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Abstract Distributed constraint satisfaction problems (DisCSPs) are composed of
agents connected by constraints. The standard model for DisCSP search algorithms
uses messages containing assignments of agents. It assumes that constraints are
checked by one of the two agents involved in a binary constraint, hence the constraint
is fully known to both agents. This paper presents a new DisCSP model in which
constraints are kept private and are only partially known to agents. In addition,
value assignments can also be kept private to agents and not be circulated in
messages. Two versions of a new asynchronous backtracking algorithm that work
with partially known constraints (PKC) are presented. One is a two-phase asynchro-
nous backtracking algorithm and the other uses only a single phase. Another new
algorithm preserves the privacy of assignments by performing distributed forward-
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checking (DisFC). We propose to use entropy as quantitative measure for privacy.
An extensive experimental evaluation demonstrates a trade-off between preserving
privacy and the efficiency of search, among the different algorithms.

Keywords Distributed CSPs · Asynchronous search · Privacy · Entropy

1 Introduction

Distributed constraint satisfaction problems (DisCSPs) are composed of agents, each
holding its local constraint network, which are connected by constraints among vari-
ables of different agents. Agents assign values to variables, attempting to generate
a locally consistent assignment that is also consistent with all constraints between
agents [21, 23]. To achieve this goal, agents check the value assignments of their
variables for local consistency and exchange messages with other agents, to check
consistency of their proposed assignments against constraints with variables owned
by different agents [1].

DisCSP is an elegant model for many every day combinatorial problems that are
distributed by nature. Take for example the meeting scheduling problem in which n
agents attempt to schedule k meetings. In each meeting, a sub-group of the n agents
participate [6, 12, 14, 22]. Arrival constraints define the time that must differentiate
meetings with common participants.

Standard search algorithms for DisCSPs, like asynchronous backtracking (ABT)
[24, 25], assume a static priority order among all agents. Higher priority agents
perform assignments and send them via messages to lower priority agents. ABT
assumes that every inter-agent constraint can be checked by the lower priority
agent that is involved in the constraint, i.e. the lower priority agent must hold the
entire constraint [23]. In dynamic ordering ABT [27], each assignment is checked
for consistency according to the order at the time it is performed. Since both agents
involved in a binary constraint can be with lower priority at the time the assignment
is checked, both agents are required to hold the entire constraint.

In many real world problems the above assumptions are too strong. In the meeting
scheduling example, people are usually not willing to reveal their private schedule
which imposes constraints on the schedule of meetings they participate in. A more
suitable model for a realistic DisCSP is the partially known constraints (PKC) model,
where each inter-agent constraint is composed of two parts, each held by one of
the two constraining agents [2]. When agents hold parts of the constraint privately,
checking for consistency has to be performed by both of the constrained agents
because some value combinations may be seen as permitted by one agent and
forbidden by the other.

In [19] an algorithm which keeps the constraints of agents private was presented.
Asynchronous Aggregations Search (AAS) enables the filtering of a global assign-
ment by agents according to their private constraints. Unlike the common definition
of DisCSP where variables are distributed among agents, AAS considers the dual
case where constraints are distributed and controlled by a single agent. The use
of AAS may cause that the problem to be solved has to be translated into a new
one. This transformation could be inadequate in many naturally distributed problems
where the initial problem structure must remain unchanged. Furthermore, in AAS
there is no privacy of domains i.e. all agents hold the domains for all variables. This
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property makes AAS unsuitable for many real world problems that are concerned
with privacy.

A number of secured protocols for DisCSPs which use cryptographic tools in
order to preserve privacy were proposed in recent years [15, 18, 26]. All of these
studies propose secured protocols which can solve asymmetric constraints. However,
the overhead in communication and computation in all of these protocols is very
large.

In this paper we differentiate between two types of privacy: privacy of con-
straints and privacy of assignments. Regarding privacy of constraints we assume the
PKC model of DisCSPs, where each binary constraint is divided between the two
constraining agents. A value tuple is allowed by the constraint if it is allowed by
each part separately. To solve the resulting DisCSP, two asynchronous backtracking
algorithms are proposed: ABT-2ph, a two-phase algorithm and ABT-1ph a single-
phase one. Similarly to standard ABT, a static order of priorities is defined among
all agents in both algorithms. In the first phase of ABT-2ph, an asynchronous
backtracking algorithm is performed, in which only the constraints held by the lower
priority agents are examined. In other words, only one of the two constraining
agents in each binary constraint checks for consistency. When a solution is reached,
a second phase is performed in which the consistency of the solution is checked
again, according to the constraints held by the higher priority agents in each binary
constraint. If no constraint is violated, a solution is reported. If there are violated
constraints, the first phase is resumed after the necessary nogoods are recorded.

The first and immediate drawback of a two-phase algorithm is the effort of
producing solutions in each first phase. Since constraints in the opposite direction
are not examined, large parts of the search space, which could have been pruned if all
constraints were considered, are being exhaustively scanned. The second drawback
is the synchronized manner in which the algorithm switches between the two phases.
For each such switch among phases, a termination detection mechanism must be
performed which is a complicated task in asynchronous backtracking. Furthermore,
all agents must be informed about every switch between phases.

In order to avoid these drawbacks, a single-phase distributed search algorithm
(ABT-1ph) is proposed. ABT-1ph checks inter-agent constraints asynchronously at
both of the constraining agents. Agents send their proposed assignments to all their
neighbors in the constraint graph, with both higher and lower priority ones. Agents
assign their local variables according to the priority order as in standard ABT, but
check the constraints also against the assignment of lower priority agents. Nogoods
are sent both from lower priority agents, as in standard ABT, and from higher to
lower priority agents.

An algorithm for preserving privacy of assignments was proposed in [2], called
distributed forward checking (DisFC). Unlike ABT, in DisFC constraints are checked
by higher priority agents. Instead of sending its own assignment, every DisFC
agent sends to each lower priority neighbor the subset of values of the neighboring
agent which are consistent with its own assignment. To preserve privacy of con-
straints and assignments, this paper considers two versions of DisFC: DisFC-2ph
[2] and DisFC-1ph, a double and a single-phase algorithm, respectively. Similar to
the versions of ABT for PKC, all constraints are simultaneously considered in the
single-phase of DisFC-1ph while some constraints are checked in the first phase of
DisFC-2ph and the others in its second phase.
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The evaluation of the proposed algorithms is done taking into account compu-
tation effort, communication cost and privacy loss. The evaluation of computation
effort and communication cost in DisCSPs is performed according to the methods
of [28]. To evaluate privacy loss, the natural measure is the entropy [5]. Entropy
decrement, from the initial state of the search to its final state, is taken as a measure
of the privacy loss during search. Regarding privacy of assignments, the loss during a
complete search can be evaluated theoretically. Regarding privacy of constraints, we
adjust the method of [11] to evaluate the constraint privacy alone by measuring the
percentage of the conflicts in a constraint matrix held by an agent that are revealed
to another agent involved in a conflict. This approach is motivated by the fact that
both of our proposed algorithms will reveal some of the information that ABT would
have revealed during its execution via standard ok? and ngd messages. However, in
order to perform standard ABT, the entire part of every binary constraint held by
the higher priority agent must be revealed to the lower priority agent. Our results
focus on the part of the constraint that is revealed relatively to standard ABT.

The idea of entropy as privacy measure has already been considered in distributed
constraint optimization problems, particularly in the context of the meeting schedul-
ing problem [7, 11]. The entropy model that we present in this paper is an adjustment
of these works to constraints and assignment privacy in DisCSPs, which is out of the
scope of previous works.

The paper is organized as follows. A formal DisCSP definition appears in
Section 2. Section 3 contains a summary of the standard ABT algorithm. Privacy of
DisCSPs and the description of the PKC model appear in Section 4. In Section 5 we
present two ABT versions for the PKC model, ABT-2ph and ABT-1ph. Following
each algorithm description are its correctness and completeness proofs. In Section 6
we discuss an option for preserving assignment privacy by sending domain subsets
instead of assignments (DisFC). In Section 7 we present a theoretical model for eval-
uating privacy loss by the entropy decrement during search, considering privacy of
assignments and privacy of constraints. An extensive experimental evaluation, which
demonstrates the difference between the algorithms with respect to performance,
communication and loss of privacy appears in Section 8. Finally, Section 9 contains
some conclusions of this work.

2 Preliminaries

A constraint satisfaction problem (CSP) involves a finite set of variables, each one
taking a value in a finite domain. Variables are related by constraints that impose
restrictions on the combinations of values that subsets of variables can take. A
solution is an assignment of values to variables which satisfies every constraint.
Formally, a finite CSP is defined by a triple (X ,D, C), where

• X = {x1, . . . , xn} is a set of n variables;
• D = {D(x1), . . . , D(xn)} is a collection of finite domains; D(xi) is the initial set of

possible values for xi;
• C is a set of constraints among variables. A constraint ci on the ordered set of

variables var(ci) = (xi1 , . . . , xir(i) ) specifies the relation prm(ci) of the permitted
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combinations of values for the variables in var(ci). An element of prm(ci) is a
tuple (vi1 , . . . , vir(i) ), vi ∈ D(xi).

A distributed constraint satisfaction problem (DisCSP) is a CSP where variables,
domains and constraints are distributed among automated agents. Formally, a finite
DisCSP is defined by a 5-tuple (X ,D,C,A, φ), where X , D and C are as before, and

• A = {1, . . . , p} is a set of p agents,
• φ : X → A is a function that maps each variable to its agent.

Each variable belongs to one agent. The distribution of variables divides C
into two disjoint subsets, Cintra = {ci|∀x j, xk ∈ var(ci), φ(x j) = φ(xk)}, and Cinter =
{ci|∃x j, xk ∈ var(ci), φ(x j) �= φ(xk)}, called intra-agent and inter-agent constraint
sets, respectively. An intra-agent constraint ci is known by the agent owner of var(ci),
and it is unknown by the other agents. Usually, it is considered that an inter-agent
constraint cj is known by every agent that owns a variable of var(cj) [25].

As in the centralized case, a solution of a DisCSP is an assignment of values
to variables satisfying every constraint. DisCSPs are solved by the collective and
coordinated action of agents A. Agents communicate by exchanging messages. It
is assumed that the delay in delivering a message is finite but random. For a given
pair of agents, messages are delivered in the order they were sent.

