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Abstract. Norms constitute a powerful coordination mechanism among
heterogeneous agents. In this paper, we propose a rule language to spec-
ify and explicitly manage the normative positions of agents (permissions,
prohibitions and obligations), with which distinct deontic notions and
their relationships can be captured. Our rule-based formalism includes
constraints for more expressiveness and precision and allows to supple-
ment (and implement) electronic institutions with norms. We also show
how some normative aspects are given computational interpretation.

1 Introduction

A major challenge in multi-agent system (MAS) research is the design and imple-
mentation of open multi-agent systems in which coordination must be achieved
among self-interested agents defined with different languages by several design-
ers [1]. Norms can be used for this purpose as a means to regulate the observable
behaviour of agents as they interact in pursuit of their goals [2,3,4,5]. There is
a wealth of socio-philosophical and logic-theoretical literature on the subject of
norms (e.g., [6,7]). More recently, much attention has been paid to more prag-
matic and implementational aspects of norms, that is, how norms can be given
a computational interpretation and how norms can be factored in in the design
and execution of MASs (e.g., [8,9,10,11,12]).

Ideally, norms, once captured via some suitable formalism, should be directly
executed, thus realising a computational, normative environment wherein agents
interact. Norms are applicable when the current representation of the system
complies with certain conditions. When representing agents from a social point
of view, they are characterised by their observable attributes and normative po-
sition. A normative position [6] is the “social burden” associated with individual
agents, that is, their obligations, permissions and prohibitions. Depending on
what agents do, their social representation (i.e., the perception that other agents
can have of them, that is, normative positions and observable attributes) may
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change – for instance, social reputation can increase, permissions/prohibitions
can be revoked or obligations, once fulfilled, removed.

Norm-oriented programming is a programming paradigm aimed at equiping
engineers with means to directly specify via norms how the interaction among
the components of a MAS (viz., the agents and their computational environment)
should be regulated. This regulation can be done in many ways, including, for
instance, directly via general purpose programming languages or agent-oriented
programming languages such as AgentSpeak [13]. However, in this paper we ad-
vocate the explicit use of norms and normative positions to specify how open and
heterogeneous MASs should be regulated. Norm-oriented programming should
be seen as complementary to approaches to model the internal behaviour of the
components of the system like agent-oriented programming [14] or the client-
server paradigm. An example of norm-oriented programming for the Internet
would be a firewall that rejects or forwards messages following a set of rules.
In this example, applications can be either permitted or forbidden to send sev-
eral types of messages but since firewalls do not keep track of the obligations of
applications, this example does not fully implement the norm-oriented paradigm.

We try to make headway along this direction by introducing an executable
language to specify agents’ normative positions, and to manage their changes as
agents interact via speech acts [15]. This language has been conceived to repre-
sent distinct flavours of deontic notions and relationships: we can define different
normative contexts in which different deontic notions hold. In our language, we
can specify several concurrent normative contexts such that, for instance, prohi-
bitions cannot be violated in some of them and prohibitions over certain actions
can be violated under penalties in some others.

Our language is rule-based and we achieve greater flexibility, expressive-
ness and precision than conventional production systems by allowing constraints
[16,17] over variables to appear in our constructs. Constraints are first-class en-
tities managed explicitly – we accommodate, as we show, constraints in our
semantics using standard constraint solving techniques. Constraints allow for
more sophisticated notions of norms and normative positions to be expressed.
For instance, in a scenario in which a selling agent is obliged to deliver a product
satisfying some quality requirements before a deadline, both the quality require-
ments and the delivery deadline can be regarded as constraints that must be
considered as part of the agent’s obligation. Thus, when the agent delivers the
good satisfying all the constraints, we should regard the obligation as fulfilled.
Notice too that since the deadline might eventually be changed, we also require
the capability of modifying constraints at run-time.

One of the first models of open MAS that regulates the interaction among
agents without assuming any internal feature of the agents are electronic institu-
tions (EIs) [18,19,20]. Despite being successful in achieving a significant degree
of openness, electronic institutions are strict in the sense that only those inter-
actions which are part of the design can take place.

Although our language can be used for regulated MAS in general, in this
paper we illustrate the use of the language for electronic institutions (cf. section
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4). The events in that model are speech acts and time events only, so we shall
focus on these in the rest of this paper. By using it in EIs, we add new deontic
notions to them such as explicit prohibitions (instead of implicit prohibitions,
i.e. the absence of steps in the protocols).

Although we make use of concepts from electronic institutions [18], these are
kept to a minimum. By using electronic institutions, we make our discussion more
concrete and detailed, so as to allow the adaptation of our approach to other
MAS models such as MOISE+ [21] and MOCHA [22]. We both extend electronic
institutions [20] with a richer notion of norms (and how to manage them) and
we also propose a programming language of wider appeal which combines rules
and constraint-solving techniques.

Our normative approach gives more flexibility to EIs in that we can also cap-
ture deviant behaviour. Our work sets the foundations to specify and implement
open regulated MASs via norms. In future work we would like to extend our ap-
proach to handle a wider range of normative notions such as power, right, duty,
delegation, representation, entitlement, and so on. Additionally, methodological
issues (i.e., how to obtain normative requirements from an application domain)
albeit important, are not the focus of the paper.

The main contributions of this paper are:

1. a means to specify what an agent can, may, may not and ought to utter
using normative positions and constraints;

2. an operational semantics to the above mentioned specification by means of
rules and constraint solving techniques;

3. the application of this computational notion of norm to implement and en-
rich a model of regulated MAS like Electronic Institutions and, as illustrative
example, its application to regulate the Dutch Auction; and

4. the comparison of our language with other contemporary ones and the pro-
vision of guidelines for the mapping of such languages into ours.

The structure of this paper is as follows. In the next section we present
desirable properties of normative languages. We explain, in various sections,
how our language addresses all these requirements. In section 3 we describe the
syntax and semantics of our normative language. Section 4 summarises electronic
institutions and explains how we capture normative positions of participating
agents. We put our language to use in sections 5.1 and 5.2 where, respectively, we
define institutional states and rules. We illustrate the usefulness of our language
with a specification of the Dutch Auction protocol in section 5.4. In section 6
we show how our language captures a sample of other contemporary approaches
and in section 7 we compare our approach with other related work. Finally, we
draw conclusions and outline future work in section 8.
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2 Desiderata for Norm-Oriented Languages

We aim at a language to support the specification of coordination mechanisms
in MASs via norms. We take the stance that we cannot refer to agents’ mental-
istic notions, but only to their observable actions and their normative positions.
Notice that as a result of agents’ observable, social interactions, their norma-
tive positions [6] change. As many others (e.g., [4,8,9,10]), we also propose that
hinder agent autonomy by allowing only permitted actions to be performed is
a restrictive limitation in the enactment of a MAS. In some settings, some not-
permitted actions can arise new possibilities to the problem which can result in
more (maybe even social) benefits than the penalty received and without even
being previously spotted by the designers.

In this section we identify and justify some desirable features we expect in
our candidate languages:

1. Explicit management of normative positions – We require that our
language explicitly captures different deontic notions along with their rela-
tionships. Ideally, these relationships should not to be hardwired into the
semantics of the language, as new deontic notions can be included without
changing the semantics.

2. General purpose – Turning our attention to theoretical models of norms,
we notice that there is a plethora of deontic logics with different axioms
to establish relationships among normative positions, e.g., whether different
types of obligation should be revoked after their fulfillment or not. We require
the language to be of general purpose so that it helps MAS designers to
specify the widest possible range of normative systems.

3. Expressive – In a sense, we pursue a “machine language” for norms on top
of which alternative higher-level languages can be accommodated. Along this
direction, and from a language designer’s point of view, it is fundamental to
identify the norm patterns (e.g., conditional obligation, time-based permis-
sions and prohibitions, continuous obligation, and so on) in the literature
and ensure that the language supports their encoding. In this way, not only
shall we be guaranteeing the expressiveness of our language, but also ad-
dressing pragmatic concerns by providing design patterns to guide and ease
MAS design.

4. Declarative – In order to ease MAS programming, we shall also require our
language to be declarative, with an implicit execution mechanism to reduce
the number of issues designers ought to concentrate on. As an additional
benefit, we expect its declarative nature to facilitate verification of proper-
ties of the specifications. A more detailed discussion of the advantages of
declarative languages can be found in [23, §1.2].

5. Temporal relationships – The violation of positive obligations cannot be
sanctioned if a deadline for the action has not been established. In some set-
tings, norms are not applicable after an established date. Thus, the language
should deal with norm deadlines and norm activation times and capture tem-
poral relationships between actions.
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6. Norm enforcement mechanisms – When agents have the possibility to
violate norms, it’s designers’ decision to use different mechanisms for agents
to not misbehave. Thus, it is desirable that the language provides means
to determine how enforcement mechanisms should be realised. Examples of
enforcement mechanisms would be one that blocks illegal actions or one that
punishes (or rewards) when a norm has been violated (or fulfilled).

3 A Rule-based Language for Managing Normative

Positions

In this section we introduce a rule-based language for the explicit management of
events generated by agents and the effects they cause [24,25,26,27]. We consider
that agents can (directly or indirectly) cause changes in their own normative po-
sitions (e.g., by bidding in an auction), in the normative positions of other agents
(e.g., by delegating or commanding), in the observable attributes of agents (e.g.,
“badmouthing” an agent can decrease its reputation), or in the state of resources
of the environment (e.g., moving a box changes its location). By environment
we mean the shared resources which are not part of the agents and, therefore,
cannot be freely accessed and modified. By state of affairs we mean the repre-
sentation of aspects of the MASs enactment including the set of attributes that
a community of agents can access or modify in an unregulated setting.

In regulated MASs these attributes can only be accessed and modified under
certain conditions. Our rule-based language allows us to represent regulated
changes in an elegant way and also fulfils the requirement that a normative
language should be declarative. The rules depict how the state of affairs changes
as agents interact with each other or the environment.

We make use of the closed world assumption (CWA) [23] since we assume
a MAS as a communication middleware that manages (and has access to) all
interactions it may regulate. Therefore, we consider as false all formulae not
included in the state of affairs of a MAS since we cannot regulate them.

