
1

Defeasible Argumentation-based Epistemic
Planning with Preferences
Juan C. L. Teze, Lluis Godo, Gerardo I. Simari

abstract. Many real-world applications of intelligent systems involve
solving planning problems of different nature, oftentimes in dynamic en-
vironments and having to deal with potentially contradictory informa-
tion, leading to what is commonly known as epistemic planning. In
this context, defeasible argumentation is a powerful tool that has been
developed for over three decades as a practical mechanism that allows
for flexible handling of preferences and explainable reasoning. In this
chapter, we first motivate the need to develop argumentation-based epis-
temic planning frameworks that can be leveraged in real-world applica-
tions, describe the related literature, and then provide an overview of a
recently-proposed approach to incorporate defeasible argumentation and
preferences into automated planning processes. In particular, the frame-
work incorporates conditional expressions to select and change priorities
regarding information upon which plans are constructed. We describe its
main properties, analyze its strengths and limitations using an illustra-
tive use case, and discuss several future research directions that can be
taken to further develop it.

1 Introduction

Planning is a research area within Artificial Intelligence (AI) that addresses
the problem of obtaining a set of actions to achieve a specific goal given a
description of the initial state of the world. Recently, the consideration of
epistemic elements in building a plan has revealed a useful new perspective
in the area: “Epistemic planning is the enrichment of planning with epistemic
notions, that is, knowledge and beliefs” [?; ?; ?; ?]. Various frameworks for
planning have been proposed allowing for a formalisation and mechanization of
knowledge-based reasoning in the planner itself. A central feature of classical
frameworks is that their domain descriptions assume a fully observable, static,
and deterministic world, which might lead to contradictions when the available
knowledge is incomplete or inconsistent. In [?], the author concludes that since
epistemic cognition is defeasible, a planning agent must be prepared to revise its
plans as soon as its beliefs change, and may need to acquire more information
through reasoning to solve a planning problem.

Defeasible argumentation is a form of reasoning about beliefs that can be
used to exploit the contents of knowledge bases in the context of possible incon-
sistencies [?; ?]. Specifically, the fundamental process in defeasible argumen-
tation is to confront reasons to support or dismiss a conclusion that is under

2 Juan C. L. Teze, Lluis Godo, Gerardo I. Simari

scrutiny. An analysis mechanism supports this process by obtaining arguments
for and against such conclusion, and then comparing those in conflict in order
to reach a decision regarding acceptance.

Several works have proposed using argumentation to enhance planning sys-
tems. Particularly, planning problems have been primarily addressed from two
points of view: Practical reasoning and Automated planning. In the context of
the former, i.e., reasoning about what to do next, a number of attempts have
been made to leverage argumentation [?]. There are many ways to engage
in practical reasoning, which make the task of formulating an argumentation-
based planning system more complicated, mainly when investigating more spe-
cific aspects of rationality [?]. Using and instantiating Dung’s argumentation
framework [?] has been the predominant approach in practical reasoning –
see, e.g. [?; ?] – while another research line [?; ?] closer to automated plan-
ning has explored how to use argumentation to guide the reasoning process.
In general, in the latter approaches defeasible argumentation is used as the
inference mechanism to reason about the preconditions and effects of actions
in a planner system, especially in dynamic domains dealing with incomplete
and contradictory information, which is often the case in real-world planning
scenarios.

Actually, to solve a planning problem, a planning system with an appropriate
set of actions should be provided. In classical planning, a general assumption
on the representation of these actions is that it must encapsulate all the possible
preconditions and effects that are relevant to solve the planning problem. Con-
sider for example a scenario where a service robot agent has ordered some food
from a restaurant and it is about to receive it at home by means of an action
“receiving a food delivery service at home”. A relevant effect can be “having a
food delivery box at home”. However, there could be other consequences that
could be obtained but considered irrelevant, and thus not included in the rep-
resentation of the action. For example, if the payment of the delivery service
is done at the moment with a debit card, the customer will automatically have
less money in her bank account. Therefore, instead of including all the possible
effects in the representation of the actions, the system could be provided with
a reasoning mechanism for obtaining those consequences that follow from the
effects of an action. For example, “the ordered food is at home” could be con-
sidered as a plausible consequence of the effect that “there is a food delivery
box at home”. To do so, besides having the action specified in the planner, a
possibility is to include extra knowledge in the form of a defeasible rule, such
as “having a food delivery box at home is a reason to believe that the ordered
food is at home”.

