
Towards the Group Formation
through Social Norms

Daniel Villatoro and Jordi Sabater-Mir

Artificial Intelligence Research Institute (IIIA)
Spanish Scientific Research Council (CSIC)

Bellatera, Barcelona, Spain
{dvillatoro,jsabater}@iiia.csic.es

Abstract. This paper examines the decentralized formation of groups
within a multiagent normative society. In our case, a group is defined
based on the set of social norms used by its members: all the agents
using the same set of norms belong to the same social group. In this pa-
per we explore different mechanisms that allow agents to recognize the
others as members of a certain social group. Considering as the basic
mechanism the one that makes agents interact with other agents with-
out considering the previous interactions and with no communication,
three new algorithms have been developed and tested to improve the
efficiency of the basic one. These algorithms are: (1) the whitelisting al-
gorithm, which works as a recomender of trusted neighbours; (2) the
blacklisting algorithm, whose basic functioning is based on defaming the
non-related agents inside a certain social group; and (3) the labelling al-
gorithm, which basically publishes information of the interactions with
different agents allowing the rest to access that information. Simulation
results are shown, confirming that these algorithms improve the efficiency
of the basic one. Finally, we present and discuss some of the weak points
of the algorithms presented as well as future improvements.

1 Introduction and Related Work

Social norms are part of our everyday life, and they have been of interest in
several areas of research [3]. They help people self-organize in many situations
where having an authority representative is not feasible. On the contrary to in-
stitutional rules, the responsibility to enforce social norms is not the task of a
central authority but a task of each member of the society. From the book of
Bicchieri [2], the following definition of social norms is extracted: “The social
norms I am talking about are not the formal, prescriptive or proscriptive rules
designed, imposed, and enforced by an exogenous authority through the ad-
ministration of selective incentives. I rather discuss informal norms that emerge
through the decentralized interaction of agents within a collective and are not
imposed or designed by an authority”. Social norms are used in human societies
as a mechanism to improve the behavior of the individuals in those societies
without relying on a centralized and omnipresent authority. In recent years, the



2

use of these kinds of norms has been considered also as a mechanism to regulate
virtual societies and specifically societies formed by artificial agents ([8], [9], [4]).
The main objective of this research is to analyze the process of group formation
around a common set of social norms and which algorithms make this process
more efficient and faster. Several researchers have already covered the prob-
lem of group formation. One seminal article is the work of Hales presenting the
SLACER algorithm [5]. In this algorithm given a network of agents, when an
agent finds another agent in a better situation than itself, it copies its strategy
and neighbours. This rewiring algorithm produces an emergent behavior sim-
ilar to the one we try to obtain by forming groups. Another interesting work
is the one presented in [1], where the authors try to answer the question “to
whom should agents connect to?”, by experimenting on different agents’ net-
works structures, to solve optimization problem. Finally, and also a technique
used by Hales [6], is the “tagging mechanism”, initially presented by Holland [7].
Tags are markings or social cues attached to individuals (agents) and observable
by others. Agents maintain and modify tags on themselves and a team is formed
by only collaborating with agents with the same tag.
Unlike these works on group formation, we are facing a decentralized environ-
ment where agents notice partially the characteristics that define the other agents
group. This is the main reason for the necessity of the algorithms developed in
this work.

2 Statement of the Problem

Social norms provide multiagent societies with a decentralized control mecha-
nism. By giving agents with a set of social norms to use in the environment where
they are located, they can self-regulate it and control undesired behaviors. But
the definition of social norm that we have used in previous sections does not
expressly include one vital aspect of the social norm, that is, the coordinated
reaction against outsiders. The coordinated reaction from the group is twofold:
(1) a coordinated punishment from the group against the outsider who explicitly
does not abide by the same social norms; and (2) an integration mechanism to
force this outsider to change its actual behavior to the one accepted by the group.
Therefore agents need to have a notion of social group. The notion of belonging
to a social group will be determined by the agent’s behaviour. The behaviour of
an agent is determined by the social norms it uses. In this way, a social group
will be only formed by agents who share social norms 1. Once agents possess this
notion of social group they might be able to coordinate according to the situation
in which they meet outsiders. Although we will still not cover the integration or
punishment mechanisms, in this work we will introduce different algorithms for
the group formation process and contrast their efficiencies in different situations.
These algorithms will reduce the number of false positive members of the group
by taking advantage of the social information.
1 The configuration of social norms among agents is stationary. Emergence, adoption