We now introduce an example of enactment of our computational model using
a Dutch Auction scenario. There are some goods that are expected to be sold
to one of the agents participating in the auction. We consider these goods part
of the environment. However, they are owned by one agent, enacting the role of
seller, until the auctioneer, a special kind of agent that regulates the auction,
finishes the process determining a winner and the latter pays for the auctioned
goods. As the state of affairs of the auction, we consider the current credit of
the participants, the ownership of the goods that are part of the environment
and the history of speech acts that have been considered valid at some point
of the enactment of the auction. For instance, whenever the auctioneer offers a
good for a given price, it has to be checked that the illocution was uttered in
the correct point in the protocol by applying the rules. If this is the case, this
illocution is added to the state of affairs for later checking. Continuing with the
example, the participant agents may now bid for the item at the offered price.
These attempts are added to the previous state of affairs conforming the current
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state of affairs before applying the rules to check which attempts are valid. After
the application of the rules, only the valid bids remain in the state of affairs,
e.g. those that the agents may afford. If it the case that there is only one bid, a
winner may be determined and the obligation of the winner to pay for the goods
arises.

∆0 ⇛

∆0

Ξ0
1 , · · · , Ξ0

n

l l
ag1 · · · agn

∗

 ∆1 ⇛

∆1

Ξ1
1 , · · · , Ξ1

m

l l
ag1 · · · agm

∗

 · · ·

Fig. 1. Semantics as a Sequence of ∆’s

Figure 1 depicts the computational model we propose. An initial state of
affairs ∆0 (possibly empty) is offered (represented by “⇛”) to a set of agents
(ag1, · · · , agn). These agents can add their events (Ξ0

1 , · · · , Ξ
0
n) to the state of

affairs (via “l”). Ξt
i is the (possibly empty) set of events added by agent i at state

of affairs ∆t and an event is a special kind of atomic formula. After a established
amount of time, we perform an exhaustive application of rules (denoted by “

∗
 ”)

to the modified state, yielding a new state of affairs ∆1. This new state will, on
its turn, be offered to the agents for them to add their events, and the same
process will go on.

3.1 Preliminary Definitions

We initially define some basic concepts. The building blocks of our language are
terms :

Definition 1. A term, denoted as τ , is

– Any variable x , y, z (with or without subscripts) or
– Any construct f n(τ1, . . . , τn), where f n is an n-ary function symbol and
τ1, . . . , τn are terms.

Terms f 0 stand for constants and will be denoted as a, b, c (with or without sub-
scripts). We shall also make use of numbers and arithmetic functions to build our
terms; arithmetic functions may appear infix, following their usual conventions.
We adopt Prolog’s convention [23] using strings starting with a capital letter to
represent variables and strings starting with a small letter to represent constants.
Some examples of terms are Price (a variable) and send(a,B ,Price × 1.2) (a
function). We also need to define atomic formulae:
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Definition 2. An atomic formula, denoted as α, is any construct pn(τ1, . . . ,
τn), where pn is an n-ary predicate symbol and τ1, . . . , τn are terms.

When the context makes it clear what n is we can drop it. p0 stands for propo-
sitions. We shall employ arithmetic relations (e.g., =, 6=, and so on) as predicate
symbols, and these will appear in their usual infix notation. We also make use
of atomic formulae built with arithmetic relations to represent constraints on
variables – these atomic formulae have a special status, as we explain below. We
give a definition of our constraints, a subset of atomic formulae:

Definition 3. A constraint γ is a binary atomic formula τ ⊳ τ ′, where ⊳∈ {=
, 6=, >,≥, <,≤}.

We shall use Γ = {γ1, . . . , γn} as a set of constraints. We need to differentiate
ordinary atomic formulae from constraints. We shall use ᾱ to denote atomic
formulae that are not constraints.

A state of affairs is a set of atomic formulae, representing (as shown below)
the normative positions of agents, observable agent attributes and the state of
the environment1.

Definition 4. A state of affairs ∆ = {α0, . . . , αn} is a a finite and possibly
empty set of implicitly, universally quantified atomic formulae αi , 0 ≤ i ≤ n.

3.2 A Language for Rules with Constraints

Our rules are constructs of the form LHS  RHS, where LHS contains a
representation of parts of the current state of affairs which, if they hold, will
cause the rule to be triggered. RHS describes the updates to the current state
of affairs, yielding the next state of affairs:

Definition 5. A rule, denoted as R, is defined as:

R ::= LHS  RHS
LHS ::= LHS &LHS | LHS ||LHS | not(LHS) | Lit

RHS ::= U,RHS | U

Lit ::= α | sat(Γ ) | x = {α | LHS}
U ::= add(α) | del(α)

where x is a variable name.

Intuitively, the left-hand side LHS describes the conditions the current state
of affairs oughts to have for the rule to apply. The right-hand side RHS describes
the updates to the current state of affairs, yielding the next state of affairs.

In the next section we define the semantics of each construct above, but
informally, the construct α checks whether exists an atomic formula in the state
of affairs matching the atomic formulae α, sat(Γ ) checks whether Γ (a set of

1 We refer to the state of the environment as the subset of atomic formulae representing
observable aspects of the environment in a given point in time.
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constraints) is satisfied in the state of affairs. We also make use of a special kind
of term, called a set constructor, represented as {α | LHS}. This construct is
useful when we need to refer to all atomic formulae in the state of affairs (αs) for
which LHS holds. For instance, {(p(A,B ,C ) | sat(B > 20) & sat(C < 100)}
stands for the set of atomic formulae p(A,B ,C ) such that B is greater than
20 and C is less than 100 and such that satisfy the other constraints in the
state of affairs. Notice that {p(A,B ,C ) | B > 20 & C < 100} stands the set
of atomic formulae p(A,B ,C ) such that B is greater than 20 and C is less
than 100 without extra checking on other constraints. Notice that {p(A,B ,C ) |
constr(B > 20) & constr(C < 100)} stands for the set of atomic formulae
p(A,B ,C ) with at least these two constraints associated: B is constrained to
be greater than 20 and C is constrained to be less than 100. That is, it checks
whether both constraints are in the state of affairs.

The Us represent updates: they add to the state of affairs (via operator add)
or remove from the state of affairs (via operator del) atomic formulae.

3.3 Semantics of Rules

As shown in figure 1, we define the semantics of our rules as a relationship
between states of affairs: rules map an existing state of affairs to a new state of
affairs. In this section we define this relationship. Initially we need to refer to
the set of constraints of a state of affairs. We call Γ = {γ0, . . . , γn} the set of
all constraints in ∆, and formally relate a state of affairs to its constraints as
follows:

Definition 6. Given a state of affairs ∆, relationship constrs(∆,Γ ) holds iff
Γ is the smallest set such that for every constraint γ ∈ ∆ then γ ∈ Γ .

In the definitions below we rely on the concept of substitution, that is, the set of
values for variables in a computation [23,28]:

Definition 7. A substitution σ = {x0/τ0, . . . , xn/τn} is a finite and possibly
empty set of pairs xi/τi , 0 ≤ i ≤ n.

Definition 8. The application of a substitution to an atomic formulae α is as
follows:

1. c · σ = c for a constant c;
2. x · σ = τ · σ if x/τ ∈ σ; otherwise x · σ = x ;
3. pn(τ0, . . . , τn) · σ = pn(τ0 · σ, . . . , τn · σ).

Definition 9. The application of a substitution to a sequence is the sequence
of the application of the substitution to each element: 〈α1, . . . , αn〉 · σ = 〈α1 ·
σ, . . . , αn · σ〉

We now define the semantics of the LHS of a rule, that is, how a rule is
triggered:
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Definition 10. sl (∆,LHS, σ) holds between state ∆, the left-hand side of a rule
LHS and a substitution σ depending on the format of LHS:

1. sl(∆,LHS & LHS′, σ) holds iff sl(∆,LHS, σ
′) and sl(∆,LHS

′ ·σ′, σ′′) hold
(in this order) and σ = σ′ ∪ σ′′.

2. sl(∆,LHS || LHS′, σ) holds iff sl (∆,LHS, σ) or sl (∆,LHS, σ) hold.
3. sl(∆, not(LHS), σ) holds iff sl(∆,LHS, σ) does not hold.
4. sl(∆, sat(Γ ), σ) holds iff constrs(∆,Γ ′) and ((Γ ′ ∪ Γ ) · σ) hold.
5. sl(∆, x = {α | LHS}, σ) holds iff σ = {x/{α · σ1, . . . , α · σn}} for the largest

n ∈ N such that sl(∆,α&LHS, σi), 1 ≤ i ≤ n
6. sl(∆,α, σ) holds iff α · σ ∈ ∆ or α · σ holds.

Cases 1 and 2 depict the semantics of atomic formulae and how their individ-
ual substitutions are combined to provide the semantics for a conjunction and a
disjunction respectively. Case 3 introduces negation by failure – recall that we
make use of the closed world assumption. Case 4 holds if the set of constraints
on the LHS added to the constraints in the state of affairs (Γ ′) are satisfiable;
the substitution σ obtained so far, that is applied to (Γ ′ ∪ Γ ) will hold an as-
signment of variables in a Constraint Satisfaction Problem [29]. Case 5 specifies
the semantics for set constructors : x is the set of atomic formulae that satisfy
the conditions of the set constructor. Case 6 holds when an atomic formulae (a
predicate or constraint) is part of the state of affairs or it is computed via the
underlying programming language. This will become clearer when we discuss our
implementation and give examples. It is worth noticing that, from case 1 above,
the order in which conjuncts appear on the left-hand side is relevant. Our rules
are means to define a deterministic program, hence the order of commands is
essential.

We now define the semantics of the RHS of a rule:

Definition 11. Relation sr (∆,RHS,∆
′) mapping a state ∆, the right-hand

side of a rule RHS and a new state ∆′ is defined as:

1. sr (∆, (U,RHS), ∆′) holds iff both sr (∆,U, ∆1) and sr (∆1, RHS,∆
′) hold.

2. sr (∆, add(ᾱ), ∆′) holds iff ∆′ = ∆ ∪ {ᾱ}.
3. sr (∆, add(γ), ∆

′) holds iff constrs(∆,Γ ) and (Γ ∪ {γ}) hold and ∆′ = ∆ ∪
{constr(γ)}.

4. sr (∆, del(α), ∆′) holds iff ∆′ = ∆ \ {α}.

Case 1 decomposes a conjunction and builds the new state by merging the partial
states of each update. Case 2 caters for the insertion of atomic formulae ᾱ which
do not conform to the syntax of constraints. Case 3 defines how a constraint is
added to a state ∆: the new constraint is checked whether it can be satisfied with
the existing constraints Γ and then it is added to ∆′ annotated with constr.
Case 4 caters for the removal of atomic formulae (both constraints and non-
constraints). We note that, from case 1 above, the order in which conjuncts
appear on the right-hand side is also relevant.

