t = time

Level 7: Explaining

L7 ::= Lg | inform(c, 3, info7,t) | query(a, 3, infor,t) |
answer(a, 3, infor,t) | inform(e, 8, L7,t) | query(a, B, L7,t) |
answer(c, 3, L7, t)

infoy ::= infos | Unknown(c, infor,t) | Unknown(a, L7, t) |
Explain(infor,t) | Explain(L7,t) | infoy A infoy | minfor

Level 8: Arguing

Lg ::= L7 | inform(c, 3, infos, t) | query(a, 3, infos, t) |
answer(a, 3, infog,t) | inform(e, B, Ls, t) | query(a, 3, Ls, t) |
answer(ca, 3, Lg, t)

infog ::= infoy | Unknown(c, infog,t) | Unknown(e, Lg, t) |
Explain(infog,t) | Explain(Lg,t) | Attack(infor, infor) |
Support(infor, infor) | infog A infog | ~infog

Figure 1: Language hierarchy definition in BNF. Note
that: expression™ denotes a non-empty sequence of
expression, non terminal symbols are written in italic,

and undefined symbols (referring to terms in the on-]

tology) appear in underlined italics.

negotiation complexity

Level I: Negotiating a deal

(Diplomacy terms expressed in an ontology)

Figure 2: Language hierarchy. Each language L; ex-
tends the languages in lower levels, that is, if there is
no re-writing rule for a term in L; then it can be found
in lower levels L;, with j <.

year ::= integer

phase ::= spr | sum | fal | aut | win

power ::= fra | eng | tur | rus | ita | aus | ger

coast ::= ncs | scs | ecs | wes

regionType ::= amy | sea | coast

supplyCenter ::= spa | mar | par | stp | ...
province ::= supplyCenter | gas | bur | sil | tus | ...
region ::= Region(province, regionType)

unit ::= Unit(power, region)

order ::= hld(unit) | mto(unit, region) | sup(unit, hld(unit)) |
sup(unit, mto(unit,region)) | rto(unit,region) | dsb(unit) |
bld(unit) | rem(unit) | wve(power)

offer ::= pce(powert) | aly(power™, powert)

Figure 3: Diplomacy ontology.

agent ::= power
action ::= order
predicate ::= offer
time ::= (phase, year)

Figure 4: Connexion between L and the ontology.

inform(a, 3, infos), query(a, B, infos)

inform(av, 3,infos), query(a, 3, infos)

withdraw(e, (), [tmaz) withdraw(a,), [tmaz)

Figure 5: A communication protocol for Ls.

the DAIDE community.® Researchers set their experiments on DipGame
selecting the language level to use.

L is a generic language that could be used for many other applications.
It defines the illocutions that the agents can use to communicate and the
basic concepts like Agree, Desire, Feel, etc. The language is parametric on
the vocabulary for a specific application domain, described as an ontology.
The undefined non terminal symbols that appear in L should be specifically
defined for each application domain. These symbols are: time, agent, action
and predicate. Figure 3 represents the ontology for the Diplomacy game and
Figure 4 contains the connexion between the ontology and L. In this way,
we allow researchers to reuse as much code as possible when applying their
work to real world applications after testing it with DipGame.

In the rest of this section, we describe and illustrate the expressivity of
each language level in Diplomacy. For instance, Unit(rus, Region(stp, scs))
is a term meaning that ‘“There is a unit from Russia in the south coast of Saint
Petersburg’, pce([ita rus]) is a predicate meaning ‘Peace between Italy and
Russia’, and sup(Unit(rus, Region(spa, ecs)), mto(Unit(ita, Region(mar,
amy)), Region(par, amy))) is an example of action where ‘The unit of Rus-
sia in the east coast of Spain supports the movement of the Italian army in
Marseilles to Paris’.

