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Abstract

The aim of this paper is to extend probability theory from the classical to
the product t-norm fuzzy logic setting. More precisely, we axiomatize a
generalized notion of finitely additive probability for product logic formulas,
called state, and show that every state is the Lebesgue integral with respect
to a unique regular Borel probability measure. Furthermore, the relation
between states and measures is shown to be one-one. In addition, we study
geometrical properties of the convex set of states and show that extremal
states, i.e., the extremal points of the state space, are the same as the truth-
value assignments of the logic. Finally, we axiomatize a two-tiered modal
logic for probabilistic reasoning on product logic events and prove soundness
and completeness with respect to probabilistic spaces, where the algebra is
a free product algebra and the measure is a state in the above sense.
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1. Introduction

In his monograph [21], Héjek established the theoretical ground for a wide
family of fuzzy (thus, many-valued) logics which, since then, has been signif-
icantly developed and further generalized, giving rise to a discipline that has
been named Mathematical Fuzzy logic (MFL). H4jek’s approach consists in
fixing the real unit interval as standard domain to evaluate atomic formu-
las, while the evaluation of compound sentences only depends on the chosen
operation which provides the semantics for the so called strong conjunction
connective. His general approach to fuzzy logics is grounded on the obser-
vation that, if strong conjunction is interpreted by a continuous t-norm [22],
then any other connective of a logic has a natural standard interpretation.

Among continuous t-norms, the so called Lukasiewicz, Godel and prod-
uct t-norms play a fundamental role. Indeed, Mostert-Shields’ theorem [22]
shows that a t-norm is continuous if and only if it can be built from the
previous three ones by the construction of ordinal sum. In other words, a
t-norm is continuous if and only if it is an ordinal sum of Lukasiewicz, Godel
and product t-norms. These three operations determine three different alge-
braizable propositional logics (bringing the same names as their associated
t-norms), whose equivalent algebraic semantics are the varieties of MV, Godel
and product algebras respectively.

The first generalization of probability theory to the nonclassical settings
of t-norm based fuzzy logics in Hajek sense, is due to Mundici who, in 1995,
introduced the notion of state for the class of MV-algebras —the algebraic
counterpart Lukasiewicz logic— with the aim of capturing the notion of av-
erage degree of truth of a proposition, [28].

In that paper, states are functions mapping an MV-algebra to the real
unit interval [0, 1], satisfying a normalization condition and the finite addi-
tivity law. Such functions suitably generalize the classical notion of finitely
additive probability measures on Boolean algebras, in addition to correspond-
ing to convex combinations of valuations of Lukasiewicz propositional logic.
However, states and probability measures were previously studied in [9] (see
also [10], 30]) on Lukasiewicz tribes (o-complete MV-algebras of fuzzy sets)
as well as on other t-norm based tribes with continuous operations.

MV-algebraic states have been deeply studied in recent years, as they
enjoy several important properties and characterizations (see [18] for a sur-
vey). One of the most important results in that framework is Kroupa-Panti
theorem [29] §10], a representation result showing that every state of an MV-



algebra is the Lebesgue integral with respect to a regular Borel probability
measure. Moreover, the correspondence between states and regular Borel
probability measures is one-one.

Many attempts of defining suitable notions of state in different structures
have been made (see for instance [I8] §8] for a short survey). In particular,
in [5], the authors provide a definition of state for the Lindenbaum algebra of
Godel logic that corresponds to the integration of the n-place truth-functions
corresponding to Godel formulas, with respect to Borel probability measures
on the real unit cube [0, 1]". Moreover, such states are shown to correspond
to convex combinations of finitely many truth-value assignments. Similar
results have been obtained for the case Godel logic expanded with Baaz-
Monteiro operator A [I], and for the case of Nilpotent Minimum logic [4].

The aims of this contribution are the following: (1) we will introduce
and study states for product logic —the remaining fundamental many-valued
logic for which such a notion is still lacking— (2) we will prove that our ax-
iomatization results in characterizing Lebesgue integrals of truth-functions
of product logic formulas with respect to regular Borel probability measures,
and (3) following similar lines to those of [14}, 20], we will axiomatize a modal
expansion of Lukasiewicz logic for probabilistic reasoning on events described
by formulas of product logic. In more detail, we show that states of the Lin-
denbaum algebra of product logic over n variables, i.e. the free n-generated
product algebra, correspond, one-one, to regular Borel probability measures
on [0, 1]”E| Moreover, and quite surprisingly since in the axiomatization of
states the product t-norm operation is only indirectly involved via a condi-
tion concerning double negation, we prove that every state belongs to the
convex closure of product logic valuations. Finally, these results will allow
us to introduce a suitable class of probabilistic-like models with respect to
which the modal logic we will introduce in Section [6] turns out to be sound
and complete.

The paper is structured as follows. After this introduction, in Section
we will recall the functional representation of the free n-generated product al-
gebra Fp(n), as presented in [3] (see also [I1]). We will easily prove that such
functions, although they are not continuous, are indeed Borel measurable. In
particular, from that functional representation of product logic functions, it

!Note that, unlike Kroupa-Panti theorem, we do not deal with states of any product
algebra but of finitely-generated free product algebras.



follows that the domain [0, 1]™ of each such a function can be partitioned in
locally compact and Hausdorff subsets of [0, 1]”, named G. (with ¢ varying
in a certain set ¥, depending on the atoms of the boolean skeleton of Fp(n)).
More precisely, each G, is an F, set since, in fact, it is a countable union
of a family {G?},c(0,1)n0 of nested compact subsets of [0,1]", and hence it
is a o-locally compact set (see [33, §1.11]). Over each G., the function is
actually continuous. Moreover, any continuous function with domain one of
the compact sets G can be uniformly approximated by linear combinations
of the functions of Fp(n) restricted to such subsets.

In Section |3 we will axiomatize our notion of state of Fp(n), and show
its properties together with some examples. In particular, we will investigate
states of the 1-generated free product algebra, and see how this analysis
reflects into its spectral space.

In Section |4| we will prove our main result, that is to say, for every state
s of Fp(n) there is a unique Borel probability measure p on [0, 1] such that
s is the Lebesgue integral with respect to u, and viceversa, every such an
integral operator is a state in our sense. In Section [5] we shall prove that the
state space of Fp(n) is convex and closed. Thus, via Krein-Milman theorem
(see for instance [19]) every state is a convex combination of extremal ones.
We will hence characterize the extremal states, proving that they coincide
with the homomorphisms of Fp(n) into [0, 1], that is to say, product logic
valuations. Thus, the state space results to be generated by the truth-value
assignments of the logic.

Finally, Section [0] is devoted to presenting a logic for probabilistic rea-
soning on many-valued events represented by formulas of product logic. For
that formalism we will provide an (infinitary) axiomatization which is sound
and complete with respect to a probabilistic-like semantics given by states of
free product algebras.

For the sake of readability we moved some technical proofs in an appendix
at the end of the paper.

2. Product algebras and product functions

In this section we are going to recall some basic facts and preliminary
notions about product algebras. In particular we will focus on free, finitely
generated, product algebras and their functional representation, mainly re-
porting results from [3]. We assume the reader to be familiar with standard
notions of universal algebra and algebraic semantics for many-valued logics.



For otherwise we point them to the standard monographs [§] and [21], 12]
respectively. To start with, let us recall that a BL-algebra [21] is a bounded,
integral and commutative residuated lattice A = (A, ®, —, A, V,0,1) which
satisfies the following equations:

(x = y)V (y — x) =1 (prelinearity),
r©® (zr = y) =z Ay (divisibility).

In what follows we shall adopt the following abbreviations: —x := x — 0, for
every n € N, z" :=x ® ... ®x (n-times).
A BL-algebra A is a product algebra if it further satisfies

zA-zx=0and 2z — (yoOor—>202) = (y—>2)) =1
Product algebras form a variety which is denoted by P.

Example 2.1. (1) Any Boolean algebra is a product algebra. Furthermore
for every product algebra A, the biggest Boolean subalgebra of A, A(A) has
universe {x € A | ==z =z} (cf. [27, Theorem 3.1(1)]). The Boolean algebra
PB(A) is called the Boolean skeleton of A.