To complete the definition of our system, we define the semantics of our rules
as relationships between states of affairs: rules map an existing state of affairs
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to a new state of affairs, thus modelling transitions between states of affairs. We
adopt the usual semantics of production rules [30], that is, we exhaustively apply
each rule by matching its LHS against the current state of affairs and use the
values of variables obtained in this match to instantiateRHS via sr . Since classic
production systems do not use of constraints and these are an important feature
of our approach, our semantics can thus be seen as an extension of production
systems.

3.4 An Interpreter for Rules with Constraints

The semantics above provide a basis for the implementation of a rule interpreter.
Although we have implemented it with SICStus Prolog [31] we show how a rule
is interpreted in figure 2 as a logic program, interspersed with built-in Prolog
predicates; for easy referencing, we show each clause with a number on its left.

1. sl(∆, (LHS & LHS′), σ)← sl(∆, LHS, σ′), sl(∆, LHS′ · σ′, σ′′), σ = σ′ ∪ σ′′

2. sl(∆, (LHS || LHS′), σ)← sl(∆, LHS, σ)
3. sl(∆, (LHS || LHS′), σ)← sl(∆, LHS′, σ)
4. sl(∆, not(LHS), σ)← ¬sl(∆, LHS, σ)
5. sl(∆, sat(Γ ), σ)← constrs(∆, Γ ′), append(Γ, Γ ′, Γ ′′), satisfiable(Γ ′′ · σ)
6. sl(∆, x = {α | LHS}, {x/AllAtfs})← findall(α · σ, sl(∆, α &LHS, σ),AllAtfs)
7. sl(∆, α, σ)← member(α · σ, ∆)
8. sl(∆, α, σ)← call(α · σ)
9. sr (∆, (U,RHS), ∆′′)← sr (∆, U, ∆′), sr (∆

′, RHS, ∆′′)
10. sr (∆, add(ᾱ), ∆′)← ∆′ = {ᾱ} ∪∆
11. sr (∆, add(γ),∆′)← constrs(∆, Γ ), satisfiable({γ} ∪ Γ ),∆′ = {constr(γ)} ∪∆
12. sr (∆, del(α), ∆′)← delete(∆, α, ∆′)

Fig. 2. Interpreter for Rules with Constraints

For each rule, we apply sl(∆,LHS, σ) and sr (∆,RHS · σ,∆′) sequentially
for all the different substitutions σ in the state of affairs such that sl(∆,LHS, σ)
holds. Clauses 1-8 and 9-12 are, respectively, adaptations of the cases depicted
in Def. 10 and Def. 11.

We can define satisfiable/2 via the built-in call residue/2 predicate, avail-
able in SICStus Prolog:

satisfiable({γ1, . . . , γn})← call residue((γ1, . . . , γn), )

It is worth mentioning that in the actual Prolog implementation, substitutions
σ appear implicitly as values of variables in terms – the logic program above will
look neater (albeit farther away from the definitions) when we incorporate this.

3.5 Pragmatics of Rules with Constraints

In this section we illustrate the pragmatics of our rules with some examples:
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„

do(A, pay(P ,B),T ) &
credit(B , X )

«

 

0

@

del(do(A, pay(P ,B),T )),
del(credit(B , X )),
add(credit(B , X + P))

1

A (1)

„

do(A, ext(obl(X ,T2),D),T ) &
(T < D) &constr(T2 < D2)

«

 

„

del(do(A, ext(obl(X ,T2), D),T )),
del(T2 < D2),add(T2 < D)

«

(2)

„

do(C , pay(P ,B),T ) &min(D) &
time(T ) & (P > D)

«

 

„

del(do(C , pay(P ,B))),
add(done(C , pay(P ,B),T ))

«

(3)

The first example shows a rule depicting the circumstance in which it should be
applied: if agent A generates the event of paying price P to agent B and the
credit of the latter is X . It also shows on the RHS the updates to perform: we
ensure the event is “consumed” (thus not triggering off the rule indefinitely) and
the credit of agent B is updated to X + P .

The second example illustrates the management of constraints: these can be
manipulated like ordinary predicates. In that example, we show that events of
type obl (i.e. an obligation) may have associated constraints. Particularly, this
rule states that if an event of extending (ext) the deadlines of all the obligations
to time D occurs before the deadline D and there exists a constraint restricting
the time of fulfillment of the obligations to be less than a deadline D2, then the
event is consumed, the old constraint is removed and a constraint with the new
deadline is added.

The third example illustrates how constraints can additionally be checked
for their satisfaction: when an event of paying price P is performed by agent C
and there is a formula min(D) (storing a minimum price), we check that all the
constraints in the state of affairs including that the amount paid is greater than
the minimum (P > D) are satisfied. If this is so, then we remove the event and
add a record of this situation to the state of affairs. Notice that we make use of
a built-in predicate time/1 to check the current time of the system.

Our rules manage states of affairs, adding or removing formulae (expressed on
the RHS) when certain conditions (expressed on the LHS) hold. As illustrated
in figure 1, our approach accommodates the participation of agents: they add
atomic formulae onto the current state of affairs – these formulae represent agent-
related events, represented above as do(Ag,Ev ,T ) that, together with further
elaboration on the circumstances, will trigger off rules to update the state of
affairs. Some synchronisation is required in this activity, as we cater for the
agents to concurrently update a shared data structure – a simple synchronisation
mechanism is explained in [24].

The language that we propose defines a standard production system enhanced
with constraint satisfaction techniques in order to manage constraints as facts
and to check how these constraints affects the facts they constrain. We have
obtained a language to express, manage, check fulfilment and/or sanction un-
fulfilled normative positions, i.e. obligations, permissions and prohibitions, that
are bounded with constraints. Thus, the language is useful to predict a future
state of affairs with an initial state and a sequence of sets of events that occur
and modify the intermediate states of affairs until we reach the final one. The
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limitations of the language are determined by the forward-chaining rule engine.
These limitations include the inability to plan, i.e. determine the sequence of
sets of events that must occur in order to reach a given state of affairs from a
given initial state, or post-dicting, i.e. determine the previously unknown facts
in a partial initial state given a final state and the sequence of sets of events
that have occurred. However, the goal of the language is to regulate a MAS and
keep track of its evolution by prediction. Post-diction and planning would be
interesting for a language that an agent could use for deciding which action to
perform but this is not the aim of this paper.

There are further concerns to be taken into account when designing rules.
Clearly, what we choose to go in the state of affairs has an immediate influence as
to what should appear in rules. Another concern is how we choose to represent
events generated by agents. We show in this paper a representation proposal
that includes information on who caused the event, the time, and a suitable
description of the event.

4 Electronic Institutions

Human societies deploy institutions [32] to establish how interactions must be
structured within an organization. Institutions represent the “rules of the game”
in a society, including any (formal or informal) constraints devised to shape hu-
man interaction. Institutions are the framework within which human interaction
takes place, defining what individuals are obliged, forbidden and permitted to
do and under which conditions. Furthermore, human institutions not only struc-
ture human interactions but also enforce individual and collective behaviour by
obliging everyone to act according to the norms.

Electronic institutions (EIs) [18,19,20] are the electronic counterpart of hu-
man institutions – they establish the expected behaviour of agent societies. An
EI defines a regulated environment where heterogeneous (human and software)
agents can participate by playing different roles and can interact by means of
speech acts [15]. An EI defines a set of constraints that articulate agent interac-
tions, defining what speech acts are meaningful to utter.

EIs, as presented in [19] and [18], are well-understood models for MASs,
with support tools2 within which we can embed our mechanisms. EIs are a
useful model to put norms in practice as this model needs a specification of
what may, may not or ought to be uttered (i.e. a set of permissions, prohibitions
and obligations) and it has a set of tools [33] tested in real applications [34].

In this section we introduce electronic institutions as defined in [20]. We
implement them in section 5, enriching them with further deontic notions and
relationships among them.

Due to space restrictions we cannot provide here a complete introduction to
electronic institutions – we refer readers to [20] for a comprehensive description.
However, to make this work self-contained we have to explain concepts we make
use of later on.

2 http://e-institutions.iiia.csic.es/software.html

http://e-institutions.iiia.csic.es/software.html
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Although our discussion is focused on EIs it can be generalised to various
other formalisms that share some basic features.

In EIs interaction is regulated by means of multi-agent protocols which have
two major features – these are the states in a protocol and illocutions (i.e.,
messages) uttered (i.e., sent) by those agents taking part in the protocol. The
states are connected via edges labelled with the illocutions that ought to be sent
at that particular point in the protocol. Another important feature in EIs are
the agents’ roles : these are labels that allow agents with the same role to be
treated collectively thus helping programmers abstract away from individuals.
We define below the class of illocutions we aim at – these are a special kind of
atomic formulae:

Definition 12. Illocutions, denoted as I, are ground atomic formulae p(ag, r,
ag′, r′, τ, t) where

– p is an element of a set of illocutionary particles ( e.g., inform, request, etc.).
– ag, ag′ are agent identifiers.
– r, r′ are role labels.
– τ , an arbitrary ground term, is the actual content of the message, built from

a shared content language.
– t ∈ N is a time stamp.

The intuitive meaning of p(ag, r , ag′, r ′, τ, t) is that agent ag playing role r sent
message τ to agent ag′ playing role r ′ at time t . An example of an illocution
is inform(ag4, seller, ag3, buyer, offer(car, 1200), 10)). Notice that with term t
we capture the temporal relationships among illocutions and we address point 5
in the desiderata of section 2.

Sometimes it is useful to refer to illocutions that are not fully ground, that
is, they may have uninstantiated (free) variables within themselves – in the de-
scription of a protocol, for instance, the precise values of the message exchanged
can be left unspecified. During the enactment of the protocol agents will produce
the actual values which will give rise to a (ground) illocution. We can thus define
illocution schemes:

Definition 13. An illocution scheme, denoted as Ī, is any atomic formula p(ag,
r , ag′, r ′, τ, t) whose terms are either variables or may contain variables.

Another important concept in EIs we employ here is that of a scene. Scenes
are self-contained sub-protocols with an initial state where the interaction starts
and a final state where all interaction ceases. Scenes offer means to break down
larger protocols into smaller ones with specific purposes.