or retraction of norms is not covered in this work



3

In order to prove these algorithms we have developed a multi-agent based simu-
lation that reproduces the following behavior: agents are distributed and initially
do not know each other. Agents survive by consuming resources and these re-
sources are obtained in two ways: finding them randomly in the environment,
or, receiving them from other agents. When one agent decides to donate some
of its resources (or energy) it means that this agent is loosing some of its own
resources to give them to another agent. The set of social norms tell the agents
under which situations (depending on both agents’ states) they will donate en-
ergy to another agents and in which they will not. The task of the algorithms
developed is detecting the norms that each agent follows, determining in this
way to which social group each agent belongs to.

3 Simulation Model

The simulation algorithm is based on a discrete step timing model, where in each
time step the algorithm observes the state and consequent actions of each agent
before ticking another time step. Every time step, the simulation algorithm runs
over every agent. The order in which the algorithm runs over the agents is ran-
domly changed each time step.
Initially, in each time step, the algorithm evaluates (following a continuous uni-
form probability distibution) if every agent has to find resources by observing
the agent Resource Gathering Probability (Prg ∈ [0, 1]). Prg specifies the prob-
ability an agent has to find resources each time step. In case the algorithm
evaluates that an agent has to find resources, the agent will receive a large
amount of resources that can either be used for its own consumption or for do-
nating.
After that, the algorithm evaluates if an agent has to meet another agent by
observing the agent Interaction Probability (Pint ∈ [0, 1]). Pint specifies the
probability of an agent to meet another agent present in the simulation. As we
will see, this process of mate selection will be slightly modified later in the pre-
sented algorithms.
Agents are initially loaded in the simulation platform with 100 resource units,
and each time step, agents consume one resource unit and energy consumption.
When an agent’s resources are exhausted, the agent is not able to interact with
any other agent and no agent can interact with it, remaining inactive until it
finds resources.
The interactions among agents are done always in pairs, and both agents have
to choose an action when interacting. This decision is taken following the set of
social norms that each agent has internalized. The set of norms specifies if the
agent has to give or not to give resources to the other agent, depending on both
agent’s internal resource levels. In order to formalize our concept of social norm,
we first need to define several terms.
All agents can perceive a finite set of observables (ob) O. Every agent also has
a finite set of actions (a) A.
Every agent can find itself in a finite set of different situations (sit) S. In other



4

words, a situation is a combination of different observables.
Given that, a social norm SNi is a tuple formed by a situation and an action:
SNi = {〈sitg,ah〉 | sitg ∈ S, ah ∈ A}.
In our scenario, the set of observables is formed by the following propositional
terms:O = { Plenty(Me), Plenty(You), Normal(Me), Normal(You), Starving(Me),
Starving(You)}, where: Plenty(X) indicates that Agent’s X resource level is over
100 units; Normal(X) indicates that Agent’s X resource level is between 25 and
100 units; and, Starving(X) indicates that Agent’s X resource level is below 25
units. The values that X can take are Me and You, representing the acting agent
and the partner agent in the interaction. When two agents meet, each agent is
able to observe its own level of resources and its partner level. The whole list of
possible situations (formed by two observables) is detailed in Table 1. The set of
possible actions is A = {Give Resources, Do not Give Resources}. The combina-
tion of all possible situations, each one associated to a concrete action, generates
a set of social norms. The use of one set or another determines the behavior
of an agent in the environment and its social identity. Therefore, in our scenario,
two agents that use the same set of social norms (that is, behave exactly the same
in front of each possible situation) are said to belong to the same social group.

