
Coalition structure generation problems:
optimization and parallelization of the IDP

algorithm

Francisco Cruz1,2, Jesús Cerquides2, Antonio Espinosa1, Juan Carlos Moure1,
Sarvapali D. Ramchurn3, and Juan Antonio Rodriguez-Aguilar2

1 Computer Architecture Department. Universitat Autònoma de Barcelona. Spain
2 Institut d’Investigació en Intel·ligència Artificial -CSIC- Spain

3 School of Electronics and Computer Science, University of Southampton,
Southampton

Abstract. The Coalition Structure Generation (CSG) problem is well-
known in the area of Multi-Agent Systems. Its goal is to establish coali-
tions between agents while maximizing the global welfare. Between the
existing different algorithms designed to solve the CSG problem, DP and
IDP are the ones with smaller temporal complexity. After analyzing the
operation of the DP and IDP algorithms, we identify which are the most
frequent operations and propose an optimized method. Then, we analyze
the memory access pattern and find that its irregular behavior represents
a potential performance bottleneck. In addition, we study and implement
a method for dividing the work in different threads. We show that se-
lecting the best algorithmic options can improve performance by 10x
or more. Furthermore, the execution in a dual-socket, six-core processor
computer may increase performance by an additional 5x-6x. With this,
we are able to solve a CSG problem of 27 agents using our multi-core
computer in 1.2 hours.

1 Introduction

Coalition formation is one of the central types of interaction in multi-agent
systems. It involves the creation of disjoint groups of autonomous agents that
collaborate in order to satisfy their individual or collective goals. One of the
major research challenges in the field of multi-agent systems is the search for an
effective set of coalition that maximises the social welfare [1].

Coalition formation can be applied to many actual-world problems such as
distributed vehicle route planning [2], task allocation [1], airport slots allocation
[3]. More recently, it has been considered in the realm of social networks [4].

According to [2], the coalition formation process is divided in three activi-
ties [5]: (i) coalition structure generation; (ii) solving the optimization problem
of each coalition; and (iii) dividing the value of the generated solution among
agents. In this paper we focus on one of these three activities, namely coalition
structure generation (CSG). Notice that finding the optimal coalition structure

is NP-complete [2]. The search space handled by CSG is very large since the
number of possible coalitions grows exponentially with the number of agents (n).

To tackle the CSG problem, we find several algorithms in the literature that
take different perspectives. In particular, they are typically grouped in three
categories: (i) lower-complexity (O(3n)) complete algorithms based on dynamic
programming (e.g. DP [6], IDP [7]), which offer guaranteed run-times over ar-
bitrary coalition value distributions; (ii) higher-complexity (O(nn)) complete
algorithms (e.g. IP[8] IP-IDP [9], D-IP [10] with anytime properties whose con-
vergence time to solution largely depends on the coalition value distribution;
and (iii) heuristic approximate algorithms (e.g. [1]), which aim at computing
solutions faster than complete algorithms without offering quality guarantees.
Unfortunately, as widely noticed in the literature, in practice the computational
costs for complete algorithms are highly demanding even for a moderate number
of agents (e.g. IDP requires around 2.5 days for 27 agents [8]).

Against this background, in this paper we propose to optimize the algorithms
based on dynamic programing. The implementation can be used as a building
block for heuristic algorithms as a means to explore complete subspaces in an
effective way.

As proposed in D-IP [10], where a distributed anytime algorithm is presented,
in this paper we present an algorithm able to exploit the power of distribution but
using a different paradigm. Our proposal is building a IDP based algorithm able
to run in a shared memory scenario, which is common in nowadays computers
[11]. Using a shared memory paradigm simplifies the communication between
computation nodes, since there is no need to send messages between them, but
it requires a data dependence study, because of possible synchronization.

As far as we are concerned, no reference implementation neither of DP nor
IDP algorithms has been published. When studying and evaluating different
implementation alternatives, we have found, though, non-negligible issues on the
algorithmic details that have a considerable impact on the overall performance.
The contributions of this work can be summarized as:

– We analyze and evaluate alternative fast methods for the most critical op-
eration, establishing that a bad choice can degrade performance by 10x or
more.

