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Abstract

Mixed Multi-Unit Combinatorial Auctions extend and generalize all the preceding
types of combinatorial auctions. In this paper, we try to make headway on the prac-
tical application of MMUCAs by: (1) providing an algorithm to generate artificial
data that is representative of the sort of scenarios a winner determination algorithm
is likely to encounter; and (2) subsequently assessing the performance of an Integer
Programming implementation of MMUCA in CPLEX.

1 Introduction

A combinatorial auction (CA) is an auction where bidders can buy (or sell)
entire bundles of goods in a single transaction [1]. Selling goods in bundles
has the great advantage of eliminating the risk for a bidder of not being able
to obtain complementary goods at a reasonable price in a follow-up auction
(think of a CA for a pair of shoes, as opposed to two consecutive single-item
auctions for each of the individual shoes). The study of the mathematical,
game-theoretical and algorithmic properties of CAs has recently become a
popular research topic in AI. This is due not only to their relevance to impor-
tant application areas such as electronic commerce or supply chain manage-
ment, but also to the range of deep research questions raised by this auction
model.

Preprint submitted to Elsevier 8 February 2008
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Central to CAs are the issues of winner determination problem (WDP) and
bidding. Winner determination is the problem, faced by the auctioneer, of
choosing which goods to award to which bidder so as to maximize its revenue.
The (decision problem underlying the) WDP for standard CAs is known to be
NP-complete, with respect to the number of goods [2]. NP-hardness can, for
instance, be shown by reduction from the well-known Set Packing problem.
Bidding is the process of transmitting one’s valuation function over the set
of goods on offer to the auctioneer through some bidding language [3]. Under
an OR-language, if a particular bidder submits several atomic bids (a bundle
together with a proposed price), then the auctioneer may accept any set of bids
from that bidder for which the bundles do not overlap, and charge the sum of
the specified prices. If we use an XOR-language instead, that means that only
one of the atomic bids can be accepted. The advantage of an XOR-language
is that it allows to express not only complementarity between goods (value of
a bundle being greater than the values of its parts), like an OR-language, but
also substitutability (value of a bundle being less than the sum of its parts).
Although an XOR bidding language is known to be fully expressive [3,4], using
this language in some types of CAs causes that finding a feasible solution is
NP-complete [5].

In [4] we introduce a generalization of the standard model of CA. This new
auction model integrates direct and reverse auctions, i.e. the auctioneer can
buy and sell goods within a single auction. It also incorporates the idea of
transformability relationships between goods by allowing agents not only to
bid for goods but also for transformation services, i.e. an agent may submit
a bid offering to transform a certain set of goods into another set of goods.
We call the resulting auction model mixed multi-unit combinatorial auctions
(MMUCA). To illustrate the operation of MMUCA, consider as an example
the assembly of a car’s engine, whose structure is depicted in Figure 1 (a).
Notice that each part in the diagram, in turn, is produced from further com-
ponents or raw materials. For instance, a cylinder ring (part 8) is produced
by transforming some amount of stainless steel with the aid of an appropriate
machine. Therefore, there are several production levels involved in the making
of a car’s engine. A MMUCA allows to run an auction where bidders can bid
over bundles of parts, bundles of transformations, or any combination of parts
and transformations. Notice that the result of an MMUCA WDP algorithm
would be an ordered sequence of bids making explicit how bidders coordinate
to progressively transform goods until producing engines as final products.
Therefore, an MMUCA would allow to assemble a supply chain from bids.

Despite its potential for application, and unlike CAs, little is known about
the practical application of MMUCAs since no empirical results have been
reported on any WD algorithms. These results are unlikely to come up unless
researchers are provided with algorithms or test suites to generate artificial
data that are representative of the auction scenarios a WD algorithm is likely
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Fig. 1. (a) Components of a car engine. (b) Supply chain for a car’s engine.

to encounter. Hence, WD algorithms could be accurately tested, compared,
and improved. In this paper, we try to contribute to the practical application
of MMUCAs in the following lines.

We provide an algorithm to generate artificial data sets that are representative
of the sort of scenarios a WD algorithm is likely to encounter. Our algorithm
takes inspiration on the structure of supply chains, whose formation has been
identified as a very promising application domain for MMUCA [6,4]. In order
to understand the basic operation of our algorithm, consider the sample of
supply chain depicted in Figure 1 (b) illustrating the goods (represented as
circles) and transformations (represented as horizontal bars) involved in the
assembly of a car engine. A supply chain is composed of levels (or tiers if
we employ the supply chain terminology). In Figure 1 (b) the supply chain
has three levels. Each level contains goods that are subsequently transformed
into other goods within another level in the supply chain. There are three
transformations, namely t1, t2, t3. While t2 and t3 transform goods from level
1 into goods in level 2, t1 transforms goods from level 2 into goods in level 3.
For instance, t3 transforms 1 unit of piston line and 1 unit of piston ring into
1 piston. Within this setting, our generator allows to flexibly generate:

• Supply chain structures with a varying number of levels. Modelling from
complex supply chains involving multiple levels (e.g. the making of a car)
to simple supply chains involving a few parties.

• Transformations of varying complexity. Varying complexity on the input and
output sides of the transformations involved in a supply chain. For instance,
consider t2, the production of cylinders in Figure 1 (b). It involves screws,
cylinder lines, cylinder rings, and cylinder heads. Thus, on the input side
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it requires more material goods than t3 when producing pistons. However,
both t2 and t3 produce a single output good.

• Transformations representing different production structures. The input and
output goods from a transformation may come from different levels. For in-
stance, in Figure 1 (b) t2 transforms goods from level 1 into level 2 following
the production flow. However, t2 requires screws from level 2 and goods from
level 1 to produce goods for level 2. As a particular case, notice that a trans-
formation disassembling an engine in level 3 into its pieces in level 1 would
cause a loop in the supply chain caused by the combination of assembly
and disassembly processes. Notice that the fact that a transformation like,
for instance, t1 accepts input goods from level 1 allows to model that t1
overrides the intermediaries producing goods for level 2.

• Bids per level. Different bid distributions may appear at different levels, to
control the degree of competition in the market.

We employ such algorithm to generate artificial data and subsequently assess
the performance of an Integer Programming (IP) implementation of a WDP
solver for MMUCA in CPLEX.

The paper is structured as follows. In section 2 we provide some background
on CAs, which is extended to MMUCAs in section 3. Next, in section 4 we
analyze the required features of an artificial data set generator for MMUCAs
whose algorithm is detailed in section 5. In sections 6 and 7, we analyze some
empirical results, draw some conclusions and outline paths to future research.

2 Combinatorial Auctions

A combinatorial auction (CA) [1] is an auction where bidders can buy (or sell)
entire bundles of goods in a single transaction. A CA is single-unit when there
is a single copy of each item at auction (each item has multiplicity one). We
say that a CA is multi-unit when there are multiple copies of some item(s).
Although CAs are very complex computationally [7], the fact that bidders
can express their preferences over bundles of goods may help both bidders
and auctioneer to obtain better deals. In fact, buying items in bundles has
the great advantage of eliminating the risk for a bidder of not being able to
sell complementary items at a reasonable price in a follow-up auction (think
of a CA to acquire a pair of shoes, as opposed to two consecutive single-item
auctions for each of the individual shoes). Indeed, CAs may lead to more
efficient allocations whenever complementarities among the goods at auction
hold.

CAs have a high potential to be employed as an allocation mechanism in a wide
variety of real-world domains. Thus, they have been proposed to be employed
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for allocating loads to trucks in the transportation market [8], routes to buses
[9], goods/services to buyers/providers in industrial procurement scenarios
[10], airport arrival and departure slots [11], radio-frequency spectrum for
wireless communications services [12], and supply chain formation [13].