Situation Action

Starving(Me) Starving(You) To Give / Not To Give

Starving(Me) Plenty(You) To Give / Not To Give

Starving(Me) Normal(You) To Give / Not To Give

Plenty(Me) Starving(You) To Give / Not To Give

Plenty(Me) Plenty(You) To Give / Not To Give

Plenty(Me) Normal(You) To Give / Not To Give

Normal(Me) Starving(You) To Give / Not To Give

Normal(Me) Plenty(You) To Give / Not To Give

Normal(Me) Normal(You) To Give / Not To Give
Table 1. Situations and Actions. Structure of a set of social norms.

As we said before, in our scenario the situations are specified by the state of
two interacting agents and therefore some situations are more likely to occur
than others. For example, in a very rich resource environment, it will be highly
unfrequent to find a couple of Starving agents. Due to this, a Friendship Factor
is assigned to agents. This factor determines the minimum percentage of social
norms that one agent has to share with another (before knowing how that agent
behaves in the rest of situations) so the other agent can be considered as a can-
didate to exchange information with it. For example: a Friendship Factor of 0.2
means that one agent needs to share at least 20% of the norms, without taking
into consideration the rest 80% of the norms, even if they do not know them, as
long as those ones that they know are equal.



5

3.1 Basic Algorithm

The simplest mechanism of group formation in the previously described scenario
is allowing agents to interact among them and make themselves keeping record of
how socially related they are. This basic algorithm is represented in Algorithm 1.

repeat
foreach Agent i do

Randomly Meet Agent j;
Interact following the set of social norms;
Save information of partner behavior;

end
until Exhausting Timesteps ;

Algorithm 1: Basic Group Formation Algorithm

This algorithm makes each agent interacting with the rest of the society
without any preference or intelligence in the partner selection process. During
the simulation and after each interaction, the agent observes the actions taken
by its partners (that follow their own set of social norms) in different situa-
tions. This allows agents to determine if those partners can belong to its social
group.
In the following sections we will define new algorithms and functionalities that
improve the behavior of this basic algorithm. These new algorithms take ad-
vantage of the social information that agents are gathering during the pro-
cess and that can share with other agents through a communication proto-
col.

3.2 Basic Functions

All the algorithms that will be presented from now on share some common func-
tionalities that provide agents with more intelligence during the group formation
process. In this section we describe these functionalities.

Similarity Evaluation Several times we have used the term ”socially related
agent”, although it has not been explained yet how this relation is established
and evaluated. In our scenario, agents evaluate their similarity based on the num-
ber of norms that they share. As it was explained in Section 2, the main problem
that this approach presents is due to the nature of the social norms. The social
norms will be used under determined situations that are defined by the state of
both interacting agents (for example: Plenty(Me) and Starving(You)). Therefore
there might be more or less frequent norms (in a resource-rich environment, it
will be very rare to find the situation Starving(Me) and Starving(You)). As we
explained previously, agents are given with a Friendship Factor and with a func-
tion to study the degree of similarity between two agents. Agents also possess
a social memory, where they can remember the norms that other agents have
used. Then, after each interaction with another agent, each agent will save in its



6

memory the other agent’s norm and update the similarity with it. Therefore this
algorithm basically counts the number of known norms that two agents share.
In case only one norm is detected to be different, the similarity will be −1.

Similarity = 0; foreach Known Situation of Agent j do
if Action taken by Agent j == Action Agent i would have taken in Agent j Situation then

Similarity + = 1
NumberofSituations

;

end
else

Similarity = −1 ;
end

end

Algorithm 2: Similarity Evaluation

For example, if two agents have met previously four times, in four different
situations (out of the 9 different possible situations that can occur in our sce-
nario) each time, and they have used the same norms, these two agents will
have a Similarity = 4

9 . On the other hand, if in a fifth interaction, in a different
situation, they take different norms, the similarity will be updated to -1.