For instance, we can have a registration scene where agents arrive and register
themselves with an administrative agent; an auction scene depicts the interac-
tions among agents wanting to buy and sell goods; a payment scene depicts how
those agents who bought something in the auction scene ought to pay those
agents they bought from. We can uniquely refer to the point of the protocol
where an illocution I was uttered by the pair (s ,w) where s is a scene name and
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w is the state from which an edge labelled with I leads to another state. Differ-
ent formalisms and approaches to protocol specification can be accommodated
to our proposal, provided protocols can be broken down into uniquely defined
states connected by edges, and the edges are labelled with messages agents must
send for the protocol to progress. Broadly speaking, an EI is specified as a set of
scenes connected by transitions; these are points where agents may synchronise
their movements between scenes [20].

Although all illocutions of a protocol are meaningful some of them may be
deemed inappropriate in certain circumstances. For instance, although a protocol
may contemplate agents leaving the payment scene, it may be inappropriate to
do so if the agent has not yet paid what it owes. Our rules further restrict the
expected behaviour of agents, prohibiting them from uttering an illocution or
adding constraints on the values of variables of illocutions. Rules can be triggered
off by events involving any number of agents and their effects must persist until
they are fulfilled or retracted by another rule.

States of affairs and states of a protocol are related concepts but should not
be confused. In electronic institutions, it is possible to have many instances of
protocols (or possibly, various instances of the same protocol) simultaneously
enacted by agents. This means that at any one time, we could have many states
of protocols represented by atomic formulae in a state of affairs.

5 Norm-Oriented Programming of Electronic Institutions

Despite successfully achieving a significant degree of openness, electronic insti-
tutions are strict in the sense that only specify what utterances are meaningful
in each moment during the enactment of interactions. As an initial step in order
to enrich EIs with a wide range of normative notions, we pursue to implement
rule-based electronic institutions in which deontic notions are not limited to the
ones formalised in [20].

We advocate a separation of concerns : rather than embedding normative as-
pects into the agents’ design (say, by explicitly encoding normative aspects in
the agent’s behaviour) or coordination mechanisms (say, by addressing excep-
tions and deviant behaviour in the mechanism itself), we adopt the view that a
coordination mechanism should be supplemented by an explicit and separate set
of norms that further regulates the behaviour of agents as they take part in the
enactment of a mechanism.

The separation of concerns should facilitate the design of MASs – as systems
become more sophisticated, it becomes harder for engineers to address all the
relevant features. By differentiating kinds of features and exploring them inde-
pendently, engineers can “disentangle” them. However, the different components
(coordination mechanisms and norms) must come together at some point in the
design process. In our view, norms further restrict the set of behaviours specified
by the coordination mechanisms; a coordination mechanism, on its turn, deter-
mines if a set of norms can be fulfilled by those agents enacting it. Norms should
be studied against their associated coordination mechanism and vice-versa. For
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instance, as we will see in section 5.4, agent protocols can be specified using
Finite State Machines (FSM) in order to define all the sequences of meaningful
messages that the agents are able to interchange. However, we further specify
with normative positions and constraints what agents may, may not or ought to
utter.

In this section we use the language introduced in section 3 to program elec-
tronic institutions based on the notions introduced in section 4. In subsection 5.1
we specify how a state of affairs is represented in an EI, whereas in subsection
5.2 we make explicit the rules to transform such state of affairs at run-time.

5.1 Institutional States

An institutional state is a state of affairs that stores all utterances during the
execution of a MAS, also keeping a record of the state of the environment, all
observable attributes of agents and all obligations, permissions and prohibitions
associated with the agents, i.e. their normative positions. Next, we show how
to implement the main normative concepts of scenes in EIs. We leave for fu-
ture work how other interesting concepts such as power, right, duty, delegation,
representation, entitlement, etc., can be captured.

We differentiate seven kinds of atomic formulae in our institutional states ∆,
with the following intuitive meanings:

1. oav(o, a, v) – object (or agent) o has an attribute a with value v .
2. att(s ,w , I) – an agent uttered illocution I attempting to get it institutionally

accepted at state w of scene s .
3. utt(s ,w , I) – I was accepted as a legal utterance at w of s .
4. old ctr(s ,w , t) – the execution of scene s reached state w at time t .
5. ctr(s ,w , t) – the execution of scene s is in state w since time t .
6. obl(s ,w , Ī) – Ī ought to be uttered at w of s .
7. per(s ,w , Ī) – Ī is permitted to be uttered at w of s .
8. prh(s ,w , Ī) – Ī is prohibited at w of s .

Notice that, since illocutions are uttered towards a specific other agent, nor-
mative positions over illocutions also are, i.e. an agent may be obliged to say
something to another given agent.

We differentiate between utterances that are attempted to be accepted (att)
and accepted utterances (utt). Since we aim at heterogeneous agents whose be-
haviour we cannot guarantee, we create a “sandbox” where agents can utter
whatever they want (via att formulae). However, not everything agents say may
be in accordance with the rules – the illegal utterances may be discarded and/or
may cause sanctions, depending on the deontic notions we want or need to im-
plement. The utt formulae are thus confirmations of the att formulae.

We only allow fully ground attributes, illocutions and state control formulae
(cases 1-4 above) to be present, however, in formulae 6–8 s and w may be
variables and Ī may contain variables. We shall use formula 4 to represent state
change in a scene in relation to global time passing. We shall use formulae 6–8
above to represent the normative positions of agents within EIs.
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We do not “hardwire”deontic notions in our semantics: the predicates above
represent deontic operators but not their relationships. These are captured with
rules as we show in section 5.2. We show in figure 3 a sample institutional state.
The utterances show a portion of the dialogue between a buyer agent and a seller

∆ =
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>

>

>

>

>

>

<

>

>

>

>

>

>

:

utt(auction,w2, inform(ag4, seller, ag3, buyer, offer(car, 1200), 10)),
utt(auction,w3, inform(ag3, buyer, ag4, seller, buy(car, 1200), 13)),
obl(payment,w4, inform(ag3, payer, ag4, payee, pay(Price), T1)),
prh(payment,w2, ask(ag3, payer, X, adm, leave, T2))
oav(ag3, credit, 3000), oav(car, price, 1200),
1200 ≤ Price, 20 > T1

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

Fig. 3. Sample Institutional State

agent – the seller agent ag4 offers to sell a car for 1200 to buyer agent ag3 who
accepts the offer. The order among utterances is represented via time stamps
(10 and 13 in the constructs above). In our example, agent ag3 has agreed to
buy the car so it is assigned an obligation to pay at least 1200 to agent ag4 when
the agents move to the payment scene; agent ag3 is prohibited from asking the
scene administrator adm to leave the payment scene. We employ a predicate
oav (standing for object-attribute-value) to store attributes of our state: these
concern the credit of agent ag3 and the price of the car. The constraints restrict
the values for Price, that is, the minimum value for the payment, and the latest
time T1 ag3 is obliged to pay.

5.2 Institutional Rules

In this section we illustrate how expressive and flexible our rules are, yet they
offer precision and ease-of-use. With the following examples we want to illustrate
the expressiveness and generality of our language as required in section 2. Fur-
thermore, we also provide some guidelines on how to specify the rules to update
institutional states. Henceforth we shall call such rules institutional rules.

Providing Semantics to Deontic Notions We now provide some examples
on how we explicitly manage normative positions of agents in our language
as required in section 2. We leave for future work an extensive analysis and
implementation of a wide range of normative notions such as power, right, duty,
delegation, representation, entitlement, etc.

When specifying a normative system we need to define relationships among
deontic notions. Such relationships should capture the pragmatics of normative
aspects – what exactly these concepts mean in terms of agents’ behaviour. We do
not want to be prescriptive in our discussion and we are aware that the sample
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rules we present can be given alternative formulations. Furthermore, we notice
that when designing institutional rules, it is essential to consider the combined
effect of the whole set of rules over the institutional states – these should be
engineered in tandem.

We can confer different degrees of enforcement on EIs . We start by looking
at those illocutions that agents utter, i.e., att(S ,W , I ); these may become legal
utterances, i.e., utt(S ,W , I ), if they are permitted, as specified by the following
rule:

att(S ,W , I )&per(S ,W , I ) del(att(S ,W , I )),add(utt(S ,W , I )) (4)

That is, permitted attempts at utterances become legal utterances.
Attempts and prohibitions can be related together by institutional rules of the

form att(S ,W , I )&prh(S ,W , I )  del(att(S ,W , I )),sanction where sanction
stands for atomic formulae representing sanctions on the agent who uttered
a prohibited illocution. For instance, if the agent’s credit is represented via
oav(Ag, credit, V alue), the following rule applies a 10% fine on those agents
who utter a prohibited illocution:

0

@

att(S ,W ,P(A1,R1,A2,R2, M ,T )) &
prh(S ,W ,P(A1,R1,A2, R2,M ,T )) &

oav(A1, credit,C ) &C2 = C × 0.9

1

A 

0

@

del(att(S ,W , I )),
del(oav(A1, credit,C )),
add(oav(A1, credit, C2))

1

A (5)

Another way of relating attempts, permissions and prohibitions is when a
permission granted in general (e.g., to all agents or to all agents adopting a role)
is revoked for a particular agent (e.g., due to a sanction). We can ensure that a
permission has not been revoked via the rule:

(

att(S ,W , I )&per(S ,W , I )&
not(prh(S ,W , I ))

)

 del(att(S ,W , I )),add(utt(S ,W , I )) (6)

The rule above states that an utterance is accepted as legal whenever it is per-
mitted and it is not the case that it is forbidden.

We can allow agents to do certain illegal actions (under harsher penalties if
required):

(

att(S ,W , inform(Ag1,R,Ag2,R
′, info(Ag3,C ),T ))&

(Ag1 6= Ag2)& (Ag1 6= Ag3)& (Ag2 6= Ag3)

)

 
(

del(att(S ,W , inform(Ag1,R,Ag2,R
′, info(Ag3,C ),T ))),

add(utt(S ,W , inform(Ag1,R,Ag2,R
′, info(Ag3,C ),T )))

)

(7)

The rule above states that if an agent Ag1, enacting role R, attempts to reveal
to Ag2, enacting role R′, (private) information C about agent Ag3, and the three
variables refer to different agents, then the attempt is accepted without taking
into account if it is forbidden or not. In both cases (rules 6 and 7), we can punish
agents that violate prohibitions as shown in rule 5.
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The semantics of obligations also depends on which rules are part of the
system. These rules should be selected taking into account the semantics of
the obligatory events. For instance, when an agent fulfills its obligation to pay a
certain amount of money, we remove that obligation as shown in rule 8. However,
an obligation to be quiet in a given situation (notice that is equivalent to a
prohibition to utter everything) may not need to be consumed each time an
agent is quiet and, therefore, no extra rule is required.













att(S ,W , inform(Ag1, payer ,Ag2, payee, pay(P),T ))&
per(S ,W , inform(Ag1, payer ,Ag2, payee, pay(P),T ))&

not(prh(S ,W , inform(Ag1, payer ,Ag2, payee, pay(P),T )))&
obl(S ,W , inform(Ag1, payer ,Ag2, payee, pay(P),T ))&

(Ag1 6= Ag2)













 
(

del(att(S ,W , inform(Ag1, payer ,Ag2, payee, pay(P),T ))),
del(obl(S ,W , inform(Ag1, payer ,Ag2, payee, pay(P),T )))

)

(8)

Let us consider now that the agents may be obliged to do actions before
a certain deadline expressed with constraints. The designer of the MAS may
choose to punish all agents who do not meet a deadline with a fee of e20. Rule
9 states that if an obligation with deadline has not been fulfilled, i.e. there exist
an obligation with a constraint associated to the time, the deadline has passed,
i.e. current time is greater or equal to the deadline, and we have not applied a
sanction for that particular obligation, then we apply a sanction.