Auction theory studies the formal properties of auctions as shown in the sur-
veys of [14] and [15]. Nonetheless CAs have recently attracted the attention of
economists and game theorists. Associated to auction theory is also the design
of auction mechanisms, devoted to study how to run an auction in order to
guarantee some economic properties such as, for instance, efficiency, incentive
compatibility, individual rationality, etc. For CA mechanisms see [16], [17],
[18], [19], [20], and [21].

2.1 Bidding Languages

Bidding is the process of transmitting one’s valuation function over the set
of goods on offer to the auctioneer (or rather some valuation function: the
bidders are of course not required to reveal their true valuation). In princi-
ple, it does not matter how the valuation function is being encoded, as long as
sender (bidder) and receiver (auctioneer) agree on the semantics of what is be-
ing transmitted, i.e. as long as the auctioneer can understand the message(s)
sent by the bidder. Indeed, it is possible to fully specify an auction mecha-
nism (allocation and pricing rules) without reference to a concrete bidding
language. In practice, however, the choice of bidding language is of central
importance. Since there are an exponential number of combinations of goods,
a bidding language must allow bidders to express their bids in a compact way.
In addition, the complexity of the problem of allocating the goods at auction
to bidders depends on the choice of the bidding language (e.g. [22] contains
an interesting discussion on the topic).

Early work on CAs has typically ignored the issue of bidding languages. The
standard assumption used to be that if a particular bidder submits several
atomic bids (a bundle together with a proposed price), then the auctioneer
may accept any set of bids from that bidder for which the bundles do not
overlap, and charge the sum of the specified prices. This is now sometimes
called the OR-language. But other interpretations of a set of atomic bids are
possible. For instance, we may take it to mean that the auctioneer may accept
at most one bid per bidder; this is now known as the XOR-language.

The first systematic study of bidding languages is due to Nisan [3] (an early
version appeared in 2000). Nisan’s paper provides an excellent introduction to
the topic and has clarified a number of issues that have previously remained
somewhat fuzzy.
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2.2 Winner Determination Problem

The winner determination problem (WDP) considers choosing which goods
to award to which bidder so as to maximise the auctioneer revenue. WDP for
CAs is a complex computational problem.

One of the fundamental issues limiting the applicability of CAs to real-world
scenarios is the computational complexity associated to the winner determina-
tion problem. In particular, it has been proved that WDP is NP-complete [2].
General integer programming (IP) solvers [23] and special purpose algorithms
(e.g. [5], [24],and [25]) have been employed to solve WDP, but it is well known
that it does not exist a general solver that performs well in all situations. For
an extended review on WDP and related issues refer to [26],[27], and [28].

3 Mixed Multi-unit Combinatorial Auctions

In this section we firstly summarise the work in [4], which introduces mixed
multi-unit combinatorial auctions as a generalisation of the standard model
of CA and discusses the issues of bidding and winner determination. Next,
we describe the features of the proposed bidding language, designed to allow
bidders to express several types of complex bids. Finally, we summarise the
features of an efficient IP solver for the WDP of this new type of auction, fully
described in [6].

3.1 Bidding Language

Let G be the finite set of all the types of goods. A transformation is a pair
of multisets over G: (I,O) ∈ N

G × N
G. An agent offering the transformation

(I,O) declares that it can deliver O after having received I. In our setting,
bidders can offer any number of such transformations, including several copies
of the same transformation. That is, agents will be negotiating over multisets
of transformations D ∈ N

(NG×N
G). For example, {({ }, {a}), ({b}, {c})} means

that the agent in question is able to deliver a (no input required) and that
it is able to deliver c if provided with b. Note that this is not the same as
{({b}, {a, c})}. In the former case, if another agent is able to produce b if
provided with a, we can use the second transformation and get c; in the latter
case this would not work.

In a MMUCA, agents negotiate over bundles of transformations. Hence, a val-
uation v : N

(NG×N
G) → R is a (typically partial) mapping from multisets of
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transformations to real numbers. Intuitively, v(D) = p means that the agent
equipped with valuation v is willing to make a payment of p in return for
being allocated all the transformations in D (in case p is a negative num-
ber, this means that the agent will accept the deal if it receives an amount
of |p|). For instance, valuation v({({line, ring , head , 6 · screws , screwdriver},
{cylinder , screwdriver})}) = −10 means that some agent can assemble a cylin-
der for $10 when provided with a cylinder line, a cylinder ring, a cylinder head,
six screws, and a screwdriver, and returns the screwdriver once done 1 .

An atomic bid b = ({(I1,O1), . . . , (In,On)}, p, l) specifies a finite multiset
of finite transformations, a price p, and a bid owner identifier l. To make
the semantics of such an atomic bid precise, we need to decide whether or
not we want to make a free disposal assumption. We can distinguish two
types of free disposal. As to free disposal at the bidder’s side, there are two
possible free disposals sub-types: good free disposal and transformation free
disposal. Good free disposal means that a bidder would always be prepared
to accept more goods and give fewer goods away, without requiring a change
in payment; whereas transformation free disposal means that it is allowed
that some transformations are sold but not employed in the transformation
process. As to free disposal at the auctioneer’s side, we only have good free
disposal, meaning that the auctioneer may accept more and give away fewer
goods. Both these free disposals affect the definition of what constitutes a
valid solution to the WDP.

A suitable bidding language should allow a bidder to encode choices between
alternative bids and the like [3]. Informally, an OR-combination of several bids
means that the bidder would be happy to accept any number of the sub-bids
specified, if paid the sum of the associated prices. An XOR-combination of
bids expresses that the bidder is prepared to accept at most one of them.
For the formal definition of WDP below, we restrict ourselves to bids in the
XOR-language, which is known to be fully expressive for MMUCAs [4].

Bids in MMUCAs are composed of transformations. Each transformation ex-
pressses either an offer to buy, to sell, or to transform some good(s) into
(an)other good(s). Thus, transformations are the building blocks composing
bids. We can readily classify the types of transformations over which agents
bid as follows:

(1) Output transformations are those with no input good(s). Thus, an O-
transformation represents a bidder’s offer to sell some good(s). Besides,
an O-transformation is equivalent to a bid in a reverse CA.

(2) Input transformations are those with no output good(s). Thus, an I-
transformation represents a bidder’s offer to buy some good(s). Notice

1 We use 6·screws as a shorthand to represent six identical elements in the multiset.
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Fig. 2. All market transformations for a car’s engine. It is indicated the number of
units of each item required to execute each transformation.

that an I-transformation is equivalent to a bid in a direct CA.
(3) Input-Output transformations are those whose input and output

good(s) are not empty. An IO-transformation stands for a bidder’s of-
fer to deliver some good(s) after receiving some other good(s): I can
deliver O after having received I. They can model a wide range of differ-
ent processes in real-world situations (e.g. assembly, transformation, or
exchange).

Figure 2 presents samples of each transformation type. Horizontal, black bars
stand for transformations, circles stand for goods, and directed arrows from
goods into or from transformations represent the goods input into or produced
out of a transformation. Thus, for instance, we differentiate an I-transformation
to consume a piston, an O-transformation to give away a piston, and an IO-
transformation giving away a piston after receiving a piston ring and a piston
line. Notice that any bid in a MMUCA results as a combination of transfor-
mations of the above-listed types.
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3.2 Winner Determination Problem. Informal Definition

The input to WDP consists of a complex bid expression for each bidder, a
multiset Uin of goods the auctioneer holds to begin with, and a multiset Uout

of goods the auctioneer expects to end up with.