For simplicity purposes, and to emphasize the aspects of distribution, in the rest
of this study we assume that each agent owns exactly one variable. We identify the
agent number with its variable index (∀xi ∈ X , φ(xi) = i). From this assumption, all
constraints are inter-agent constraints, so C = Cinter and Cintra = ∅. Furthermore, we
assume that all constraints are binary. We use the term cij to indicate a constraint
that binds agents xi and x j.

We further assume that all information held by agents has an equal importance
with respect to privacy (i.e. there is no part of the agents private information which is
more important than other parts). This is a necessary assumption in order to be able
to compute objectively a loss of privacy (see for example [11]). This is the basis for
our experimental evaluation of privacy loss in Section 8.

3 Asynchronous backtracking

All the algorithms proposed in this paper are based on ABT. A summarized de-
scription of ABT is presented here. For details, the reader is addressed to the original
papers [23–25].

Asynchronous backtracking (ABT) [23–25] was a pioneering algorithm to solve
DisCSPs. ABT is an asynchronous algorithm executed autonomously by each agent,
which makes its own decisions and informs other agents about them. The algorithm
computes a solution (or detects that no solution exists) in finite time; the algorithm’s
correctness and completeness have been proven.

ABT requires constraints to be directed. A constraint causes a directed link
between two constrained agents: the assignment-sending agent, from which the
link leaves, and the constraint-evaluating agent, to which the link arrives. When the



204 Constraints (2009) 14:199–234

assignment-sending agent makes an assignment, it informs the constraint-evaluating
agent, which then tries to find a consistent value assignment. To make the network
cycle-free, there is a total order among agents that corresponds to the directed links.
Agent i has higher priority than agent j if i appears before j in the total order.

Each ABT agent keeps its own agent view and nogood list. Considering a generic
agent sel f , the agent view of sel f is the set of values that it believes to be assigned
to agents connected to sel f by incoming links. The nogood list keeps the nogoods
received by sel f as justifications for the removal of inconsistent values. Agents
exchange assignments and nogoods.

The algorithm starts by each agent assigning its variable, and sending the as-
signment to its neighboring agents with lower priority. When an agent receives
an assignment, it updates its agent view with the received assignment, removes
inconsistent nogoods and checks the consistency of its current assignment with the
updated agent view.

When receiving a nogood, it is accepted if it is consistent with the agent view of
sel f . Otherwise, it is discarded since it is found to be obsolete. An accepted nogood is
used to update the nogood list. It makes sel f search for a new consistent value, since
the received nogood is a justification that forbids its current value. When an agent
cannot find any value consistent with its agent view, either because of the original
constraints or because of the received nogoods, new nogoods are generated from its
agent view and each one sent to the closest agent involved in it. This operation causes
backtracking.

There are several versions of ABT, depending on the way that new nogoods are
generated. In the simplest form of the ABT algorithm, the complete agent view
is sent as a nogood [23]. The nogood is sent to the lowest priority agent whose
assignment is included in the nogood. In contrast, in the version of ABT that appears
in [1], when an agent cannot find a consistent value, it resolves its nogoods lists
following a procedure based on dynamic backtracking methods. From this resolution,
a new nogood is generated and sent to the agent with the lowest priority involved in
the new nogood.

If sel f receives a nogood including the assignment of an agent not connected with
it, sel f requires that a new link will be added from that agent to sel f . From this point
on, a link from the other agent to sel f will exist. ABT execution ends upon achieving
quiescence in the agent network, meaning that a solution has been found, or when
an empty nogood is generated, which indicates that the problem is unsolvable.

The ABT code appears in Fig. 1. This code uses the following data structures:
�−, �+, myAgentView and myNogoodStore. �− contains sel f ’s higher priority
constraining agents, whereas �+ contains sel f ’s lower priority constraining agents
[1]. Agent sel f stores assignments of higher priority agents in myAgentView and
the received nogoods in myNogoodStore. Agents exchange four different kinds of
messages: ok?, ngd, adl and stp. An ok? message comes from higher priority agents
informing sel f of the new assignment for the variable of the message’s sending agent.
A ngd message comes from lower priority agents, and includes a nogood which will
serve as a justification for the removal of the value assigned to sel f ’s variable. An adl
message arrives from lower priority agents, requesting sel f to add a new link between
it and the sender. When an agent receives a stp message, it means that the problem
is unsolvable since an empty nogood was found by at least one agent and the search
terminates.
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Fig. 1 The ABT algorithm
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4 Privacy in ABT-like algorithms

ABT agents exchange assignments and nogoods. Regarding privacy, there are two
issues that reveal the private data of ABT agents:

• Constraints: An inter-agent constraint cij is totally known by the lower priority
agent ( j for i < j).

• Assignments: Agents notify other agents about their value assignments.

This approach may be inappropriate for applications in which privacy is the main
reason for distributed solving. In this case, agents may desire to hide the actual values
of their variables from other agents, considered to be potential competitors. For
the same reasons, the information contained in the constraints may be considered
as reserved and agents might not be willing to share it with other agents. In the
following, we develop strategies to maintain privacy of variable values and of inter-
agent constraints, allowing agents to share enough information to achieve a solution
or detect that no solution exits.

4.1 The PKC model for constraint privacy

ABT assumes that an inter-agent constraint cij is totally known by the agents owning
their related variables, that is, cij is totally known by agent i and agent j (see
Section 2.2 of [25]). In fact, it is enough for ABT that the lower priority agent in
each constraint knows the set of permitted tuples. To enforce constraint privacy, we
introduce the partially known constraints (PKC) model of a DisCSP as follows. A
constraint cij is partially known by its related agents. Agent i knows the constraint
ci( j) where:

• vars(ci( j)) = {xi, x j};
• ci( j) is specified by three disjoint sets of value tuples for xi and x j:

– prm(ci( j)), the set of tuples that i knows to be permitted;
– f bd(ci( j)), the set of tuples that i knows to be forbidden;
– unk(ci( j)), the set of tuples whose consistency is unknown by i;

• Every possible tuple is included in one of the above sets, that is, prm(ci( j)) ∪
f bd(ci( j)) ∪ unk(ci( j)) = Di × Dj.

Similarly, agent j knows c(i) j, where vars(c(i) j) = {xi, x j}. c(i) j is specified by the
disjoint sets prm(c(i) j), f bd(c(i) j) and unk(c(i) j). For the model to be truly partial,
it is required that, there is at least one pair of constrained agents i and j that do not
have the same information about the shared constraint (i.e. they differ in at least one
of the three sets of tuples). The relation between a totally known constraint cij and
its corresponding partially known constraints ci( j) and c(i) j is

cij = ci( j) ⊗ c(i) j

where ⊗ depends on the semantic of the constraint. The above definitions satisfy the
following conditions:

• If the combination of values k and l, for xi and x j is forbidden in at least one
partial constraint, then it is forbidden in the corresponding total constraint: if
(k, l) ∈ f bd(ci( j)) or (k, l) ∈ f bd(ci( j)) then (k, l) ∈ f bd(cij).



Constraints (2009) 14:199–234 207

• If the combination of values k and l, for xi and x j is permitted in both partial
constraints, then it is also permitted in the corresponding total constraint: if
(k, l) ∈ prm(ci( j)) and (k, l) ∈ prm(ci( j)) then (k, l) ∈ prm(cij).

In this paper, we only consider constraints for which unk(c(i) j) = unk(ci( j)) = ∅.1

In this case, a partially known constraint ci( j) is completely specified by its permitted
tuples (tuples not in prm(ci( j)) are in f bd(ci( j))). Furthermore,

prm(cij) = prm
(
ci( j)

) ∩ prm
(
c(i) j

)
(1)

For example, let us consider the n-pieces m-chessboard problem. Given a set of n
chess pieces and a m × m chessboard, the goal is to put all pieces on the chessboard
in such a way that no piece attacks any other. As DisCSP, the problem can be
formulated as follows,

• Variables: one variable per piece.
• Domains: all variables share the domain {1, . . . , m2} of chessboard positions.
• Constraints: one constraint between every pair of pieces, following chess rules.
• Agents: one agent per variable.

For example, we can take n = 5 with the set of pieces {queen, castle, bishop, bishop,
knight}, on a 4 × 4 chessboard, with the variables,

x1 = queen, x2 = castle, x3 = bishop, x4 = bishop, x5 = knight.

If agent 1 knows that agent 5 holds a knight, and agent 5 knows that agent 1 holds a
queen, the result is a completely known constraint prm(c15) including the following
tuples,

prm(c15) = {
(1, 8), (1, 12), (1, 14), (1, 15), . . .

}

With the PKC model, agent 1 does not know which piece agent 5 holds. It only knows
how a queen attacks, from which it can develop the constraint,

prm(c1(5)) = {
(1, 7), (1, 8), (1, 10), (1, 12), . . .

}

Analogously, agent 5 does not know which piece agent 1 holds. Its only information
is how a knight attacks, from which it can develop the constraint,

prm(c(1)5) = {
(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 8), . . .

}

The whole constraint c15 is equal to the intersection of these two constraints,

prm(c15) = c1(5) ∩ c(1)5 = {
(1, 8), . . .

}

1In the PKC formulation for versions of stable marriage problem in which people desire to keep
their marriage proposals (assignments) and preference lists (constraints) private during the search of
a stable matching, unk(c(i) j) = unk(ci( j)) �= ∅, see [3] for more details.
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In fact, prm(c1(5)) does not depend on agent 5. It codifies the way a queen attacks,
which is independent of any other piece. In this problem, the PKC model allows each
agent to represent its constraints, independently of other agents.

4.2 Assignment privacy

Agents may desire to keep the assigned values to their variables private. To achieve
this, agents must avoid sending their assigned values to other agents. An ABT agent
sends its value in two types of messages (between i and j, i < j):

1. ok?: when agent i informs low priority agents of its value assignment. This mes-
sage is used by j to find a compatible value with i, so j has to know the con-
straint cij.

2. ngd: when agent j sends a backtrack message to i. This message contains the
value assignments of the AgentView of j. It is used by i to check whether the
nogood message is obsolete, by checking whether the assignments of common
variables with agents of higher priority than i, in the agent views of i and j, are
the same.