– We parallelize the generation of splittings, the most time-consuming opera-
tion, and execute the problem on a shared-memory, multi-core, multi-thread
and multi-processor system.

– We identify the main performance bottleneck: both the sequential and par-
allel execution are limited by the lack of temporal and spatial locality of the
memory access pattern, and by the weak support for irregular and scattered
accesses provided by current memory hierarchies.

– We find out that the performance advantage of IDP versus DP is only realized
for large problems, when reducing memory bandwidth requirements pay off.

– We make our code publicly available at the following URL:
https://github.com/CoalitionStructureGeneration/DPIDP.

The paper is organized as follows. Section 2 introduces the CSG problem
and describes the state of the art on dynamic programming techniques. Section
3 analyzes implementation issues such as data representation, most frequent op-
erations and bottlenecks in a single core environment and proposes solutions to
reduce execution time. Section 4 studies how to parallelize the IDP algorithm
and Section 5 evaluates the performance of single and multi-threaded implemen-
tations. Finally, Section 6 concludes and outlines future work.

2 The coalition structure generation problem

In this section we describe what a Coalition Structure Generation (CSG) problem
is and how dynamic programming algorithms have addressed it to find an optimal
solution.

The CSG involves partitioning the set of all agents so as to maximise the
sum of the values of the chosen coalitions.

Considering a group of agents, the value associated to every possible coali-
tion is known or can be calculated. This set of values can be stored in a table.
Table 1 presents an example of the input data for a CSG problem among 4
agents. The goal of the CSG problem is to find the combination of disjoint coali-
tions that maximize the global value by aggregation. From Table 1 it is easy to
identify some preferred coalitions, for example it is obvious that the coalition
formed by {a2,a3} will never be part of the optimal since value[{a2,a3}]=36
<value[{a2}]+value[{a3}]=52.

C value[C] C value[C] C value[C]

{a1} 33 {a1,a3} 87 {a1,a2,a3} 97
{a2} 39 {a1,a4} 70 {a1,a2,a4} 111
{a3} 13 {a2,a3} 36 {a1,a3,a4} 100
{a4} 40 {a2,a4} 52 {a2,a3,a4} 132
{a1,a2} 87 {a3,a4} 67 {a1,a2,a3,a4} 151

Table 1: Coalition values for a CSG problem among 4 agents.

The DP[6] and IDP[7] are algorithms able to find an optimal solution to the
CSG problem. They explore the complete solution space with complexity O(3n).
IDP improves notably the performance and reduces the hardware requirements
in comparison to DP. The structure of both algorithms is very similar, since IDP
is a extended version of DP. In this section we describe first DP and then we
present the improvements provided by IDP.

To do so, we will use the following terminology:

– Agent (ax): A single agent, where x indicates the agent identifier.

– Agents (A): The set of all available agents. A = {a1, a2, . . . , an}.

– Coalition (C): C ⊆ A. C is a subset of A that contains the agents partici-
pating in a coalition. Its size is defined as the number of agents forming the
coalition.

– Split : The operation performing a binary partition of a coalition.
– Splitting : The result of the split operation. A splitting is a 2-tuple repre-

sented by (C1, C2), where |C1|,|C2| >0, C1 ∩ C2=∅.
– Coalition Structure (CS): A collection of disjoint coalitions whose union

yields the entire set of agents. CS ⊆ 2A where for any Ci, Cj ∈ CS,Ci

2.1 The DP algorithm

Given the input data, DP first evaluates all the possible coalitions of size 2. After
evaluating all the coalitions of a given size m, DP proceeds to evaluate all the
coalitions of size m + 1. This process is repeated until m is equal to the size of
the set of agents (|A|).

Algorithm 1 and Table 2 present the algorithm and a trace of a DP execution
with the input data of Table 1.