In standard CAs, a solution to the WDP is a set of atomic bids to accept. In
our setting, however, the order in which the auctioneer ”uses” the accepted
transformations matters. For instance, if the auctioneer holds a to begin with,
then checking whether accepting the two bids Bid1 = ({({a}, {b})}, 10, id1)
and Bid2 = ({({b}, {c})}, 20, id2) is feasible involves realising that we have
to use Bid1 before Bid2. Thus, a solution for WDP will be a sequence of
transformations. A valid solution has to meet two conditions:

(1) Bidder constraints: The multiset of transformations in the sequence has
to respect the bids submitted by the bidders. This is a standard requirement.
For instance, if a bidder submits an XOR-combination of transformations, at
most one of them may be accepted. With no transformation free disposal, if
a bidder submits an offer over a bundle of transformations, all of them must
be employed in the transformation sequence, whereas in the case of transfor-
mation free disposal any number of the transformations in the bundle can be
included into the solution sequence, but the price to be paid is the total price
of the bid.
(2) Auctioneer constraints: The sequence of transformations has to be imple-
mentable: (a) check that Uin is a superset of the input set of the first trans-
formation; (b) then update the set of goods held by the auctioneer after each
transformation and check that it is a superset of the input set of the next
transformation; (c) finally check that the set of items held by the auctioneer
in the end is a superset (the same set in the case of no good free disposal) of
Uout.

An optimal solution is a valid solution that maximises the sum of prices as-
sociated with the atomic bids selected.

3.3 Connected Component IP Solver (CCIP)

In this section we summarise CCIP, a mapping of the MMUCA WDP into
an IP formulation, as thoroughly discussed in [6]. In section 3.3.1 we outline
the intuitions underlying CCIP, whereas in section 3.3.2 we provide a detailed
IP formulation. For further details, we recommend the interested reader to
consult [6] and [29].
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Position 1 2 3 4 5 6 7 8 9 10 11

Sequence 1 t0 t2 t1 t4

Sequence 2 t0 t1 t2 t4

Sequence 3 t2 t1 t0 t4

Solution

template
t0 t1

t2

t3

t4

t2

t3

t4

t2

t3

t4

t5 t9 t10

t6

t7

t6

t7
t8

Table 1
Partial sequences of transformations.

3.3.1 Foundations

Consider that after receiving a bunch of bids, we draw the relationships among
goods and transformations, as shown in Figure 3 (a). There, we represent
goods at trade as circles, transformations as squares, a transformation input
goods as incoming arrows and its output goods as outgoing arrows. Thus, for
instance, transformation t0 offers one unit of good g2 and transformation t2
transforms one unit of g2 into one unit of g4. Say that the auctioneer requires
Uout = {g2, g3}. Row 1 in table 1 stands for a valid solution sequence. Indeed,
it stands for a valid solution sequence because at each position, enough input
goods are available to perform the following transformation. Notice too that
likewise row 1, row 2 also stands for a valid solution sequence because even
though they differ in the ordering among transformations, both use exactly the
same transformations, and both have enough goods available at each position.
However, row 3 in table 1 is not a valid sequence, although it contains the
same transformations, because t2 lacks of enough input goods (g2) to be used.

In Figure 3 (a), it is clear that transformations that have no input goods can
be used prior to any other transformation. Thus, transformations t0 and t1 can
come first in the solution sequence. Moreover, we can impose that t0 comes
before t1 because swapping the two would yield an equivalent solution. If we
now consider transformations t2, t3, t4, we observe that: (i) they depend on the
output goods of t0 and t1; and (ii) we cannot impose an arbitrary order among
them because they form a cycle and then they can feed with input goods one
another (they depend on one another). However, no permutation of the three
can be discarded for the valid solution sequence. Furthermore, whatever their
order, we can always use them before transformations t5 and t9 (since these
depend on g4) without losing solutions.

Assuming that the auctioneer does not care about the ordering of a solution
sequence as long as enough goods are available for every transformation in
the sequence, we can impose “a priori” constraints on the ordering of trans-
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Fig. 3. An MMUCA bid set, the corresponding TDG, SCC, and Order Relation.

formations without losing solutions. The way of imposing such constraints is
via a solution template, a pattern that any candidate sequence must fulfil to
be considered as a solution. For instance, row 4 in table 1 shows a sample
of solution template. A solution sequence fulfilling that template must have
transformations t0 in position 1 and t1 in position 2, whereas it is free to assign
positions 3, 4, or 5, to the transformations in {t2, t3, t4}. For instance, row 3
of table 1 does not fulfil the template in row 4, whereas rows 1 and 2 do.

Notice that the constraints in the solution template derive from our analysis
of the dependence relationships among transformations. Hence, in order to
build a solution template, we must firstly analyse the dependence relationships
among transformations to subsequently use them to constrain the positions
at which a transformation can be used.

At this aim, we can follow the sequential process illustrated in Figure 3:

(1) Define the so-called transformation dependency graph (TDG), a graph
where two transformations t and t′ are connected by an edge if they
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have a good that is both output of t and input to t′ (direct dependence).
Figure 3 (b) depicts the TDG for the bids represented in Figure 3(a).

(2) Assess the strongly connected components (SCC) of the TDG. Depending
on the received bids, the TDG may or may not contain strongly con-
nected components. In order to constrain the position of transformations,
we transform the TDG in an acyclic graph where the nodes that form a
strongly connected component are collapsed into a single node. The main
idea is that the positions of transformations in a strongly connected com-
ponent are drawn from the same set of positions, but we cannot impose
any order regarding the position each transformation takes on. In Figure
3(c) we identify strongly connected components or SCCs in the graph. In
Figure 3(d) we can see the graph resulting from transforming (collapsing)
each SCC into a node.

In [29], we prove that if there is a strict order among transformations (e.g. like
the one depicted in Figure 3(d)), we can always construct a solution template
that restricts the positions that can be assigned to those transformations in a
way that, if a solution sequence fulfils the solution template, the strict order is
also fulfilled. For instance, consider the solution template in row 4 in table 1
that we construct considering the strict order in Figure 3(d). Since the solution
sequences in rows 1 and 2 of table 1 fulfil the solution template in row 4, they
both fulfil the strict order.

Now we are ready to characterise valid solutions to the MMUCA WDP. Look-
ing back at the solution sequences in rows 1 and 2 of table 1, we realise that
both are partial sequences. A partial sequence is a sequence with ”holes”,
meaning that there can be some positions in the sequence that are empty.
Formally, a partial sequence over a non-empty finite set M is a partial func-
tion K : {1, . . . , n} → M , with n ∈ N. Therefore, a valid solution to the
MMUCA WDP can be encoded as a partial sequence of transformations that
fulfils some solution template.

Henceforth we employ S to denote a solution template. Intuitively, a solution
template is a function that maps each position to a finite set of transformations
that can take on such position in the solution sequence. For instance, in table 1
we see that S(3) = [t2] where [t2] stands for the strongly connected component
to which t2 belongs to (namely, the one containing {t2, t3, t4}). We employ S−1

to indicate the inverse of a solution template S. S−1([t]) indicates the set of
positions that map to the strongly connected component containing t via S.
For instance, in table 1 we see that S−1([t2]) = {3, 4, 5}.

12
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3.3.2 Detailed IP Formulation

Hereafter, we restrict ourselves to bids in the XOR-language, which is known to
be fully expressive for MMUCAs [4]. However, we can easily extend the results
to other bidding languages, in particular languages including an OR-operator.
Let B be the set of all atomic bids. Recall that an atomic bid b = (Db, pb, lb)
consists of a multiset of transformations, a price, and a label indicating the
owner of the bid, i.e. Db ∈ N

(NG×N
G), pb ∈ R, and lb ∈ L where L is a set of

bidders and Bl is the set of all bids submitted by bidder l ∈ L.