Intelligent Partner Selection The mechanism in charge of making a more
intelligent partner salection for an interaction is shown in Algorithm 3. In sec-
tion 3, it was introduced that agents have an Interaction Probability assigned to
them to meet random agents present in the simulation. This algorithm modifies
slightly that parameter, making that agents interact more frequently with an-
other agents with a positive degree of similarity. In this way, agents will promote
interactions with other agents socially closer to themselves.

Probability To Meet Random Agent = 1 - NumberofKnownAgents
T otalNumberofAgents

;

if Probability To Meet Random Agent ¿ Random Number then
Meet Known Agent;

end
else

Meet Random Agent;
end

Algorithm 3: Intelligent Partner Selection.

3.3 Whitelisting Algorithm

The Whitelisting Algorithm is based on the idea of recommending known trusted
partners to your friends. When an agent discovers a new trusted partner (that
is, the degree of similarity with that agent has gone above the friendship fac-
tor), it will recommend this agent to its other friends as a possible partner to
interact with. These other agents, if they do not know this recommended agent,
will add it to their preference list of agents to interact with in order to confirm
this similarity. The algorithm is shown in Algorithm 4.



7

repeat
foreach Agent i do

Receive Recommendations;
if Any Recommendation then

Agent j = Any of the Recommended;
end
else

Agent j = Intelligent Partner Selection;
end
if Similarity with Agent j > 0 OR Agent Unknown then

Interact following the set of social norms;
Save information of partner behavior;
Recalculate Similarity with Agent j;
if Similarity with Agent j > FRIENDSHIP FACTOR then

Select M Known Agents with Similarity > FRIENDSHIP FACTOR ;
Inform Agent j about these M Known Agents ;

end

end
else

Inform about the action the norms dictate, but Do Not Give;
end

end
until Exhausting Timesteps ;

Algorithm 4: Whitelisting Group Formation Algorithm

3.4 Blacklisting Algorithm

In this case, unlike the whitelisting algorithm, the idea is to inform about un-
satisfactory interactions the rest of agents in the social group. Once an agent is
detected as a non-member of the social group, this information is transmitted
to the other members of the group so they can avoid that agent in the future.
The algorithm is shown in Algorithm 5.

repeat
foreach Agent i do

Agent j = Intelligent Partner Selection;
if Similarity with Agent j > 0 OR Agent Unknown then

Interact following the set of social norms;
Save information of partner behavior;
Recalculate Similarity with Agent j;
if Similarity with Agent j == −1 then

Select M Known Agents with Similarity > FRIENDSHIP FACTOR ;
Inform these M Known Agents about Agent j;

end

end
else

Inform about the action the norms dictate, but Do Not Give;
end

end
until Exhausting Timesteps ;

Algorithm 5: Blacklisting Group Formation Algorithm

3.5 Labelling Algorithm

Another algorithm implemented to solve the problem of group recognition is the
Labelling Algorithm. The main idea here is that agents are able to assign “la-
bels” to other agents that can be accessed by a partner when two agents interact.
Each agent carries the labels that others assign to it. The content of these labels
is: (1) the identity of the agent with whom it interacted, (2) the situation in
which they interacted and (3) the result of the interaction (true value in case
the norm followed was the same for both agents, and false value otherwise). It
is straightforward to see that the power of this algorithm is based on publishing
and making accesible to all agents previous interactions with different agents.



8

Thus, when one agent interacts with another, this agent is not only provided
with the information it obtained from direct experiences with the other one or
communicated experiences from members of its group, but also indirectly (and
through the labels) from all the agents that have interacted with other agent.
Consequently, after evaluating the result of the interaction, one agent can also
check other agent with similar experiences to that other agent, and use that
information. The algorithm can be seen in Algorithm 6.

repeat
foreach Agent i do

Agent j = Intelligent Partner Selection;
if Similarity with Agent j > 0 OR Agent Unknown then

Interact following the set of social norms;
Save information of partner behavior;
if Action Agent j == Action Agent i would have taken in Agent j Situation then