0

B

B

@

obl(S ,W , inform(Ag1,R,Ag2, R
′,Action,T )) &

constr(T < D) & time(T2) & (T2 ≥ D) &
not(sanction(obl(S ,W , inform(Ag1,R,Ag2,R

′,Action, T )), (T < D)))
& credit(Ag1 ,C ) & credit(ei , C2) &C3 = C − 20&C4 = C2 + 20

1

C

C

A

 
0

@

del(credit(Ag1,C )),add(credit(Ag1,C3)),
del(credit(ei , C2)),add(credit(ei , C4)),

add(sanction(obl(S, W, inform(Ag1, R,Ag2,R
′, Action,T )), (T < D)))

1

A

(9)

These examples show that our language can be used to build norm enforce-
ment mechanisms and address point 6 of the desiderata of section 2.

Dealing with inconsistency We can also capture further relationships among
normative aspects and establish policies to cope with inconsistencies. For in-
stance, we need to specify how to cope with the situation when an illocution
is simultaneously obliged and forbidden – this may occur when an obligation
assigned to agents in general (or to any agents playing a role) is revoked for
a particular subgroup of agents or an individual agent (for instance, due to a
sanction). In this case, we can choose to ignore/override either the obligation
or the prohibition. For instance, without writing any extra rule we override the
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obligation and ignore the attempt to fulfil the obligation. The rule below ig-
nores the prohibition and transforms an attempt to utter the illocution I into
an utterance:

att(S ,W, I )& obl(S ,W, I )&prh(S ,W, I ) add(utt(S ,W , I )) (10)

A third possibility is to raise an exception via a term which can then be dealt
with at the institutional level. The following rule could be used for this purpose:

att(S ,W, I )& obl(S ,W, I )&prh(S ,W, I ) add(exc(S ,W , I )) (11)

These examples illustrate how we explicitly manage normative positions of agents
in our language as required in point 1 of the desiderata of section 2.

5.3 Representing and Enacting Protocols via Institutional Rules

In the rest of the paper we consider scenes, presented in section 4, as the rep-
resentation of protocols in EIs. The purpose of this section is to represent and
build a computational model of the dynamics of an EI enactment, that is, its
execution with our rule-based language. We concentrate our attention on EIs
[20] (see section 4 above) but our approach addresses any protocol specified via
non-deterministic finite-state machines.

We shall represent EIs declaratively as logic programs, as described in [35].
Each edge connecting two states of a scene will be denoted as the fact

edge(Scene, State, IllocutionScheme,NewState)

representing that if the control of the enactment of Scene is in State and Illocu-
tionScheme is uttered, then the control should move to NewState. Edges are com-
pact descriptions of what can be said, i.e., the meaningful illocutions, and how
the control of the enactment of the scene (and by extension, of the EI as a whole)
should change as illocutions are uttered. Notice that although an agent may ut-
ter a meaningful illocution (att(s ,w , I) and edge(Scene,State, IllocutionScheme,
NewState)) in a given situation, it may also need to be permitted (per(s ,w , I))
and not prohibited (not prh(s ,w , Ī)) to do it so. By “meaningful” we mean that
the illocution makes sense in the context of that protocol, that is, at a particular
point of the protocol, we specify via edges all possible illocutions that agents
may utter at any point. Of these, some will be permitted, as explained below.

Protocols are descriptions of what may be uttered and when it can be ut-
tered in order to have a desired meaning. When permissions are combined with
attempted utterances (i.e, att(s ,w , I), as captured by formula 4 above) and ap-
proved utterances (i.e, utt(s ,w , I)) are combined with updates on the state of the
enactment, then the protocol can be fully captured. In order to represent the con-
trol of the protocol enactment we use the term ctr(Scene, State, T imeStamp),
stored in the institutional state, which informs that at time TimeStamp the
interaction enacted in Scene is at State.
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The dynamics of the control of the enactment can be captured generically as
the following institutional rule:





ctr(S ,Wi ,T )&att(S ,Wi , I )&
per(S ,Wi , I )&not(prh(S ,Wi , I ))&
edge(S ,Wi , I ,Wj )& time(T2)



 









del(ctr(S ,Wi ,T )),
add(old ctr(S ,Wi ,T )),
add(ctr(S ,Wj ,T2)),
add(utt(S ,Wi , I ))









(12)

That is, if the control of the enactment of scene S is now at state Wi and
illocution I has been uttered and there is an edge connecting Wi with Wj labelled
with that illocution, then the control of the enactment at the next time will move
to ctr(S ,Wj ,T2). We keep track of the time of previous states using the old ctr
predicate.

The permissions of an agent society can be managed in various different
manners. A simple and efficient way is to have permissions unchanged in the
institutional state, that is, they are passed on from state to state without ever
being removed. Constraints, however, can be added to the variables of obligations
as a result of the interactions among the agents.

We notice that institutional rules are expressive enough to represent norma-
tive aspects as well as institutional protocols (i.e., scenes) and their enactment.
Thus, we can claim that institutional rules address all the requirements intro-
duced in section 2.

5.4 Example: The Dutch Auction Protocol

In this section, we illustrate the pragmatics of our norm-oriented language by
specifying the auction protocol employed in the fish market described in [18]. Fol-
lowing [18], the fish market can be described as a place where several scenes [20]
take place simultaneously, at different locations, but with some causal connec-
tion. The principal scene is the auction itself, in which buyers bid for boxes of
fish that are presented by an auctioneer who calls prices in descending order,
following an open cry, sudden death, downward bidding protocol, a variation of
the traditional Dutch auction protocol that proceeds as follows:

1. The auctioneer chooses a good out of a lot of goods that is sorted according
to the order in which sellers deliver their goods to the sellers’ admitter.

2. With a chosen good, the auctioneer opens a bidding round by quoting offers
downward from the good’s starting price, previously fixed by a sellers’ ad-
mitter, as long as these price quotations are above a reserve price previously
defined by the seller.

3. For each price the auctioneer calls, several situations might arise during the
open round described below.

4. The first three steps are repeated until there are no more goods left.

The situations arising in step 3 are:

Multiple bids – Several buyers submit their bids at the current price. In this
case, a collision comes about, the good is not sold to any buyer, and the
auctioneer restarts the round at a higher price;
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One bid – Only one buyer submits a bid at the current price. The good is sold
to this buyer whenever his credit can support his bid. Otherwise, the round
is restarted by the auctioneer at a higher price, and the unsuccessful bidder
is fined;

No bids – No buyer submits a bid at the current price. If the reserve price has
not been reached yet, the auctioneer quotes a new price obtained by decreas-
ing the current price according to the price step. Otherwise, the auctioneer
declares the good as withdrawn and closes the round.

Proposed Solution Figure 4 shows a finite state machine the protocol. Fol-
lowing section 5.3 the protocols are represented as a set of formula of the type
edge(S ,Wi , I ,Wj ) and rule 12. The situations arising in step 3 are captured

w1 w4

w0

w2

w3

Auctioneer ends
the auction

w5

Buyers bid

Auctioneer informs
a collision

Auctioneer
offers

the good

Auctioneer starts
the auction

Auctioneer starts
bidding round

Timeout

Auctioneer offers
a good

Item is sold or
withdrawn

Fig. 4. The Dutch Auction Protocol

in equations 13 – 18. For formatting reasons, we will use αi to denote atomic
formulae:

Multiple bids – This rule obliges the auctioneer to inform the buyers, when-
ever a collision comes about, about the collision and obliges the auctioneer
to restart the bidding round at a higher price (in this case, 120% of the
collision price). Notice that X will hold all the utterances at scene dutch
and state w4 issued by buyer agents that bid for an item It at price P at
time T0 after the last offer. We obtain the last offers by checking that there
are no further offers whose time-stamps are greater than the time-stamp of
the first one. If the number of illocutions in X is greater than one, the rule
introduces the obligation above:

„

X =
˘

α0 α1 & not(α2 & (T2 > T1)) & (T0 > T1)
¯

& (size(X ) > 1)

«

 

„

add(α3),add(α4),
add((P2 > P ∗ 1.2))

«

where

8

>

>

>

<

>

>

>

:

α0 = utt(dutch, w4, inform(A1, buyer , Au, auct, bid(It, P), T0))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(It, P),T1))
α2 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(It, P),T2))
α3 = obl(dutch, w5, inform(Au, auct, all, buyer , collision(It, P), T2))
α4 = obl(dutch, w3, inform(Au, auct, all, buyer , offer(It, P2), T3))

(13)



22

One bid/winner determination – If only one bid has occurred during the
current bidding round and the credit of the bidding agent is greater than or
equal to the price of the good in auction, the rule adds the obligation for the
auctioneer to inform all the buyers about the sale:

„

X =
˘

α0 α1 & not(α2 & (T2 > T1)) & (T0 > T1)
¯

&

(size(X ) = 1) & oav(A1, credit,C ) & (C ≥ P)

«

 

`

add(α3)
´

where

8

>

<

>

:

α0 = utt(dutch, w4, inform(A1, buyer , Au, auct, bid(It, P),T0))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(It, P), T1))
α2 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(It, P), T2))
α3 = obl(dutch, w5, inform(Au, auct, all, buyer , sold(It, P ,A1), T4))

(14)

Prevention – We must prevent agents from issuing bids they cannot afford,
that is, bids for which their credit is insufficient. The rule below states that
if agent Ag’s credit is less than P (the last offer the auctioneer called for
item It , at state w3 of scene dutch), then agent Ag is prohibited to bid.