For each bid b, let tbk be a unique label for the kth transformation in the
underlying set of elements in Db (for some arbitrary but fixed ordering over
such set) 2 . Let Tb be the set of all tbk for bid b. Let T be the set of all tbk,
namely the set of all distinguishable transformations (no copies of the very
same transformation) mentioned anywhere in the bids. Let (Ibk,Obk) be the
actual transformation labelled by tbk.

The auctioneer has to decide which transformations to accept and in which
order to implement them. At this aim, we represent each solution with a
partial sequence J : {1, . . . , |D|} → T . We employ the following decision
variables : xm

bk will take on value 1 only if transformation tbk is selected at the
m-th position within the solution sequence (i.e. J(m) = tbk). Let S be the
solution template resulting from the strict order generated by the TDG. For
solver CCIP we only allow as solutions partial sequences fulfilling S, imposing
that no transformation can hold positions out of the one specified by S, i.e.
xm

bk = 0 ∀m �∈ S−1([tbk]).

Furthermore, we employ the following auxiliary decision variables: xb is a
binary variable that takes value 1 if bid b is accepted; and xbk is an integer
variable that represents the multiplicity of transformation tbk (namely, the
number of positions that transformation tbk holds in the solution sequence).

Let (Im,Om) be the mth transformation in the solution sequence, i.e. the tbk
such that xm

bk = 1. Say that we represent with the multiset of goods Mm the
quantity of resources available to the auctioneer after performing m transfor-
mations. Since Uin represents the auctioneer’s stock, we have that M0 = Uin.
For the remaining positions, the following relationship holds:

Mm(g) = Mm−1(g) + Om(g) − Im(g) ∀g ∈ G (1)

2 Within set theory, a multiset can be formally defined as a pair (A, m) where A
is some set and m : A → N is a function from A to the set N = {1, 2, 3, · · · } of
(positive) natural numbers. The set A is called the underlying set of elements. For
each a in A the multiplicity (that is, number of occurrences) of a is the number
m(a). In our case, the underlying set of in Db will be a finite set of transformations
without copies of the very same transformation.
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because enacting transformation (Im,Om) consumes the goods in Im and
produces the goods in Om. For instance, say that the auctioneer begins with
Uin = {a, a, d, d}. If we apply the first transformation (I1,O1) = ({a, a}, {c})
(from two units of a produce one unit of c), the auctioneer ends up with
M1 = {c, d, d}.

Note that Im and Om can be assessed from our decision variables as:

Im(g) =
∑

b∈B

|Tb|∑

k=1

xm
bk · Ibk(g) ∀g ∈ G (2)

Om(g) =
∑

b∈B

|Tb|∑

k=1

xm
bk · Obk(g) ∀g ∈ G (3)

Hence, equation (1) can be unfolded into the equation:

Mm(g) = Uin(g) +
m∑

i=1

∑

b∈B

|Tb|∑

k=1

xi
bk · (Obk(g) − Ibk(g))

Now, we are ready to explicitly state the constraints that a valid solution has
to fulfil in solver CCIP.

(1) Variable xbk contains the number of times that tbk is selected in the so-
lution sequence. xbk is obtained by summing up xm

bk over the positions m
assigned to [tbk] (m ∈ S−1([tbk])):

xbk =
∑

m∈S−1([tbk])

xm
bk ∀b ∈ B ∀1 ≤ k ≤ |Tb| (4)

(2) We impose that at most one transformation can hold each position:

∑

tbk∈S(m)

xm
bk ≤ 1 ∀m (5)

Notice that the sum is only over the transformations that belong to the
same strongly connected component. The constraints in equation 5 en-
force that the solution is a partial sequence, and hence no more than one
transformation can be assigned to the same position of the sequence.

(3) We impose the cardinality semantics of a combinatorial bid b: selecting at
least one transformation within a bid implies selecting all the transforma-
tions within the same bid with the corresponding multiplicity. Formally:

xbk = xb · |Db|tbk
∀b ∈ B ∀1 ≤ k ≤ |Tb| (6)
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where |Db|tbk
is the multiplicity of transformation tbk in Db.

(4) The atomic bids submitted by each bidder are mutually exclusive (XOR).
Thus, we impose the XOR semantics of each bid as follows:

∑

b∈Bl

xb ≤ 1 ∀l ∈ L (7)

(5) We enforce that enough goods are available to use the corresponding
transformations at each position of the solution sequence. This constraint,
represented by equation 8 below, must be added only if the transforma-
tions assigned to position m belong to a simple cycle. We say that a
position m belongs to LF iff the solution template S maps m to trans-
formations belonging to a simple cycle. Now, we can impose:

U0(g) +
m−1∑

l=0

∑

tbk∈S(l)

xl
bk · [Obk(g) − Ibk(g)] ≥

∑

tbk∈S(m)

xm
bk · Ibk(g) ∀g,∀m ∈ LF (8)

(6) After having performed all the selected transformations, we enforce that
the goods held by the auctioneer must be a superset of the final goods,
namely at least Uout:

U0(g) +
∑

m

∑

tbk∈S(m)

xm
bk · [Obk(g) − Ibk(g)] ≥ Uout(g) ∀g (9)

Hence, solving the MMUCA WDP amounts to optimising the following ob-
jective function:

max
∑

b∈B

xb · pb (10)

subject to inequations 4 to 9.

4 Bid Generator Requirements

In order to test and compare MMUCA WD algorithms, researchers must be
provided with algorithms or test suites to generate artificial data that are
representative of the auction scenarios a WD algorithm is likely to encounter.
Hence, WD algorithms can be accurately tested, compared, and improved.
Unfortunately, we cannot benefit from any previous results in the literature
since they do not take into account the notion of transformation introduced in
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[4,30]. In this section we make explicit the requirements for a bid generation
technique considering that in MMUCA agents trade transformations instead
of goods.

A naive approach to artificial bid generation would be to create bids at ran-
dom. It is easy to see that this approach would generate unrealistic bids, from
which we cannot get useful conclusions when solving MMUCAs on them. Let
us consider a random bid b = {{(I,O)}, p, l}. If goods appearing in sets I
and O are selected randomly, there is little chance that they will represent a
realistic transformation. Also, if p is chosen randomly, it will not be related
with the actual values of the goods in the sets I and O and consequently
the transformation would be either too profitable or too expensive for the
auctioneer, unrealistically easing the problem.

If individual bids randomly generated may be unrealistic, sets of random bids
also present similar drawbacks. Let us consider two bids b1 and b2 by different
bidders. In a real MMUCA, there is a high chance that two bids involve the
same goods (or the same type of goods; both are offering close transformations
with small variations in price). However, if b1 and b2 are generated at random,
there is little chance that they will contain similar goods or that their prices
are related.

These two simple examples clearly show that random bid generation creates
unrealistic scenarios. Testing WD algorithms on these scenarios is basically
useless, because any extracted conclusion cannot be used in real settings. The
bid generator has to satisfy a number of requirements to make the artificial
bids close to the bids that are likely to appear in a real-world auction.

Since MMUCAs generalize CAs, as discussed in [4], our approach is to de-
part from artificial data sets generators for CAs, keeping the requirements
summarized in [31], namely:

(1) there is a finite set of goods;
(2) certain goods are more likely to appear together than others;
(3) the number of goods in a bundle is often related to which goods compose

the bundle;
(4) valuations are related to which goods appear in the bundle;
(5) valuations can be configured to be subadditive, additive or superadditive

in the number of goods requested; and
(6) sets of XOR’ed bids are constructed on a per-bidder basis.