L,: Negotiating a deal. This is the first language level. It allows agents to negotiate
deals following the protocol illustrated in Figure 5. The deals can be either a sequence
of commitments, one for every agent involved in the deal, or a global agreement in which
a set of agents agree on something, usually the truth of a predicate. Here you have two
examples of sentences in Lq:

E.g. ‘Italy proposes to Russia a deal by which Italy commits to do a movement from its army in Marseilles
to Paris and Russia commits to support the Marseilles italian army’s movement with the unit in the east

coast of Spain’:6

propose(ita, rus,
[Commit(ita,rus,
Do(mto(Unit(ita, Region(mar, amy)),
Region(par, any))))
Commit(rus, ita,
Do(sup(Unit(rus, Region(spa, ecs)),
mto(Unit(ita, Region(mar, amy)),

5The Diplomacy AI Development Environment (DAIDE) is a community that creates
bots with good strategies to play Diplomacy. They propose a language standard for com-
munication. We use their protocol and their language at level 0 that roughly corresponds
to our ontology language.

6We abuse notation and represent sets of agents containing just one agent by the agent
name itself. e.g. Commit(ita, [rus], deal) will be represented as Commit(ita, rus, deal).

9

Region(par, amy)))))])

E.g. ‘Italy accepts to Agree with Russia that they are allied against England’:
accept(ita, rus, Agree([ita rus], aly([ita rus], eng)))

Ls: Sharing information. This language level adds the ability of sharing infor-
mation with other agents. It can be information about previous commitments, observed
actions, beliefs, desires or deals.

E.g. ‘Italy informs England that Italy keeps a peace agreement with Russia’:

inform(ita, eng, Agree([ita rus|, pce([ita rus])))

L3: Asking for direct information. At level three, agents can request other agents
for information. Answers to queries are similar to informs.
E.g. ‘England asks Italy whether Italy and Russia have a peace agreement’:

query(eng, ita, Agree([ita rus], pce([ita rus])))

E.g. ‘Italy answers England that Italy and Russia do have a peace agreement’:
answer(ita, eng, Agree([ita rus], pce([ita rus])))

Ly: Asking for indirect information. Level four allows to inform about dialogical
moves between agents.
E.g. ‘Russia asks Italy whether Italy answered to England that Italy and Russia had a peace agreement’:

query(rus, ita,
answer(ita, eng,
Agree([ita rus], pce([ita rus]))))

Ls: Sharing feelings. This level is the emotional one. Feelings can be exchanged
between agents.
E.g. ‘Italy asks Russia whether Italy’s answer to England that Italy and Russia had a peace agreement
made Russia feel sad’:

query(ita, rus,
answer(ita, eng,
Agree([ita rus], pce([ita rus]))) —
Feel(rus, Sad))

Lg: Taking into account the passage of time. Lg adds time to Ls. Within Lg
we can speak about the past and make promises about the future. Time is added as an
extra argument to predicates and illocutions. Time variables are considered universally
quantified. In subsequent levels, L7 and Lg, we omit time to simplify notation.

E.g. ‘Russia informs Italy that if Italy informs in the future to any power that Italy and Russia have a
peace agreement, then Russia will feel Angry’:

inform(rus, ita,
(inform(ita, power,
Agree([ita rus],
pce([ita rus])), t1) A t1 > to) —
(Feel(rus, Angry, t2) A ta > t1),
to)

10

L7: Explaining. Dialogues often include explanations and explanation requests.
This level adds that possibility to allow agents to explain why things are like they are.
E.g. ‘Italy asks Russia for an explanation of why the fact that Turkey believes that there is a peace
agreement between Russia and Italy makes Russia feel Angry’:

query(ita, rus,
Explain(
Belief(tur,
Agree([ita rus], pce([ita rus]))) —
Feel(rus, Angry)))

Lg: Arguing. And finally, level 8 allows agents to express rebuttals and supports
between arguments.
E.g. ‘Russia informs England that its alliance with Italy against England and Italy’s desire to conquer
Paris together support the imminent Italian attack from Marseilles to Paris’:

inform(rus, eng, Support(
Agree([ita rus],aly([ita rus],eng)) A Desire(ita, par),
Do(mto(Unit(ita, Region(mar, amy)), Region(par, amy)))))

5. Infrastructure

In this section we give some minimal technical information to a poten-
tial developer on what kind of support/help the platform offers. Readers
aiming at a general understanding of the testbed can skip this section. The
infrastructure is modular and freely available at nttp://www.dipgame.org. It is
composed of: the game engine, a framework for agent development and ne-
gotiation tools. In this section we describe them giving special attention to
the negotiation tools.