The first point could be solved if, instead of sending i’s current value, the ok?
message contains the subset of Dj values that are compatible with i’s current value.
From this subset, j may be consistently assigned with respect to the constraint with i.

The second point can be solved by the use of identifiers. We propose to use
a sequential number over the assignments of the variable. Each variable keeps a
sequence number that starts from 1 (or some random value), and increases monoton-
ically each time the variable changes its assignment, acting as a unique identifier for
each assignment. Messages include the sequential number of the assignment of the
sending agent. The agent view of the receiver is composed of the sequence numbers
it received in ok? messages from higher priority agents. Nogoods are composed of
variables and their sequential numbers.

5 ABT algorithms for partially known constraints

We present two ABT algorithms for solving DisCSP that incorporate the PKC model
of constraints. Initially, solving algorithms have two solving phases, one for each
partial constraint. Later, these two phases are combined into one.

We emphasize that in the case of constraints privacy, both of our proposed
algorithms reveal the same kind of information that standard ABT would have
revealed in its messages when solving the same problem. However, standard ABT
requires that for every binary constraint, the entire part of the constraint which
is initially held by the higher priority agent will be revealed to the lower priority
agent before the algorithm starts. Our proposed algorithms attempt to minimize this
exposure of information to the minimum necessary.

5.1 Two-phase strategy

In the PKC model, if agents i and j are constrained, i knows ci( j) and j knows c(i) j,
but none knows the total constraint cij. The first method for solving DisCSP under



Constraints (2009) 14:199–234 209

the PKC model appears in [2]. It consists of a cycle of two phases. In the first phase
(phase I), the original problem is relaxed considering only one partial constraint for
each pair of constrained agents. If no solution is found in phase I, the procedure
ends returning failure, since no solution exists for the whole problem. If a solution
is found, it is passed to the second phase (phase II) where it is checked against the
partial constraints not considered in phase I. If it is also a solution of phase II, then it
is a solution for the whole problem. Otherwise, one or several nogoods are generated
and the search is resumed in phase I. Nogoods found in phase II are used in phase I
to escape from incompatible assignments.

The two-phase strategy is a generic method which implementation details depend
on the algorithm used to find a solution with respect to the considered partial
constraints.

ABT-2ph. The ABT-2ph algorithm is a combination of the ABT algorithm with the
two-phase strategy. It works as follows:

• Phase I. Constraints are directed, forming a DAG, and a compatible total order
of agents is selected. The standard ABT algorithm finds a solution with respect
to constraints c(i) j, where agent i has higher priority than j (the constraint c(i) j

is checked by the lower priority agent, j). A solution is identified by detecting
quiescence in the network. If no solution is found, the process stops, reporting
failure.

• Phase II. Constraints and the order of agents are reversed. Now ci( j) are consid-
ered, where j has higher priority than i (e.g. in the reversed order). j informs i of
its value. If the value of i is consistent, i does nothing. Otherwise, i sends a ngd
message to j, which receives that message and does nothing (this nogood will be
used when Phase I is resumed). Quiescence is detected.

Figure 2 presents the code for the ABT-2ph algorithm. In the main procedure, the
agents perform standard ABT (procedure ABT-I()) to find a solution compatible
with all constraints held by lower priority agents. If such a solution is obtained, the
agents reverse the total order by exchanging �− and �+. Then phase II is performed
(procedure ABT-II()). If it is successful (no nogood generated during phase II),
the algorithm terminates. Otherwise �− and �+ are exchanged again and phase I is
resumed. Agents exchange ABT message types, plus the messages qes, qnn meaning
quiescence in the network after ngd and after no ngd messages, respectively.

An extra agent called system is responsible for detecting network quiescence.
Messages qes and qnn are sent by system to the rest of agents. Network quiescence
state can be detected by system using specialized snapshot algorithms [4].

5.2 One-phase strategy

Instead of checking only part of the constraints in phase I and verifying the proposed
solution in phase II, all constraints can be tested simultaneously in a single phase.
An agent has to check all its partially known constraints with both higher and lower
priority agents. To do this, an agent has to inform all its neighboring agents when
it assigns a new value, and nogood messages can go in both directions (from lower
priority to higher priority agents as in ABT but, also from higher to lower). In the
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Fig. 2 The ABT-2ph algorithm for the PKC model. Missing procedures appear in Fig. 1

following, we present the ABT-1ph algorithm obtained by combining ABT with the
one-phase strategy.

ABT-1ph. In ABT, binary constraints are held completely by the lower priority
agent involved in each constraint according to a total agent ordering. Lower priority
agents check consistency of assignments received from higher priority agents via ok?
messages. In the PKC model, constraints are only partially known to each of the
participating agents. Consequently, both of the constrained agents need to check
the consistency of their assignments against each other. This means that checking
consistency of a pair of constrained assignments by the lower priority agent is no
longer sufficient.

In single-phase asynchronous backtracking for the PKC model (ABT-1ph), each
agent checks its constraints with all constraining agents (i.e. neighbors on the
constraint graph). This includes higher priority, as well as lower priority constraining
agents. Agents hold in their myAgentView the assignments of agents with higher
and lower priorities. Values from the domain of agents are eliminated only if they
violate constraints with higher priority agents. After a new assignment is found to
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Fig. 3 The ABT-1ph algorithm for the PKC model. Missing procedures appear in Fig. 1

be consistent with all assignments of higher priority agents in myAgentView (agents
in �−), the selected assignment is checked against the assignments of lower priority
agents (agents in �+). If a conflict is detected, the agent keeps its assignment and
sends a ngd message to the lower priority agent, including its own assignment and
the conflicting assignment. An agent processes ngd messages in the same way, no
matter if they come from higher or lower priority agents.

Figure 3 presents the changes in ABT to transform it into ABT-1ph. The only
differences are ProcessInfo() and CheckAgentView(). In the first procedure,
after receiving the assignment of a lower priority agent, if it is not compatible with
sel f current value, a ngd message is sent to that agent. In the second procedure, after
assigning sel f with a value consistent with all assignments of agents in �−, it is sent to
all agents in �− ∪ �+. In addition, if there are agents in �+ with inconsistent values,
a ngd message is sent to them. Although a nogood is sent, the current assignment
(myValue) is not replaced.

5.3 Formal properties

Here we prove that ABT-2ph and ABT-1ph inherit the good formal properties of
ABT. The search space is defined by the variables and domains of the problem
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instance. The way this space is traversed depends on (1) the total order among agents
and (2) the set of nogoods generated during asynchronous search. Assuming that all
algorithms follow the same agent ordering, the proof will be based on the fact that
all algorithms generate the same nogoods. This is proven in the following lemma.

Lemma 1 A nogood can be generated by ABT-2ph/1ph iff it can be generated by ABT.

Proof Let us differentiate between explicit and implicit nogoods. In ABT, an explicit
nogood is generated as a consequence of an ok? message. An implicit nogood is
generated by resolution of the set of nogoods that forbid all values of a variable.

Explicit nogoods Let i and j be two agents, i < j in the total order, and let xi =
v ⇒ x j �= w be a nogood generated by ABT-2ph/1ph. If the pair (v, w) is forbidden
in c(i) j, this nogood will be generated in j after receiving the ok? message containing
xi = v, and it will be stored in j. Otherwise, if the pair (v,w) is permitted in c(i) j but
forbidden in ci( j ), it will be generated in i, and it will be sent from i to j as a Nogood
and stored in j. In any case, if it is forbidden by, at least, one partial constraint, the
pair (v,w) is forbidden by the total constraint cij. Therefore, it will be generated
by ABT.

Let us assume that (v,w) is forbidden by cij, so in ABT the nogood xi = v ⇒
x j �= w will be generated by j when it receives the ok? message from i containing
xi = v. We know that the pair (v,w) will be forbidden by, at least, one of the
partial constraints in the PKC model. If it is forbidden by c(i ) j, the nogood will be
generated in j after receiving the ok? message containing xi = v, and stored in j. If it
is forbidden by ci( j ), the nogood will be generated in i after i sends xi = v to j and j
sending x j = w to i (this requires two phases in ABT-2ph but a single one in ABT-
1ph). This nogood will be sent to j, and stored there. So, in both cases the nogood is
generated (and stored in j).

Implicit nogoods (Proof by induction on the number of implicit nogoods in a
sequence of backtracking steps). The first implicit nogood in the sequence that
appears in ABT-2ph/1ph is generated by resolving explicit nogoods. Since all explicit
nogoods of ABT-2ph/1ph can be generated by ABT, and the nogood resolution
mechanism is the same, this first implicit nogood can also be generated by ABT.
Let us assume that this is true up to the n-th implicit nogood generated by ABT-
2ph/1ph, and let us prove that this is the case for the n + 1-th implicit nogood. Let us
consider the n + 1-th implicit nogood generated. It has been computed by resolving
previous nogoods, either explicit or implicit. We have already proved that explicit
nogoods can also be generated by ABT. All previous (n) implicit nogoods can be
generated by ABT by the induction step. Therefore, since the nogoods involved
in the resolution can all be generated by ABT and the resolution process is the same,
the resolvent nogood could also be generated by ABT. A similar argument holds in
the other direction of the lemma, starting from ABT implicit nogoods and implying
nogoods of ABT-2ph/1ph. �

Proposition 1 ABT-2ph/1ph are sound, complete and terminate.



Constraints (2009) 14:199–234 213

Proof

Soundness If ABT-2ph/1ph report a solution, it is because the network has reached
quiescence. In that case, every partial constraint is satisfied (otherwise, quiescence
cannot be reached). If every partial constraint is satisfied, every total constraint is
satisfied as well (by definition of partial constraints, see Section 4.1). Therefore, the
reported solution is a true solution.

Completeness ABT-2ph/1ph perform the same kind of search as ABT: total order-
ing of agents, asynchronous instantiation, resolving nogoods, adding links, etc. Their
only difference is that (1) agents send their assignments to higher and lower priority
agents through ok? messages, and (2) if a higher priority agent receives one of these
ok? messages with a value that is inconsistent with its current value, it sends a nogood
message to the sender. These points are crucial in the generation of nogoods. But
we know, by Lemma 1, that these changes do not cause any modification in the set
of nogoods generated by these algorithms with respect to ABT. Consequently the
ABT-2ph/1ph algorithms will discard the same parts of the search space as ABT, but
not other parts. Since ABT is complete, ABT-2ph/1ph are also complete.