Notice though that the requirements above must be reformulated and ex-
tended in terms of transformations, since a bidder in a MMUCA bids over
a bundle of transformations whereas a bidder in a CA bids over a bundle of
goods. Hence, in what follows we discuss the CA requirements listed above
reformulated for MMUCA:
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1. There is a finite set of transformations. A CA generator bundles goods
from a given set of goods to construct bids. Hence, the respective question re-
formulated for MMUCA is: What is the set of transformations from which a
MMUCA generator constructs bids? Within a given market we expect several
producers to offer the very same or similar services (transformations) at dif-
ferent prices, as well as several consumers to require the very same or similar
services (transformations) valued at different prices. In other words, within a
given market we can identify a collection of common services that companies
request and offer. For instance, in the example in Figure 1 (a), several providers
may offer to assemble a cylinder through the very same transformation: t =
({6 ·screws, 1 · cylinder line, 1 · cylinder ring, 1 · cylinder head}, {cylinder}).
Eventually, a provider may either offer to perform such transformation several
times (e.g. as many times as cylinders are required), or to bundle it with other
transformations, or both.

2. Certain transformations are more likely to appear together than
others. In any market, services and goods are related to each other. For exam-
ple, the production process for a good can also generate some other products
that can be sold with it or used in another industrial process. Moreover, some
services or products are usually bought together by the final customer.

3. The number of transformations in a bundle is often related to
which transformations compose the bundle. Since bids are composed
as combinations of market transformations, we must introduce the notion of
transformation multiplicity as the counterpart of good multiplicity (the num-
ber of units of a given good within an offer or a request). Say that in a CA
a bidder submits a bid for the goods in multi-set {engine, engine, piston}. It
is clear that the multiplicity in this bundle of good engine is two, whereas
the multiplicity of good piston is one. But things become more complicated
when we consider transformations because the multiplicity of a given trans-
formation must be defined in terms of another transformation, which in turn
is composed of multiple input and output goods. Intuitively, we say that a
transformation is a multiple of another one if both share the same input and
output goods and the former has more input and output goods than the lat-
ter but keeping the same ratio between input and output goods. For instance,
given transformations t = ({6 · screws, 1 · cylinder line, 1 · cylinder ring, 1 ·
cylinder head}, {cylinder}) and t′ = ({12 · screws, 2 · cylinder line, 2·
cylinder ring, 2·cylinder head}, {2·cylinder}) we way that t′ has multiplicity
two with respect to t.
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4. Valuations are related to which transformations appear in the
bundle; furthermore, transformation valuations keep consistency with
respect to bidder valuations for goods involved in each transforma-
tion. A further issue has to do with the way bidders value transformations
and bundles of transformations. Notice that performing a transformation to
assemble the engine in Figure 1 (a) results in a new product that has more
market value than its parts. Therefore, a car maker values the transformation
according to his expected benefits, namely the difference between the expected
market value of the engine and the cost of its parts. Hence, if the parts cost
$850 and the expected market value of the engine is $1000, the car maker
should be willing to offer to pay less than $150 for the transformation. On
the other hand, any provider is expected to request less than $150 in order to
perform the transformation. In general, buyers and providers in a MMUCA
should value a transformation on the basis of the difference between the ex-
pected market value of its output goods and the cost of its input goods. Notice
though that we are not assuming here that such a difference must be always
positive. Likewise, the bidder should value bundles of transformations consid-
ering the prices of transformations included in it.

5. Appropriate valuations can be configured to be subadditive, ad-
ditive or superadditive in the number of transformations requested.
This requirement tries to capture the multiplicity-based (volume-based) dis-
counts policies that are applied in the real world. Significant discounts are
applied in real markets when goods and services are traded at certain num-
bers of units. For example, we observe that screws are usually traded in higher
quantities than full engines. Thus, not surprisingly the same (percentage) dis-
count may apply to an offer for 100 screws than to an offer for 5 engines.
Hence, an offer to produce more than 5 engines, though more unlikely, should
reflect higher discounts.

6. Sets of XOR’ed bids are constructed on per-bidder basis. When
a bidder submits different bids in an XOR bid he declares they are mutually
exclusive offers, expressing substitutability. For example, the following offer
bid1({({engine}{})}, 100, l) xor bid2({({2 · engine}{})}, 190, l) stands for a
bidder that offers to buy two engines or one engine but not in any case three
engines. On the other hand when a bidder expresses complementarity he trans-
lates the OR bids as XOR bids. For example if a bidder wants to buy one engine
or one cylinder he submits the following XOR-bid: bid1({({engine}{})}, 100, l)
xor bid2({({cylinder}{})}, 30, l) xor bid3({({cylinder , engine}{})}, 140, l).
In both cases bids submitted in the same XOR bid are likely to have simi-
larities and, consequently, combining bids into XOR bids randomly does not
capture this property.
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7. Unrequested goods by the auctioneer may become involved in
the auction. This requirement stems from the fact that, unlike auctioneers
in CAs, not all goods involved in a MMUCA must be requested by the auc-
tioneer. In our example, a car maker in need of engines as depicted in Figure
1 (a), it can run a MMUCA requesting only engines. Thereafter, bidders may
offer already-assembled engines, or other goods (e.g. parts like crankcases,
crankshafts, or screws) that jointly with transformations over such goods help
produce the requested goods.

8. Goods and bidders are organized into levels. Unlike CAs, goods in
MMUCAs are organised according to the structure of the supply chain they
belong to. Thus, each good must be situated in a level of the supply chain.
Structuring the supply chain into levels also affects bidders, who are usually
expected to buy goods from one level and sell goods in the next one. In this
sense, we can also talk of assigning levels to bidders.

5 An Algorithm for Artificial Data Set Generation

We describe a bid generation algorithm that automates the generation of ar-
tificial data sets for MMUCA while capturing the above requirements.

The algorithm’s purpose is to generate MMUCA WDPs. We recall that an
instance of this problem has three main components:

• a multiset of goods in stock (namely Uin);
• a multiset of goods required (namely Uout); and
• a set of bids.

Figure 4 shows the architecture of the generator. First, the good generation
process creates the set of goods over which the auction will be run. Second, the
market transformation generation process defines the transformations which
are commonly traded in that market. Third, the requested and stocked good
generation process determines the goods (and quantities) previously avail-
able (Uin) and the goods (and quantities) requested by the auctioneer (Uout).
Fourth, the bid generation process creates a set of bids by customizing and
composing market transformations. Finally, the pricing process assesses the
price for each atomic bid.

In the following, we detail each of the processes mentioned above.

5.1 Good Generation
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Fig. 4. Architecture of the MMUCA WDP generator

Algorithm 1 GenGoods(ng, Mg,�g)

1: G ← {};
2: for i = 1 to ng do
3: g ← newGood();
4: g.level ← Sample(�g);
5: g. ← Sample(Mg);
6: G ← G ∪ {g};
7: end for
8: return G

For each of the ng goods at auction, this process (detailed in algorithm 1)
defines two characteristics: its level and its multiplicity distribution. Following
requirement 8, goods are structured into different levels. Each good is assigned
to one of these levels by sampling a probability distribution �g, which is a
parameter of the process (line 4). Following requirement 3 in [31], we model
the fact that different goods are usually traded in different quantities (i.e. at
the customer level, cars are usually traded in single units whereas wheels in 4
units). However, we do not want to impose a fixed number of units (packaging)
at which each good is traded, but represent the fact that it is common to ask
for 1, 2, 3 or 4 wheels in a request. The good multiplicity distribution models
this by assigning a probability to each of the possible quantities at which
a good is traded. In our generator, for each good we obtain its multiplicity
distribution by sampling the good multiplicity law (Mg) that is received as
parameter.