The game engine is structured as a client-server program following the
guidelines of DAIDE. The server is the game manager. It receives the move-
ment decisions of the players, updates the game state and broadcasts it.
Nowadays, there are two software alternatives for the server: parlance” and
AiServer.® There are two types of clients: observers and players. Both re-
ceive the information about the state of the game but only players can send
movements. Players can be autonomous (bots) or humans. There are several
bots available online but they focus on the strategy and tactics of the game
rather than on the dialectic moves, that is, they do not focus on negotiation.

Developing a client from scratch is tedious. That is why we provide dip, a
java framework that copes with the communication with the game manager

"Parlance is a multiplatform game manager (http://pypi.python.org/pypi/Parlance).
8 AiServer is DAIDE’s game manager (http://www.ellought .demon.co.uk/dipai/).

11

and the representation of the game state and the movements (referred in the
game as orders to send to the units). dip is very easy to use, for instance,
creating a player means just to implement a new class extending the abstract
class Player (see Figure 6) and adding the extra functionality to decide what
movements to do next, as explained in Figure 7. The rest of the work is done
by the framework itself. To illustrate how to use dip we provide ConsoleOb-
server and ConsolePlayer that are console applications that allow a user to
observe a game and play respectively.

Deciding what movement to do next usually requires to search the space
of possible actions to perform. For those researchers that want to test their
work and are not interested in the search process, we provide an extension
of dip, called bot, that calculates the potential actions that the bot may
choose based on an action evaluation function that the researcher defines.
This simplifies even more the implementation of a player because it then
consists basically on defining an evaluation function. This function can be
defined as a combination of the implementation of three class interfaces:
RegionFEvaluator, OrderEvaluator and OptionFvaluator. Each class interface
is in fact an evaluation function itself over a different dimension (region, order
and option). The combination of them is thus not optimal (as it considers
them in isolation) but is a good trade-off between memory usage and solution
quality. The trade-off level is fixed by the programer: the more memory the
higher the solution quality. An example of bot implemented using bot is
RandomBot whose evaluation function always returns 0. Figures 6 and 7
summarize the content and use of the infrastructure.

We also provide support for the negotiation between players. We take
the language L as a standard for this testbed and provide a parsing utility
called dipNego that checks the syntax of messages and represents them in a
structure of objects. In Figure 9 we illustrate a class diagram with the most
relevant classes of dipNego that are necessary to represent the messages in
Ly. There is a parser available for all L language levels and the Diplomacy
ontology. Nonetheless, as L is domain independent, dipNego can be used for
other application domains.

The negotiation dialogues between players are handled independently
from the game engine. Messages do not use DAIDE’s protocol, instead,
players negotiate using negoServer, an instant messaging program specially
created for this testbed, and negoClient, a library that implements the func-
tionality required to connect a client with the negotiation server. Random-
NegoBot, available online, is an extension of RandomBot able to randomly

12

—
comm
< - 2cuse s> L . .)
---- Client
— | <susess)
<--
board
_.--| Player ConsoleObserver
| _S<use>>
orders

Bot

ConsolePlayer

<<interface>>
RegionEvaluator

<<interface>>
OrderEvaluator

<<interface>>
OptionEvaluator

> RandomBot

Figure 6: UML 2.0 class diagram of the most important classes in the framework.