The DP algorithm (Algorithm 1) activity can be characterized by three
nested loops: (i) The outer loop, lines 1-14, where the coalition size is selected,
(ii) the intermediate loop, lines 2-13, where the coalitions of a fixed size are
generated, and (iii) the inner loop, lines 5-11, where every coalition is split and
evaluated. Moreover, the first splitting in the inner loop is generated by the
getF irstSplit function in line 4 and the rest by the getNextSplit function in
line 10. Lines 7-9 asses the value of the best splitting, which is stored in memory
in line 12.

Every time an m-sized coalition is selected, all the coalitions whose size is less
than m have already been evaluated. Therefore their optimal values are known
and DP can decide whether it is better to split the coalition or keep it as a whole.
By using this strategy, DP ensures that at the end of its execution, the optimal
coalition structure is found.

In table 1, the first column shows the size of the selected coalitions, which
grows until reaching |A|. For each size m selected, DP enumerates all the possi-
ble coalitions C (second column) and for each coalition C it knows its associated
coalition value value[C] (third column). Next, DP enumerates all the possible
splittings of each coalition (fourth column). Note that when m = 2, there is only
one possible splitting, whereas for larger values of m, the number of splittings
is also larger. Concretely, the total number of possible splittings for a coalition
of size m is 2m−1 − 1. For each splitting, the algorithm computes the sum of
the splitting member’s coalition values. If this is bigger than value[C], the split-
ting value becomes the best coalition value value[C]. Last column shows the
maximum value of a coalition and the coalition values of all its splittings.

2.2 The IDP algorithm

Although DP can find the optimal solution with a reasonable complexity, its
memory requirements are large and as shown in [7] DP performs redundant
calculation.

Algorithm 1 Pseudo-code of the DP algorithm

1: for m = 2→ n do
2: for C ← coalitionsOfSize(m) do .

(
n
m

)
iterations

3: max value← value[C]
4: C1 ← getF irstSplit(C)
5: while (C1) do . 2n−1 − 1 iterations
6: C2 ← C − C1

7: if (max value < value[C1] + value[C2]) then
8: max value← value[C1] + value[C2]
9: end if

10: C1 ← getNextSplit(C1)
11: end while
12: value[C]← max value
13: end for
14: end for

Splittings Value of splittings max
m C value[C] (C1, C2) value[C1] + value[C2]

2
{a1,a2} 87 {a1},{a2} 72 87
{a1,a3} 87 {a1},{a3} 46 87
{a1,a4} 70 {a1},{a4} 73 73
{a2,a3} 36 {a2},{a3} 52 52
{a2,a4} 52 {a2},{a4} 79 79
{a3,a4} 67 {a3},{a4} 53 67

3
{a1,a2,a3} 97 {a1},{a2,a3} 85

{a2},{a1,a3} 126 126
{a3},{a1,a2} 100

{a1,a2,a4} 111 {a1},{a2,a4} 112
{a2},{a1,a4} 112 127
{a4},{a1,a2} 127

{a1,a3,a4} 100 {a1},{a3,a4} 100
{a3},{a1,a4} 86 127
{a4},{a1,a3} 127

{a2,a3,a4} 132 {a2},{a3,a4} 106
{a3},{a2,a4} 65 132
{a4},{a2,a3} 92

4
{a1,a2,a3,a4} 151 {a1},{a2,a3,a4} 165

{a2},{a1,a3,a4} 166
{a3},{a1,a2,a4} 140
{a4},{a1,a2,a3} 166 166
{a1,a2},{a3,a4} 154
{a1,a3},{a2,a4} 166
{a1,a4},{a2,a3} 125

Table 2: Trace of execution of a problem of size 4.

IDP algorithm lessens this drawback.While DP generates all the possible
splittings of each coalition, IDP [7] introduces conditions to avoid the generation

and evaluation of a large amount of splittings. IDP explores a fraction of the
splittings explored by DP. This fraction only depends on the number of agents.
For problems from 22 to 28 agents we found IDP to explore between 38% and
40% of the splittings explored by DP. Algorithm 2 presents the pseudo-code of
IDP, which is very similar to the DP algorithm but altering lines 4-6 in order
to filter what are the splittings to be evaluated. In this version, IDPBounds
function at line 4 assesses the bounds on the coalitions’ size according to IDP
description.