Add label(Agent i ID, Agent j Situation, true) to Agent j ;
IDs of Agents to Veto = Obtain IDs from Agent’s j Labels with (Agent j Situation, false);

end
if Action Agent j != Action Agent i would have taken in Agent j Situation then

Add label(Agent i ID, Agent j Situation, false) to Agent j ;
IDs of Agents to Veto = Obtain IDs from Agent’s j Labels with (Agent j Situation, true);

end
foreach Agents to Veto do

Save information from the label;
Recalculate Similarity with another Agent;

end

end
else

Inform about the action the norms dictate, but Do Not Give;
end

end
until Exhausting Timesteps ;

Algorithm 6: Labelling Group Formation Algorithm

4 Experiments and Results

The purpose of the following experiments is to analyse to which extend the
different presented algorithms improve the behavior of the basic one, allowing
agents to recognize members of their respective groups. Each experiment will
vary by a combination of: (1) the number of groups present in the society, (2)
the number of norms differing from each group, (3) the interaction probability,
and, (4) the friendship factor (these last two presented on Sec. 3). To observe
the efficiency of the algorithms during the process of group formation, we count
the number of false positives agents that each agent has. The definition of a false
positive agent is an agent that another agent believes to be in the same social
group that it is (due to the incomplete information) but it actually is not. For
example: two agents sharing all the norms except one, if these two agents have
met in the other similar situations and not in the different one, they will believe
that the other agent is in its social group while it is not, therefore, they will be
false positives agents one to each other.

4.1 Experiment Design

We load the simulation of a society with the following characteristics:



9

– Number of agents = 100.
– An agent can interact with all of the rest.
– All agents have the same Interaction Probability that will be fixed depending

on the experiment.
– All agents have the same Resource Gathering Probability fixed to (PRG(Agenti) =

0.0025). The amount of resources found is also fixed to 250 units. With these
values we simulate an environment where resources are difficult to find al-
though when they are found, they appear in a huge amount.

– Agents are not able to change their set of social norms.

Each simulation is run for 10 times, during 10000 steps, and then averaged
the results.

4.2 Two Heterogeneous Groups

This experimental setting has been designed to prove the correctness of the ex-
perimental platform. The society is divided into two groups, and the number of
norms that both groups share is zero. Therefore, after a single interaction, two
agents can detect the other as a non-member of their group.
As expected, the simulation results show that with the four algorithms, no agent
ever has a false positive friend.
One remarkable point in the efficiency of our algorithms (that is common also
for the rest of experiments) corresponds to the nature of the norms. The social
norms in our scenario indicates whom To Give against whom Not To Give, and
agents always abide by their social norms. Therefore agents initially loaded with
altruist norms (where most of the norms indicate To Give) are in a clear disad-
vantage respect to the others. As they will donate more resources, they are prone
to “die”, and consequently loosing ability of interaction until they find resources
again. So, the results on the group formation algorithms are biased by this effect
of the nature of social norms, slowering its efficiency. In case these effects of the
social norms would not take place, more interactions would be occuring, and
group formation would happen faster.

4.3 Two Homogeneous Groups

In order to increase the difficulty of the scenario for the algorithm to solve the
group formation problem, the homogeneity between groups is increased. In this
way we can prove that the algorithms work in this kind of incomplete informa-
tion scenarios, where the recognition of an agent from another group might not
depend only on one interaction.
In this experimental setting we still split the society into two equally populated
groups. This time the two groups differ in 3 norms (out of a total of 9). There-
fore agents will need a certain number of interactions (using the basic algorithm)
until reducing the number of false positives. The results for the simulations with
an Interaction Probability of 0.1 and 0.3 are shown in Fig. 1.

We observe the same pattern in both experiments. As we can see, the labelling
algorithm outperforms the other three both in number of false positives and in



10

(a) 0.1 Interaction Prob. (b) 0.3 Interaction Prob.