`

α0 & not(α1 & (T2 > T)) & oav(Ag, credit,C ) & (C < P)
´

 

`

add(α2)
´

where

8

<

:

α0 = utt(dutch, w3, inform(Au, auct, A, buyer , offer(It, P), T))
α1 = utt(dutch, w3, inform(Au, auct, A, buyer , offer(It, P), T2))
α2 = prh(dutch, w4, inform(A, buyer , Au, auct, bid(It, P2), T3))

(15)

Punishment – We must punish those agents when issuing a winning bid they
cannot pay for. More precisely, the rule punishes an agent A1 by decreasing
its credit of 10% of the value of the good being auctioned. The oav predicate
on the LHS of the rule represents the current credit of the offending agent.
The rule also adds an obligation for the auctioneer to restart the bidding
round and the constraint that the new offer should be greater than 120% of
the old price.

0

B

B

B

@

X =



α0 α1 & (T0 > T1) &
not(α2 & (T2 > T1))

ff

&

oav(A1, credit,C ) &
(size(X ) = 1) & (C < P) &

C2 = C − P ∗ 0.1

1

C

C

C

A

 

0

@

del(oav(A1, credit, C )),
add(oav(A1, credit, C2)),

add(α3)

1

A

where

8

>

<

>

:

α0 = utt(dutch, w4, inform(A1, buyer , Au, auct, bid(It, P), T0))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer ,offer(It, P), T1)),
α2 = utt(dutch, w3, inform(Au, auct, all, buyer ,offer(It, P), T2))
α3 = obl(dutch, w5, inform(Au, auct, all, buyer , offer(It, P ∗ 1.2), T3))

(16)

No bids/New Price – We must check if there were no bids and if the next
price is greater than the reservation price. If so, we must add an obligation
for the auctioneer to start a new bidding round. Rule 17 checks that the
current scene state is w5, the last offer occurred before w5 and whether the
new price is greater than reservation price. If so, the rule adds the obligation
for the auctioneer to offer the item at a lower price. By retrieving the last
offer we gather the last offer price. By checking the oav predicates we gather
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the values of the reservation price and the decrement rate for item It .

0

B

B

B

@

ctr(dutch, w5, Tn) &α0 &

not(α1 & (T2 > T)) & (Tn > T) &
oav(IT , reservation price, RP) &
oav(IT , decrement rate, DR) &

(RP < (P − DR))

1

C

C

C

A

 

`

add(α2),add(P2 = P − DR)
´

where

8

<

:

α0 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(IT , P), T))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(IT , P), T2))
α2 = obl(dutch, w5, inform(Au, auct, all, buyer ,offer(IT , P2), T3))

(17)

No bids/withdrawal – We must check if there were no bids and the next
price is less than the reservation price; if so we add the obligation for the
auctioneer to withdraw the item. Rule 18 checks that the current institutional
state is w5, the last offer occurred before w5 and whether the new offer price
is greater than reservation price. If the LHS holds, the rule fires to add the
obligation for the auctioneer to withdraw the item. By checking the last offer
we gather the last offer price. By checking the oav predicates we gather the
values of the reservation price and the decrement rate for the price of item
It :

0

B

@

ctr(dutch, w5, Tn) &α0 &

not(α1 & (T2 > T)) & (Tn > T) &
oav(It, reservation price, RP) &

oav(It, decrement rate,DR) & (RP ≥ (P − DR))

1

C

A
 

`

add(α2)
´

where

8

<

:

α0 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(It, P), T))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(It, P), T2))
α2 = obl(dutch, w5, inform(Au, auct, all, buyer ,withdrawn(It), T3))

(18)

6 Expressiveness Analysis

In this section we compare our proposal with other normative languages in the
literature. We concentrate on three different approaches, showing how we can
capture the most common normative notions from those formalisms using our
rule language. By analysing all these approaches we have found some norm
patterns that they have in common. Norms can be conditional or can have
temporal constraints, that is, they establish relationships between time-points
or events or they hold periodically. We also show that our rules can capture
the patterns from rather disparate formalisms, thus fulfilling the requirement of
general purpose mentioned in section 2.

6.1 Conditional Deontic Logic with Deadlines

As shown in the BNF definition of figure 5, a norm as defined in [36] is composed
of several parts. The norm condition is the declaration of the context in which
the norm applies. The other fields in the norm description are; 1) the violation
condition which is a formula defining when the norm is violated, 2) the detection
mechanism which describes the mechanisms included in the agent platform that
can be used for detecting violations, 3) the sanctions which define the actions
that are used to punish the agent(s) violation of the norm, and 4) the repairs
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NORM ::= NORM CONDITION

VIOLATION CONDITION

DETECTION MECHANISM

SANCTIONS

REPAIRS

VIOLATION CONDITION ::= formula
DETECTION MECHANISM ::= {action expressions}

SANCTIONS ::= PLAN

REPAIRS ::= PLAN

PLAN ::= action expression | action expression ; PLAN

Fig. 5. BNF of Norms from [36]

NORM CONDITION ::= N(a, S 〈IF C〉) | OBLIGED(a ENFORCE(N(a, S〈IF C〉)))
N ::= OBLIGED | PERMITTED | FORBIDDEN

S ::= P | DO A | P TIME D | DO A TIME D

C ::= proposition
P ::= proposition

A ::= action expression
TIME ::= BEFORE | AFTER

Fig. 6. BNF of Norm Conditions

which is a set of actions used for recovering the system after the occurrence of
a violation. As the definition of figure 6 shows, norms can be deontic notions
such as permissions, obligations or prohibitions. Furthermore, norms can be re-
lated to actions or to predicates (states). The former case restricts or allow the
actions that a set of agents can perform, the latter case constrains the results
of the actions that a set of agents can perform. The results of actions are rep-
resented as predicates that may hold or not. It is forbidden that Tom performs
the action of smoking (FORBIDDEN (tom DO smoke)) and it is forbidden that
tom brings about that the air is polluted (FORBIDDEN (tom, polluted(air))))
are two examples of the types of norms addressed in [36].

Through the condition (C) and temporal operators (BEFORE and AFTER),
norms can be made applicable to specific situations only. Conditions and tempo-
ral operators are considered optional. Temporal operators can also be applied to
a deadline (D). We refer to [37] for the formal semantics of temporal operators
used in [36]. We note that states of affairs (Def. 4) loosely correspond to worlds
of Kripke semantics for modal logics [38]: they both contain sets of formulae and
are interrelated.

We now explain the mapping of the norms presented above into our rule
language. Since we consider illocutions as the only actions that can be performed
in an electronic institution, actions need to be translated into illocutions uttering
that the action has been done.We call this process contextualisation. Table 1
shows the mapping of permissions in general norms (i.e. norms that always are
active) into our rules. Prohibitions and obligations are mapped similarly. The
permission for an action can be mapped into a predicate (shown in row 1 of
Table 1) and added to a rule that converts the attempt to utter the I illocution
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Norms from [36] Rule-based construct
PERMITTED((A DO utter(S , W , I ))) per(S , W , I )
PERMITTED((A DO utter(S , W , I )) IF C ) C  per(S , W , I )

PERMITTED((A DO utter(S , W , I )) BEFORE D)

1. per(S , W , I ) & sat(T < D)

2.

0

B

@

per(S , W , I ) &
constr(T < D) &
time(T2) &
(T2 ≥ D)

1

C

A
 del(per(S ,W , I ))

PERMITTED((A DO utter(S , W , I )) AFTER D)

„

time(T) & (T > D) &
not(per(S ,W , I ))

«

 per(S , W , I )

Table 1. Mapping of general norms into predicates

at state W of scene S (att(S ,W , I )) into the result of the illocution being uttered
(utt(S ,W , I )).

Row 2 of Table 1 shows the mapping of conditional norms into our rules.
This mapping can be done in a similar way to the one done in the previous row
but adding a condition (C ) on the LHS of the rule. It should be pointed out
that there is no one-to-one correspondence between the underlying models (i.e.,
semantics) of the compared approaches. However, our rules capture the same
phenomenon: given C , the permission, prohibition or obligation will also hold.
Importantly, only after the exhaustive application of all rules on the current
state of affairs (possibly requiring a number of intermediate states) we obtain
the next state of affairs, in which both C and the permission, prohibition or
obligation will hold. This amounts to the logical inferences that take place in
[36].

Row 3 shows the mapping of norms with the BEFORE time construct into
our rules. This mapping can be done with two rules: one for checking if the
normative position holds and if it satisfies the temporal constraints. This is
similar to the mapping done in row 1 but adding in the LHS of the rule the
condition that the time in which the attempt is done (T ) has to be less that the
deadline (D); the other rule is for removing the permission after the deadline has
passed. We check that the normative position has a temporal constraint and if it
is not satisfied (i.e. the current time is greater than or equal to the deadline), we
remove the normative position. In the mapping of obligations, however, we need
three rules: one to sanction the agents that do not utter the expected illocution
before the deadline, one to sanction the agents that utter the expected illocution
late and another rule to remove the obligation if the illocution is uttered before
the deadline.

Row 4 shows the mapping of permissions with the construct AFTER time
into our rules. This can be done in a similar way to the mapping done in row
1 but adding to the LHS of the rule the condition that the time in which the
attempt is done (T ) has to be greater that the deadline (D). Notice that in the
mapping of obligations we only need one rule to remove the obligation if the
illocution is uttered after the specified time. In the current implementation of
electronic institutions obligations must be satisfied the first time the agents are
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in the expected scene and state. However, as we do not assume that, this norm
cannot be sanctioned.

In summary, the norms defined in [36] can be translated into institutional
rules by adding the violation condition into the LHS of the rule and sanctions
and repairs into the RHS as the following rule schema shows:

VC  S,R

where VC is the violation condition, S and R stands respectively for sanctions
and repairs, all of them extracted from the norm. Notice that the norms defined
in [36] are only applicable to a specific agent. Constrastingly, norms implemented
with our rules, depending on which terms are variables, may refer to either a
specific agent or all those agents enacting a role or all those agents in a scene or
all those agents in any of the scenes.