Termination An argument similar to the one used in completeness applies here.
Nogoods rule out parts of the search space. Because of the total ordering of agents,
discarded parts accumulate, so ABT terminates in a finite search space (see [1]).
Since ABT-2ph/1ph generate the same nogoods as ABT, and they perform the same
kind of search, ABT-2ph/1ph also terminate. �

5.4 An example

Let us consider the problem of safely locating a queen Q and a knight k on a 4 × 4
chessboard (see Section 4.1 for the formal definition of the n-pieces m-chessboard
problem). Each piece is handled by an independent agent, and none knows the
identity of the other piece, so the PKC model applies here. There is a single constraint
between Q and k. Initially we assume that Q has higher priority than k, so the
constraint is directed Q → k. Let us follow the execution of ABT-2ph/1ph on this
problem.

ABT-2ph works as follows. Phase I starts locating each piece in the first position
of the chessboard. Afterwards, Q informs k of its current assignment. This causes k
to take value 2, which is consistent according to its partial constraint with the value
of Q. Then, quiescence is reached and phase II starts. The constraint direction is
reversed, now k → Q. k informs Q of its value. Q notes that its current value is
not consistent with the value of k, so it sends a ngd message to k. Quiescence
is reached and the constraint direction is reversed again to Q → k. Phase I starts.
k realizes that its value is eliminated by the Nogood contained in the ngd message
received in phase II, so k changes its value to 3. Quiescence is reached and phase II
starts. The constraint direction is reversed, now k → Q. k informs Q of its value. Q
finds that its current value is not consistent with the value 3 of k and then sends a
ngd message to k. Quiescence is reached and the search is resumed in phase I. This
process continues until k takes value 8. Then, k informs Q of the new assignment. Q
checks that its assignment is consistent with k value. Quiescence is reached causing
termination because no ngd message has been generated in phase II.
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ABT-1ph works as follows. First, each piece takes value 1. Agents exchange two
ok? messages. Q informs k that it has taken value 1, and k informs Q that it has taken
value 1. When Q receives the ok? message, it sends a ngd message to k informing that
its current value it is not consistent with the value of Q (both pieces are in the same
chessboard cell). When k receives the ok? and ngd messages it takes value 2 and
informs this change to Q via an ok? message. When Q receives this message it notes
that its current value is not consistent with k value, so Q sends an ngd message to k
informing it to change its value. Then, k takes the value 3 and informs Q. This process
continues until k takes value 8. Then, it informs Q of the new assignment. Q finds
that its current value is consistent with the value of k, so it does nothing. Quiescence
is reached causing termination.

6 Distributed forward checking for assignment privacy

ABT-2ph/1ph reach a solution while keeping constraint privacy. However, they do
not achieve assignment privacy because two constrained agents have to exchange
their value assignments, in order to verify that their partial constraints are satisfied.
Therefore, when a solution is found, an agent knows the value assigned to every
agent constrained with it.

To enforce assignment privacy while keeping constraint privacy in the PKC model,
we propose the distributed forward checking (DisFC) algorithm. It is inspired by the
Forward Checking algorithm in the centralized case [8]. Considering two constrained
agents i and j, i < j, the idea is, instead of i sending its assigned value to j, it sends
the subset of Dj that is consistent with its assigned value. In addition, the current
value assigned to each agent is replaced by the sequential number of assignments of
each variable, as indicated in Section 4.2. As for ABT, we have two versions of this
algorithm, with two phases or a single phase, which we term DisFC-2ph and DisFC-
1ph respectively. Each of them works as its respective ABT counterpart, with the
two differences mentioned above.

6.1 Two-phase/one-phase strategies

DisFC-2ph. It works like ABT-2ph, with the already mentioned differences: (1)
instead of sending its current value assignment, agent i sends the subset of Dj

consistent with it, and (2) the assigned value is replaced by a sequence number.
Let us consider DisFC-2ph and two constrained agents i, j, i < j. In phase I, the

partial constraint ci( j ) is tested by i, while in phase II c(i ) j is tested by j. In ABT-2ph
it happens exactly in the opposite order: in phase I c(i ) j is tested by j and in phase
II ci( j ) is tested by i. This is due to the type of information sent (values in ABT-2ph,
consistent sub-domains in DisFC-2ph) and to the partial constraint owned by each
agent, but this is not a fundamental difference.

The DisFC-2ph algorithm appears in Fig. 4. Each agent stores assignments of
higher priority agents in myAgentView and the received nogoods in myNogood
Store. It uses the same types of messages as ABT-2ph.

DisFC-1ph. It works like ABT-1ph, with the already mentioned differences: (1)
instead of sending its current value, agent i sends the subset of Dj consistent with
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Fig. 4 The DisFC-2ph algorithm for the PKC model. Missing procedures appear in Fig. 1
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it, and (2) the assigned value is replaced by a sequence number. The DisFC-1ph
algorithm appears in Fig. 5. Beside the data structures of DisFC-2ph, each agent
keeps in myFilteredDomain[i] the last filtered domain received from agent i, a lower
priority constraining agent.

6.2 Formal properties

Regarding nogoods, the only difference between ABT-2ph/1ph and DisFC-2ph/
DisFC-1ph is that actual values are replaced by sequence numbers. This is fine, as
the only role of values/sequence numbers is to detect that an assignment is obsolete.
However, it might occur that two different sequence numbers for one variable would
represent the same value. If this happens after receiving a backtrack message, when
comparing the agent view of the message with the agent view of the receiver, the
message will be discarded as obsolete. But this will cause no problem. Since each
time the sequence number changes, an ok? message is sent, if either the sender or the
receiver of the backtrack message are not updated, it means that the message with

Fig. 5 The DisFC-1ph algorithm for the PKC model. Missing procedures appear in Fig. 4
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the most updated sequence number has not arrived yet, but it is on its way. After its
arrival, the backtrack message will be accepted. After this clarification, we prove that
the good theoretical properties of ABT-2ph/1ph also hold for DisFC-2ph/1ph.

Lemma 2 A nogood can be generated by DisFC-2ph/1ph iff it can be generated
by ABT.

Proof Let us consider two constrained agents i, j, i < j. The only difference with
ABT-2ph/1ph is that ok? messages may generate more than one nogood. In fact, an
ok? message from i to j generates as many nogoods as values considered inconsistent
in Dj. These nogoods would have been generated by ABT if these values would have
been successively assigned to j. The rest of the proof is equal to the one of Lemma 1.

�

Proposition 2 DisFC-2ph/1ph are correct, complete and terminate.

Proof Analogous to the proof of Proposition 1 �

6.3 An example

Let us consider the same problem of safely locating a queen Q and a knight k on a
4 × 4 chessboard we have discussed as an example for ABT-2ph/1ph. Each piece is
handled by an independent agent, and none knows the identity of the other piece, so
the PKC model applies here. There is a single constraint between Q and k. Initially,
we assume that Q has higher priority than k. We show the execution of DisFC-
2ph/1ph on this problem.

Considering DisFC-2ph, the algorithm execution is as follows (assuming that
values are selected lexicographically). When phase I starts, both pieces take value 1.
Q informs k of its filtered domain with respect to Q’s assigned value, and k changes
its assigned value to 7. Quiescence is reached and phase II starts. The constraint
direction is reversed, now k → Q. k informs Q of its filtered domain with respect to
its assigned value. Q realizes that its current value assignment is forbidden, so it sends
an ngd message to k. Quiescence is reached and the constraint direction is reversed
again, now Q → k. Phase I starts. k realizes that its assigned value is eliminated
by the nogood contained in the ngd message received in phase II. Therefore, k
changes its assignment to 8. Quiescence is reached and phase II starts. The constraint
direction is reversed, now k → Q. k informs Q of its filtered domain with respect
to its assigned value. Q finds that its current assignment is consistent, so it does
nothing. Quiescence is reached causing termination because no ngd message has
been generated in phase II.

When DisFC-1ph starts, both pieces take value 1. Agents exchange two ok?
messages. Q informs k of its filtered domain with respect to its assigned value, and k
informs Q of its filtered domain with respect to its own assignment. When Q receives
the message, it sends a ngd message to k informing that its current value assignment
is not consistent with Q’s assignment. When k receives the ok? and ngd messages it
assigns value 7 and informs this change to Q via an ok? message. When Q receives
this message it notes that its current assignment is not consistent, so Q sends an ngd
message to k informing that it has to change its value assignment. Then, k assigns
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value 8 and informs Q. Q finds that its current assignment is consistent, so it does
nothing. Quiescence is reached causing termination.

7 Entropy as a privacy measure

Given a discrete random variable Z which takes values in the discrete set S, its
entropy is defined as,

H(Z ) = −
∑

i∈S

pi log2 pi

where pi is the probability that Z takes the value i. H(Z ) measures the amount of
missing information about the possible values of the random variable Z [5, 17]. If
only one value k is possible for that variable (that is, pi = 0,∀i �= k, pk = 1), there
is no uncertainty about the state of Z , and H(Z ) = 0. Entropy is a non-negative
magnitude.

Given a DisCSP, defined by (X ,D, C,A, φ), let us consider agent j. The rest of the
problem can be considered as a random variable, with a discrete set of possible states
S. Applying the concept of information entropy, we define the entropy associated
with agent j as,

Hj = −
∑

i∈S

pilog2 pi

and the entropy associated with the whole problem as,

H =
∑

j∈A

Hj

Let us consider two imaginary states α and β of the whole problem. In state α, every
agent knows nothing about the values of other agents, and knows the minimum about
their constraints. In this state, privacy is at maximum, because each agent knows the
minimum on the rest of the problem. It happens that entropy is also at maximum,
because the missing information each agent has about the rest of the agents is
maximal. Let us now consider state β, in which every agent knows everything about
the rest of the problem. Obviously, in this case there is no privacy at all. It happens
that the entropy of this state has its minimum value (zero) because there is no
uncertainty on the state of any problem element. Given the relationship between
privacy and entropy (coincidence at points of maxima and minima), and the good
properties of entropy (continuity, symmetry, additivity), we propose to use entropy
as a quantitative measure of privacy.