Fig. 1. Two Homogeneous Groups.

speed of convergence (anulling the number of false positives). We can also ob-
serve that both the Whitelisting and the Blacklisting algorithms show a similar
performance between them. The similarity in the efficiency of these two algo-
rithms is due to the Friendship Factor. For a deeper analysis of the influence of
the Friendship Factor in these two algorithms see Sec. 5.
Another point to remark is the effect of the Interaction Probability. In this ex-
periment we observe only a difference in the speed of convergence, making a
society with members that they interact more frequently, converges in a faster
way. We can also observe that a society with a higher Interaction Probability
factor presents a higher number of false positive friends, and this is due to the
number of interactions. The more an agent interacts, the more agents it meets,
and the possibility of having a higher number of false positive friends increases.
Depending on the type of scenario, a higher interaction probability can be a
drawback. In this case it is due to the nature of the scenario, and its resource
exchanging procedures. The fact of interacting more, implies for some agents
(those whose norms specify so), donating more energy, which eventually implies
the “death” of the agent. As we explained in Sec. 3, when an agent “dies”, it
remains inactive in the simulation (it is not possible to interact with it) until it
finds resources.

4.4 Four Heterogeneous Groups

After proving the efficiency of the algorithms splitting two groups, their be-
havior will be tested in a more difficult scenario. We will introduce now four
different groups to recognize. In this experimental setting we split the society
into 4 equally populated groups.

1. The social norms of the first group imply Not To Give in all the situations.
2. The social norms of the second group imply To Give in all the situations.



11

3. The social norms of the third group imply Not To Give in all the situations,
except 4.

4. The social norms of the third group imply To Give in all the situations, except
4.

Therefore, agents will find very easy to identify the agents from the other groups.
In Figure 2(a) we can observe the same pattern of results obtained in the previous
experiments. Although convergence is slower due to the higher number of groups,
all the algorithms perform in a similar way as in the previous experiments.

4.5 Four Homogeneous Groups

Finally, and in order to prove the efficiency of the algorithms, a more difficult
scenario is designed. This time the society will be split into 4 groups, but more
homogeneous than in the previous experiment. We split the society into 4 equally
populated groups:

1. The social norms of the first group imply Not To Give in all the situations.
2. The social norms of the second group imply To Give in all the situations.
3. The social norms of the third group imply Not To Give in all the situations,

except 2.
4. The social norms of the third group imply To Give in all the situations, except

2.

We consider this scenario a very difficult situation where to detect false positives,
because the two norms where they differ are very infrequent.

Simulation results shown in Fig. 2(b) and Fig. 2(c) confirm the difficulty of
this scenario. We can see that agents (in both situations) still have a relatively
high number of false positives (meaning that almost a whole group has not been
detected as a false positive). Notwithstanding the slow convergence of the algo-
rithms, we still observe the same pattern of results. We would like to remark
again that the slow convergence of all the algorithms is due to the low number
of different norms between groups, and the number of times that these norms
are used (due to the low probability of that situation to take place).

5 Discussion on the Whitelisting Algorithm

The efficiency of this algorithm depends on two factors: (1) the Friendship fac-
tor, and (2) the current cohesion of the group. Using the whitelisting algorithm
with a low Friendship Factor implies a bad performance of it. For example,
one agent can find another agent (socially different but with some common
norms) and think that they belong to the same social group. Thus we will
have here a false positive that it will also be recommended to other agents
considered friends (due to the friendship factor). Consequently a low Friend-
ship Factor might produce agents to send false information to wrong agents.
On the other hand, a high Friendship Factor will make that the algorithm be-
have as the basic one (improved with the Intelligent Partner Selection) and



12

(a) Heterogeneous Groups. 0.1 Interac-
tion Prob.

(b) Homogeneous Groups. 0.1 Interaction
Prob.

(c) Homogeneous Groups. 0.3 Interaction
Prob.

Fig. 2. Four Groups.

agents will not start sending recommendations (which is the main power of this
algorithm) until the Degree of Similarity equals at least to the Friendship Fac-
tor.