Algorithm 2 Pseudo-code of the IDP algorithm

1: for m = 2→ n do
2: for C ← coalitionsOfSize(m) do .

(
n
m

)
iterations

3: max value← value[C]
4: (lower bound, high bound)← IDPBounds(n,m)
5: C1 ← getF irstSplit(C, lower bound)
6: while (sizeOf(C1) ≤ high bound) do
7: C2 ← C − C1

8: if (max value < value[C1] + value[C2]) then
9: max value← value[C1] + value[C2]

10: end if
11: C1 ← getNextSplit(C1, C)
12: end while
13: value[C]← max value
14: end for
15: end for

3 Single-thread implementation

In this section we analyze the operations of generating and evaluating splittings
inside the inner loop, which consume about 99% of the execution time. As seen in
the algorithms 1 and 2 the inner loop is characterized by two actions: The split-
ting operation and a comparison using data fetched from memory. We analyze
how these two actions are executed.

3.1 Splitting generation

The splitting generation problem can be reduced to the subset enumeration
problem, since each coalition splitting is composed by a subset, C1, and its
complementary, C2. Generating all the subsets C1 from a coalition C and then
calculating the complementary C2 = C − C1, though, would produce the same
splitting twice: once for each of the splitting subsets. We remove one element
from the coalition (the agent with the highest rank) when performing the subset
enumeration, so that the removed element is never part of the enumerated subset
and always belongs to its complementary.

There exist several ways of enumerating subsets [12], like banker’s sequence,
lexicographical order, and gray codes. Based on the description of IDP[7], the
banker’s sequence seems to be the enumeration technique employed by this algo-
rithm, since it generates the splittings in growing order of |C1|, and then simpli-
fies the filtering of splittings by its size. Figure 1a shows a scheme of the banker’s
sequence operation for C={a1,a4,a5,a6,a7}, and assuming that only coalitions
with |C1|=2 need to be evaluated. Note that element a7 is always assigned to
the complementary subset (lighted colour). The generation starts directly from
the first splitting of size |C1| = 2, follows with the remaining

(
4
2

)
− 1 subsets of

the same size, and stops before generating the first subset of size 3. The code
does not waste instructions generating useless subsets.

Fig. 1: a) Banker’s sequence versus b) lexicographical order.

When generating splittings in lexicographical order (see Fig. 1b), some fil-
tering code is required to check that the size of the splitting ranges between a
given pair of bounds in order to fit IDP specification. Execution resources are
wasted to generate splittings that are then discarded, and to perform the filter
check. In Fig. 1, only 6 out of 14 splittings are actually needed (note the check
and discard crossed signs).

Both methods were implemented using recurrent functions that calculate the
next splitting from the previous one. The lexicographical order was implemented
with a few number of very simple operations:

C1 ← (C1 + C∗∗) AND C,

where C∗∗ is the two’s complement of C, that can be precalculated for all the
splittings of a given coalition. The whole splitting code requires only 7 machine
code instructions in a current x86 ISA. On the other hand, our implementation
of banker’s sequence, an improved version of the algorithm published in [12],

required, on average, 6 times more instructions. More details about the imple-
mentation, like the usage of a special population count instruction for computing
|C1|, can be found in the published code.

3.2 Memory accesses

The coalitions and their associated values are stored in a one-dimensional array,
namely the values vector. A coalition is represented using an integer index where
the bit at position x of the index indicates that agent x is a member of the
coalition. The index determines the vector element containing the coalition value.
Using this representation, the input of the CSG problem fits into a vector of 2n−1
positions. With coalitions represented by 4-byte words, we can run problems up
to 32 agents.

All memory accesses correspond to reads from the vector of coalition values
performed in the inner loop of the algorithm, and a few writes on the intermediate
loop. The total number of data read operations done by the DP algorithm is
around 2×3n. As explained above, IDP evaluates only a subset of the splittings,
corresponding to 38%-40% of the read operations performed by DP.

The memory-level parallelism of the algorithm is moderate. The inner loop
recurrence can generate multiple independent read requests, without having to
wait for data, subject to storage availability for pending requests and for the
window of instructions blocked on those data.