Assuming that the initial state of a DisCSP has maximum privacy (entropy), any
solving process can be seen as an entropy-decreasing process. Entropy decrement is
due to two factors: (1) if a global solution is finally reached, the solution condition
decreases the uncertainty about the values assigned to agents, so the entropy of the
whole problem should decrease, and (2) in the solving process some information
about values or constraints of neighboring agents is leaked, increasing the knowledge
of particular agents; therefore, their uncertainty (and entropy) decrease.
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Following our proposal of entropy as quantitative measure for privacy, we suggest
to take the entropy decrement in the solving process as a measure of privacy loss.
This allows us to compare different algorithms with respect to privacy. We assume
that every algorithm starts from the same initial state, where privacy (entropy) is
at maximum. Entropy decrement depends on the solving algorithm. Comparing the
entropy of the final states achieved by the different algorithms, we can compare about
their relative performance with respect to privacy loss.

In this paper, we discuss privacy on two dimensions: assignment privacy and
constraint privacy. This difference can be captured in our entropy approach by
considering that the part of the problem considered is limited to the assignments of
other agents (assignment privacy) or to their constraints (constraint privacy). Both
approaches are further developed in the following.

7.1 Assignment privacy

To measure assignment privacy we use entropy limited to the assignments of other
agents, for each agent j’s. Initially, an ABT-agent j knows the total number of agents
n, the relative position of any agent with respect to j position in the ordering, the
agents connected with it and above in the ordering �−

j , the agents connected with
it and below in the ordering �+

j , its own value val j and its own partial constraints
c j(l ), l ∈ �−

j ∪ �+
j . We assume a common domain size d, and agent identifiers follow

the total ordering. In the initial state, called init, the entropy associated with agent j
is (using the additive property of entropy [5]),

Hj(init) = −
n∑

k=1,k �= j

d∑

i=1

pi log2 pi = −
n∑

k=1,k �= j

d
1

d
log2

1

d
=

n∑

k=1,k �= j

log2 d

where we assume that the d values for agent k have the same probability, pi = 1
d ∀i.

For convenience, we rearrange this expression as follows,

Hj(init) =
∑

k∈�+
j

log2 d +
∑

k> j,k �∈�+
j

log2 d +
∑

k∈�−
j

log2 d +
∑

k< j,k �∈�−
j

log2 d (2)

where the first two terms correspond to agents below j (constrained and not con-
strained with j) and the last two terms correspond to agents above j in the ordering
(again, constrained and not constrained with j). After finding a solution in the state
called sol, the entropy of agent j depends on the algorithm used, as follows.

• ABT. Let us consider an agent k below j and directly constrained with it. Agent
j does not know the value of k, valk, but since it belongs to a solution, it must
be consistent with its own value val j. So valk must be consistent with val j in the
partially known constraint c j(k). Assuming that there are n j(k) values consistent
with val j, the contribution of k to the entropy of j in sol is log2 n j(k). Therefore,
the contribution of all agents constrained with j and below it in the ordering is

∑

k∈�+
j

log2 n j(k)
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The second term of (2) does not change. Let us consider an agent i above j in
the ordering and constrained with j. Agent j knows its value so its contribution
to Hj is zero. Since this is true for any constrained agent above j, the third term
of (2) becomes zero. The fourth term does not change. Therefore, the entropy
associated with j restricted to assignments of other agents in the sol states is,

H ABT
j (sol) =

∑

k∈�+
j

log2 n j(k) +
∑

k> j,k �∈�+
j

log2 d + 0 +
∑

k< j,k �∈�−
j

log2 d

It is worth noting that new links may appear during the solving process, changing
the sets �−

j and �+
j with respect to their initial state. If a new link appears from

i to j, i < j, the entropy associated with j decreases since the contribution of i in
init, log2 d, goes to zero in sol.

• ABT-2ph/1ph. Let us consider agents i and k, constrained with j, i < j < k.
Agent j knows the values of i and k, so it has no uncertainty about their values.
Therefore, their contribution to entropy is zero. This argument applies for any
agent constrained with j, so the first and third terms of (2) are zero. Therefore,
the entropy associated with j restricted to assignments in the sol state is,

H ABT−2ph/1ph
j (sol) = 0 +

∑

k> j,k �∈�+
j

log2 d + 0 +
∑

k< j,k �∈�−
j

log2 d

• DisFC-2ph/1ph. Let us consider agents i and k, constrained with j, i < j < k.
Agent j does not know their values, but since they form a solution, their
values must be consistent with the value of j in the partial constraints c j(i)

and c j(k) (the argument used for ABT applies here). Assuming that there are
n j(k) values consistent with val j in c j(k), the entropy associated with j restricted
to assignments in the sol state is,

HDisFC−2ph/1ph
j (sol) =

∑

k∈�+
j

log2 n j(k) +
∑

k> j,k �∈�+
j

log2 d +
∑

k∈�−
j

log2 n j(k) +
∑

k< j,k �∈�−
j

log2 d

where the second and fourth terms of (2) remain unchanged.

These results allow us to rank these algorithms with respect to assignment privacy.

Proposition 3 Regarding assignment privacy for ABT, ABT-2ph/1ph and DsFC-
2ph/1ph, assuming that the sets �−

j and �+
j are equal for the three algorithms in the

sol state,

• The privacy loss of ABT-2ph/1ph is higher than or equal to the privacy loss of
ABT,

• The privacy loss of ABT is higher than or equal to the privacy loss of DisFC-
2ph/1ph.

Proof Since these algorithms are complete, they will finish their execution finding
a solution or proving that no solution exists. In case of no solution, there is no
global assignment so it is meaningless to talk about assignment privacy. In case of
solution, this proposition follows directly from the above results on entropy on these
algorithms. Since entropy of the initial state is the same for the three algorithms



Constraints (2009) 14:199–234 221

(2), we can compare the entropy of the sol state for the three algorithms [17]. Thus,
we have,

H ABT
j (sol) − H ABT−2ph/1p

j (sol) =
∑

k∈�+
j

log2 n j(k) ≥ 0

HDisFC−2ph/1p
j (sol) − H ABT

j (sol) =
∑

k∈�−
j

log2 n j(k) ≥ 0

where subtraction is easily done because sets �−
j and �+

j are the same for the three
algorithms. From these expressions, we see that the entropy in the sol state of agent
j is higher (or equal to in the limit case) when using ABT than when using ABT-
2ph/1ph, and similar result occur between DisFC-2ph/1ph and ABT. Since this is
computed for any agent j, we conclude that the assignment privacy loss of ABT-
2ph/1ph is higher than or equal to the assignment privacy loss of ABT, and the
assignment privacy loss of ABT is higher than or equal to the assignment privacy
loss of DisFC-2ph/1ph. �

7.2 Constraint privacy

To measure constraint privacy we use entropy limited to the constraints involving j
and other agents. In the initial state defined above (init state), the entropy associated
with agent j is (using the additive property of entropy [5]),

Hj(init) = −
n∑

k=1,k �= j

∑

i

pi log2 pi = −
∑

k∈�+
j

∑

i

pi log2 pi −
∑

k∈�−
j

∑

i

pi log2 pi

where the contribution of agents not constrained with j is zero (they are connected
with j by the universal constraint that allows every tuple, so there is no uncertainty
associated with these constraints). We are interested in knowing what agent j can
infer about c jk. Agent j knows that every zero entry (pair of incompatible values)
in c j(k) will be a zero entry in c jk. The number of matrices representing constraint
c jk compatible with c j(k) is 2d2−z j(k) , where z j(k) is the number of zero entries in the
matrix corresponding to c j(k). The probability for each of the possible states of agent
k, with respect to its constraints with agent j, is constant and equals 1

2d2−z j(k)
. Since the

number of possible states for agent k is 2d2−z j(k) , the fixed probability can be taken
out of the sum of the entropy for agent k and is summed up to 1. The contribution of
each agent k is,

−
∑

i

pi log2 pi = −2d2−z j(k)
1

2d2−z j(k)
log2

1

2d2−z j(k)
= log2 2d2−z j(k) = d2 − z j(k)

and the entropy of the init state associated with j is,

Hj(init) =
∑

k∈�+
j

d2 − z j(k) +
∑

k∈�−
j

d2 − z j(k) (3)
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When the solving process finishes, no matter whether a solution has been found or
not, the system is in the end state. The entropy decrement depends on the solving
algorithm, as follows.

• ABT. Let us consider an agent k above j and constrained with it. In order to run
ABT agent j has to know completely cij, so there is no uncertainty about it. Since
this argument applies to any agent above j and constrained with it, the second
term of (3) becomes zero. Then, the entropy is,

H ABT
j (end) =

∑

k∈�+
j

d2 − z j(k)

How much is z j(k)? This depends on the particular problem considered. We have
evaluated the entropy of the end state empirically, in Section 8.

• ABT-2ph. Both terms of (3) depend on the execution of the particular algorithm.
In ABT-2ph, an agent i above j may reveal to j some entries in ci( j ). Combining
this information with c j(i), j knows e′

ij entries of cij, e′
ij ≥ z j(i). Analogously with

agent k below j. After execution agent j may know e′′
jk entries of c jk, e′′

jk ≥ z j(k).
Then, the entropy is,

H ABT−2ph
j (end) =

∑

k∈�−
j

d2 − e′
jk +

∑

k∈�+
j

d2 − e′′
jk

e′
jk and e′′

jk depend on particular executions, so we do not have their analytical
expressions. We have evaluated the entropy of the end state empirically, in
Section 8.

• ABT-1ph. The first term of (3) depends on the particular algorithm execution, in
the same way of ABT-2ph. However, with agent k below j, after execution agent
j cannot infer further entries in cjk. Therefore, the entropy is,

H ABT−1ph
j (end) =

∑

k∈�−
j

d2 − e′
jk +

∑

k∈�+
j

d2 − z j(k)

e′
jk depends on particular executions, so we do not have its analytical expression.