(2) Endow the real unit interval [0, 1] with operations defined in the following
manner: T ®y = x -y (the usual product), x — y = 1 if © < y and
r — y = y/x otherwise, x ANy = min(z,y), © Vy = max(z,y). Thus
0,1l = ([0,1], ®, —, A, V,0,1) is a product algebra, known as the standard
product algebra. Any non Boolean product algebra, such as [0, 1], is generic
for P, i.e., P is generated as a variety by [0, 1]y [21, Corollary 4.1.11].

For every n € N| let Fp(n) be the free product algebra over n free gen-
erators. That is, since [0, 1] is generic for P, Fp(n) is isomorphic to the
product subalgebra of [0, 1]%1" generated by the projection maps (see [3]).
Thus, every element of Fp(n) can be regarded as a function [0,1]" — [0, 1]
that we shall call a product function.

We are going to recall the description of Fp(n) as presented in [3] of which
we will also adopt the notation for the sake of uniformity. It is known that
AB(Fp(n)), the Boolean skeleton of Fp(n), coincides with the free Boolean
algebra over n generators. In particular, Z(Fp(n)) is finite and hence atomic.
Thus, we can safely identify the set of atoms of Z(Fp(n)), say at(n), with
the set 3 = {1,2}" of strings € = (€1, ..., €,) of length n over the binary set
{1,2} and adopt the same notation of [3] without danger of confusion:

at(n) = {p. € Fg(n) | e € ¥},
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that is to say, for every € = (e1,...,€¢,) € X, p. = A\, ~“x;, where x4, ..., x,
are the free generators of Fp(n), while =! = = and -2 = ——. Thus, for every
€= (€1,...,€,), we define

G€:{<t1,,tn>€[0,1]”|tl>01fel:2andt1201fq:1}

The set {G, | € € X} is then a partition of [0, 1]™ (cf. [3]).

For instance, for n = 2, we have pu 1) = —x1 A =22, pa2) = —T1 A
—Tg, Pr2,1) = 71 A T, P2,2) = 7 A mxg, while the following Figure
shows how [0, 1]? is partitioned by G(1,1), G(1,2), G(2,1) and G(a,2).

G(1,2) G(g,z)
"‘"{ b
Gan® G,

Figure 1: The partition of [O, 1]2 into G(1,1)7 G(l)g), G(2,1) and G(g,g).

In what follows, for every function f : [0,1]" — [0, 1] and for every € € ¥,
we will denote by f. the restriction of f to G, i.e. f. = fiq..

Definition 2.2. Let n € N and & (n) be the set of functions f : [0,1]" —
[0,1] such that, for every e € X, either fo = 0 or, if fo > 0 pointwise,
it is continuous and piecewise monomial. The pointwise application of the
operations ®, —, A and V, together with the functions constantly 0 and
1 make Z(n) into a product algebra that we still denote by & (n) without
danger of confusion.

The functional representation theorem for free, finitely generated, product
algebras then reads as follows:

Theorem 2.3 ([3]). For every n € N, Fp(n) is isomorphic to #(n). Thus a
function f:[0,1]" — [0,1] is a product function iff f is such that, for every
e € X, either f, =0 or f. > 0 and it is continuous and piecewise monomial.
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In the rest of this section we shall provide preparatory results about the
sets G..

Lemma 2.4. For everye € &, G, is a Borel subset of [0,1]", locally compact
and Hausdorff.

Proof. First of all, by definition,

where A; = (0,1] if ¢, = 2 and A; = {0} if ¢, = 1. Hence, G, can also
be expressed as the following countable union of closed sets in the product

topology of [0, 1]™,
- U HB (1)

qeQn(0,1] i=1

where B! = [q,1] if ¢, = 2 and B} = {0} if ¢, = 1. Therefore G, is a Borel
subset of [0,1]". It also easily follows that each G, is locally compact and
Hausdorft. O

In the proof of Lemma [2.4] above, we showed that every G. is a countable
union of compact subsets of [0,1]", through (). For the sake of a later use
and a lighter notation, let us introduce the following.

Notation 1. For every € € 3 and for every g € (0,1] NQ,

e
=1

Remark 2.5. For every e € X, the set {G? | g € (0,1] N Q} is a countable
family of compact subsets of G. and

Gez U G,
€(0,1]NQ

Therefore, each G, is o-locally compact and Hausdorff (see [35] for further
details about o-compact spaces). Moreover, for each qi,q2 € (0,1]NQ, G C

G® iff 1 > qo.

Given the previous result, we can easily prove what follows.
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Theorem 2.6. Fvery f € &(n) is measurable.

Proof. We can write each f € Z(n) as f =/ _(f Ap.), where the restriction
of each fAp. to G, is either 0 or is a piecewise monomial function. By Lemma
2.4, each G, is a Borel set. Thus, each f A p. is continuous on a Borel set,
and 0 outside, hence it is Borel measurable. The supremum of measurable
functions is measurable, thus the claim follows. n

Now, we need to introduce some more notation. For every n € N and for
every € € X, let:

(1) Pe(n) ={fe: Gc = [0,1] | f € Z(n)},

(2) Z(n) ={g : Ge = R | (3,...; M € R\ {0D&(If1e,---, fre €
P.(n)) such that g = Zle Nifie}-

In other words, Z.(n) is obtained by restricting each function of Z(n) to
G, while .Z.(n) is in fact the linear span of Z.(n) with nonzero coefficients.

Proposition 2.7. For every e € ¥ and every g. € Z.(n), either g. = 0
or ge 18 a piecewise polynomial function. Moreover, in the latter case, g.
1s represented in a unique way as a linear combination of pairwise distinct
fres s fre € Pe(n) with non-zero coefficients.

Proof. Assume g, # 0. Then there is a k € N, fi, ..., fre € P(n) and
Aty A € R\ {0} such that ge = >, \; - fie. Each f; . is piecewise mono-
mial, meaning that there is a partition P; = {Py 4, ..., Pn,.i} of Ge such that
the restricted function f;.[p,, is monomial. Let {Qi,...,@m} be the re-
fined partition of G obtained by taking all possible non-void intersections of
elements in the P;’s. Obviously, fic[q, is monomial for all Q;. Moreover,

gelg, = (Z Aifi,e> g, = Z Ni(ficla,)s

whence gc[q, is polynomial. Thus, the claim follows since a finite inter-
section of semialgebraic sets is semialgebraic, where a semialgebraic set is
a set defined by Boolean combination of equalities and inequalities of real
polynomials, and hence each @); is semialgebraic. This shows that g, is
piecewise polynomial. As to prove that g. is uniquely determined, assume
by way of contradiction that there are two different sets {fi, ..., fr} and
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{fier -y frr ot such that ge =3, N« fie =3 ;N;- fi. Let Pr,..., Py and
P|,..., P/, be the semialgebraic sets on which, respectively, the f; ’s and the
. ’sare monomial. Let Y be a semialgebraic set contained in PN P; for some
1,7. Thus g, restricted to Y is polynomial, but g. is not uniquely displayed
on Y, since gy, = Y, Ai - fiery = D25 A; - fi, - But this is contradictory,
since polynomial functions have a unique representation on semialgebraic
sets. Thus, on each intersection P, N Pj, g has a unique representation, and
thus it is uniquely determined. O

For every n € N, every € € ¥ and every ¢ € (0,1]NQ, we denote by .£4(n)
the set of functions obtained by restricting those in Z.(n) to G?. Further,
for every subset X of [0,1]", we denote by € (X) the set of all continuos
functions from X to R.

Proposition 2.8. For every e, for every q € (0,1] N Q and for every ¢ €
€ (GY), there is a sequence gy, ga, ... € Z(n) such that g; < ¢ for every i,
and {g;} uniformly converges to c.

Proof. Since every c is continuous and defined on a compact set, we can
get the claim by the Stone-Weierstrass theorem [13, §VIII] if we show that
Z(n) is a subalgebra of €' (G?), i.e. it is a vector subspace of €' (GY) that is
closed under multiplication of functions, -£7(n) contains a non-zero constant
function and it separates the points. The first two claims are trivial. Thus,
let us show that -£%(n) separates the points, i.e., for every z,y € G4, if © # v,
then g(z) # g(y) for some g € £4(n). Indeed, each monomial function m
defined on a subset of [0, 1]™ is strictly increasing and hence m(x) # m(y) if
x # y, whence the claim is settled. O

3. States of free product algebras

Let us start introducing the main notion of our investigation, namely,
states of free finitely generated product algebras.