It is important to remark that if “the ordered food is at home” is considered
as an effect of the action, then it will be difficult to handle exceptions like “the
delivered food is not what was ordered”. However, this kind of problem can
be properly handled by argumentation formalisms. For example, “there is a
food delivery box at home but the delivered food is not what was ordered, is a

Defeasible Argumentation-based Epistemic Planning with Preferences 3

reason to believe that the ordered food is not at home”. In particular, classical
planning systems do not perform any type of reasoning over the effects of ac-
tions. In dynamic domains, it is a complex task to determine in advance what
the effects of actions are because the information is constantly changing and
depends on many factors. In this context, defeasible argumentation-based epis-
temic planners have been effectively applied in formalizing planning domains [?;
?; ?]; these approaches are characterized by the use of defeasible reasoning for
the epistemic tasks performed over the represented knowledge.

Classical planning aims at finding a sequence of actions that, starting from
an initial state, leads to a goal state. However, it is often the case that certain
approaches are focused not only on the final goal state after plan execution,
but also they attempt to address other important aspects, such as satisfying
users’ preferences [?], value-based selection of actions [?; ?], or complying with
norms imposed on the planner establishing what the system is required to do
under certain conditions [?]. More specifically, modeling user preferences with
explicitly-specified priorities has attracted the attention of many researchers.
However, and despite its importance in the reasoning process, most of the
existing argumentation-based planning systems do not provide additional ca-
pabilities for dynamically changing the preferences expressed by these priorities
when a plan is being constructed.

In this chapter, we survey the main approaches in the literature concerning
all the above-mentioned issues. However, the purpose of this survey is neither
to cover the whole range of argumentation-based planning approaches nor to
solve open questions or particular cases that have not been addressed so far;
thus, we do not aim to have an exhaustive coverage of the subject. The rest
of the chapter is structured in two main sections. In Section 2, we give an
overview of different approaches in the area of planning with argumentation
studied in the literature, while in Section 3 we present a description of a specific
approach to deal with the handling of (contextual) preferences when a plan is
formulated. In particular, we present the P-APOP algorithm proposed in [?],
and summarize a set of computational complexity results. Finally, in Section 4
we offer our conclusions and discuss several challenges for research and hurdles
that must be addressed on the path to obtaining fully working solutions.

2 Related Argumentation-based Planning Efforts

There are many challenging areas related to planning that have been addressed
in the literature, and there is clearly much work still to be done in addressing
epistemic planning issues. As a more general presentation of a set of epistemic
planning-related research questions, we propose a list of aspects to be consid-
ered when trying to solve complex planning problems – presented in Table 1 –
that motivate the criteria used to classify the different approaches presented in
the next section.

This section reports a summary of approaches focusing on the use of argu-
mentation in epistemic planning, and the handling of preferences. We will first

4 Juan C. L. Teze, Lluis Godo, Gerardo I. Simari

Research Questions

How can argumentation theory capture practical reasoning?

How can argumentation be exploited to guide the reasoning process, specifically for the
selection and organization of actions?

How can argumentation theory be leveraged for plan search in cooperative scenarios?

How can the relationship between an agent’s values and the construction of plans be
formalized?

How can a set of agents achieve a goal jointly following a same plan?

What is the course of action to adopt in the presence of different goals and norms?

How can argumentation theory be exploited to explain the results of planning systems?

How can the notion of preference be embedded in argumentation and epistemic planning
formalisms?

How can preferences be used to compute an optimal plan?

How can a planning system handle contextual preferences?

Table 1. A selection of the main research questions addressed by different lines
of work in epistemic planning.

briefly touch upon some works that combine argumentation with planning, and
then we focus particularly on works that incorporate the representation of and
reasoning with preferences in the formalism.