We have evaluated the entropy of the end state empirically, in the Section 8.
• DisFC-2ph/1ph. Here it is a bit more complex to compute the entropy associated

with the end state. Let us consider agent i above j and constrained with it. We
have to compute #mci( j ), the number of matrices which are compatible with the
information exchanged between i and j during the solving process. One of these
matrices is ci( j ). Combining this information with c j(i ), agent j can obtain the
matrix cij. The entropy corresponding to the uncertainty of ci( j ) is,

−
∑

i

pi log2 pi = −#mci( j )
1

#mci( j )
log2

1

#mci( j )
= log2 #mci( j )

and the entropy of the end state is,

HDisFC−2ph/1ph
j (end) =

∑

i∈�−∪�+
log2 #mci( j )
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Again, we do not have an analytical expression for #mci( j ). The entropy expres-
sion is evaluated experimentally in Section 8.

Parameters e′
jk, e′′

jk and #mci( j ), appearing in the previous expressions, are com-
puted as follows:

• e′
jk, e′′

jk(ABT-2ph/1ph), (agents i < j < k):

– Explicit nogood in ABT-2ph/1ph. If j receives an explicit ngd message
from an agent i, then j may deduce that the entry corresponding to the
combination of current values of i and j in ci( j ) is forbidden, and therefore, j
may deduce that this entry in cij is also forbidden.

– Explicit good in ABT-2ph. If during the second phase of ABT-2ph, j does
not receive an explicit ngd message from an agent i, then j may deduce that
the entry corresponding to the combination of current values of i and j in
ci( j ) is permitted, and therefore, j may deduce that this entry in cij is equal to
this entry in c(i ) j.

– Explicit good in ABT-2ph. If during the second phase of ABT-2ph, j receives
an ok? message from an agent k, then j may deduce the entry corresponding
to the combination of current values of j and k in c( j )k is permitted, and
therefore, j may deduce that this entry in c jk is equal to this entry in c j(k).

• #mci( j ) (DisFC-2ph/1ph). Let us consider a constraint as a d × d, 0/1 matrix. In
DisFC-2ph/1ph, agent i sends rows of ci( j ) to j; at the end j has a subset of
rows without knowing their position in ci( j ). In addition, some search episodes
(information exchanged by agents in phase II in DisFC-2ph, nogood messages
from high to low priority agents in DisFC-1ph) may reduce the number of
acceptable positions for a particular row. To assess the amount of information
revealed, we compute the number of matrices that are compatible with the
exchanged rows. With this aim, we construct a CSP instance where the variables
are the rows, their domains are the acceptable positions, under the constraints
that two different rows cannot go to the same position and every row must get
a position. Computing all solutions of this instance (an NP-hard task) we obtain
all compatible matrices. One of these matrices represents ci( j ).
Figure 6 presents an example of DisFC-1ph execution that illustrates when and
what kind of information about constraints that agents can infer after message

a b c

Fig. 6 Information deduced by a DisFC-1ph agent after receiving a ngd message from a higher
priority agent
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reception. The example consists of two agents i and j, each having one variable
with domain: {a, b , c, d, e}. We look at each constraint as a matrix in which
every entry represents the compatibility of two values, assuming that values are
lexicographically ordered. An entry with 0 or 1 indicates that the corresponding
value pair is forbidden or permitted, respectively.
The example starts when agent i sends an ok? message to agent j saying that
agent i’s current value is compatible only with the values {a, b , d} of agent j’s
domain (Fig. 6a). From this message, agent j may deduce that there is a row in
ci( j ) with the form: [11010]. However, with this information agent j cannot infer
the position of this row in ci( j ). After receiving the ok? message, agent j takes
a new value and sends an ok? message to agent i saying that the only permitted
values for agent i are in the domain {a, b , d} (Fig. 6b). Similar to agent j, agent i
may deduce that c(i ) j has a row with the form [11010]. When agent i receives the
ok? message from j, it discovers that the received message is incompatible with
its own value and sends a ngd to agent j (Fig. 6c). From this message, agent j can
deduce that agent i’s current value is not included in the compatible domain that
j just sent to i. Therefore, the current value of agent i is either c or e. Thus, agent
j may deduce that the row corresponding to c or e in ci( j ) has the form [11010]
(i.e. the value c or e for agent i are compatible only with a, b and d for agent j).
Next, agent j changes its value and sends a new ok? message, with the compatible
values {a, b , e}. Agent i answers with a ngd message, and agent j discovers that
ci( j ) has a row with the form [11010] that corresponds to value c or d.
In the above example, the CSP that agent j constructs includes two variables
x1 and x2, one for each time the row [11010] has been discovered. The do-
mains of these variables are: {c, e} and {c, d}, respectively. There exists a
constraint between variables to avoid that both rows be associated to value
c. The CSP has 4 solutions: s1 = {x1 = x2 = c}; s2 = {x1 = c, x2 = d}; s3 = {x1 =
e, x2 = c}; s4 = {x1 = e, x2 = d}. The number of consistent matrices with c(i ) j

is: 2(25−5) + 2(25−10) + 2(25−10) + 2(25−10) − rep = 2(25−5) + 3 × 2(25−10) − rep. Each
term expresses the number of consistent matrices related to each solution of the
CSP. The first represents s1; the second, s2 and so on. The interpretation of s1

is that both identical rows correspond to the same value c. That is to say, only
one row of c(i ) j has been revealed (5 entries out of 25) and the rest have not
(25 - 5 entries out of 25). Then, there exist 225−5 matrices consistent with the
information derived from s1. Following the same analysis, one can obtain the
terms of the formula related to the solutions s2, s3 and s4, where 10 entries out
of 25 are revealed. By substracting the term rep from the first four terms, one
avoids counting one matrix more than once. This, rep = 2(25−5) + 2 × 2(25−10),
because the matrices for s2 and s3 are included in the matrices for s1, and as
well as matrices for s1 are included in the matrices for s4. Hence, according to the
information that j has at the end of the search, the original ci( j ) could be one of
those 215 = 32768 matrices.
In DisFC-2ph, the process that agent j follows to reconstruct ci( j ) is the almost
same as for DisFC-1ph with some minor differences. Similar to ABT-2ph, all
inferences are done in phase II. When agent j receives a ngd message from a
higher priority agent, the process is the same as for DisFC-1ph. In addition, if
after agent j has sent an ok? message to a higher priority agent i, agent j does
not receive a ngd message from i, this means that i’s value appears in the domains
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sent by j to i in the ok? message. Thus, the rows previously sent from agent i
to agent j correspond to one of the values that appear in the domain that was
included in the ok? message sent from agent j to agent i.
In any case, after agent j resolves the associated CSP and it identifies the matrices
that are consistent with ci( j ), it must combine each of them with the matrix that
represents c(i ) j following (1) (Section 4.1), to compute the matrices that are
consistent with the total constraint cij.

The above results allow us to rank ABT and ABT-1ph with respect to constraint
privacy [the other algorithms are not ranked because they depend on parameters
e′

jk, e′′
jk, #mci( j ) which are not comparable with z j(k)].

Proposition 4 The privacy loss of ABT-1ph is lower than or equal to the privacy loss
of ABT.

Proof Analogous to the proof of Proposition 3 but replacing the sol state by the end
state and performing substraction between H ABT−1ph

j and H ABT
j . �

8 Experimental evaluation

The common approach in evaluating the efficiency performance of distributed
algorithms is to compute two independent measures: search effort, in terms of
computation steps [10, 23], and communication load, in terms of the total number
of exchanged messages (msg) [10].

Nonconcurrent steps of computation are counted by a method similar to the
logical clocks of Lamport [9]. Every agent holds a counter of computation steps. Each
message carries the value of the sending agent’s counter. When an agent receives a
message it stores the data received together with the corresponding counter. When
the agent first uses the received message, it updates its counter to the largest value
between its own counter and the stored counter value which was carried by the
message [28]. By reporting the cost of the search as the largest counter held by some
agent at the end of the search, a measure of non-concurrent search effort that is
close to Lamport’s logical time is achieved [9]. If instead of steps of computation, the
number of constraint checks is counted, then the local computational effort of agents
is measured as the number of non-concurrent constraint checks (NCCCs) [13, 28].

In this study, besides efficiency, we are interested in empirically evaluating the
assignment and constraint privacy that ABT and the proposed PKC algorithms
achieve. As we have discussed in Section 7, we use the entropy of agents to measure
each privacy type. Since each agent’s entropy in the init state is the same for every
algorithm, we restrict the privacy analysis to compare the algorithms according to the
entropies that agents have in the sol and end states as measures of assignment and
constraint privacy, respectively. In the experiments, we report for each algorithm
and privacy type a global entropy value, which simply is the sum of entropy values of
the agents when the algorithm ends. Larger values of global entropy correspond to
higher privacy and lower privacy loss.

Experiments are performed on random constraint networks of n variables, k
values in each domain, a constraint density p1 and tightness of each constraint p2
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(which are commonly used in experimental evaluations of CSP algorithms [16, 20]).
The generated constraint networks included 15 agents (n = 15) each holding one
variable, 10 values for each variable (k = 10) and two values of constraints density
p1 = 0.4 and p1 = 0.7. The tightness p2 varies between 0.1 and 0.9, to cover all ranges
of problem difficulty. For each pair of density and tightness (p1, p2), 100 different
instances are solved by each algorithm and results are averaged over these 100 runs.

8.1 Efficiency evaluation

Figure 7 (top) presents the number of nonconcurrent constraints checks to find
a solution for ABT, ABT-1ph, ABT-2ph, DisFC-1ph and DisFC-2ph on random
instances with p1 = 0.4. The less efficient algorithms are DisFC-1ph and DisFC-2ph,
algorithms that achieve some kind of assignment privacy. Considering ABT-2ph and
ABT-1ph, they both run more than twice slower than standard ABT. An interesting
difference is between the two-phase and single-phase version. For problems in the
phase transition region, the single-phase version outperforms the double phase
version. On instances with high tightness, the single-phase version behaves like the

Fig. 7 Number of
nonconcurrent constraints
checks (top) and exchanged
messages (bottom) performed
by ABT, ABT-1ph, ABT-2ph,
DisFC-1ph and DisFC-2ph
when solving PKC DisCSPs
with p1 = 0.4
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standard algorithm (i.e. the difference between the algorithms is constant) while
the performance of the two-phase version deteriorates. To understand this behavior
one must keep in mind that the problem solved by the first phase in the two-phase
algorithm is actually less tight than the problem solved by the single-phase algorithm.
Therefore when the single-phase algorithm detects that the problem is too tight to be
solved, the two-phase algorithm works hard to solve a problem with lower tightness.