The data-reuse degree of the algorithm is high. There are 2n elements in
the value vector, and so the average number of reads to the same data item
is ≈ 2×(3/2)n (≈100, 000 for n = 27). However, accesses to the same item are
scattered in time, specially when the algorithm analyzes medium- or large-size
coalitions.

The bad performance behavior of the memory access pattern arises for vectors
that do not fit into the processor’s cache. The vector size is 2n+2 bytes, which is
16 MBytes for n=22. For larger n’s an important amount of vector accesses will
miss the cache and will request a full 64-Byte cache block to DRAM. This creates
both latency and bandwidth problems. The moderate memory-level parallelism
helps hiding part of the DRAM latency but, as we will show later, an important
amount of this latency is exposed in the execution time.

4 Multi-thread implementation

This section analyzes the algorithm’s data workflow in order to find its potential
thread-level parallelism (TLP). Exploiting concurrency efficiently is not straight-
forward, and a new method to generate coalitions is devised. Finally, potential
performance problems are described.

4.1 Identifying sources of parallelism

The simplest and most efficient approach is always to parallelize the outer loop
of a program. DP and IDP, though, exhibit loop-carried dependencies on the

outer loop: the optimal values for coalitions of size m must be generated before
using them for generating the optimal values for coalitions of size m + 1.

The intermediate loop generates all the coalitions of a given size, and for
each coalition it analyzes all the splittings of certain sizes. Tasks correspond-
ing to coalitions are independent: they only modify the value associated to the
coalition, and only read values corresponding to coalitions of lower size. There-
fore, there cannot exist read-after-write (RAW) dependencies nor any other data
dependence among the tasks. However, the single-thread code was designed to
accelerate coalition generation by using an inherently sequential algorithm that
uses the previous coalition to generate the next one in lexicographical order. The
next subsection describes a method for breaking this artificial dependence.

4.2 Speeding up work distribution among threads

Assume we have t threads and we want each thread to evaluate a disjoint set
of coalitions. We must distribute work to assure good load balance, and do it
in a fast and efficient way. Table 3 illustrates the generation of all the possible
coalitions of size m=3 from a set of n=6 agents. The single-thread code im-
plements a sequential algorithm to generate in lexicographical order all

(
6
3

)
=20

coalitions, represented as bitmaps in the binary encoding columns of Table 3.
In practice, we must calculate cnt=

(
n
m

)
and then assign cnt/t coalitions to each

thread. Once a thread obtains its starting position in the coalition series, say k,
it can generate the whole range with the fast sequential method. But we need
an efficient strategy to generate the kth coalition without having to compute all
the previous coalitions from the beginning.

Order Encoding Coalitions Order Encoding Coalitions
(k) Bin Dec (k) Bin Dec
1 ...111 7 {a1, a2, a3} 11 ..111. 14 {a2, a3, a4}
2 ..1.11 11 {a1, a2, a4} 12 .1.11. 22 {a2, a3, a5}
3 .1..11 19 {a1, a2, a5} 13 1..11. 38 {a2, a3, a6}
4 1...11 35 {a1, a2, a6} 14 .11.1. 26 {a2, a4, a5}
5 ..11.1 13 {a1, a3, a4} 15 1.1.1. 42 {a2, a4, a6}
6 .1.1.1 21 {a1, a3, a5} 16 11..1. 50 {a2, a5, a6}
7 1..1.1 37 {a1, a3, a6} 17 .111.. 28 {a3, a4, a5}
8 .11..1 25 {a1, a4, a5} 18 1.11.. 44 {a3, a4, a6}
9 1.1..1 41 {a1, a4, a6} 19 11.1.. 52 {a3, a5, a6}
10 11...1 49 {a1, a5, a6} 20 111... 56 {a4, a5, a6}

Table 3: Coalitions generated using lexicographical order.