Definition 3.1. A state of Fp(n) is a map s : Fp(n) — [0, 1] satisfying the
following conditions:

S1. s(1) =1 and s(0) =0,
S2. s(f Ng)+s(fVyg)=s(f)+s(g),
S3. 1If f < g, then s(f) < s(g),



S4. If f #0, then s(f) = 0 implies s(——f) = 0.

The following proposition shows some basic facts about states of free
product algebras. Their proofs are straightforward and hence omitted.

Proposition 3.2. For any state s : Fp(n) — [0,1] the following hold:
(1) s restricted to B(Fp(n)) is a finitely additive probability measure;
(i) if fNg=0,5(fVg)=s(f)+s(g). Thus, s(fV~f)=s(f)+s(=f);

(i) if fVg=1,s(fNg)=s(f)+s(g) =1 Thus, s(f < g) = s(f =
g)—i—s(g%f)—l,

(iv) s(=f) +s(-—f) = 1.

Remark 3.3. [t is worth pointing out that states of a free product algebra
are lattice valuations (azioms S1-S3) as introduced by Birkhoff in [7]. How-
ever, if we compare Definition [3.1] with the axiomatization of states of an
MV-algebra [28, (18], it is clear that, while for the MV-case the monoidal
operations are directly involved in the azxiomatization of states, in our case
the unique axiom that involves the multiplicative connectives of product logic
15 S4.

In the following Proposition we will prove that S4 can be equivalently
substituted by the condition

(S4°) For everye € ¥ and f € Fp(n), if fAp. # 0, then s(f Ape) = 0 implies
S<pe) = O;

which involves the atoms of B(Fp(n)) and does not make use of the negation
connective —. It is also worth noticing that the condition (S}’) quite closely
resembles the condition (C4) of [5] where the authors axiomatized the integral
on functions of free Gédel algebras Fg(n). To be more precise, the condition
(C4) (see [3, §2.2]) says the following: for every x,y,z € Fg(n) which are
either join-irreducible or 0, if x <y < z and s(z) = s(y), then s(y) = s(z).
Turning back to (S4’°), if we take 0 < f A p. < pe, then we get something
similar to (C4). Indeed, if 0 = s(0) = s(f A pe), we have that s(p.) = 0 as
well, whence s(f A pe) = s(pe)-

Proposition 3.4. The axiom S4 is equivalent to

S’ For every e € X, if f Ape # 0, then s(f A p.) =0 implies s(p.) = 0.
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Proof. (S4 = S4'). If f Ape # 0, then s(f A p.) = 0 implies, by 54,
s(==(f Ape)) =0 as well. But == (f Ap.) = =~ f A =—p. = 7= f A p.. Since
f A pe # 0, it turns out that f. # 0, and by Theorem 2.3, f > 0 on G, and
hence == f, = 1, thus == f A p. = p..

(54" = S4). Let f # 0. Since

f=\ fApethens(f) = s(fApe).

e€ex €€

If s(f) = 0 then we have s(f Ap.) = 0 for each e. Thus, by S4',if f Ap. #0
we have 0 = s(p.) = s(—=—f Ap.); otherwise, if f Ap. =0, then =—f Ap. =0
as well. Therefore, s(——f) = > _s(—=—f Ape) = 0. ]

In the next subsection we will investigate, as an example, the states of
the free 1-generated product algebra Fp(1) with the aim of exhibiting a first
representation for these functional in terms of measures on the dual side.

3.1. States of the free 1-generated product algebra

The free 1-generated product algebra Fp(1) C [0,1]%Y consists of one-
variable functions f of the form f(x) = t(x), where the term t(x) can be
either 1 (the constant function equal to 1), 0 (the constant function equal to
0), &, -z, -z, or it belongs to the following set:

{z" |neN}U{z"V -z |neN}

The lattice structure of Fp(1) is depicted in Figure [2|

As we recalled in Section [2| the Boolean skeleton Z(Fp(1)) of Fp(1)
coincides with the free Boolean algebra over 1 generator. Thus, in this case,
¥ = {e1, €2} and the two atoms of Z(Fp(1)) will be denoted by p; and ps.
Therefore, identifying terms with functions, the elements of %(Fp(1)) are 1,
0, =z = p; and =—x = py and the partition {G;, Gy} of [0,1] is given by
G1 = {0} and G5 = (0,1].

Then, as it is easy to check, any map s : Fp(1) — [0, 1] satisfying the
following conditions is a state:

e 5(1) =1, s(0) =0,
o s(—x)+ s(——x) =1,

e cither s(=—x) = s(z) = s(x™) = 0 for all n, or all of them are positive,
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o s(z") < s(z™) whenever n > m,

o s(z"V —x) = s(a™) + s(—x).

X

Figure 2: The lattice of the free product algebra with one generator Fp(1)

For every y € Fp(1), let (y) denote the principal lattice filter generated
by y. The spectrum, denoted by B, of prime lattice filters of Fp(1), ordered
by reverse inclusion, is as in Figure [3|

Figure 3: The spectral space P8 of the lattice subreduct of the free product algebra with
one generator Fp(1)

Notice that B is partially ordered as follows: (—x) is incompatible with
any other element of P; (——z) >q (x) >q (2?) >q (2%) > .... Priestley
duality for bounded distributive lattices [32], provides us with a lattice iso-
morphism R,y between the lattice subreduct of Fp(1) and the lattice of those
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downsets of 3, which are clopen with respect to the usual spectral topology.
However, since every downset of 3 is clopen, R, is onto the whole lattice of
downsets of B. For every x € Fp(1), it is:

R,={{y) €PBlzey}

In particular, we have that for instance, R, = {(y) € P | (v) <gp (—2)}

and R-gven = {(y1) € B[ (y1) <p (~2)} U{(y2) € B | (y2) < («")}. (Fig.
provides examples aimed at clarifying this correspondence). The following
fact clearly holds:

Fact 1. For every z € Fp(l), if 2z = z1 V 29, then R, = R,, UR,, and
Ropey =R, NR,,.

Figure 4: This figure shows the downsets R——, (dashed parabola) and R— ;v (continuous
parabola)

With such a representation in mind, let s be a state of Fp(1) and let us
define a [0, 1]-valued function ds on P in the following way:

i ds((7)) = (),
ii. ds((—zx)) = s(—x) — s(z),
iii. for every n € N, d,({z")) = s(z") — s(z™1).

First of all, let us show that d, is a (discrete) probability distribution on ‘B,
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indeed:

Dpep ds((y) = do((=2)) + ds({(=2)) + do((2)) + 22,1 ds((2))

s )
= s(0x) + s(=w) = s(z) +5(2) — s(2?) + 3,1 do((27))
= s(oa) + s(mow) — s(2?) + s(2?) — s(2?) + 32,2, ds((27))
= s(oa) + s(mma) = 5(27) + 30,0 ds((2"))
= s(—z) + s(—x)
= s(-x V)

= s(1)
= 1.

Hence, every state of Fp(1) determines a distribution function ds on 3. More-
over, notice that the condition (S4) of Definition forces ds to satisfy the
following further condition:

(D) If ds((y)) = 0, then d ({y)) = 0 for every (y') >¢ (y).

Conversely, let d : P — [0,1] be a distribution satisfying (D) and define
sq @ Fp(1l) — [0, 1] by the following stipulation: for every z € Fp(1),

sa(z)= ) d({y)). (2)

(y)ER:

Let us show that s, is a state of Fp(1). Obviously s4(1) = 1 and s4(0) = 0.
As to prove additivity, let zq, z in Fp(1). From Fact , R.v., =R, UR,,
and R, r., = R., N R,,. Thus,

siziVz) = Dyen.,.., AH)
= ( )
- ZW)ERn d({y) Z(y’)ERz2 d((y)) — Z(y”)eFf.zlmRz2 d((y"))
- Z<y>ERz1 d({y) Z(y’)el‘%z2 d({y')) — Z<y'/>ERZ1AZ2 d({y"))
)

= sa(z1) + sa(z2) — sa(z1 A 22).

The monotonicity of sy can be proved in a similar manner observing that
21 S Z9 iff RZl g Rz2.