Client Provided Required Required Objects to Implement.
Plays? . .
type funct. funct. library implement example
observer no game state nothing dip Observer ConsoleObserver
action .
player yes game state selection dip Player ConsolePlayer
Bot
game state, action . RegionEvaluator
player yes best action evaluation dip-+bot OrderEvaluator RandomBot
OptionEvaluator

Figure 7: Bot development framework.

| propose you peace

dialogueAssistant

A
propose(ITA, TUR,agree(peace([ITA TUR])))

\

dipNego |

Figure 8: Message transformation.

13

| Withdraw | | Deallllocution |
| Propose | | Accept | | Reject |
A
|
| Peace | | Alliance | | Do |

Figure 9: UML 2.0 class diagram of the most
important classes for Ly in dipNego.

negotiate with other players. We exemplify the usage of the testbed with
RandomNegoBot in section 6.

In section 7 we discuss the use of this testbed by humans. In that section
we describe dialogueAssistant, a restricted natural language interpreter that
translates the messages written by humans into L.

6. Using DipGame

Building agents capable to negotiate playing Diplomacy is quite easy
with the framework and the tools introduced in the previous section. In
this section we suggest a methodology for testing agents with DipGame and
exemplify it describing how can we create and test a very simple agent:
a random negotiator, that is, a player that performs random moves and
negotiates also randomly. It is based on RandomBot’s code.’

The simple methodology consists of six steps that end with the analysis
of the results and the optional improvement of the agent:

1. Download all resources from nttp://www.dipgame.org. The required resources
will depend on the type of client that you want to create and the
implementation options that you decide to use, see Figure 7.

For our example we need the game manager called Parlance, negoServer,
RandomBot’s code and the libraries that it requires, that are dip and
bot. 10

2. Create a client extending the corresponding classes. Remember that to
be able to negotiate you should use negoClient and dipNego in addition
to the libraries specified in Figure 7.

We extend RandomBot’s functionality adding the capability to negoti-
ate randomly thus we also need the language parsing utility, dipNego,
and the library that provides the connection with negoServer that is
negoClient. From negoClient we must implement the handleMessage
method indicating what to do when a message is received. Our random
negotiator agent would throw a coin to decide whether to accept or re-
ject the received proposal. And if the message is already an accept or a
reject, it would do nothing. negoClient also allows us to send messages.
Our random negotiator agent would throw a coin at every new state

9 RandomBot is the player that performs random moves introduced in section 5.
10dip and bot libraries are available at http://waw.dipgame .org/browse/dip.

14

to decide whether to propose something or not. And the same method
would be used to decide whom to propose it and the concrete offer to
make, for instance, a peace agreement.

. Complete your client adding the negotiation model functionality to be
tested. This is the step where you integrate your work with the testbed.
In the example we take decisions randomly therefore the negotiation
model simply defines a negotiation strategy based on throwing coins.

. Set the experiments choosing the language level, the duration of the
game and the deadlines. Fixed game duration and deadlines for turns
are optional but recommended specially when humans take part of the
experiments.

Our example experiment might be composed of 100 games with 7 in-
stances of our random agent. The duration of the game and turns
are undefined as this is a simple example where agents make just one
proposal per turn before deciding their actions.

. Run the experiments. This means launching first the game manager
and negoServer with the desired settings and then running the clients
that you want to connect to them.

We will repeat this 100 times and save the results.

. Analyze the results and extract your conclusions. At the end of each
game you get the results as a complete log of movements, state updates
and exchanged messages.

From the log files generated we check whether our agent played well and
question whether there is a way to improve its performance changing
the internal model of the agent.

. Optionally make the adjustments necessary in your code to improve
the performance of your agent.

The code of this random negotiator agent can be download from nttp:
//www.dipgame . org/downloads/RandomNegoBot . java. It is jU.St a simple example where the
negotiation is driven taking random decisions. More sophisticated agents
will take advantage of the messages exchanged, the actions performed and
the state of the world observed in order to perform smart negotiations. Those
agents can compete against other agents but also against humans.