Algorithm 3 describes getCoalition(n,m, k), a function that generates the
kth coalition in lexicographical order of m elements from a set of n. The descrip-
tion is done recursively to help understand how it works, although the actual
implementation is iterative in order to improve its performance. The coalition
is created recursively, bit by bit, starting from the least significant bit and con-
sidering

(
n
m

)
possibilities. Around the first half of the possible coalitions have

the less significant bit set to 1. Concretely, if the requested rank, k, is lower
than or equal to h=

(
n−1
m−1

)
, then the bit is set to 1, and m is decremented by

one. Otherwise, the bit is set to zero, and the rank k is reduced to k − h. Each
recursive call decrements the number of bits to consider to (n− 1).

Algorithm 3 pseudocode of getCoalition(n,m, k)

1: if ((m == 0) OR (k == 0)) then
2: return 0
3: end if

4: h←

(
n− 1

m− 1

)
5: if (k ≤ h) then
6: return 1 + 2×getCoalition(n− 1,m− 1, k)
7: end if
8: return 2×getCoalition(n− 1,m, k − h)

4.3 Potential parallel performance hazards

The first and last iterations of the outer loop exhibit few TLP, since the number
of possible coalitions to be executed in parallel is determined by

(
n
m

)
, where

n is constant and m is the iteration number. So either small and high values
of m are compromising the efficiency of the parallel execution. We tuned the
implementation so that threads are launched in parallel only for iterations that
have a minimum amount of work. A minor problem is the need for a few number
of synchronization barriers at the end of every iteration of the outer loop. They
can be neglected, except for very small problem sizes.

An important performance issue is the occurrence of false cache sharing
misses. They occur when different threads update different positions in the vector
of values that happen to be mapped to the same cache line.

Finally, there is also the issue of true cache sharing. Threads generate values
for coalitions of size m that are stored into local caches. When all the threads
need to access those values for handling larger coalitions, data has to be moved
from local storage to all the execution cores.

5 Experimental results

The computer system used in our experiments is a dual-socket Intel Xeon E5645,
each socket containing 6 Westmere cores at 2.4 GHz, and each core executing
up to 2 Hardware threads using hyperthreading (it can simultaneously execute
up to 24 threads by Hardware). The Level 3 Cache or Last Level Cache (LLC)
provides 12 MiB of shared storage for all the cores in the same socket. 96 GiB of
1333-MHz DDR3 RAM is shared by the 2 sockets, providing a total bandwidth

of 2×32 GB/sec. The Quickpath interconnection (QPI) between the two sockets
provides a peak bandwidth of 11.72 GB/sec per link direction.

Fig. 2: Hardware configuration

Figure 2 shows a diagram of the Hardware configuration used. Note, that this
two-socket system has a Non-Uniform Memory Access (NUMA) configuration
where half of the global memory is directly attached to one socket, and the
other half to the other. Although for the programmer there is only one global
memory system, some memory requests have to travel from one socket to the
other, having its corresponding penalization in terms of CPU cycles.

Input data was created using a uniform distribution as described by [13] for
problem sizes n = 18 . . . 27. In all the experiments, data is stored in the first
memory system socket. This allows fast data access for all the threads in the
single-core execution and for half of the threads in the multi-core execution.

5.1 Single-thread execution

DP and IDP were executed using both the banker’s and lexicographical splitting
generation methods. Figure 3a plots the execution time in logarithmic scale for
the four algorithmic variants. Splittings are computed around 7x to 11x faster
using lexicographical order rather than banker’s sequence. This is due to the fact
that although the generation of the splittings using a banker’s sequence generates
less splittings, the lexicographical order generation is considerably faster. In fact,
the number of instructions executed by the processor is around 6 times lower
when using the lexicographical order technique.

Figure 3b represents the execution time of DP and IDP divided by 3n (algo-
rithmic complexity). This metric evaluates the average time taken by the pro-
gram to execute a basic algorithmic operation, in this case a splitting evaluation.

0.1

1.0

10.0

100.0

1000.0

10000.0

100000.0

1000000.0

18 19 20 21 22 23 24 25 26 27

ti
m
e	
(s
)	 l
og
	

Problem	 size	 (n)	

BAN+DP	
BAN+IDP	
LEX+DP	
LEX+IDP	

a) Execution time (log).