5.2 Market Transformations Generation

This process (detailed in algorithm 2), following requirement 1, generates a fi-
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Algorithm 2 GenMarketTransformations(G,Mt, dIO, �t,
MT
in , MT

out )

1: for level = 1 to nLevels do
2: MT (level) ← {}
3: end for
4: for g ∈ G do
5: MT (g.level) ← MT (g.level) ∪ {GenOTransf(g,Mt)}
6: MT (g.level + 1) ← MT (g.level + 1) ∪ {GenITransf(g,Mt)}
7: end for
8: for i = 1 to dIO · ng do
9: level ← Sample(�t)

10: MT (level) ← MT (level) ∪ {GenIOTransf(level,Mt,
MT
in , MT

out )};
11: end for
12: return MT

Algorithm 3 GenITransf(g,Mt)

1: quantity ← Sample(g. );
2: mt.in ← {quantity units of g}; mt.out ← {};
3: mt. ← Sample(Mt);
4: return mt;

Algorithm 4 GenOTransf(g,Mt)

1: quantity ← Sample(g. );
2: mt.in ← {}; mt.out ← {quantity units of g};
3: mt. ← Sample(Mt);
4: return mt;

Algorithm 5 GenIOTransf(level,Mt,
MT
in , MT

out , pb, pf )

1: mt.in ← SelectGoods(level − 1, MT
in , pb, pf ));

2: mt.out ← SelectGoods(level, MT
out , pb, pf );

3: mt. ← Sample(Mt);
4: return mt;

nite set of transformations that are usually offered and requested in the market
that we refer to as market transformations. Therefore, market transformations
represent the goods providers and buyers can request and bid for. Hence, bids
for MMUCAs shall be composed as combinations of market transformations.
For each market transformation, the process determines: its level in the sup-
ply chain, its multiplicity distribution and which are its input and output
goods and their quantities. As previously argued for goods, and following re-
quirement 3 listed in section 4, each transformation is asigned a multiplicity
distribution, sampled from the transformation multiplicity law (Mt) that the
algorithm receives as a parameter.

We assume that it is always possible in the market to sell and buy each good
at auction by itself. To represent that, for each good we construct two market
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Algorithm 6 SelectGoods(level, , pb, pf )

1: goodset ← {};
2: nGoods ← Sample( );
3: for i = 1 to nGoods do
4: gLevel ←SampleLevel(level − 1, pb, pf ));
5: g ← SelectGood(gLevel);
6: quantity ← Sample(g. );
7: goodset ← mt.in ∪ {quantity units of g};
8: end for
9: return goodset;

transformations: one (O-transformation) that offers a number of units of that
good and one (I-transformation) that asks for them.

The remaining market transformations (the IO transformations), are randomly
generated following algorithm 5. The number of IO market transformations is
determined as a product of the number of goods in the market and the mar-
ket transformation density parameter dIO (algorithm 2, line 8). The number of
goods in and out of a transformation are determined by sampling the proba-
bility distributions MT

in and MT
out . In order to maintain the supply chain levels,

each market transformation is assigned a level by sampling the probability
distribution for transformation levels �t (algorithm 2, line 9). We select the
input and output goods of a market transformation by taking into account its
level (see algorithm 6). We assume there is a natural flow for transformations
in the supply chain. Usually, a market transformation at level k has input
goods at level k − 1 and outputs goods at level k. However, in most real sce-
narios, the levels of the supply chain are not strictly defined. Hence, we allow
our market transformations to occasionally break these restrictions. In order
to do that we have introduced a Markov chain model (an example is depicted
in Figure 5), controlled by two parameters pf and pb. The parameter pb is the
probability of changing the level against the natural flow of the supply chain.
The parameter pf is the probability of changing the level following the natural
flow of the supply chain. For each good to be added to a market transforma-
tion, first we determine the level of the good using the Markov chain and then
we randomly select the good from that level.

5.3 Requested and Stocked Goods Generation

This process (detailed in algorithm 7) assesses the number of units of each
good that the auctioneer requests (Uout) and the number of units of each good
that the auctioneer has available when the auction starts (Uin). The number
of goods to be included in Uout (resp. Uin) is determined by sampling the prob-
ability distribution out(resp. in). Once the number of goods is determined,
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Fig. 5. Example of Markov chain for level selection in a 4 level supply chain for a
bidder selling a good at level 3.

Algorithm 7 RequestedAndStocked(a, in, out, pb, pf )

1: Uin ← SelectGoods(a − 1, in, pb, pf ));
2: Uout ← SelectGoods(a, out, pb, pf );
3: return Uin,Uout;

the level of the auctioneer in the supply chain (a) is used to determine the
goods using the Markov chain model explained in the previous section.

Notice that by selecting a subset of the goods we fulfil requirement 7 listed in
section 4, namely unrequested goods by the auctioneer may be involved in the
auction.

5.4 Bid Generation

The bid generation algorithm (algorithm 8) generates the bids involved in the
auction. Since the XOR language has been proven to be fully expressive [4]
each bidder is assumed to submit a single XOR bid.

Algorithm 8 BidGeneration(nt,�b, and, xor)

1: Bids ← {}
2: while NumTransformations(Bids) < nt do
3: XORBid ← {}
4: nXORClauses ← Sample( xor)
5: level ← Sample(�b)
6: for x = 1 to nXORClauses do
7: XORBid ← XORBid ∪ GenerateAtomicBid(level, and);
8: end for
9: Bids ← Bids ∪ {XORBid}

10: end while
11: return Bids;
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The algorithm adds new bidders until a certain number of transformations
given by parameter nt is reached (line 2). For each bidder, the algorithm de-
termines its level by sampling �b (line 5). After that, it computes the atomic
bids composing it. We sample the number of atomic bids from the probability
distribution xor(line 4). Each atomic bid is composed of a set of transforma-
tions that we compute by sampling the probability distribution and(algorithm
9). The concrete transformations are randomly obtained out of the market
transformations available at the level of the supply chain where the bidder
is located. The quantity of each transformation is computed by sampling the
transformation multiplicity distribution. Notice that by assessing the number
of units to include in a bundle using a probabilistic distribution that depends
on each transformation we fulfil requirement 3: the number of transformations
in a bundle is often related to which transformations compose the bundle. Also
note that by selecting the market transformations from the level of the bidder
we fulfil requirement 2 in section 4 stating certain transformations (for which
some complementarities exist) will be more likely to appear together than oth-
ers. Moreover, since commonly XOR bids would be composed of atomic bids
created from transformations from the same level, bids submitted in a XOR
form are more likely to have similarities fulfilling, in that way, requirement 6
namely sets of XOR’ed bids are constructed on per-bidder basis.

5.5 Pricing bids

The last stage of the algorithm (detailed in algorithm 10) determines a price
for each of the atomic bids. To fulfil the requirements concerning valuations
listed in section 4, a pricing policy must provide the means to price a good, a
transformation, multiple units of the very same transformation, and a bundle
of transformations in a realistic manner. As to pricing goods, in order to vary
prices among bidders, our algorithm receives as a parameter a probability
distribution over matrixes. Once the number of goods (ng) and of bidders
(nb) is known, the algorithm samples to get a matrix nb×ng where the (i, j)
entry is the price bidder i assigns to good j.

Algorithm 9 GenerateAtomicBid(level, and)

1: Transformations ← {};
2: nTransformations ← Sample( and);
3: for b = 1 to nTransformations do
4: t ← SampleMarketTransformation(level)
5: quantity ← Sample(t. )
6: Transformations ← Transformations ∪ {quantity copies of t}
7: end for
8: return {Transformations};
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Algorithm 10 Pricing(Bids, ,δm,δand)

1: prices ← Sample( , |Bids|, |G|);
2: for bxor ∈ Bids do
3: for ba ∈ AtomicBids(bxor) do
4: ba.price ← 0;
5: for t ∈ Transformations(ba) do
6: rawV alue ← ∑

g∈t.outputs
prices[bxor, g] − ∑

g∈t.inputs
prices[bxor, g];

7: ba.price ← ba.price+ rawV alue · t.multiplicity · δm(t.multiplicity);
8: end for
9: ba.price ← ba.price · δand(|Transformations(ba)|);

10: end for
11: end for
12: return Bids;

Thereafter, a transformation’s price for bidder b is assessed in terms of the
difference from his valuation of its output goods with respect to his valuation
of its input goods. Accordingly transformation valuations keep consistency
with respect to bidder valuations for goods involved in each transformation as
stated by requirement 5 in section 4.