6.2 Z Specification of Norms

Although the work depicted in [4,39] proposes a framework that covers sev-
eral topics of normative multi-agent systems we shall focus on its definition of
norm. Figure 7 shows a norm from [4] composed of several parts. In the schema,

Norm

addresses, beneficiaries : P Agent

normativegoals, rewards, punishments : P Goal

context , exceptions : P EnvState

normativegoals 6= ∅; addresses 6= ∅; context 6= ∅
context ∩ exceptions = ∅; rewards ∩ punishments = ∅

Fig. 7. Z Definition of a Norm from [4]

addressees stands for the set of agents that have to comply with the norm;
beneficiaries stands for the set of agents that benefit from the compliance of the
norm; normativegoals stands for the set of goals that ought to be achieved by
the addressee agents; rewards are received by addressee agents if they satisfy
the normative goals; punishments are imposed to addressee agent when they do
not satisfy the normative goals; context specifies the preconditions to apply the
norm and exceptions specify when the norm is not applicable. We notice that a
norm must always have addressees, normative goals and a context; rewards and
punishments are disjoint sets, and context and exceptions too.

A norm from [4] can be translated into the following rule schema to detect
its violation:

(context &not(exception)&not(goal ′)) punishments
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where context and exception are predicates obtained through the contextuali-
sation for specifying the context and exceptions mentioned in the norm, goal ′

is the contextualised normative goal (which includes the addressee and possible
beneficiaries). Component punishments are contextualised actions obtained from
the norm. This rule captures that in a particular context which is not an excep-
tion of the norm and whose goal has not yet been fulfilled the actions defined
by punishments should be executed. Rewards can also be specified via the rule
schema:

(context &not(exception)& goal ′) rewards

where rewards are also contextualised actions obtained from the norm. This rule
specifies that a reward should be given when addressee agents comply with the
norm, which is when the norm is applicable and the contextualised normative
goal (goal ′) has been achieved.

6.3 Event Calculus

Event calculus is used in [8] for the specification of protocols. Event calculus [40]
is a formalism to represent reasoning about actions or events and their effects in a
logic programming framework and is based on a many-sorted first-order predicate

Predicate Meaning

happens(Act , T ) Action Act occurs at time T

initially(F = V ) The value of fluent F is V at time 0
holdsAt(F = V ,T ) The value of fluent F is V at time T

initiates(Act , F = V ,T ) The occurrence of action Act at time T

initiates a period of time for which
the value of fluent F is V

terminates(Act , F = V ,T ) The occurrence of action Act at time T

terminates a period of time for which
the value of fluent F is V

Fig. 8. Main Predicates of Event Calculus

calculus. Figure 8 shows the main predicates of Event Calculus. Predicates that
change with time are called fluents. Figure 9 shows how obligations, permissions,
empowerments, capabilities and sanctions are formalised by means of fluents –
prohibitions are not formalised in [8] as a fluent since they assume that every
action not permitted is forbidden by default.

An example of obligation specified in event calculus extracted from [8] is
shown in figure 10. The obligation that C revokes the floor holds at time T if
C enacts the role of chair and the floor is granted to someone else different from
the best candidate.
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Fluent Domain Meaning

requested(S , T ) boolean subject S requested the floor at time T

status {free, granted(S , T )} the status of the floor: status = free

denotes that the floor is free whereas
status = granted(S , T ) denotes that the
floor is granted to subject S until time T

best candidate agent identifiers the best candidate for the floor
can(Ag ,Act) boolean agent Ag is capable of performing Act

pow(Ag ,Act) boolean agent Ag is empowered to perform Act

per(Ag , Act) boolean agent Ag is permitted to perform Act

obl(Ag ,Act) boolean agent Ag is obliged to perform Act

sanction(Ag) Z
∗ the sanctions of agent Ag

Fig. 9. Main Fluents from [8]

holdsAt(obl(C , revoke floor(C )) = true,T )←

role of (C , chair), holdsAt(status = granted(S , T ′),T ), (T ≥ T
′),

holdsAt(best candidate = S
′,T ), (S 6= S

′)

Fig. 10. Example of Obligation in Event Calculus

If we translate the holdsAt predicates into uttered predicates, we can translate
the obligations and permissions of the example by including the remaining con-
ditions in the LHS of the institutional rules. However, since there is no explicit
semantics of norms in [8], we cannot state that the approach in [8] is fully trans-
latable into our rules. But we acknowledge that the predicates in our language
would need to be extended in order to capture the notion of power. As mentioned
before, in this paper we present a rule-based language with constraint-solving
capabilities and show how to regulate a MAS with some deontic notions.

Although event calculus models time, the deontic fluents specified in the
example of [8] are not enough to inform an agent about all types of duties. For
instance, to inform an agent that it is obliged to perform an action before a
deadline, it is necessary to show the agent the obligation fluent and the part of
the theory that models the violation of the deadline.

6.4 Hybrid Metric Interval Temporal Logic

In [9] we find a proposal to represent norms via rules written in a modal logic
with temporal operators called hyMITL±. It combines CTL± with Metric Inter-
val Temporal Logic (MITL) as well as features of hybrid logics. That proposal
uses the technique of formula progression from the TLPlan planning system to
monitor social expectations until they are fulfilled or violated.

Formula 19 below shows an example of rule in hyMITL±. This rule states
that if the current state is such that consumer c has just made a payment for a
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service, and the current state is within one week after the time the payment is
made (time t) then weekly reports will be sent during the next 52 weeks until
provider p optionally cancels the order:

AG+(Done(c, make payment(c, p, amount , prod num)) & [t , t + 1week)→
↓week w .(↓week cw .(¬F−

[−0,cw]Done(p, send report(c, prod num, cw))→

F+
[+0,cw+1week]Done(p, send report(c, prod num,w)))

W+
[w+1week,w+53weeks]

Done(c, cancel order(c, p, prod num))))

(19)

Rule 20 shows the mapping of the previous hyMITL± rule into our language.
We calculate the number of weeks since the last utterance of payment was made
and the time in which this week ends. If the number of weeks is less than 52 and
the report for that week has not been sent then the agent being paid is obliged
to send a report before the end of the week.
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α0 & not(α1 & (T1 > T0)) &
current date(Tn ) &

W = trunc((Tn − T0)/(6048 ∗ 105)) &
(W < 52) & not(α2) &

Tend w = T0 + (W + 1) ∗ (6048 ∗ 105))

1

C

C

C

C

A

 

„

add(α3),
add(Ti < Tend w )

«

where

8

>

>

<

>

>

:

α0 = utt(paymt , w0, inform(C , cust , P , payee, pay(Am,Prod), T0))
α1 = utt(report , w1, inform(C , cust , P , payee, cancel(Prod), T1))
α2 = utt(report , w2, inform(P ,payee, C , cust , snd rep(R,W ),T2))
α3 = obl(report , w2, inform(P ,payee, C , cust , snd rep(R, W ),T3))

(20)

Our rules are equivalent to AG
+(LHS → X

+RHS) where LHS and RHS are
atomic formulae without temporal operators. As we build the next state of affairs
by applying the operations on the RHS of the fired rules, we cannot use any
other temporal operator in the RHS of our rules. Furthermore, since our state
of affairs has non-monotonic features and we do not store the sequence of states
leading to the present state (i.e., the history we cannot reason over the past of
any formulae. We can only do it using predicates with time-stamps, like the utt
predicate, that are not removed from the state of affairs.

We can capture the meaning of the X− operator when it is used on the LHS
of the hyMITL± rule: X−φ is intuitively equivalent to ctr(S ,W ,Ts )&φ(T0)&
(T0 = Ts − 1). Moreover, we can also translate the U+ operator when it is used
in the RHS of the hyMITL± rule: φ U

+ψ is roughly equivalent to ψ  del(φ).
Although we cannot use all the temporal operators on the RHS of our rules, we
can obtain equivalent results by imposing certain restrictions in the set of rules.
For instance, F+φ can be achieved if add(φ) appears on the RHS of a rule and it
is possible that the rule fires; G+φ can be achieved after φ is added and no rule
that could fire removes it. Time intervals can be translated into comparisons of
time-points as shown in the previous example.
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6.5 Social Integrity Constraints

In [41] the language Social Integrity Constraints (SIC) is proposed. This lan-
guage’s constructs check whether some events have occurred and some condi-
tions hold to add new expectations, optionally with constraints. An example of
a SIC construct is:

(

H(request(B , A,P ,D ,Tr )) &
H(accept(B , A,P ,D ,Ta)) &
Tr < Ta

)

→ E(do(A,B ,P ,D ,Td )) : Td < Ta + τ

The construct above intuitively means “if agent B sent a request P to agent A
at time Tr in the context of dialogue D , and A sent an accept to B ’s request at a
later time Ta , then A is expected to do P before a deadline Ta+τ”. The mapping
of SICs is based on translating events (H) into our att predicates. Since we also
allow predicates to be restricted by constraints, expectations can be translated
directly into obligations as the next rule shows:
0

@

utt(D, W0, request(B ,R, A, R′, P , Tr )) &
utt(D, W1, accept(A,R′, B , R, P ,Ta )) &

(Tr < Ta )

1

A 

„

add(obl(D, W2, inform(A, R′, B , R, P ,Td ))),
add(Td < Ta + τ)

«

(21)
Although syntactically their language is very similar to ours, they are semanti-
cally different. Differently from their use of abduction and Constraint Handling
Rules (CHR) to execute their expectations, we use a forward chaining approach.
Despite the fact that expectations they use are quite similar to obligations, SIC
lacks further deontic notions such as permissions or prohibitions. Furthermore,
although they mention how expectations are treated, that is, what happens when
an expectation is fulfilled or when it is not, and state the possibility of SICs be-
ing violated, no mechanism to regulate agents’ behaviour like the punishment of
offending agents or repairing actions is offered.

6.6 Object Constraint Language

The work in [10] proposes the Object Constraint Language (OCL) for the spec-
ification of artificial institutions. The expression below shows an example of a
norm written in OCL:

within h : AuctionHouse

on e : InstitutionalRelationChange(h.dutchAuction,
auctioneer , created)

if true then

foreach agent in h.employee →
select(em | e.involved → contains(em))

do makePendingComm(agent ,
DutchInstAgent(notSetCurPrice(
h.dutchAuction.id ,
?p[?p < h.agreement .reservationPrice]),
< now ,now + time of (e1 : InstStateChange(
h.dutchAuction, OpenDA, ClosedDA)) >,∀))

(22)
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This norm commits the auctioneer to not declare a price lower than the agreed
reservation price. As shown in section 5.4, we can also express (rule 18) the case
that the auctioneer is obliged to withdraw the good when the call price becomes
lower than the reservation price. However, we cannot perform an exhaustive
analysis of the language of [10] because neither the syntax nor the semantics are
made explicit.