Considering DisFC-2ph and DisFC-1ph, we observe that DisFC-1ph is more than
twice slower than DisFC-2ph for problems close to the complexity peak. However,
DisFC-2ph is worse than DisFC-1ph for tighter problems (p2 ≥ 0.7). These results
differ from those obtained for ABT versions where ABT-1ph is faster than ABT-2ph
for instances close to the complexity peak. This is explained by the following fact.
Before sending an ok? message, a DisFC-1ph agent has to check consistency with
each value in the domain of every agent constrained with it. Conversely, a DisFC-
2ph agent has to check consistency with every lower priority agent constrained with
it, which generates a lower number of constraint checks.

Figure 7 (bottom) presents the results for the total number of exchanged mes-
sages among agents during algorithm execution. Again, DisFC algorithms require
a number of messages substantially larger than the other algorithms. In contrast to
the run-time measure, for low tightness instances, the number of messages sent by
ABT-2ph is smaller than for ABT-1ph. This is because the agents in the single-phase
algorithm send ok? messages to all their neighbors while in the two-phase algorithm
in each phase the agents send ok? messages only in one direction. However, for
tighter problems, the single-phase algorithm sends less messages than the two-phase
algorithm when solving instances to the right of the complexity peak. Considering
DisFC versions, the relative ordering of algorithms is, mainly, the same as that shown
in the ABT versions. DisFC-1ph agents exchange more messages than DisFC-2ph for
problems with constraint tightness lower than 0.6 (p2 ≤ 0.6). Although, DisFC-2ph
is more costly than DisFC-1ph for the rest of the problems (p2 ≥ 0.7).

Comparing these results with the ABT-2ph/1ph, we see that DisFC algorithms
are much slower. Similarly, agents in DisFC algorithms send more messages. This
inefficiency of DisFC algorithms can be explained. Regarding NCCC, in ABT-
2ph/1ph as in standard ABT, assignments are sent to neighboring agents which
concurrently check their consistency with the local assignments. In DisFC, in order
to keep the assignments private, agents must perform the consistency checks of their
proposed assignments sequentially, checking the entire domains of their neighboring
agents. This increases the non-concurrent effort of DisFC algorithms. Regarding
msg, we observe that DisFC algorithms are more costly than ABT versions basically
because two facts. First, DisFC agents exchange sequence numbers instead of their
assignments. Sequence numbers are used to detect the obsolescence of nogoods
messages. Since two different sequence numbers used by an agent may represent the
same variable valuation, DisFC algorithms may temporally discard nogood messages
as obsolete that are actually valid if considering the agents’ assignments (like it
happens in ABT versions). Second, an ok? message may contain several conflicts
in DisFC while at most one in ABT algorithms. Thus, some updated conflicts may be
discarded in DisFC due to storage limitation of nogoods (one conflict as justification
of each forbidden value in all the considered algorithms) before they have been
resolved. In such case, DisFC algorithms will rediscover and resent these conflicts,
which results in an increase in the number of exchanged messages. The combination



228 Constraints (2009) 14:199–234

of the above two facts causes DisFC algorithms to exchange more messages than
ABT versions.

In Fig. 8 we report the number of non-concurrent constraint checks (top) and
exchanged messages (bottom) for ABT, ABT-1ph, ABT-2ph DisFC-1ph and DisFC-
2ph when solving high density problems. Similar results to those of low density
instances appear here. The PKC algorithms are much more costly than ABT.
Regarding nonconcurrent constraint checks, ABT-2ph is much worse than ABT-
1ph on the right of the peak (the same phenomenon already observed for low
density instances occurs here). The relative order of algorithms remains unchanged
for the total number of exchanged messages: ABT-1ph sends more messages than
ABT-2ph for low tightness instances, while it sends less messages for high tight-
ness instances. Considering DisFC versions, the relative order in the algorithmic
performance remains unchanged for both parameters. DisFC-1ph is almost four
times slower and sends more messages than DisFC-2ph for harder problems (i.e.
close to the complexity peak). However, DisFC-1ph outperforms DisFC-2ph, mainly
in communication cost, for problems on the right of the complexity peak (i.e.
unsolvable problems). Comparing these algorithms with ABT-2ph/1ph, the DisFC
algorithms have to perform a much larger number of constraint checks (because
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nonconcurrent constraints
checks (top) and exchanged
messages (bottom) performed
by ABT, ABT-1ph, ABT-2ph,
DisFC-1ph and DisFC-2ph
when solving PKC DisCSPs
with p1 = 0.7

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
C
C
C

p2

Solving <n = 15, m = 10, p1 = 0.70>

ABT
ABT-1ph
ABT-2ph

DisFC-1ph
DisFC-2ph

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
m
s
g

p2

Solving <n = 15, m = 10, p1 = 0.70>

ABT
ABT-1ph
ABT-2ph

DisFC-1ph
DisFC-2ph



Constraints (2009) 14:199–234 229

they send filtered domains, not just single values) and exchange more messages (as
consequence of exchanging of sequence numbers instead of assignments) than the
latter, which justify these results.

8.2 Privacy evaluation

In Fig. 9 we present the results of assignment privacy in terms of global entropy for
ABT, ABT-2ph/1ph and DisFC2ph/1ph when solving low and high density random
instances. For p1 = 0.4 (top), DisFC-2ph/1ph and ABT-2ph/1ph show the largest and
smallest values of global entropy, respectively. In terms of privacy this means that,
on solvable instances, DisFC algorithms keep agents’ final assignments more private
than ABT and ABT-2ph/1ph. For p1 = 0.7 (bottom), the results bring out the same
conclusion as for low density instances: DisFC-2ph/1ph offer higher final assignment
privacy than ABT, while ABT-2ph/1ph reveal more.

Somehow, these results were advanced in Proposition 3 and they are due to the
following issues. During the search, agents in DisFC algorithms exchange sequence
numbers instead of assignments in order to hide agents’ valuations. Thus, at the end
of the search, an agent can only make inferences about other agents’ assignments

Fig. 9 Assignment privacy in
terms of entropy for ABT,
ABT-2ph/1ph, DisFC-2ph/1ph
for p1 = 0.4 (top) and p1 = 0.7
(bottom)
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based on the information contained in the partial constraints that the agent knows.
On the other hand, and similar to ABT, agents in ABT-2ph/1ph explicitly reveal
their assignments in ok? messages. Nevertheless, the number of agents that know
other agents’ final assignments in ABT-2ph/1ph is larger than in ABT because ok?
messages goes from higher to lower priority agents in the standard algorithm while
they travel in both directions, from higher to lower priority agents and vice versa, in
the new versions of the algorithm.

In Fig. 10, we report the results of constraint privacy in terms of global entropy for
ABT, ABT-2ph/1ph and DisFC-2ph/1ph when solving low and high density random
instances. For p1 = 0.4 (top), we observe that ABT-1ph always has larger values of
global entropy than ABT. This result is supported by Proposition 4, where we have
proven that the privacy loss of ABT is higher than or equal to the privacy loss of
ABT-1ph.

In contrast, ABT-2ph may reveal more information about total constraints than
ABT for some random instances. In the plot we observe this phenomenon at the
complexity peak (p2 = 0.6), where ABT has higher values of global entropy than
the two-phase algorithm. To understand this behavior we must remind that agents in

Fig. 10 Constraint privacy in
terms of entropy for ABT,
ABT-2ph/1ph and
DisFC-2ph/1ph for p1 = 0.4
(top) and p1 = 0.7 (bottom)
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the two-phase algorithm reveal only explicit information in phase II. On the left of
the peak (p2 ≤ 0.5), most of the instances are solvable and the number of times that
ABT-2ph passes to phase II is small. On the right of the peak (p2 ≥ 0.7), most of the
problems have no solution, and, as soon as p2 increases, the first phase of ABT-2ph
becomes enough to detect inconsistency. At the complexity peak, instances are very
difficult which makes that ABT-2ph passes to phase II (where explicit information
is exchanged) in many times, causing to reveal more information than ABT on
constraints.

Regarding DisFC algorithms, DisFC-2ph/1ph report higher global entropy than
ABT for very low tightness instances (p2 ≤ 0.3). This occurs because the number
of forbidden tuples in total constraints of these instances is too small and therefore
the filtered domains received by each DisFC-2ph/1ph agent include large number
of values. Thus, an agent is more likely to success each time it tries to find a
consistent value, which causes DisFC-2ph/1ph agents to reveal very few rows of their
constraints. For instances with higher tightness (p2 ≥ 0.4), the number of forbidden
tuples in total constraints becomes larger when p2 increases. This makes that every
agent tends to fail more when it tries to find a consistent value. In DisFC-2ph/1ph the
above implies that every agent reveals a larger number of rows from its constraints,
which makes that the uncertainties of other agents about the agent’s constraints
decreases. It worth noting that the global entropy of DisFC-2ph is almost zero for
values of p2 ≥ 0.4. This represents that most of total constraints may be completely
inferred by agents.

Comparing DisFC-2ph/1ph versus ABT-2ph/1ph, the latter algorithms have larger
values of global entropy than the former ones for all the values of p2. From the
privacy point of view, this means that ABT-2ph/1ph always maintain total constraints
more private than DisFC versions. The explanation of this is based on the explicit
information type that agents reveal in each algorithm type. In DisFC algorithms,
when an agent j receives an ok? message from an agent i, it actually receives a
complete row of partial constraint ci( j ), which may allow j to deduce one of the
rows of cij. As discussed in Section 7, agent j must find all the solutions of a CSP
in order to know the possible positions of the received rows in ci( j ). After the
resolution of this CSP, j may identify several rows in cij. Conversely, when j receives
explicit information from i in ABT-2ph/1ph, it actually receives one entry of ci( j ), and
consequently, only one entry in cij.

Similar results for dense problems (p1 = 0.7) appear in Fig. 10 (bottom). The
relative ordering of algorithms remains unchanged. ABT-1ph reports the largest
values of global entropy except for p2 ≥ 0.7, where ABT-2ph has the best results.
DisFC algorithms show lower values of global entropy than ABT for instances with
p2 > 0.2. DisFC-2ph/1ph show worse results than ABT-2ph/1ph.