Finally, each atomic bid valuation is obtained by adding the prices of its trans-
formations. Hence valuations are related to which transformations compose the
bundle as stated by requirement 4 although varying among different bidders.

Furthermore we propose to introduce superadditivity by applying multiplicity-
based discounts to transformations addressing the requirement that valuations
can be configured to be subadditive, additive o superadditive in the number
of transformations requested. In order to do that, a discount δm is applied
to the valuation of a tranformation depending on the number of times the
transformation appears in the atomic bid (line 7). Also, a discount δand is
applied to the atomic bid valuation depending on the number of different
transformations in the atomic bid (line 9).

6 Experimental results

In this section we use the MMUCA problem generator to analyse the per-
formance of the IP solver explained in section 3.3.2. We first provide details
about the experimental design and then summarize the empirical results.
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Group Parameter Description

Supply chain
parameters

l Number of levels

a Auctioneer level

pb Probability of changing level against the natural order

pf Probability of changing level favouring the natural order

Good
parameters

ng Number of goods

Mg Good multiplicity law

�g Distribution over levels for goods

Market
transformation
parameters

Mt Transformation Multiplicity law

dIO Density of IO transformations

�MT Distribution over levels for market transformations

MT
in Distribution of the number of input goods in market transformations

MT
out Distribution of the number of output goods in market transformations

In-out
parameters

in Distribution over the number of goods in Uin

out Distribution over the number of goods in Uout

Bidding
parameters

nt Number of transformations

and AND arity distribution

xor XOR arity distribution

�b Distribution of bids per level

Pricing
parameters

Distribution over price profiles

δm Transformation multiplicity discount function

δand Bid discount function

Table 2
Artificial data set generator parameters.

6.1 Experimental design

We have performed two experiments. In the first one, we compared a set
of factors that affect the algorithm time performance, to get an idea of the
relative sensitivity among each of them. In the second one, we try to ascertain
the relationship between the syntactical complexity of the bidders expressions
and the time complexity of the solver.

In order to apply the MMUCA problem generator, we need to specify the
parameters summarized in table 2. In both experiments we fixed some of the
parameters to make the study computationally feasible. Notice that our ex-
periments and conclusions do not pretend being exhaustive but just providing
some first ideas on the plausible scenarios where MMUCA could be applied
and showing the flexibility of the generator to analyse and simulate different
scenarios. We present now the parameters that have been kept fixed in both
experiments.
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6.1.1 Supply chain parameters

In our experiments the number of supply chain levels l has been fixed to 5.
The auctioneer is fixed to be in the middle of the supply chain, so its level (a)
is fixed to 3. Whenever pb and pf are modified, we keep fixed the probability
of changing level (either forward or backward) to 30%, that is, pf + pb = 0.3.

6.1.2 Good parameters

A sampling of the good multiplicity law (Mg) returns the probability distribu-
tion for the multiplicity of a good. In our experiments, when we sample Mg to
determine the multiplicity distribution for a good, we sample a parameter mg

from a uniform distribution in [0.01,1]. The multiplicity distribution is a geo-
metric distribution with success probability mg. The probability distribution
that distributes goods among levels (�g) is fixed to a uniform distribution.

6.1.3 Market transformation parameters

The transformation multiplicity law (Mt) is built as follows. First, parameter
mt is sampled from a uniform distribution in [0.8,1]; then, mt is used as the
parameter of a geometric distribution. Note that making this choice means
that we are assuming that multiplicities for transformations are expected to
be smaller than multiplicities for goods. The number of IO market transforma-
tions generated per good (dIO) is fixed to 2. This means that the number of IO
transformations equal the sum of input (I) and output (O) transformations.
The probability distribution that determines the level from which to draw a
market transformation (�t) is determined by assuming that each level we move
away from the auctioneer level, we decrease the probability of receiving a bid
from that level by 50%. This means that bids are mostly concentrated closer
to the auctioneer level. The probability distributions for the number of goods
in and out of a transformation ( MT

in and MT
out ) are both fixed to a geometric

distribution with parameter 0.7.

6.1.4 Other parameters

• In-out parameters. The distribution over the number of goods in stock ( in)
is a geometric distribution with success probability 0.4. The distribution
over the number of goods requested by the auctioneer ( out) is a geometric
distribution with success probability 0.3. Both distributions are bounded so
that the number of goods in stock or requested can never be larger than
half the total number of goods.

• Bidding parameters. We fix the probability distribution that determines the
level from which to draw a bid (�b) in the same way.
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Parameter ng pb nt and xor

Values {20, 50} {0, 0.1} {50, 100, 150, 200, 250} {1, 2} {1, 2}
Table 3
Generator parameter settings for the factor analysis

• Pricing parameters. The discount due to the multiplicity of the transforma-
tions is δm(n) = 0.1 ∗ (1 − e−0.05n) and the discount due to the bid length
is δand(n) = 0.1 ∗ (1 − e−0.5n) In both cases the maximum discount is 10%.
he transformation multiplicity discount grows more slowly than the bid dis-
count.

6.1.5 Computational details

Considering the above-described experimental scenarios, we have run our ex-
periments as follows. Firstly, we have generated 50 solvable WDP instances
for each parameter setting using a MATLAB implementation of the artificial
data set generator detailed in section 5 whose source code is publicly available
at http://zeus.maia.ub.es/~cerquide/mmucaGenerator . We have solved each WDP with
an IP implementation of MMUCA in CPLEX 10.1 and recorded the resulting
solving times. Notice though that we have set to 4800 seconds the time dead-
line to solve each instance. We have only considered feasible WDP instances
to calculate solving times since the time required by CPLEX to prove infea-
sibility is (usually) significantly lower than time required to find an optimal
solution. Our tests have been run on a Dell Precision 490 with double pro-
cessor Dual-Core Xeon 5060 running at 3.2 GHz with 2GB RAM on Linux
2.6.

6.2 Factor analysis

In our first experiment we compare among multiple parameters to get a first
idea of how each of them influences the complexity. Table 3 shows the range of
parameter values explored. For and and xor, in order to simplify our analysis,
we fixed the probability distribution to a single value (no randomness was
involved in and and xor in our experiment).

Figure 6 compares the growth in solving time as the number of transformations
increases for different values of pb and ng. Each line shows the medians of
the computing times for one combination of values pb and ng as the number
of transformations increases. The first conclusion arising from this figure is
that the main driver for complexity is pb, that is, the probability of breaking
the natural flow of the supply chain. This is reasonable because the solver
efficiency depends on the size of the strongly connected components of the
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Fig. 6. Factors affecting the time complexity of MMUCA solver

problem, and if the natural flow is frequently broken, the size of the strongly
connected components is expected to increase.

As expected, figure 6 also shows that the algorithm complexity increases as nt

(the number of transformations) increases. However, the ratio of increase has
a strong dependency of the value of pb. For pb = 0, the algorithm scales nicely
as the number of transformations increases.

The number of goods ng is the third factor affecting the computational per-
formance of the solver. We observe that, curiously, the setting with a largest
number of goods has a smaller time complexity. This is explained by the way
we generate bids. Thus, given a number of transformations and a value for pb,
the larger the number of goods the less likely to have large strongly connected
components.

Regarding the remaining parameters, there was no clear pattern arising from
the analysis of and and xor influence. With the objective to clarify this rela-
tionship, we run the following experiment.
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Fig. 7. Influence of the syntactical complexity of the bids in the time complexity of
the MMUCA solver. The area of the circles represents the mean solving time.