Closely related to this, we have the hypotheses that this algorithm will show
a good performance when used in an environment where groups are already
formed (the situation where newcomers want to join a group). Even in cases
where the cohesion of the group is very low, we suspect that we need a more
flexible Similarity function than the one we currently use. The current similarity
function only considers two agents to be equal if all the social norms they use
are exactly equal, but we believe that more flexible functions would make the
algorithms to behave better. As noticed beforehand, there are some norms that
are used more frequently than others. For example, it might happen than some
norms (and therefore the situations that the norms regulate) only happen once
in 1000 situations. Therefore, expecting every agent in the society to detect all
the other agents in the society in that rare situation seems unfeasible. Hence, a



13

more flexible similarity function would be the one that evaluates two agents to
be equal if 80% of the most used norms are the same.

6 Discussion on the Blacklisting Algorithm

Similarly to the Whitelisting algorithm, this algorithm presents symmetric prob-
lems. In this algorithm, when the Friendship Factor is very low, agents will send
information possibly to wrong agents. Agents using the blacklisting algorithm
will not send the information until the similarity with the other agents is above
the Friendship Factor. On the other hand, when the Friendship Factor is very
high, agents will not take advantage of the algorithm until the similarity is
reached.
We suspect that in the situations where there is a large cohesion between the
members of the group the performance of the algorithm would be accetable, be-
cause the degree of similarity between agents of the group will already be very
high. On the other hand, on scenarios with low cohesion, we need, as we said in
Sec. 5, a more flexible Similarity function than the one we currently use.

7 Discussion on the Labelling Algorithm

After showing a good performance in the experimental section, this algorithm
obtains its efficiency at the high cost of making a lot of information public and
available to others. Unlike the other algorithms (where the information was al-
ways coming from a trusted third party), in this algorithm we take advantage
not only of the information from the agent’s social group, but, from past interac-
tions with other agents. This implies a cost for the agents, that is a loss in their
privacy of the interactions. We have made an analysis of the possible “attacks”
this algorithm could suffer:

– Delete all labels: In a situation in which all the agents would decide to
delete all their labels, the labelling algorithm would still behave better than
the random one due to the Intelligent Partner Selection.

– Self-adding false labels: Agents can decide to assign false labels to them-
selves, so they can create the image of belonging to a group different than the
one they actually belong to. But, we can still distingish two situations:

1. Self-adding false labels from an existing agent in the society, but
with a different value than the real one: The objective of doing this
would be to make others believe that this agent belongs (or not) to the same
group than the one whose identity has been impersonated. Cryptography
provide us with solutions (such as digital signatures) to avoid this problem.

2. Self-adding false labels from an invented agent in the society: This
attack would be done to create a sense of “popularity”, although in the al-
gorithms we are using now, this societal aspect is not taken into account.
Therefore this kind of attacks in the current algorithms would reduce the



14

speed of convergence of this algorithm as this useless information would be
taking the space of real information in the labelling area of the agents.

– Delete selected labels: This might be the most common attack. Certain
agents might decide to delete information of the group they do (or do not)
belong to. Therefore we analyze these two simmetric situations:

1. Delete False labels: By doing that an agent will maintain public the
labels from members that belong to its group, deleting those of who do not
belong to their group. Under this attack, the algorithm would still work
better than the random one.

2. Delete True labels: It is the simmetric situation with respect to the
previous one; but less precise information will be given. In this attack agents
will maintain public the information of those who are not in the same group
as they are, but leaving still unrecognizable the group they belong to.

These series of attacks have not been tested yet in our simulation platform,
but they will be added as one of the points in the future work section.