7. DipGame website

Our aim is to provide a platform with an environment rich enough to test
negotiation models that are going to be deployed into the real world. Most of

15

the real world applications of MAS negotiations involve people. Therefore,
it should be possible to have humans taking part of our experiments. In
this section we describe the problem of having people taking part in research
experiments and how do we handle their recruitment.

Joining together hundreds of people in an experiment is costly. It is very
hard to organize an experiment with humans because this requires a lot of
money, time and effort in coordinating everybody. To be able to perform
experiments like these but with a low cost we created a web application to
allow people to take part in the experiments from anywhere in the world re-
ducing the logistic problems of gathering people. Although the game is quite
popular, it is never mind difficult for a player to physically summon another
6 people to play a game. Playing online makes this easier and moreover al-
lows to secretly meet with other players to negotiate and keep conspiracies
under cover. By means of this web application, we join together research and
entertainment as it was successfully done previously in other projects.!!

The web application interface is composed of an interactive map repre-
senting the state of the game and where players can indicate their movements
clicking on the units. It is quite intuitive how to use it and there are some
help facilities for newcomers to easy step into the game. In Figure 10 we
include a screenshot of an ongoing game where Italy is about to win. At the
right part of the screen there is a summary of the state of the game and the
turn movements. Under this summary panel there is an instant messaging
tool embedded in the web page that allows the player to negotiate with the
rest of players using restricted natural language. To that end, we provide
a parser for restricted natural language. It is called dialogueAssistant and
translates written sentences into an equivalent sentence in L. Figure 8 illus-
trates the transformation. dialogueAssistant is currently only available for
messages at level L, but is going to be upgraded in order to interpret higher
language levels. For the top levels it seems that a click-based approach to
build sentences would be more useful. This approach would be something
similar to the translator sheets that the face-to-face players use in interna-
tional tournaments'?. Also, an argumentative agent might use argument
building tools, like those in nttp://debategraph.org/, to structure argumentative

11Tn 2005, Luis von Ahn devised the ESP Game, an online game of image labeling that
Google is now using to improve its image search results.
12Examples of translator sheets at http://www.ellought.demon.co.uk/dip_translator/.

16

‘ano dipgame - Online Playing (a=]

G:E' @ (%, hup:/ jwww.dipgame.org/play/ 744 /game v) ﬁv dipgame| Q)

| % dipgame - Online Playing

Orders State
WAR MOVE 10 MUS
BRE No order

KIE hold

MAR move to SPA
ROM move to VEN
VEN move to TRI
AEG support EAS
EAS move to SMY
ION move to EAS
'WES support SPA
BUL move to CON
SPA move to MAO

Send orders Save

Aus || Eng | Fra || Ger

Italy: | propose you peace
England: Ok

Fall Moves 1910
You are ltaly

Figure 10: Screenshot of the dipgame web application for playing Diplomacy.

dialogues and support decision making.

8. Related Work

In this section we summarize existing work on testbeds for negotiation.

MAGNET is the abbreviation for Multi AGent NEgotiation Testbed. It is
rather a generalised market architecture for multiagent contract negotiation
using auctions [33]. The required negotiation skills in MAGNET are far
simpler than in DipGame.

The Trading Agent Competition (TAC) [29] is a testbed where, in its
classical version, agents are travel assistants that try to assemble the best
travel package for their clients. To evaluate the assembling of packages they
use the summation of the utilities of the clients that are in turn based on
their preferences. It is a multi-issue negotiation process organised as a multi-
lateral negotiation by means of auctions on every single issue. Bids take the
form of pairs where a price per item and a number of items is proposed. There
are also other versions of TAC problems that are similar to this: TAC/AA,
CAT and TAC/SCM. Competitions are organised annually where several

17

instances of the game are played. Although this is a consolidated testbed,
the problems that it aims at are quite different to the ones we worry about.
The negotiation language and protocol is highly constrained, humans do not
take part of experiments and preferences are assumed to be known and fixed.