Let us finally prove that (S4) is satisfied. The two atoms of Z(Fp(1))
are -z and ——x and for every y € Fp(1), either y A ~z = -z if y = -z, or
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yA—x = 0 and in this case (54) is trivially satisfied. As for ——z, let y € Fp(1)
such that y A——x # 0. Then, as it is evident from Figure 2| (and skipping the
trivial cases of y = 1 and y = ——x) either y = 2" for n > 1, or y = —z V 2",
for n > 1. In both cases of y = 2" or y = —x V 2", =—x Ay = z". Thus,
if sa(y A =—x) = s(2") = X ihyen,. d((t)) = 0, d((t)) = 0 for all () € Ryn.
Notice that for any other (a) € R, one has (a) >y (t) for each (t) € Ry»,
whence by (D), d((a)) = 0 ensuring that sq(=—z) =3, cp _ d({(a)) =0.
Thus, the following holds.

Proposition 3.5. There is a one-one correspondence between the set of
states of Fp(1) and the set of distribution functions on B that satisfy (D).

Proof. From what we showed above, we can define a map that associates a
distribution d, to each state s. Thus, it is sufficient to prove that the map
is injective, since surjectivity is obvious from . To this end, let s; # s
be two states of Fp(1). Thus, there is a y € Fp(1) such that s1(y) # s2(y).
Now, if y is one among {—z, ~—x} U {z" | n € N}, it is clear that ds, ((y)) #
ds,((y)). If y is of the kind 2" V =z, for n € N, since =z A 2" = 0, using
(S2) we obtain that s1(—z) + s1(2") # sa(—x) + so(a™). Therefore, either
s1(mx) # sa(—x), and thus dg, ((—x)) # ds,({(—x)), or s1(a™) # sq(x™), and
thus ds, ((z™)) # ds,((z™)), which settles the proof. O

4. Integral representation

As we recalled in Section [2 product functions are not continuous, thus,
unlike the case of (free) MV-algebras, an integral representation for states
cannot be obtained by directly applying Riesz representation theorem for
linear and monotone functionals | However, the finite partition {G, | ¢ € S}
of [0,1]" is made of o-locally compact sets (Remark upon which the
restriction f, of each product function f is continuous. In this setting, we will
suitably extend states to real-valued, positive, monotone and linear operators
acting on all continuous functions on the restricted compact domain. Only
then we will in position to apply Reisz representation theorem to obtain Borel
measures over each G, in such a way that the Lebesgue integral with respect

2Recall that Riesz theorem says that, if X is a locally compact Hausdorff space, then for
any positive linear functional I on the space € (X) of continuous functions with compact
support on X, there is a unique regular Borel measure p on X such that I(f) = [ fdpu,
see e.g. [33, Theorem 2.14].
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to these measures will act exactly like our properly restricted functionals.
Finally, we will suitably extend the measures obtained by Riesz theorem first
to measures on every G., and secondly to a measure p on the Borel subsets
of real unit cube [0, 1]”. We will hence prove that the Lebesgue integral with
respect to u behaves like the state s over the functions of Fp(n).

Thanks to Proposition , given a state s of Fp(n), for every € € 3 we
can define a map 7, : Z.(n) — R in the following way. Indeed, by Proposition
2.7, every g € Z.(n) \ {0} is uniquely represented as a linear combination
Y i1 i - fie for (uniquely determined) non-zero parameters Ay, ..., \; and
distinet fic, ..., fre € Pe(n). Thus, we can properly define:

: $(fic A pe)
o) =7 (z . f> SIED D T
=1 {ils(fi,eApe)>0} ‘

Notice that if, for some 7, s(f;c A p.) = 0, (S4’) ensures s(p.) = 0 and
hence s(fj A p.) = 0 as well for any other j # i, and in such a case,
yields 7.(g) = 0 with the proviso that the empty sum is taken to be 0.

The definition of 7, is completed by putting 7.(0) = 0.

Proposition 4.1. For every state s of Fp(n) and for every €, 7. is a linear
and monotone map.

Proof. Linearity follows by the very definition of 7.. As for the monotonicity
of . let 0 < g < ¢ with g = Zle i+ ficand ¢ = Zflzl N - fi. as given by
Proposition 2.7} Then, 7.(g) > 0 implies 7.(¢’) > 7.(g) by definition and the
monotonicity of s. On the other hand, if 7.(¢9) = 0, then s(f; A p.) = 0 for
every i whence, by (54’), s(p.) = 0. Therefore, s(f; Ap.) = 0 by monotonicity
of s thus, 7.(¢") = 0. O

Now, for every ¢ € (0,1]NQ, let 77 : £9(n) — R be defined as follows:
for every g € Z9(n),

mi(g) = int{r(e) | o' € Zi(n). gy = 9}

Proposition 4.2. 77 is a linear and monotone functional over £(n). More-
over, if ¢ < q1, g € L9 (n), and ¢ € ZL%(n) extends g, then 79 (g) <

7(g').

Proof. See Appendix A. m
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Now, we want to extend 77 to a linear and monotone functional on the set
% (GY) of real-valued continuous functions over G¢. For every ¢ € € (GY), let
Seq(c) be the set of countable increasing sequences g = {g; }ien of elements
in £4(n) uniformly converging to ¢, in symbols, g / c.

Thus, for every ¢ € €(GY) and for every g € Seq(c) we first define

og(c) = \/Tf(gi),

and finally we put

olle)=\/ ogle). (4)

geSeq(c)

Lemma 4.3. For every e € ¥ and every q € (0,1] N Q, o7 is a positive,
monotone and linear functional. Moreover o? extends ¢ on Z%(n).

Proof. See Appendix A. n
The previous Lemma [£.3] has the following immediate consequence.

Theorem 4.4. For every ¢ € X and every rational q, there is a unique
reqular Borel measure pd such that, for any c € €(GY),

o) = [ et
e,

In particular, for all g € Z(n),

r(g) = / g dut.
G

Proof. From Lemma [1.3| ¢ is a (positive) linear functional over 4'(GY),
with G? being compact, thus the the first part of the claim follows from
Riesz representation theorem [33] Theorem 2.14]. The last part of the claim,
finally follows from the last part of Lemma [4.3| O]

With respect to the notation used in the previous Theorem [£.4] the fol-
lowing lemma holds.

Lemma 4.5. For every Borel subset B of G, and for every q € (0,1]NQ, if
¢ <q, pd(BNGY = pug (BN GY).
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Proof. Let us write Z = BN GY. First of all, notice that u?(Z) = inf{c?(c) |
c€C(GY), c> xz}and pd (Z) = inf{c? () | ¢ € €(GY), ¢ > xz} (where
Xz denotes the characteristic function of 7).

Since for each r € (0,1] N Q, £ (n) is dense in %(GL), we can safely
write, for ¢* either being ¢ or ¢/,

e (2) =inf{o? (g) | g € L7 (n), g = xz},
whence, from Lemma [£.3]

pl (Z) = inf{r7 (g) | g € L (n), g = xz}.
Let us now define
A={geZ!n), g>xz} and A'={g' € L (n), ¢ > xz}
and

I={feZn)| fige € A} and I' = {h € Z.(n) | higr € A’}

Clearly I = I'. Indeed, if f € I, then f € A(e), whence frar € £ (n) and
f[Gq/ > xz because ¢ < ¢, whence Z = BN G4 C BN G?. Conversely, if
h €I, hige > xz again because ¢" < g. Then, for every g € A, there is a

g € A such that 79(g) = 7¢'(¢’) and vice versa. Thus, by the very definition
of 79, the claim is settled. O

Now, recalling Remark [2.5] for every e and for ¢; > ¢», we have G C G2,
Thus, the following is an immediate consequence of the above result.

Corollary 4.6. If B is a Borel subset of G for some q, then for all ¢ < gq,
pd(B) = p (B).

We can now establish an integral representation for the linear and mono-
tone functionals 7. on Z.(n).

Lemma 4.7. For every e € X2, there is a Borel probability measure pe on the
Borel subsets of G, such that, for every g € £.(n),

n@—nge (5)
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Proof. See Appendix A. O
Finally, based on the previous results, next theorem provides an integral
representation for states of product logic functions.