7 Related Work

Apart from classical studies on law, research on norms and agents has been
addressed by two different disciplines: sociology and philosophy. On the one
hand, contributions from sociology highlight the importance of norms in agent
behaviour (e.g., [42,43,44]) or analyse the emergence of norms in multi-agent
systems (e.g., [7,45]). On the other hand, logic-oriented contributions focus on
the deontic logics required to model normative modalities along with their para-
doxes (e.g., [46,47,48]). The last few years, however, have seen significant work
on norms in multi-agent systems, and norm formalisation has emerged as an
important research topic in the literature (e.g., [3,49,36,50]).

Vázquez-Salceda et al. [36] propose the use of a deontic logic with deadline
operators. These operators specify the time or the event after (or before) which
a norm is valid. This deontic logic includes obligations, permissions and prohi-
bitions, possibly conditional, over agents’ actions or predicates. In their model,
they distinguish norm conditions from violation conditions. This is not necessary
in our approach since both types of conditions can be represented in the LHS of
our rules. Their model of norm also separates sanctions and repairs (i.e., actions
to be done to restore the system to a valid state) – these can be expressed in
the RHS of our rules without having to differentiate them from other normative
aspects of our states. Our approach has two advantages over [36]: one is that we
provide an implementation for our rules and the other is that we offer a more
expressive language with constraints over norms (e.g., an agent can be obliged
to pay an amount greater than some fixed value).

Fornara et al. [50] propose the use of norms partially written in OCL, the
Object Constraint Language which is part of UML (Unified Modelling Language)
[51]. Their commitments are used to represent all normative modalities – of
special interest is how they deal with permissions: they stand for the absence of
commitments. This feature may jeopardise the safety of the system since it is
less risky to only permit a set of safe actions thus forbidding other actions by
default. Although this feature can reduce the amount of permitted actions, it
allows that new or unexpected, risky actions to be carried out. Their within, on

and if clauses can be encoded into the LHS of our rules as they can all be seen
as conditions when dealing with norms. Similarly, foreach in and do clauses can
be encoded in the RHS of our rules since they are the actions to be applied to
a set of agents.

López y López et al. [52] present a model of normative multi-agent system
specified in the Z language. Their proposal is quite general since the normative
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goals of a norm do not have a limiting syntax as the rules of Fornara et al.
[50]. However, their model assumes that all participating agents have a homo-
geneous, predetermined architecture. No agent architecture is imposed on the
participating agents in our approach, thus allowing for heterogeneity.

Artikis et al. [8] propose the use of event calculus for the specification of
protocols. Obligations, permissions, empowerments, capabilities and sanctions
are formalised by means of fluents – these are predicates that change with time.
Prohibitions are not formalised in [8] as a fluent since they assume that every
action not permitted is forbidden by default. Although event calculus models
time, their deontic fluents do not seem expressive enough to inform an agent
about all types of duties. For instance, to inform an agent that it is obliged to
perform an action before a deadline, it is necessary to show the agent the obliga-
tion fluent and the part of the theory that models the violation of the deadline.
In [53] (previous to the work of Artikis et al. [8]), Stratulat et al. also used event
calculus to model obligations, permissions, prohibitions and violations. Similar
to the work of Artikis et al., that proposal lacks a representation of time that
could be easily processed by agents.

Michael et al. [12] propose a formal scripting language to model the essen-
tial semantics, namely, rights and obligations, of market mechanisms. They also
formalise a theory to create, destroy and modify objects that either belong to
someone or can be shared by others. Their proposal is suitable to model and im-
plement market mechanisms, however, it is not as expressive as other proposals
– for instance, it cannot model obligations with a deadline.

Kollingbaum [54] proposes a language for the specification of normative con-
cepts (i.e., obligations, prohibitions and permissions) and a programming lan-
guage for norm-governed reasoning agents. The normative concepts and the pro-
gramming language are given their operational semantics via the NoA Agent
Architecture [55,56] using the Java programming language [57] to explain the
meaning of each construct. This approach addresses practical reasoning agents
developed using their language and architecture – although the approach is prac-
tical and has clear advantages such as the possibility to check for norm conflicts
and consistency, heterogeneous agents cannot be accommodated. Furthermore,
there is no indication of how the proposal adapts to a distributed scenario, as
only individual agents are addressed.

In [41] the language Social Integrity Constraints (SIC) is proposed. This
language’s constructs check whether some events have occurred and some condi-
tions hold to add new expectations, optionally with constraints. Although syn-
tactically their language is very similar to ours, they are semantically different.
Different from their use of abduction and Constraint Handling Rules (CHR) to
execute their expectations, we use a forward chaining approach. Despite the fact
that expectations they use are quite similar to obligations and they mention how
expectations are treated, that is, what happens when an expectation is fulfilled
or when it is not, and state the possibility of SICs being violated, no mecha-
nism to regulate agents’ behaviour like the punishment of offending agents or
repairing actions are offered.
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The work in [11] reports on the translation of the normative language pre-
sented in [36] into Jess rules [58] to monitor and enforce norms. This language
captures the deontic notions of permission, prohibition and obligation in several
cases such as absolute norms, conditional norms, norms with deadline and norms
in temporal relation with another event. Absolute norms are directly translated
into Jess facts; conditional norms are directly translated into rules that add the
deontic facts when the condition holds; norms with deadline are translated into
rules that add conditional norms after the deadline has passed. Finally, norms in
temporal relation with other events are translated into rules that check if those
events have occurred.

Our proposal bears strong similarities with the work reported in [59] where
norms are represented as rules of a production system. We notice that our rules
can express their notions of contracts and their monitoring (i.e., fulfilment and
violation of obligations). However, in [59] constraints can only be used to depict
the left-hand side of a rule, that is, the situation(s) when a rule is applicable –
constraints are not manipulated the way we do. Furthermore, in that work there
is no indication as to how individual agents will know about their normative
situation; a diagram introduces the architecture, but it is not clear who/what
will apply the rules to update the normative aspects of the system nor how
agents synchronise their activities.

8 Conclusions, Discussion and Future Work

In this paper we have introduced a formalism for the explicit management of the
normative positions of agents in electronic institutions. Electronic institutions
define a computational model that mediates and regulates the interaction of a
community of agents. The classical model of electronic institution proposed in
[20] is strict in the sense that only permitted illocutions are accepted in the
interactions. We propose a language to implement and extend the notion of
electronic institution by providing them with several flavours of deontic notions.

Ours is a rule language in which constraints can be specified and changed at
run-time, conferring expressiveness and precision on our constructs. The seman-
tics of our formalism defines a production system in which rules are exhaustively
applied to a state of affairs, leading to the next state of affairs. The normative
positions are updated via rules, depending on the messages agents send.

Our formalism addresses the points of a desiderata for normative languages
introduced in section 2: we explicitly manage normative positions with our lan-
guage as facts of our production system. We have explored the pragmatics and
generality of our proposal in sections 3.5 and 5.4 by introducing the type of
expressions that can be specified with the language and by specifying a ver-
sion of the Dutch Auction protocol. We also illustrate how our language can
provide other (higher-level) normative languages with a computational model
(i.e., an implementation) thus making it possible for other normative languages
proposed with more theoretical concerns in mind to become executable. Our
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language is rule-based thus addressing the requirement laid out in section 2 that
norm-oriented languages should be declarative.

We propose norm-oriented programming as a paradigm to regulate the in-
teractions among the components of a system. We notice that it is complemen-
tary to other paradigms that focus on regulating the internal processes of these
components such as agent-oriented programming [14]. We intend to tackle the
engineering of regulation mechanisms of open MAS from a social perspective.

The main advantage of using our language, instead of standard production
systems, to specify and monitor the normative position of the agents conforming
a MAS is the inclusion of constraint solving techniques in the semantics to handle
with constrained predicates.

We advocate a separation of concerns : rather than embedding normative as-
pects into the agents’ design (say, by explicitly encoding normative aspects in
the agent’s behaviour) or coordination mechanisms (say, by addressing excep-
tions and deviant behaviour in the mechanism itself), we adopt the view that a
coordination mechanism should be supplemented by an explicit and separate set
of norms that further regulates the behaviour of agents as they take part in the
enactment of a mechanism.

Providing a computational realisation to abstract models of normative sys-
tems is a challenging task. We suggest that if a declarative and compact for-
malism such as our constraint rule-based language is used, this task could be
made easier than, for instance, using a procedural and verbose language such as
Java or C++. When mapping alternative formalisms to our rule-based language
(as done in Section 6), a steep learning curve was required to get familiarised
with technical details of the semantics and then how these could be captured
with our rules. One way to approach this mapping is to consider how models of
normative systems capture commonly occurring phenomena such as norms with
deadlines, sanctions and rewards, and so on, and then use rule templates aimed
at capturing the same phenomena.

As for future work, rather than just considering events as utterances of illo-
cutions (some of them reporting on actions, such as the “bid” message in the
example of section 5.4), we would like to generalise our language to cope with
arbitrary actions, as this would allow us to address a larger class of MASs. We
would also like to extend the syntax and semantics of our language to support
temporal operators for the explicit management of time.

Support can be provided when rules are being designed. We envisage a spec-
trum of possibilities, ranging from rule templates that can be offered as guide-
lines, to checking rules for desirable properties (e.g., norms only refer to compo-
nents of the associated protocols). However, we are aware that we are proposing
a formalism with which engineers can program, and ideally a usability analysis
should be carried out to investigate how easy-to-use our language is although
different dialects and presentations could be custom-built for particular groups
of designers.

We envisage two typical ways of using our language: i) using it directly, either
to supplement a MAS with normative regulation or to declaratively implement
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electronic Institutions, as shown in this paper or; ii) specifying norms with a
language like the one presented in [36] and then using a compiler to translate it
into our language to execute it. As a proof of concept, we are implementing one
such translator following the principles sketched in section 6.1.

We report our ongoing efforts to incorporate our rule language and its mecha-
nisms to the Electronic Institutions Development Environment (EIDE)3. Norms,
in the form of rules, can now be added to EI specifications prepared with the
ISLANDER editor and passed to the AMELI middleware which loads them
into our rule engine. Whenever agents declare their attempts, AMELI checks
the specification if the attempts are meaningful and executes our rule engine to
perform further checking and modification of agents’ attributes.

We also want to investigate the verification of norms (along the lines of
our work in [60]) expressed in our rule language, with a view to detecting,
for instance, obligations that cannot be fulfilled, prohibitions that will prevent
progress, inconsistencies and so on. We are currently investigating tools to help
engineers preparing their rules – these are norm editors that will support the
design and verification of norm-oriented electronic institutions.
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