The Colored Trails Game (CT) [28] is a research testbed for decision-
making in groups comprising people and agents. In every game, two or more
players may negotiate to exchange chips that allow them to move from their
source position to a target position over a coloured squared board. To move
through the board, players must provide chips of the same colour of the
squares that they want to pass over. The game is quite abstract and was
defined for research purposes so humans taking part in the experiments must
be instructed and are not equally motivated. The amount and type of chips
and the source location of the players is different so that the initialisation
of the game can benefit a player in front of others. Also the richness of the
negotiation language is more limited than in the case of DipGame.

GENIUS, the Generic Environment for Negotiation with Intelligent multi-
purpose Usage Simulation [27] is a research tool that facilitates research
in the area of bilateral multi-issue negotiation. It allows the evaluation of
agents playing in various negotiation scenarios where issues and preferences
of each party on them must be known from the beginning and are fixed. It
can be used in experiments with humans using a constrained communication
protocol, but assuming that the preferences are fixed and known is something
strange and difficult to find in the real world. Thanks to this, the toolbox
for analysis calculates the optimal solutions and represent the evolution of
the negotiation using it as a reference. Contrarily to DipGame, GENIUS
is limited to bilateral negotiations, there is no relationship building among
players, and there is no post-negotiation action verification.

The Agent Reputation and Trust (ART) Testbed, [34], was created with
the aim of establishing a testbed for agent trust- and reputation-related tech-
nologies. Several competitions were organised where appraiser agents com-
peted to get the higher reputation appraising paintings. It is currently still
very popular although the project is no longer maintained. The expertise on
completing appraisals was split between the agents and they should decide
whether to request help from other appraisals, paying an amount for the info,
or dealing with it by themselves. ART testbed is a good testbed for trust
and reputation but it is very focused on a utilitarian view and too limited to
test negotiation or argumentation models.

These testbeds provide more or less infrastructure and some have a long

18

tradition background being now a reference to many researchers. However,
they are too connected to a utilitarian approach and we wanted a scenario
in which other approaches could also be tested. In particular, we think that
DipGame is richer to model information exchange (due to the possibility of
observing public -the moves- and private -the offers- behaviour of agents)
and to model trust (due to the longer time that a game lasts). No one of
the related testbeds is rich enough to allow for the testing of those complex
negotiation models that can be tested in DipGame. The simplest setting
of DipGame is already richer and more realistic than any of the existing
testbeds. This is so because we wanted to encourage the research on ne-
gotiating agents to be capable to interoperate with people, and the other
testbeds goal mostly, follows a constructivist approach as mentioned in the
introduction. Among all the testbeds described above, the CT is the most
compelling to work with humans.

9. Discussion and future work

Diplomacy is an ideal game for testing negotiation models because it al-
lows for complex dialogues among agents while keeping the computational
overhead to a minimum as the number of involved agents is small. Moreover,
it allows testing of rich negotiation models as the game has a huge space
of solutions, actions are only partially observable (e.g. some dialogical ac-
tions of other agents are not made public) the state changes over time and
there are thousands of humans ready to play. In this paper we introduced
the DipGame testbed that allows researchers to run experiments using such
negotiation models over Diplomacy. We provide a platform with a complete
infrastructure composed of a framework for building agents, tools for com-
munication, interpreters for restricted natural language, and a website to
summon people for the experiments.

The DipGame website is in production as beta version at nttp://wmw.dipgame.
org giving access to humans to play Diplomacy online against some of our
simplest bots. Although we did not make any advertisement to the Diplo-
macy players community, the website gets requests from many users to play.
We have a total of 185 registered users in April 2011 and there are sev-
eral groups of researchers developing bots over the platform. Also, the
testbed is being used for academic purposes in some master degrees (e.g.
http://www.cse.unr.edu/robotics/bekris/cs483_s10/handouts) and by several master and
PhD students in their theses.