Theorem 4.8 (Integral representation). For every state s of Fp(n) there is
a unique reqular Borel probability measure p such that

s(f) = fdp.
(0,1]™
Proof. For every f € Fp(n) and for every € € 3,

f= \/(fe Ape) = Z(fe A De).

eEX €EY

Moreover, for distinct €y, €2, (fe; APey) A (fe APey) = 0 (since G, NG, = 0),
whence s((fe, Ape,) A (fey ADey)) = 0. Thus, by axiom S2

S(f):S (\/(fEAPE)) :Zs(fe /\pe)‘ (6>

eex €y
Now, from the definition of 7., Proposition [£.1]and Lemma [£.7it follows that

s(f Apd) = 5(p0) 1) = 5(pe) - / . dpe (7)

for a Borel measure p. on the Borel subsets of G..
Let hence define p on the Borel subsets of [0, 1]" by the following stipu-
lation: for every X Borel subset of [0, 1]",

W(X) = 3 s(p0) - p(X NG

Since s(pe) = s pe) = s(T) =1, puis a convex combination of the
cex cex H

e's. Moreover p is defined for every X since G, is a Borel subset of [0, 1]"

(recall Lemma[2.4), whence G, N X is Borel as well. Thus, from (6]) and (7)),

S(f) = ZS(Z)E)'TG(JCE)

eEX

= > (8(196) : / fe dm)

eEX

= / . Zfed<5(p6)'M6)

UEEE € e€X

= fdp.

[0,1]™
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It is left to show that p is unique. Suppose, by way of contradiction, that for
a state s there are two distinct regular Borel measures j; and ps such that,

for every f € Fp(n), s(f) = f[O,l}” fdu = f[O,l}" f dps.

If py # pio, then there must exist a ¢ € ([0, 1]™) such that f[O,l}" cduy #
f[o,unc dpo. Since [0,1]" = |, G, there is an e such that stc dp, #
fGe ¢ dpg. Now, since Ge = |-, G, we have lim, g ng ¢ dpy # limg0 ng c dps.

Without loss of generality, assume lim,_ fGZ c dpp < limgg f qi € dpss.
Hence, there is ¢ such that for every ¢/, [ ad € du; < ng ¢ duo. In particular,

Joo e dpn < fgo ¢ dpsa.
Now, over G4, ¢ is the limit of an increasing sequence {g }ren C Z9(n),
and by the continuity of the integral,

sup / gk dpa < sup / gk dptg
E Ja? kJai

So there is k such that, for every £/,

/ gr dpy < / g o
G? G1
/ 9k dM1</ gr dpsa.
G? G?

But gy is the restriction of a function g € Z,(n) on GY and hence g is
of the form ) . A;fi, with f; € Z.(n). Thus, we can apply Theorem (4.4
and, since the 72’s are uniquely determined from the state s, we get that

7(gk) = Jgo 9 dpn and 7(gr) = [a g dpt2, Whence:

7a(gk) < 72(gr),

in particular,

which is a contradiction. O
We shall now see that the converse also holds.

Theorem 4.9. For every regular Borel probability measure p = B([0,1]") —

0, 1], the function s : Fp(n) — [0,1] defined as

s(f) = fdu.

[0,1]»

is a state of Fp(n).

20



Proof. First we observe that for each f € Fp(n), f[O,l]” f dup € 1]0,1], since p
is normalized to 1 and the functions of the free product algebra take values
in [0, 1]. In order to prove that s is a state, we need to show that the integral
of product functions satisfy the properties S1-S4:

(S1) f[o i 0 dpp =0 and f[o jn 1 dp =1, where 0 and 1 are respectively the
functions constantly equal to 0 and 1.

(52) Jiun(f A9) At Jigyn(fV 9) dpt = [ 130 f A+ f40 9 dps, for each
f7 g & FIP’(”)

(S3) If f,g € Fp(n) are such that f < g, then f[O,l]" fdu< f[O,l}" g dp.

(S4) For every € € X, for any f € Fp(n) such that f A p. is non-zero,
f[oﬁl]n f A pedp = 0 implies f[o,l]n pe dp = 0.

Properties (S1) and (S3) are well-known properties of the integral with
respect to probability measures. About property (S2), it is not difficult
to realize that, since the operations are defined pointwise, it holds that
f+ g = min(f, g) + max(f,g), which settles the proof. In order to prove
(S4), we shall observe that

) dp = ) d . du.
/m}n(pr) " Lm&wp) u+/GE(pr) "

The first integral is 0 since the function f A p. is 0 outside G.. Thus, if
f[o 1]n(f A pe) du = 0 the second one must be 0 as well, and since f A p, is

strictly positive over G, (if it is 0 in one point, it is 0 in the whole G, [3,
Lemma 3.2.3]) then it must be u(G.) = 0, whence f[o i Pe dp = 0. O

Therefore, our main result can be stated in the following concise way.

Corollary 4.10. For every n € N, and for every map s : Fp(n) — [0, 1] the
following are equivalent:

(1) s is a state,

(2) there is a unique reqular Borel measure p such that, for every f €
fP<n)7
)= [
[0,1]"
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5. The state space and its extremal points

In this section we shall prove that states of Fp(n) are actually convex
combinations of product logic valuations. The idea is to show first that the
state space is convex and compact and hence, by Krein-Milman theoreml’f]7
every state is in the closure of convex combination of extremal. Second, we
show that the extremal states coincide with product logic valuations, i.e.
homomorphisms of Fp(n) into [0, 1]y.

Let n be any positive integer. Let us denote by H(n) the set of homo-
morphisms of Fp(n) to the product algebra [0, 1]i;; S(n) stands for the set of
states of Fp(n); M(n) denotes the set of regular Borel probability measures
on B([0, 1]™), the o-algebra of Borel subsets of [0, 1]™.

Proposition 5.1. For every n € N, there is a bijection between H(n) and
0, 1]™.

Proof. Let ¢ : [0,1]" — [0,1)7*(™ be the map that associates to every x €
[0,1]™ the function ¢, : f — f(z), for every f € Fp(n). Clearly, ¢, is
a homomorphism, and it is easy to see that if z; # x5 then ., # @.,.
Moreover, every homomorphism A is such that h = ¢,, for some z € [0, 1]".
Indeed, let © = (h(m),...,h(w,)), where m; denotes the i-th projection.
Moreover, for every f € Fp(n) there is a term ¢, such that f = t¢[m, ..., 7).

Thus h(f) = h(tslm, ..., m]) = telh(m), ... h(ma)] = f(2) = (). O

It is quite obvious that S(n) and M(n) are convex subsets of [0, 1]7#(™)

and [0, 1]BIOU") yespectively. Furthermore, M(n) is clearly compact with
respect to the subspace product topology. As for S(n), let us prove that it
is closed, whence compact.

Proposition 5.2. S(n) is closed in the Tychonoff cube [0, 1]77(.
Proof. See Appendix A. m

By Proposition above and Krein-Milman theorem, S(n) and M(n)
are generated by their extremal points. It is well-known that the extremal
points of M(n) are Dirac measures, i.e. those maps ¢, : B([0,1]") — {0, 1},
for each x € [0, 1]™, such that ¢,(B) = 1 iff z € B and 4,(B) = 0 otherwise.

3 Recall that Krein-Milman theorem says that if X is a locally convex topological vector
space and K is a compact convex subset of X, then K coincides with the closure of the
convex hull of its extreme points, see e.g. [19, Theorem 5.17].
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Let us consider the map
§:8(n) - M(n)

which associates, to each state s € S(n) the unique regular Borel measure
€ M(n) provided by Theorem , such that for every f € Fp(n), s(f) =
f[o 1 f dp. The following holds:

Proposition 5.3. For every n € N, the map § : S(n) — M(n) defined as
above is bijective and affine.

Proof. Injectivity follows from Theorem [£.8] and surjectivity from Theorem
[1.9] In order to prove that § is affine, let us suppose that s = As; + (1 — \)ss,
with A € [0,1]. Then we have, for every f € Fp(n),

S() = Asi(f)+ (1= Ns(f)
— o[ rdmra-n [

[0,1]™ [0,1]™
=/ £ dOva) + / £ dl(1 = Ma]
[0,1] [0,1]™
- / £ d[vm) + (1= A
[0,1]™

Thus, 0(s) = 0(As1 + (1 — A)sg) = Ad(s1) + (1 — A)d(s2), which proves that §
is affine. O

Before showing the main result of this section (Theorem below), let us
point out an immediate but interesting consequence of Proposition [5.3|above
which reveals a remarkable analogy between states of MV-algebras and states
of product algebras. Indeed, the Kroupa-Panti theorem shows that for every
positive integer n, the state space Sy (n) of the free MV-algebra over n-free
generators is affinely isomorphic to M(n). Thus, in particular, S(n) and
Suv(n) are affinely isomorphic via an isomorphism which is defined in the
obvious way.