In addition to global entropy, we have evaluated the algorithms according to
the entropy contribution of the constraint that is best known by an agent. This is
computed in the following way. For each agent j, we first find min j, which is the
minimum contribution of any other agent i to Hj(end). Then, we find the median
value of all the values of min j for all agents. The entropy value returned by the above
procedure captures how close agents have been to completely discover one of their
total constraints. In Fig. 11 we report the entropy contribution of the constraint that
is best known by an agent. Median values are reported for ABT, ABT-2ph/1ph and
DisFC-2p/1ph for low and high density problems. Regarding p1 = 0.4 (top), results
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Fig. 11 Constraint privacy in
terms of the entropy
contribution of the constraint
that is best known by an agent.
Median values are reported for
ABT, ABT-2ph/1ph and
DisFC-2ph/1ph for p1 = 0.4
(top) and p1 = 0.7 (bottom)
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demonstrate the following. For p2 ≥ 0.5, the local entropies of DisFC-2ph/1ph are
zero, which expresses that at least the half of the agents in DisFC algorithms may
reconstruct completely one of the total constraints in which they are involved. As
expected, the entropy of ABT is always zero because when the algorithm ends, the
half of agents know completely at least one of the total constraints. The information
revealed by ABT-2ph/1ph is not enough to allow the half of the agents to be able to
reconstruct total constraints. Very similar results appear for dense problems (Fig. 11,
bottom).

8.3 Discussion

The results in Section 8.2 reveal a clear trade-off between efficiency and privacy.
Standard ABT is both faster and makes a more economic use of the network than
the proposed PKC algorithms. However, ABT is not suitable for the PKC model and
all the information about constraints must be revealed in advance.

ABT-2ph performs ABT multiple times on a partial problem. Therefore, its
efficiency is dependent on the properties of the partial problem. The overhead in
efficiency of multiple termination detection was not measured in our experiments
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but should be considered. In terms of constraint privacy, agents are aware of each
phase change, so they are aware of the consistency of their assignment with respect to
their neighbors at each change. ABT-1ph sends explicit information (ngd messages)
when needed. Therefore, its privacy loss is related to the problem’s difficulty. Like
ABT it considers all constraints in a single phase but requires more time and network
load than ABT. In terms of assignment privacy, both ABT-2ph and ABT-1ph keep
agents’ final assignments less private than ABT.

In addition to enforcing constraint privacy, DisFC-2ph and DisFC-1ph allow
agents to conceal their assignments. Both algorithms are versions of DisFC, an
ABT-like algorithm in which, instead of exchanging assignments with neighboring
agents, agents send the list of compatible values in the neighbors domain. Similarly
to the ABT versions for the PKC model, DisFC-2ph performs DisFC multiple times
on a partial problem and DisFC-1ph considers all constraints in a single phase.
Empirically, we observe that the cost of preserving assignments in DisFC-2ph/1ph
is high in terms of efficiency and in terms of constraint privacy.

9 Conclusions

Privacy is one of the main motivations for solving constraint satisfaction problems in
a distributed form. The model for DisCSP solving by ABT (the reference algorithm)
does not consider privacy as a major goal. This paper addresses the inclusion of
privacy in ABT. First, we differentiate between privacy of constraints and privacy
of assignments. Privacy of constraints is concerned with constraints that are initially
private (the PKC model) between agents, and they remain as private as possible
during the solving process. Privacy of assignments considers that actual assigned
values are not made public in the solving process. Second, we propose two families
of algorithms, ABT-2ph/1ph and DisFC-2ph/1ph, to perform the actual solving
while trying to keep the above mentioned privacy levels. These algorithms are
clear descendants of ABT, they use the same kind of messages (plus some extra
ones) and keep its good properties. They were initially conceived as two-phase
algorithms, although later both phases were joined into a single one. Regarding
privacy, these algorithms are not perfect and leak some information in the solving
process. When considering constraints privacy, we have observed that the amount
of revealed information depends on constraint tightness, although ABT-1ph always
leaks less information than standard ABT. In the case of privacy of assignments,
the ABT-2ph/1ph reveal more than standard ABT, while DisFC-2ph/1ph reveal less.
The proposed algorithms have been implemented and evaluated on random DisCSP
instances. Empirically we observe that to achieve privacy, algorithms degrade their
performance (because they have to conceal some values, exchange more messages,
etc.). To quantify privacy (and privacy loss) we have used entropy as defined in
information theory.

References

1. Bessiere, C., Brito, I., Maestre, A., Meseguer, P. (2005). Asynchronous backtracking without
adding links: A new member in the abt family. Artificial Intelligence, 161(1–2), 7–24.

2. Brito, I., & Meseguer, P. (2003). Distributed forward checking. Proc. of 8th CP, 2833, 801–806.



234 Constraints (2009) 14:199–234

3. Brito, I., & Meseguer, P. (2005). Distributed stable matching problems. Proc. of the 10th CP,
Lecture Notes in Computer Science, 3709, 152–166.

4. Chandy, K., & Lamport, L. (1985). Distributed snapshots: Determining global states of distrib-
uted systems. ACM Trans. Computer Systems, 3(2), 63–75.

5. Cover, T. M., & Thomas, J. A. (2006). Elements of information theory. Wiley (2nd ed).
6. Gent, I. P., & Walsh, T. (1999). CSPlib: A benchmark library for constraints. Technical report

APES-09-1999. Available from http://csplib.cs.strath.ac.uk/. A shorter version appears in the
Proc. of the 5th CP (CP-1999) (pp. 480–481).

7. Greenstadt, R. (2007). Improving privacy in distributed constraint optimization. Harvard Ph.D.
thesis. Available from http://www.eecs.harvard.edu/~greenie/hthesis.pdf.

8. Haralick, R., & Elliot, G. (1980). Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence, 14, 263–313.

9. Lamport, L. (1978). Time, clocks, and the ordering of events in distributed system. Communica-
tion of the ACM, 2, 95–114.

10. Lynch, N. A. (1997). Distributed algorithms. Morgan Kaufmann.
11. Maheswaran, R. T., Pearce, J. P., Bowring, E., Varakantham, P., Tambe, M. (2006). Privacy loss

in distributed constraint reasoning: A quantative framework for analysis and its applications.
Autonomous Agents and Multi Agent Systems, 13, 27–60.

12. Meisels, A., & Lavee, O. (2004). Using additional information in DisCSP search. In Proc. 5th
workshop on distributed constraints reasoning, DCR-04.

13. Meisels, A., Razgon, I., Kaplansky, E., Zivan, R. (2002). Comparing performance of distributed
constraints processing algorithms. In Proc. 3th workshop on distributed constraints reasoning,
DCR-02 (AAMAS-2002) (pp. 86–93).

14. Modi, P. J., & Veloso, M (2004). Multiagent meeting scheduling with rescheduling. In Proc.
of the fifth workshop on distributed constraint reasoning, DCR, CP 2004.

15. Nissim, K., & Zivan, R. (2005). Secure DisCSP protocols—From centralized towards distributed
solutions. In Proc. 6th workshop on distributed constraints reasoning, DCR-05.

16. Prosser, P. (1996). An empirical study of phase transitions in binary constraint satisfaction
problems. Artificial Intelligence, 81, 81–109.

17. Shanon, C. E. (1963). The mathematical theory of communication. University of Illinois Press.
18. Silaghi, M. C., & Mitra, D. (2004). Distributed constraint satisfaction and optimization with

privacy enforcement. In Proc. 3rd IC on intelligence agent technology (pp. 531–535).
19. Silaghi, M. C., Sam-Haroud, D., Faltings, B. (2000). Asynchronous search with aggregations.

In Proc. of the 17th. AAAI (pp. 917–922).
20. Smith, B. M. (1996). Locating the phase transition in binary constraint satisfaction problems.

Artificial Intelligence, 81, 155–181.
21. Solotoresvsky, G., Gudes, E., Meisels, A. (1996). Modeling and solving distributed constraint

satisfaction problems (DCSPs). In Constraint Processing, 96, 561–562.
22. Wallace, R. J., & Freuder, E. (2002). Constraint-based multi-agent meeting scheduling: Effects

of agent heterogeneity on performance and privacy loss. In Proc. 3rd workshop on distributed
constrait reasoning, DCR-02 (pp. 176–182).

23. Yokoo, M., & Hirayama, K. (2000). Algorithms for distributed constraint satisfaction: A review.
Autonomous Agents and Multi-Agent Systems, 3(2), 185–207.

24. Yokoo, M., Durfee, E., Ishida, T., Kuwabara, K. (1992). Distributed constraint satisfaction for
formalizing distributed problem solving. In Proc. of the 12th. DCS.

25. Yokoo, M., Durfee, E., Ishida, T., Kuwabara, K. (1998). The distributed constraint satisfaction
problem: Formalization and algorithms. IEEE Trans. Knowledge and Data Engineering, 10,
673–685.

26. Yokoo, M., Suzuki, K., Hirayama, K. (2005). Secure distributed constraint satisfaction: Reaching
agreement without revealing private information. Artificial Intelligence, 161(1–2), 229–246.

27. Zivan, R., & Meisels, A. (2006). Dynamic ordering for asynchronous backtracking on discsps.
Constraints, 11(2, 3), 179–197.

28. Zivan, R., & Meisels, A. (2006). Message delay and discsp search algorithms. Annals of Mathe-
matics and Artificial Intelligence (AMAI), 46, 415–439, October.

http://csplib.cs.strath.ac.uk/
http://www.eecs.harvard.edu/~greenie/hthesis.pdf

	Distributed constraint satisfaction with partially known constraints
	Abstract
	Introduction
	Preliminaries
	Asynchronous backtracking
	Privacy in ABT-like algorithms
	The PKC model for constraint privacy
	Assignment privacy

	ABT algorithms for partially known constraints
	Two-phase strategy
	One-phase strategy
	Formal properties
	An example

	Distributed forward checking for assignment privacy
	Two-phase/one-phase strategies
	Formal properties
	An example

	Entropy as a privacy measure
	Assignment privacy
	Constraint privacy

	Experimental evaluation
	Efficiency evaluation
	Privacy evaluation
	Discussion

	Conclusions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