19

We will continue maintaining the website and the resources and adding
functionality. Our next work will be mainly focussed on developing sophisti-
cated negotiating agents capable of playing against humans at the different
language levels of L. In fact, this testbed was needed as a step before being
able to test our own work on negotiation [35]. Obtaining experimental results
of our negotiation model over the testbed is part of our future work.

10. Acknowledgments

Research supported by the Agreement Technologies CONSOLIDER project
under contract CSD2007-0022 and INGENIO 2010, by the Agreement Tech-
nologies COST Action, IC0801, and by the Generalitat de Catalunya under
the grant 2009-SGR-1434.

References

[1] C. Sierra, J. K. Debenham, Trust and honour in information-based
agency, in: Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multi-agent Systems, 2006, pp. 1225-1232.

[2] C. Sierra, J. Debenham, Information-based reputation, in: First Inter-
national Conference on Reputation: Theory and Technology, Gargonza,
Italy, 2009, pp. 5-19.

[3] 1. Pinyol, J. Sabater-Mir, Pragmatic-strategic reputation-based deci-
sions in bdi agents, in: Proceedings of the Eighth International Joint
Conference on Autonomous Agents and Multiagent Systems, 2009, pp.
1001-1008.

[4] L. Amgoud, H. Prade, Using arguments for making and explaining de-
cisions, Artificial Intelligence 173 (3-4) (2009) 413-436.

[5] T. Alsinet, C. Chesnievar, L. Godo, G. Simari, A logic programming
framework for possibilistic argumentation: Formalization and logical
properties, Fuzzy Sets and Systems 159 (10) (2008) 1208-1228.

[6] P. Faratin, C. Sierra, N. R. Jennings, Negotiation decision functions for
autonomous agents, Robotics and Autonomous Systems 24 (3-4) (1998)
159-182.

20

[7]

8]

[10]

[11]

[12]

[13]

[14]

S. Kraus, Negotiation and cooperation in multi-agent environments, Ar-
tificial Intelligence 94 (1997) 79-97.

K. V. Hindriks, C. Jonker, D. Tykhonov, Towards an open negotiation
architecture for heterogeneous agents, in: Proceedings of the 12th inter-
national workshop on Cooperative Information Agents, Prague, Czech
Republic, 2008, pp. 264-279.

H. Raiffa, Negotiation Analysis: The Science and Art of Collaborative
Decision Making, Harvard U.P., 2002.

S. Kraus, Strategic Negotiation in Multiagent Environments, MIT Press,
2001.

J. S. Adams, Inequity in social exchange, in: L. Berkowitz (Ed.), Ad-
vances in experimental social psychology, Vol. 2, New York: Academic
Press, 1965.

H. Sondak, M. A. Neale, R. Pinkley, The negotiated allocations of ben-
efits and burdens: The impact of outcome valence, contribution, and re-
lationship, Organizational Behaviour and Human Decision Processes (3)
(1995) 249-260.

M. H. Bazerman, G. F. Loewenstein, S. B. White, Reversal of preference
in allocation decisions: judging an alternative versus choosing among
alternatives, Administration Science Quarterly (37) (1992) 220-240.

G. Coricelli, R. Nagel, Neural correlates of depth of strategic reasoning
in medial prefrontal cortex, Proceedings of the National Academy of
Sciences (PNAS): Economic Sciences 106 (23) (2009) 9163-9168.

C. Eisenegger, M. Naef, R. Snozzi, M. Hienrichs, E. Fher, Sequence of
testosterone vs. placebo on ultimatum game behavior in women, Na-
ture (463) (2010) 356-359.

V. L. Smith, Constructivist and ecological rationality in economics, The
American Economic Review 93 (3) (2003) 465-508.

M. J. Osborne, A. Rubinstein, Bargaining and Markets, Academic Press,
1990.

21

18]

[19]

[20]
[21]
[22]

[23]

[24]

[25]

[20]

[27]

28]

[29]

P. Faratin, C. Sierra, N. Jennings, Using similarity criteria to make issue
trade-offs in automated negotiation, Journal of Artificial Intelligence
142 (2) (2003) 205-237.