6.3 Bidding language analysis

In this experiment we analysed specifically the influence of the syntactical
complexity of the bids in the solver perfomance. We varied xor and and as
described in table 4.

Parameter ng pb nt and xor

Values 20 0.05 200 {1, 2, 3, 4, 5} {1, 2, 3, 4, 5}
Table 4
Generator parameter settings for the bidding language analysis

Figure 7 shows the median solving time as the area of a circle, for each com-
bination of values of xor and and. This figure confirms that there is no clear
dependency pattern between the syntactical complexity of the bids and the
time complexity of the solver. Furthermore, we would like to remark that
with the settings provided, almost all the problems finished before reaching
the time limit. We had 10 problems over the time limit, all of them for and=1
(2 of them when xor= 2, 5 when xor=3, 1 when xor=4, and 2 when xor=5).
This points out that even if there are no patterns arising from the analysis of a
concentration measure such as the median, maybe there is a pattern regarding
how the hardness of the problems spreads. Further experimental work needs
to be performed to confirm this and to understand better the relationship
between the bid complexity and the solving time complexity.
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7 Conclusions and future work

In this work, we have attempted at making headway in the practical applica-
tion of MMUCAs along two directions. Firstly, we have provided an algorithm
to generate artificial data sets for MMUCA that tries to mimic supply chain
scenarios. Our algorithm reformulates and extends in terms of transforma-
tions the requirements for an artificial data set generator for CAs. Secondly,
we provide empirical tests for MMUCAs by assessing the performance of a
CPLEX IP implementation. These tests indicate that the scalability of an IP
implementation of MMUCA is affected by the size of the largest connected
components in the transformation dependency graph. We have identified that
when there is a strong natural flow in the supply chain the solver scales rea-
sonably both with respect to number of transformations and to the number
of goods. No clear relationship has been identified between the syntactical
complexity of bids and the computational complexity of the solver.

Acknowledgements

This work has been partially funded by the Spanish projects TIN2006-15662-C02-01
and ”Agreement Technologies” (CONSOLIDER CSD2007-0022, INGENIO 2010).
The work of Meritxell Vinyals is supported by the Ministry of Education of Spain
(FPU grant AP2006-04636).

References

[1] P. Cramton, Y. Shoham, R. Steinberg (Eds.), Combinatorial Auctions, MIT
Press, 2006.

[2] M. H. Rothkopf, A. Pekec, R. M. Harstad, Computationally manageable
combinational auctions, Management Science 44 (8) (1998) 1131–1147.

[3] N. Nisan, Bidding languages for combinatorial auctions, in: P. Cramton, et al.
(Eds.), Combinatorial Auctions, MIT Press, 2006.

[4] J. Cerquides, U. Endriss, A. Giovannucci, J. A. Rodriguez-Aguilar, Bidding
languages and winner determination for mixed multi-unit combinatorial
auctions, in: Proc. of the 20th Int. Joint Conferences on Artif. Intelligence
(IJCAI), Hyderabad, India, 2007, pp. 1221–1226.

[5] T. Sandholm, Algorithm for optimal winner determination in combinatorial
auctions, Artificial Intelligence 135 (1-2) (2002) 1–54.

31



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

[6] A. Giovannucci, M. Vinyals, J. Cerquides, J. A.
Rodriguez-Aguilar, Computationally-efficient winner determination for mixed
multi-unit combinatorial auctions, in: Proceedings of the Seventh International
Joint Conference on Autonomous Agents and Multiagent Systems, Estoril,
Portugal, 2008, to appear.

[7] T. Sandholm, S. Suri, A. Gilpin, D. Levine, Winner determination in
combinatorial auction generalizations, in: AAMAS ’02: Proceedings of the 1st
International Joint Conference on Autonomous Agents and Multiagent Systems,
ACM Press, Bologna, Italy, 2002, pp. 69–76.

[8] C. Caplice, Y. Sheffi, Combinatorial Auctions for Truckload Transportation,
MIT Press, 2006, Ch. 21. Combinatorial Auctions.

[9] E. Cantillon, M. Pesendorfer, Auctioning Bus Routes: The London Experience,
MIT Press, 2006, Ch. 22. Combinatorial Auctions.

[10] G. H. Martin Bichler, Andrew Davenport, J. Kalagnanam, Industrial
Procurement Auctions, MIT Press, 2006, Ch. 23. Combinatorial Auctions.

[11] G. L. D. Michael O. Ball, K. Hoffman, Auctions for the Safe, Efficient, and
Equitable Allocation of Airspace System Resources, MIT Press, 2006, Ch. 20.
Combinatorial Auctions.

[12] A. Pekec, M. H. Rothkopf, Combinatorial auction design, Manage. Sci. 49 (11)
(2003) 1485–1503.

[13] W. E. Walsh, M. P. Wellman, F. Ygge, Combinatorial auctions for supply chain
formation, in: Proc. of the 2nd ACM Conference on Electronic Commerce,
Minneapolis, Minnesota, 2000, pp. 260–269.

[14] V. Krishna, Auction Theory, Academic Press, 2002.

[15] P. Milgrom, Putting Auction Theory to Work, Cambridge University Press,
2004.

[16] L. M. Ausubel, P. Milgrom, The Lovely but Lonely Vickrey Auction, MIT Press,
2006, Ch. 1. Combinatorial Auctions.

[17] D. C. Parkes, Iterative Combinatorial Auctions, MIT Press, 2006, Ch. 2.
Combinatorial Auctions.

[18] L. M. Ausubel, P. Milgrom, Ascending Proxy Auctions, MIT Press, 2006, Ch.
3. Combinatorial Auctions.

[19] P. Cramton, Simultaneous Ascending Auctions, MIT Press, 2006, Ch. 4.
Combinatorial Auctions.

[20] P. C. Lawrence M. Ausubel, P. Milgrom, The Clock-Proxy Auction: A
Practical Combinatorial Auction Design, MIT Press, 2006, Ch. 5. Combinatorial
Auctions.

[21] S. P. Ailsa Land, R. Steinberg, PAUSE: A Computationally Tractable
Combinatorial Auction, MIT Press, 2006, Ch. 6. Combinatorial Auctions.

32



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

[22] T. Sandholm, S. Suri, A. Gilpin, D. Levine, Winner determination in
combinatorial auction generalizations, in: Proc. 1st Intl. Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), ACM Press, 2002.

[23] A. Andersson, M. Tenhunen, F. Ygge, Integer programming for combinatorial
auction winner determination, in: Fourth International Conference on
Multiagent Systems (ICMAS 2000), Boston, MA, 2000, pp. 39–46.

[24] Y. Fujishima, K. Leyton-Brown, Y. Shoham, Taming the computational
complexity of combinatorial auctions: Optimal and approximate approaches.,
in: Proceeding of the Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI’99), 1999, pp. 548–553.

[25] K. Leyton-Brown, Y. Shoham, M. Tennenholtz, An algorithm for multi-
unit combinatorial auctions, in: Proceedings of the American Association for
Artificial Intelligence Conference (AAAI), 2000, pp. 56–61.

[26] D. Lehmann, R. Mueller, T. M. Sandholm, The winner determination problem,
MIT Press, 2006, Ch. 12. Combinatorial Auctions.

[27] R. Muller, Tractable Cases of the Winner Determination Problem, MIT Press,
2006, Ch. 13. Combinatorial Auctions.

[28] T. Sandholm, Optimal Winner Determination Algorithms, MIT Press, 2006,
Ch. 14. Combinatorial Auctions.

[29] A. Giovannucci, J. Cerquides, J. A. Rodriguez-Aguilar, Proving the correctness
of the CCIP solver for MMUCA, Tech. rep., IIIA-CSIC (2007).
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