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

18 19 20 21 22 23 24 25 26 27

ti
m
e	
(n
s)
	 /
3n

	

Problem	 size	 (n)	

LEX+DP	

LEX+IDP	

b) Time / Complexity Θ(3n).

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

18 19 20 21 22 23 24 25 26 27

GB
/s
	

Problem	 size	 (n)	

LEX+DP	

LEX+IDP	

c) Effective Memory Bandwidth (GB/s).

Fig. 3: Experimental data (BAN: Banker’s sequence; LEX: Lexicographical order).

It is similar to the CPI (Cycles Per Instruction) metric, but at a higher level.
The metric helps identifying performance problems at the architecture level.
Figure 3b shows two different problem size regions: those that fit into the last
level cache (n<22), and those that do not. A small problem size determines a
computation-bound scenario, where DP slightly outperforms IDP, even when it
executes around 20% more instructions. The reason is that IDP is penalized by
a moderate number of branch mispredictions.

Large problem sizes determine a memory-bound scenario, where IDP amor-
tizes its effort on saving expensive memory accesses to outperform DP by 40-
50%. Figure 3c shows the effective memory bandwidth consumption seen by the
programs. The shape of the curves can be deduced from Figure 3b, but we are
interested on the actual values. The effective bandwidth ranges between 0.5 and
1.0 GB/sec. A small fraction of this bandwidth comes from the last level and
lower-level caches, and the remaining fraction comes from DRAM. Even con-
sidering the worst case described in section 3.3, that only 4 bytes out of the
64-Byte cache block are effectively used, it is still a very small value compared

to the peak 32 GB/sec. The conclusion is that DRAM latency is the primary
performance limiter. Results on the next subsection corroborate this conclusion.

5.2 Multi-thread execution

We focus our multi-thread analysis on IDP, which outperforms DP for interesting
problem sizes. We run IDP using t= 6, 12, and 24 threads. The case t=6 corre-
sponds with using a single processor socket. The case t=12 uses only one socket
but also exploits its hyperthreading capability. Finally, t= 24 is an scenario where
all 2 sockets have their 6 cores running 2 threads each, using hyperthreading.
Figure 4 shows the speedup compared to the single-thread execution. Again,
distinguishing between small and big problem sizes is useful.

0

1

2

3

4

5

6

7

8

9

18 19 20 21 22 23 24 25 26 27

Sp
ee
du
p	

Problem	 size	 (n)	

6	 threads	

12	 threads	

24	 threads	

Fig. 4: Single-thread IDP versus 6-, 12- and 24-thread IDP execution

The t=6 configuration provides a speedup of 5 for small problems, and lower
than 4 for large problems. The t=12 configuration further increases performance
around 60% for small problems, and 30% for bigger problems. The fact that
executing two threads per core does improve performance corroborates previous
latency limitations, since hyperthreading is a latency-hiding mechanism. It also
indicates that 6 threads do not generate enough cache memory and DRAM
requests to fully exploit the available cache and DRAM bandwidth.

The effective memory bandwidth achieved with 12 threads is around 2.5
GB/sec for the bigger problem sizes, or around 13 times lower than the peak
achievable bandwidth. Given the lack of spatial locality of DRAM accesses, we
are probably reaching the maximum bandwidth available for the pseudo-random
memory access pattern of the problem.

The t=24 configuration checks the benefit of using a second socket. Perfor-
mance is highly penalized for small problems, due to the overhead of communica-
tion traffic along the QPI links for both false and true cache sharing coherence.
On average, half of the data accessed by a thread is fetched from the other

socket. Compared to the single-socket scenario, where all data is provided from
local caches, performance drops up to 7 times for very small problems.

Large problems benefit very little from a second socket, with improvements
of nearly 10%. The advantage of the 2-socket configuration is that the available
DRAM bandwidth is duplicated, and the overhead due to coherence traffic is not
so important, given that most of the data is obtained from DRAM. Although
a benefit, the small performance gain does not justify using a second socket.
Again, the symmetric, scattered memory access pattern does not fit well with
the NUMA hierarchy. We are currently working on a way to partition data that
reduces communication between sockets.