R. Lin, S. Kraus, J. Wilkenfeld, J. Barry, Negotiating with bounded
rational agents in environments with incomplete information using an
automated agent, Artificial Intelligence 172 (6-7) (2008) 823 — 851.

J. Rosenschein, G. Zlotkin, Rules of Encounter, MIT Press, 1998.
H. Raiffa, The Art and Science of Negotiation, Harvard U.P., 1982.

C. Sierra, J. Debenham, The logic negotiation model, in: Proceedings
of the Sixth International Joint Conference on Autonomous Agents and
Multi-agent Systems, 2007, pp. 1026-1033.

Y. Gal, B. Grosz, S. Kraus, A. Pfeffer, S. Shieber, Agent decision-making
in open mixed networks, Artificial Intelligence 174 (2010) 1460-1480.

D. Hales, Cpm-03-109: Neg-o-net — a negotiation simulation test-bed,
Tech. rep., Center for Policy Modelling (2002).

R. Conte, J. Sichman, Depnet: How to benefit from social dependence,
Journal of Mathematical Sociology 20 (2-3) (1995) 161-177.

A. G. Sanfey, J. K. Rilling, J. A. Aronson, L. E. Nystrom, J. D. Cohen,
The neural basis of economic decision-making in the ultimatum game,
Science 300 (5626) (2003) 1755-1758.

K. Hindriks, C. M. Jonker, S. Kraus, R. Lin, D. Tykhonov, Genius:
negotiation environment for heterogeneous agents, in: Proceedings of the
Eighth International Conference on Autonomous Agents and Multiagent

Systems, IFAMAS, Richland, SC, 2009, pp. 1397-1398.
Y. Gal, B. J. Grosz, S. Kraus, A. Pfeffer, S. Shieber, Colored trails: A

formalism for investigating decision-making in strategic environments,
in: IJCAI Workshop on Reasoning, Representation, and Learning in
Computer Games, 2005, pp. 25-30.

M. P. Wellman, P. R. Wurman, A trading agent competition for the
research community, in: AMEC, IJCAI 1999 Workshop.

22

[30]

[31]

[32]

[33]

[34]

[35]

S. Kraus, D. Lehmann, E. Ephrati, An automated diplomacy player,
in: D. Levy, D. Beal (Eds.), Heuristic Programming in Artificial Intel-
ligence: The 1st Computer Olympia, Ellis Horwood Limited, 1989, pp.
134-153.

S. Kraus, Designing and building a negotiating automated agent, Com-
putational Intelligence 11 (1995) 132-171.

J. Shaheed, Creating a diplomat, Master’s thesis, Department of Com-
puting, Imperial College Of Science, Technology and Medicine, 180
Queen’s Gate, London, SW7 2BZ, UK (June 2004).

J. Collins, M. Tsvetovat, B. Mobasher, M. Gini, Magnet: A multi-
agent contracting system for plan execution, in: Proceedings of Artificial
Intelligence and Manufacturing Workshop, 1998, pp. 63—68.

K. K. Fullam, T. B. Klos, G. Muller, J. Sabater, A. Schlosser, Z. Topol,
K. S. Barber, J. S. Rosenschein, L. Vercouter, M. Voss, A specification
of the agent reputation and trust (art) testbed: experimentation and
competition for trust in agent societies, in: Proceedings of the Fourth

International Joint Conference on Autonomous Agents and Multiagent
Systems, Utrecht, The Netherlands, 2005, pp. 512-518.

A. Fabregues, C. Sierra, An agent architecture for simultaneous bilat-
eral negotiations, in: Proceedings of the 13e Congrés Internacional de
I’ Associacié Catalana d’Intelligencia Artificial, Espluga de Francoli, Tar-
ragona, 2010, pp. 29-38.

23