The main result of this section hence reads as follows.

Theorem 5.4. The following are equivalent for a state s : Fp(n) — [0, 1]

1. s is extremal;
2. (s) is a Dirac measure;
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3. s € H(Fp(n)).

Proof. (1) = (2). If s is extremal then its corresponding measure J(s) is ex-
tremal in the space of Borel probability measures on [0, 1] since by Proposi-
tion 0 is affine, whence it preserves extremality. Extremal Borel measures
on [0, 1] are exactly Dirac measures (see for instance [29, Corollary 10.6]),
thus d(s) = . for some z € [0, 1]™.

(2) = (1). If s is such that d(s) is a Dirac measure, then it is extremal.
Indeed, by way of contradiction, let us suppose that s can be expressed as a
convex combination of two states sq, $9, that is, s = As;+(1—X)sq, A € (0, 1),
but this would mean that d(s) = §(As; + (1 — A)s2) = Ad(s1) + (1 — A)d(s2),
which contradicts the extremality of d(s).

Hence, we proved that (1) < (2).

(3) = (2). Follows from Proposition [5.1]

(2) = (3). Let us suppose that §(s) is a Dirac measure §(s) = d,, and let
us prove that s is a homomorphism. By Theorem , for every f € Fp(n),

[0,1]™

thus clearly s is a homomorphism to [0, 1].
Hence we proved (2) < (3), which settles the proof. O

Thus, via Krein-Milman theorem, we obtain the following:

Corollary 5.5. The state space S(n) is the convexr closure of the set of
product homomorphisms from Fp(n) into [0, 1].

Remark 5.6. For every n, the set of extremal states of the free MV-algebra
Fuv(n), with the topology inherited by restriction from the product space
[0, 1]7mv (™) constitutes a compact Hausdorff space ext(Syry (n)) which is home-
omorphic to [0,1]" (see [28, Theorem 2.5] and [29, Corollary 10.6]). Thus,
ext(Sypv(n)) is closed. A similar result for extremal product states is false.
Indeed, as a consequence of [25, Theorem 4.6/, H(n) = ext(S(n)) is not
closed in the Tychonoff cube |0, 1]]:]1"(”). Thus, it cannot be homeomorphic
to [0,1]". However, Theorem still provides us with a bijection between
ext(Syv(n)), ext(S(n)) and [0, 1)".

24



6. A logic to reason about the probability of product logic events

In this section we define a logic to reason about probabilities (in the sense
of states) of product logic events. The idea is to follow the same fuzzy logic
approach that has been used in the literature to formalise reasoning with
different models of uncertainty, like probabilistic [20, 2], [14], possibilistic
[15] or evidential models [17].

The logic we will define, FP(II, LA), is a two-tiered logic: an inner logic
to represent the events (which will be product logic), and an outer logic
to reason about the probability of the inner logic events. To express the
additivity property of states, the outer logic will be a suitable (modal-like)
extension of Lukasiewicz logic: for each product logic proposition ¢, Py will
be an atomic modal formula in the outer logic that will be read as “p is
probable”. Note that we will not allow the nesting of the modality P.

In more detail, the language of F'P(II, La) contains the following sets of
formulas:

e Non-modal formulas: built from a countable set of propositional vari-
ables using product logic connectives, i.e. propositional product logic
formulas.

e Atomic modal formulas: of the form Py, where ¢ is a non-modal for-
mula (of product logic).

e Modal formulas: built from atomic modal formulas using La logid]]
connectives.

We will denote by F'm the set of non-modal formulas and by PFm the set
of all modal formulas of F'P(II,LA). In the following, by a modal theory we
will refer to an arbitrary set of modal formulas.

We will provide semantics for F'P(II,La) based on states on product
logic formulas, that is, by mappings o : F'im — [0, 1] satisfying the following
conditions:

S1. 0(T)=1and o(L) =0,

S2. a(p AY) +a(p Vi) =a(p) + o),

4L A is the expansion of Lukasiewicz logic with the Baaz-Monteiro projection connective
A, see [21] §2.4].
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S3. If b — 9, then o(p) < o(v),
S4. If b —p, then o(p) = 0 implies o(—=—¢p) = 0.

Note that, due to S3, logical equivalence is preserved by states on formu-
las, that is, if ¢ and ¢ are logically equivalent product logic formulas, then
necessarily o(p) = o() for any state o.

Remark 6.1. It is worth noticing that, if o is a state on F'm, its restriction
o™ on FM", the set of formulas built from a finite subset of propositional
variables {p1,...,pn}, is again a state (in the sense that o™ : FM™ — [0, 1]
satisfies all the above properties S1 - S4). Therefore, there is a one-one

correspondence between states on formulas of FM™ and states on the free

algebra Fp(n).

Following [26], §7.2], interpretations for FP(II, La)-formulas will consist
of pairs (e, o), where e is a [0, 1]-evaluation of propositional variables, that
extends to propositional formulas as usual with product logic truth-functions
from [0, 1], and o is a state on F'm. Every interpretation (e,o) assigns a
truth-value ||®||., € [0, 1] to every FP(II, La)-formula ® as follows:

o If & = ¢ is a propositional formula from Fm, ||®|., = e(p).
o if & = Py is an atomic modal formula, ||®||., = o(p).

o If ® is a propositional combination with La connectives, then ||®||.,
is computed from its atomic modal subformulas by using their truth-
functions from [0, 1]y,

Note that for non-modal formulas ¢ € F'm, ||¢||c, only depends on e,
while for modal formulas ® € PFm, ||®||., only depends on the state o.
Therefore, for the sake of a simpler notation, we will also write |||, and

||®||, respectively. Now we define the following notion of logical consequence
for FP(II,LA).

Definition 6.2. Let I' U {®} be a (arbitrary) set of FP(II, La)-formulas.
Then define I' |=ppaien) @ if, for any interpretation (e,o), it holds that if
|W]leo =1 for all ¥ € T, then ||®||, = 1.
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As for the axiomatization of =pp(1,), we need to properly capture prop-
erties S1 — S4 of states in terms of product logic formulas. Actually S1, 52,
and S3 can be suitably encoded only using the language of Lukasiewicz logic
with the following schemes:

Pl. PT, =P,

P2. P(p V) < Po® (PY © P(p Ay)),
P3. Py — P, for o, such that g ¢ — 9.

However, the axiom S4 of Definition |3.1] cannot be written within the lan-
guage of Lukasiewicz logic, since this logic cannot express that a formula is
not totally false. This is the reason for considering L, the expansion of
Lukasiewicz logic with the well-known Monteiro-Baaz A operator, for the
outer logic. Indeed, using the language of LA, then S4 can be encoded by
the following scheme:

P4. A(=Py) — ~P——yp , for ¢ such that g —p .

As outlined in [26], §7.2] and in the proof of Theorem below, the usual
technique to prove completeness for a probabilistic modal logic as F'P(II, La)
consists, mainly, in the following steps: (1) translating, at the propositional
level of the outer logic (in this case L), all modal axioms and rules; (2) using
the completeness of the outer logic with respect to a standard algebra, build a
model for the probabilistic modal logic. The typical problem of this strategy
is that, as in this specific case, the propositional translation of the modal
axioms leads to an infinite theory for L which, however, is not strongly
complete with respect to the algebra on [0, 1], i.e., if 'U{¢} is an infinite set
of propositional formulas of L s, it might happen that, although every model
of I' is a model of ¢, ¢ cannot be proved from I'. Therefore, we will need
to equip the outer logic Lo with the following infinitary rule that makes it
strongly complete (see [20] for full details):

OV (P — ¥"), for each n € N
OV (—dV VD)

(IR)

For this reason, we will henceforth extend the outer logic La with the
previous rule (IR) and we will denote it by L.
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Definition 6.3. FP(I1, L) is the logic, in the language defined above, whose
axioms and rules are the following:

(I1) Azioms and rule of product logic for non-modal formulas

(Ea) Azioms and rules of La for modal formulas

(P1) PT,-~P-1

(P2) P(pV ) < Po@ (PYo Pl Ay))

(P3) Py — Pi,  for every o, such that -y o — 1

(P4) A(=Py) — =P—-—p,  for every ¢ such that b/ —p

(IR) from {©OV (P — U™) | n € N} infer OV (=PV V), for©,d, ¥ € PFm

Note that since we have two arrows — in F'P(II, L), the inner one (from
product logic IT) and the outer one (from the logic L), and two Modus
Ponens rules, one for each arrow. Moreover, in the outer logic we have the
necessitation rule for A for modal formulas.