6 Conclusions and future work

This paper presents an optimized implementation of the DP and IDP algorithm
and a novel contribution describing the first parallel version of DP and IDP.

Our implementations clearly outperform the state-of-the-art DP and IDP
algorithms. According to [14], they need 2.5 days to solve a CSG problem with
27 agents4. We obtain same order results (same problem in 27 hours) using a
single-threaded execution and a banker’s sequence as the splitting generation
algorithm.

Our best single-threaded implementation -using lexicographical order- solves
a same sized CSG problem in 5.8 hours and the multi-thread implementation
reduces execution time to 1.2 hours. Our implementation provide a significant
improvement over reported results and we have made available to the community
our source code.

We have analyzed the bottlenecks of DP and IDP. The pseudo-random mem-
ory access pattern lacks locality, and exploits the memory system capabilities
very inefficiently. The latency tolerance ability of multi-threading improves per-
formance on a multi-core processor. However, although a dual-socket NUMA
system is offering the better result for big problems, investing the same amount
in a single-socket multicore-system could provide a higher speedup than using a
a dual-socket NUMA architecture. The use of GPUs or accelerators with massive
thread parallelism will be analyzed in the future.

We also want to study alternatives for coalition indexing and storage that
provide higher locality, even at the expense of increasing instruction count, which
is not a performance limiter for large problems.

7 Acknowledgements

This research has been supported by MICINN-Spain under contracts TIN2011-
28689-C02-01, TIN2012-38876-C02-01 and the Generalitat of Catalunya (2009-
SGR-1434).

4 in some unspecified computer and using a code implementation that is not provided.

References

1. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation.
Artif. Intell. 101(1-2) (1998) 165–200

2. Sandholm, T.W., Lesser, V.R.: Coalitions among computationally bounded agents.
Artificial Intelligence 94 (1997) 99–137

3. Rassenti, S., Smith, V., Bulfin, R.: A combinatorial auction mechanism for airport
time slot allocation. The Bell Journal of Economics (1982) 402–417

4. Voice, T., Ramchurn, S.D., Jennings, N.R.: On coalition formation with sparse
synergies. In: AAMAS. (2012) 223–230

5. Sandholm, T., Larson, K., Andersson, M., Shehory, O., Tohmé, F.: Anytime coali-
tion structure generation with worst case guarantees. Arxiv preprint cs/9810005
(1998)

6. Yun Yeh, D.: A dynamic programming approach to the complete set partitioning
problem. BIT Numerical Mathematics 26 (1986) 467–474 10.1007/BF01935053.

7. Rahwan, T., Jennings, N.R.: An improved dynamic programming algorithm for
coalition structure generation. In: AAMAS (3). (2008) 1417–1420

8. Rahwan, T., Ramchurn, S., Jennings, N., Giovannucci, A.: An anytime algorithm
for optimal coalition structure generation. Journal of Artificial Intelligence Re-
search 34(1) (2009) 521–567

9. Rahwan, T., Jennings, N.: Coalition structure generation: dynamic programming
meets anytime optimisation. In: Proceedings of the 23rd Conference on Artificial
Intelligence (AAAI). (2008) 156–161

10. Michalak, T., Sroka, J., Rahwan, T., Wooldridge, M., McBurney, P., Jennings, N.:
A distributed algorithm for anytime coalition structure generation. In: Proceed-
ings of the 9th International Conference on Autonomous Agents and Multiagent
Systems: volume 1-Volume 1, International Foundation for Autonomous Agents
and Multiagent Systems (2010) 1007–1014

11. Sutter, H.: The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s Journal 30(3) (2005) 202–210

12. Loughry, J., van Hemert, J., Schoofs, L.: Efficiently enumerating the subsets of a
set. http://www.applied-math.org/subset.pdf (2000)

13. Larson, K.S., Sandholm, T.W.: Anytime coalition structure generation: an average
case study. J. of Experimental & Theoretical Artificial Intelligence 12(1) (2000)
23–42

14. Rahwan, T., Ramchurn, S.D., Dang, V.D., Giovannucci, A., Jennings, N.R.: Any-
time optimal coalition structure generation. In: AAAI. (2007) 1184–1190