8 Conclusions and Future Work

These preliminary results give us some initial insights about the efficiency of the
algorithms solving the group formation problem. As we can see, the algorithms
behave similarly in different situations.
The friendship factor, together with the rigid evaluation of the similarity between
agents, are the parameters that control the behavior of the whitelisting and the
blacklisting algorithms. The friendship factor determines when the whitelisting
and blacklisting algorithms start working. While this threshold is not reached,
the behavior showed is that of the basic algorithm. Once the threshold is over-
passed both algorithms start working and improving the basic one by initiating
the transmission of information to other agents. Another important problem is
that our example brings some consequences due to the nature of the norms. The
norms used indicate whom to give and not to give, therefore, some groups will
have a preference over the others; for example, in a scarce-resource environment,
altruist agents (with a set of norms that force them to always share) mixed with
a population of totally selfish agents will be in a harder situation. The fact of
donating implies altruist agents loosing energy, and eventually “dying”. Conse-
quently loosing oportunities to detect the people in their group, and the false
positives. One of the main conclussions that we can extract from the simulations
is that the similarity evaluation function used is too rigid and strict and some-
how not very realistic. Norms are attached to situations, and situations depend
on the enviromental condition (in our case the resource gathering probability
will determine the most frequent situations), and it is reasonable to think that
agents can determine which norms are the most used or more important for
themselves. Therefore we will introduce a more dynamic concept of similarity;
for example, based on the number of times that a situation occurs in a given sim-
ulation. Adding this dinamicity we will allow agents to control in a more flexible



15

way the concept of social group, even though not sharing exactly the same set of
social norms. Till now we have been always considered societies of strangers that
initially have no information about the other members and have to start forming
the groups. We want to study also how the algorithms behave in societies where
the groups are already formed and use the algorithms for introducing newcomers
into the group. We suspect that algorithms like whitelisting or blacklisting will
considerably outperform the basic one, because the friendship factor will have
been already reached with those that belong to your group, consequently avoid-
ing the basic execution part of the algorithm, and anulling the transmission of
false positives.

9 Acknowledgments

This work was supported by the European Community under the FP6 pro-
gramme [eRep project CIT5-028575, OpenKnowledge project FP6-027253]; the
Spanish Education and Science Ministry [AEI project TIN2006-15662-C02-01,
AT project CONSOLIDER CSD2007-0022, INGENIO 2010]; Proyecto Intramu-
ral de Frontera MacNorms [PIFCOO-08-00017] and the Generalitat de Catalunya
[2005-SGR-00093]. This work was partially supported by the Santa Fe Institute.
Daniel Villatoro is supported by a CSIC predoctoral fellowship under JAE pro-
gram.

References

1. Ricardo Araujo and Luis Lamb. Memetic networks: Analyzing the effects of
network propoerties in multi-agent performance. In Proceedings of the 23rd AAAI
Conference on Artificial Intelligence, 2008.

2. Cristina Bicchieri. The Grammar of Society: The nature and Dynamics of Social
Norms. Cambridge University Press, 2006.

3. Jon Elster. Social norms and economic theory. Journal of Economic Perspectives
3, 4:99–117, 1989.

4. Amandine Grizard, Laurent Vercouter, Tiberiu Stratulat, and Guillaume Muller.
A peer-to-peer normative system to achieve social order. In Workshop on COIN @
AAMAS’ 06, 2006.

5. David Hales and Stefano Arteconi. Slacer: A self-organizing protocol for coordina-
tion in p2p networks. IEEE Intelligent Systems, 21:29,35, 2006.

6. David Hales and Bruce Edmonds. Applying a socially-inspired technique (tags)
to improve cooperation in p2p networks. EEE Transactions in Systems, Man and
Cybernetics - Part A: Systems and Humans, 35, 3:385–395, 2005.

7. John Holland. The effects of labels (tags) on social interactions. Working Paper
Santa Fe Institute, 93-10-064, 1993.

8. Nicole J. Saam and Andreas Harrer. Simulating norms, social inequality, and
functional change in artificial societies. Journal of Artificial Societies and Social
Simulation, 2(1), 1999.

9. Yoav Shoham and Moshe Tenneholtz. On the synthesis of useful social laws
for artificial agent societies (preliminary report). In Proceedings of the AAAI
Conference, pages 276–281, 1992.