Notice that in F'P(II, La) the presence of the infinitary rule (IR) requires
to slightly change the notion of proofin such a way ensuring that if, for every
n € N, we have a proof of © V (& — U") from the same set of premises I,
then we also have a proof of © V (=® Vv W) from I' as well ]

In the following we restrict ourselves to prove completeness for deductions
from modal theories.

Theorem 6.4 (Soundness and Completeness). Let I' U {®} C PFm be an
(arbitrary) modal theory. Then, I' Fppuiinyy @ iff I' Erpaiis) ®, that is, iff
for every state o, if ||V||, =1 for all W € T, then ||®||, =1 as well.

Proof. Soundness is easy. As for completeness, we apply the usual technique
in this kind of modal-like fuzzy probabilistic logics of inductively defining a

SFormally, a proof of a formula ® from I is defined as a well-founded tree (i.e. with
of possibly infinite width and depth, but with no branches of infinite length) where (i)
the root ® can have an infinite degree, (ii) the leaves are formulas from T" or instances of
the axioms of FP(II,LA), and (iii) for each node of the tree with a formula ¥ there is an
inference rule in FP(I,LA) deriving ¥ from its predecessors.
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translation mapping ( )* from the modal language PFm into the proposi-
tional L{-language built from atomic modal formulas Py taken as proposi-
tional variables (see [14] [16] and [26], §7.2]).

Accordingly, each proof of ® from I" in F'P(II, Lo ) can be translated into a
proof of ®* in the logic L from the set of (propositional) formulas ['*UAX*,
where AX™* is the set of all translated instances of axioms (S1)-(S4). And
viceversa, every proof of ®* from I'* U AX* in L} gives rise to a proof of ®
from I in FP(II,La). In other words, I' Fppuip,y @ iff " U AX™ - Ly d*,
Note that, independently of whether I' is finite or not, AX™* is mﬁmte But
now, since L{ is strongly complete [26, Theorem 4], T'* U AX* I—LZ o* iff
uAx- ):LX o*,

Finally, we can check that Ef-evaluations that are model of AX* are
clearly in one-one correspondence with states on non-modal formulas. Namely,
if e is a LX-evaluation validating the translations of all instances of axioms
(P1)-(P4), then the map o : F'm — [0, 1] defined as o(p) = e((Pyp)*) is state
on product logic formulas, in the sense as defined above. In other words,
"“uUAX* ):Lz O* iff I' =ppain,) ®. This completes the proof. O

7. Conclusions and future work

In this paper we have defined and studied the notion of state for free
product algebras, i.e., the Lindenbaum-Tarski algebras of product logic. We
may recall that Product logic is the third formalism which, together with
Lukasiewicz and Godel logics, stands at the ground of all continuous t-norm
based logics, since any continuous t-norm can be obtained as an ordinal sum
of isomorphic copies of Godel t-norm (i.e. the minimum t-norm), Lukasiewicz
t-norm and product t-norm.

Our main result is a Kroupa-Panti-like representation for states. In other
words we have proved that our axiomatization of states captures the Lebesgue
integral of product functions with respect to regular Borel probability mea-
sures and the relation between states and measures is one-one. That result,
besides supporting the appropriateness of our axiomatization, has several in-
teresting consequences as welcome side effects. First of all, when studying
the geometric properties of the state space, it allows us to fully characterize
extremal states in terms of [0, 1]-valued product homomorphisms which, in
turn, correspond one-one to Dirac measures on the space of extremal states.
Furthermore the integral representation theorem shows that, for every nat-
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ural number n, the state space of the free n-generated product algebra is
affinely isomorphic to the state space of the free n-generated MV-algebra.

In the last section of this paper, in order to point out the close relation
between states and probabilistic logic, we introduced a modal-like fuzzy logic
obtained by the combination of product logic and a suitable expansion of
Lukasiewicz calculus to reason about the probability of product logic events.
The resulting logic turned out to be sound and complete with respect to the
intended semantics given by states of free product algebras.

The paper leaves several interesting open problems for further research. A
first future direction clearly concerns with the generalization to the frame of
product logic of a coherence (no-Dutch-book) criterion a la de Finetti. In this
regard, the non-finiteness of free product algebras and the discontinuity of
product implication, makes the problem of generalizing de Finetti’s theorem
to this setting non-trivial and hence particularly challenging. However, it is
worth pointing out that the results contained in Section [5| pave the way for
a first step in this direction.

Secondly, as Lukasiewicz, Godel and product logics are the building blocks
of Hajek logic BL, it is reasonable to think that the integral representation
theorem for states of free product algebras, together with its analogous results
for MV and Godel algebras, and the remarkable functional representation
theorem for free BL-algebras [2], are the necessary ingredients to shed a light
on the problem of providing an appropriate axiomatization for states of free
BL-algebras.
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Appendix A. Proofs

Proof of Proposition

Proof. Let us start showing that 74 is monotone.

Let g,g € Z%(n), with ¢ < ¢’. In order to prove the monotonicity of
74, we will show that for each h € Z.(n) such that hjge = ¢’ we can find
k € Z.(n) such that

kige = g and k < h. (A1)
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Thus the claim will follow from the definition of 7¢ and the monotonicity
of 7.. Let hence hige = ¢ and let | € Z.(n) which extends g. Thus, let
k=hAl Clearly k € Z.(n) and (A.1)) holds.

Now, we prove the linearity of 74. First, we prove that if h € %Z,(n) is such
that higs = g + ¢, for some g, ¢' € £9(n), then there are z, 2’ € Z.(n) such
that z,g¢ = g,z’mg =g, and h = 2z + 2. Since g < hge, from the previous
point, we know there is a z < h and extending g. Thus, let 2’ = h—z. Hence,
Tdg+9") = f{7e(h) | hjgz = g+¢'} = inf{7(24+2") [ 2100 = 9, 2[e = ¢’} =
inf{7(z) + 7(¥) | 2162 = 9,20 = ¢'}, where the last equality follows by the
linearity of 7.

Thus, we shall now prove the following: inf{7.(2)+7(2') | zj¢2 = 9, 2]qe =
9't = inf{7e(2) | 260 = g} + Inf{7(2') | 2]ge = ¢'}. Since one inequality is
obviously valid, we are left to prove that

inf{7.(2)+7(") | 2160 = 9, 2jqa = 9"} < Inf{7(2) | 2160 = g}+Hinf{7 (') | 2/ga

As to prove this claim, it suffices to notice that for any z such that 2,5 =
g and 2’ such that Zng = ¢' it is always possible to find a 2 = 2 4 2/
where 2 < 2,2 < 2/, with Z,q0 = g, %GZ = ¢’. Thus, being 7. monotone,
Te(2) + 7.(2") < 7e(2) + 7(2'), and the claim is settled.

In a very similar way, we can show that 79(Az) = A7%(z). Thus, 79 is
linear.

Finally, in order to conclude the proof, let ¢ < ¢ and let ¢’ € £%(n)
extending g € £%(n). Then, 77 (g9) < 72(¢’) from the very definition of
T [

Proof of Lemma 4.3

Proof. The fact that o9 is a positive functional on ¢’ (GY) follows by the very
definition. In order to prove that ¢¢ is monotone, let ¢, € €(GY) and
assume ¢ < ¢’. The following holds:

Fact 2. For each sequence {g1, g, ...} / ¢, there is a sequence {g}, g5, ...} /'
and and index iy such that, for every i > ig, gi > g;.

Proof. (of Fact). Let {g1,92,...} /¢, and {g},g3,...} /<. Define, for every
i, gi = g; V g and easily check that this settles the claim. O]

31



Thus, we prove that 0?(c) < 0%(c’). Indeed,
ole)="\ ogl)= "\ (\/79)
geSeq(c) geSeq(c) €N

Fact [2 ensures that, given a {g;}/ ¢, there is a {r;}/ ¢ and, for every i > iy,
g; < 1;, and hence, since 77 is monotone, 7%(g;) < 72(r;). Whence, for every
g € Seq(c) there is 7 € Seq(c’) such that o5(c) < o7(c’). Therefore

ol)=\ o< \/ orld) =0l
geSeq(c) TESeq(c!)
showing that ¢ is monotone.

Now, it is left to show that ¢ is linear. To this end let us begin with the
following claims:

Fact 3. For every c,c € €(GY) and for every A € R, the following hold

(1) For each {t1,ts,...}) ¢+, there are {a1,as,...}/ c and {a},d}, ...}/ ¢
such that, for every i, t; = a; + a.

(2) For each {ti,ts,...}] Ac, there is {ai,aq,...}] ¢ such that, for every i,
ti = )\ai.

Proof. (of Fact [3). (1) Let {t1,f2,...} be as given by hypothesis and let
{a1,as,...} be any sequence converging to c¢. Then let, for every i, a, =
ti —a; € Z%(n). Thus, {a},d,,...}/ (c+ ) — ¢, that is {a},d), ...}/ ¢ and
this settles the claim.

(2) Let {t1,tq,...} as in the hypothesis and since A # 0 put, for every i,
a; = t;/\. Thus, {a1,as,...}/ A¢/A, that is, {a,as,...}/ ¢ O

Now we prove that ¢? is linear. Let ¢, € €(G?). Then

olc+d)= '\ oilc+0).
teSeq(ct+c’)
Fact (1) shows that, for each {t1, 5, ...}/ (c + ), we can find {a1, as, ...}/ ¢
and {b1,bs,...}/ ¢ such that, for every i, t; = a; + b;. Thus, o7(c + ) =
Vien 7d(a; + b;) and since 7 is linear, 79(a; + b;) = 72(a;) + 74(b;). Thus,
oflc+¢) = Vien7d(a:) +7(b)

= limyen 74(a;) + 74(b;)

= limyey 72(a;) + limgen 79(0;)

= 0a(c) + o5(¢),
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where the previous limits exist because every sequence {a;} and {a}} is
bounded by ¢ and ¢ which are continuous functions and {a;} and {a}} con-
verge to ¢ and ¢ on the compact set G?. In a similar way, we can prove
that

sie+) = Vioe+) T Seqlc ]
= Voilc+d) [ t=a+bae Seq(c),b € Seq(c)}
= \{oa(c) + o3(c') | a € Seq(c),b € Seq(d)}
= \/EESeq(c’) UE(C) + vEESeq(C/) O—E(C/)
= ol(c) +od(c)

Finally, using a similar argument, but using Fact [3(2), o?(Ac) = Ao¥(c)
so proving that o is linear.

In order to conclude the proof, notice that, for each g € Z%(n), the
constant sequence {g} belongs to Seq(g), and for any other sequence t =
{t1,t2...}/ g we have t; < g, whence

ollg) =\ (\/7(t)) =\ 7i(g) = 72(9)-

teSeq(g) ‘€N ieN

Proof of Lemma

Proof. Let, for every g € Q, u? be a Borel measure that provides an integral
representation of 74 (Corollary [1.4). Let us define for each pf, the map il
over the Borel subset of G. in the following way:

8(B) = ud(B N GY).

From Proposition the sequence {14} is increasing and clearly bounded.
Thus, by the Vitali-Hahn-Saks theorem [13, §II1.10], it converges to a o-
additive measure p.. Further notice that, by Corollary [4.6] for every Borel
subset X of GY,

pe(X) = pd(X) = il (X). (A.2)
Now, let us define for each g € Z.(n), the function g, : G¢ — [0,1]
which equals g;g¢ over G? and takes 0 outside. Observe that each g, is

33



not continuous but it is measurable. Clearly, each sequence {g,},eq is non-
decreasing and it converges pointwise to ¢: lim,g,(z) = g(z), for every
x € G.. Then, by Levi’s theorem (cf. [23, §30, Theorem 2]),

lim [ g,dpe = / gdpte.
q Ge €

Finally, observe that

4 g1q9) = / Grgedpd = / gedpid,
G? Ge

and also, by the definition of 7¢ and Proposition .2} lim, 74(g)ce) = 7e(g).
Thus,

Te(h) = lim 7f(g)ce) = lim / gedful = lim / 9qdpte = / gd e,
q 4 Ja. 7 Ja. Ge

where the third equality follows from (A.2]) recalling that g,(y) = 0 for each
ye G\ GL O

Proof of Proposition (5.2

Proof. Let {s;}i>0 be a sequence of states of Fp(n) such that lim;enys; = s
exists, and let us prove that such s is a state. Condition S1 of Definition
[3.1)is clearly verified. Let us show that s respects condition S2. We need to
prove that s(f V ¢g) = s(f) + s(g) — s(f A g). Being each s, a state, we have
that:

llg\{l sn(fVg) = %16111\11(871(]8) +5n(g9) = su(f N g))

and also, it clearly holds that:
lim(sn(f) + su(g) = sa(f A g)) = lim s, (f) + lim s, (G) — lims, (f A g),

thus the claim directly follows. It is easy to prove condition S3, since given
fyg € Fp(n), if f < g then s,(f) < s,(g) for every n € N. Thus, it follows
that:

s(f) =lims,(f) <lims,(g) = s(g).

1€EN i€EN
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Let us finally prove S4. Let f € Fp(n),f # 0, such that s(f) =

shall prove that s(——f) = 0. Let supp(f) = {x € [0,1]" | f(= ) > O}
Then supp(f) is a union of G.’s, whence it is a Borel subset of [0, 1]". This
observation, with Corollary [4.10 imply that:

s(f) = lim fdp; =lim fdp; =0.
v Joa)n * Jsupp(f)

Fact 4. If lim; fsupp(f) f dpi =0 then lim; p;(supp(f)) = 0.

Proof. (of Fact As we already noticed, supp(f) = Uz Ge, for some
¥* C ¥ . Thus, if lim;ey fsupp(f) f dup; = 0, and since the G.’s are disjoint,
the following holds:

lim fdu = hm/ fdu; = hm <Z / fd,uz> = (hm/ fd,uz) .
N Jsupp(f) Uees Ge ex+ €

Therefore, ) . (lim;ey fGe fdu;) = 0, whence lim;ey fGe fdu; = 0 for all

e € X" Now, Ge = U cgn( G¥, and hence

/ fdui=sup ( / fd/u).
Ge q€Qn(0,1] G?
Therefore:

0=1lim [ fdp; =lim sup (/ fdﬂi)z sup lim(/ fduz)-
v JGe b qeQn(0,1] \J G qeQn(0,1] * Gl

Hence, for all ¢ € QN (0,1], it follows that limi(qu fdu;) = 0. But since
GY is compact, and f is strictly positive on it, lim; u;(G?) = 0. Indeed, let
ro=min{f(z) | 2 € G}, thus limien([ge 7 dpi) < limyen( [ fdpi) = 0.

Thus,
BT ) =T (1
0 lilemN </Gq Tduz) T %16110N wi(G?),

that is, lim;ey 1£;(G?) = 0. Therefore,

1 , q ; (9 — ; (Y9 —
lim p; (Ge) = lim gy U ¢7] < lim Yo om(Gy= > lim i (G¢) =0
geQN(0,1] geQn(0,1] q€Qn(0,1]
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that is to say, lim;ey pi(G.) = 0 for all € € ¥*. Hence, finally,

lim yr;(suppf) = lim D pi(Ge) = ) lim 1(Ge) = 0.

€EX* eex*

]

Now, since supp(f) = supp(——f), and (—-—f)(z) = 1 for every z €

supp(f),

s(=2f) = lims(==f)

€N

= lim / ——f dpi
€N [0’1]n

—tim [
€N Jsupp(——f)

= lim - f dpi
€N Jsupp(f)

= lim / 1dp
;_GN supp(f)

= lim i (supp(f))

= ()’

where the last equality clearly follows from Fact 4] above. m
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