2.1 Planning with Argumentation

In many real-world planning applications, it is common to encounter situa-
tions where unresolved contradictory and/or incomplete information occurs.
Argumentation has become a very active research field because of its effective
computational capacity to capture and solve conflicts, and there have been
many research efforts towards the development of argumentation-based plan-
ning systems in the last two decades. In the following we discuss relevant
contributions in different types of argumentation-based planning formalisms.

Practical Reasoning. A number of attempts have been made to address how
argumentation theory can capture practical reasoning. Argumentation-based
practical reasoning employs the conflict resolution capabilities of argumenta-
tion theory to solve conflicts between beliefs, intentions, and desires. Different
approaches have dealt with these aspects; for instance, [?] introduces a for-
malism for agents following the BDI approach to reason about desires (gen-
erating desires and plans to achieve them). Argumentation-based proposals
have also been used to compute the set of intentions to be pursued, or the
resolution of incompatibilities among pursuable goals [?]. Motivated by the re-
quirements of autonomic computing systems, [?] proposes the architecture of an
Autonomous, Normative and Guidable agent (ANGLE) and its extended defea-
sible logic-based knowledge representation, including observations and motiva-
tional knowledge. In this formalism, the reasoning and decision-making tasks
adopt argumentative deliberation based on dynamic theories. Other works,
such as [?], follow the notion of argument schemes proposed by Walton [?].
Other approaches using argumentation in a normative environment were pro-

Defeasible Argumentation-based Epistemic Planning with Preferences 5

posed in [?; ?].

Automated Planning. Unlike argumentation-based approaches for practical
reasoning, some planning formalisms have exploited the use of argumentation as
a mechanism to guide the reasoning process, primarily concerned with the com-
putational process for the selection and organization of actions. One of the well-
known works on building a planner based on a defeasible reasoner was proposed
in [?], in which Pollock presents OSCAR, an implemented architecture whose
defeasible reasoner essentially performs a defeasible search for plans. In [?;
?], the authors introduce an argumentation-based formalism for constructing
plans using partial order planning techniques, called DeLP-based partial order
planning (DeLP-POP). In this approach, action preconditions can be satisfied
either by actions’ effects or conclusions supported by arguments, so actions and
arguments are combined to construct plans. Actually, DeLP-POP is an exten-
sion of the POP algorithm that considers actions and arguments as planning
steps and resolves the interferences that can appear. In [?; ?; ?], DeLP-POP is
extended to multi-agent cooperative planning, while [?] presents a planning sys-
tem based on DeLP to reason about context information during the construc-
tion of a plan – the system is designed to operate in cooperative multi-agent
environments. Each step of the construction of a plan is discussed among agents
following a proposed dialogue mechanism that allows agents to exchange argu-
ments about the conditions that might affect an action’s feasibility according to
their distributed knowledge and beliefs. Temporal defeasible reasoning has also
been studied in the planning literature, where for instance Pardo and Godo [?;
?] presented a distributed multiagent planning system for cooperative tasks.
The main feature of the proposal is the development of a planning approach
based on t-DeLP, an extension of DeLP for defeasible temporal reasoning. The
authors also propose a dialogue-based algorithm for plan search in cooperative
scenarios.

The work of [?] concerns epistemic planning problems, focusing on an ar-
gumentation-based approach. The paper discusses first steps in developing an
approach to handle contextual preferences that can dynamically change based
on knowledge-based priorities. They introduce a generic architecture, indepen-
dent of the underlying formalism and reasoning mechanisms, as well as a set
of guidelines to support knowledge and software engineers in the analysis and
design of planning systems leveraging this preference handling capacity. The
authors also present a concrete instantiation based on Possibilistic Defeasible
Logic Programming [?]. Recently, [?] presents a revised, refined, and extended
version of [?], where the main criteria employed to decide which actions to keep
during the construction of plans, by using contextual conditional-preference ex-
pressions associated with each action, are formally defined. It also discusses
possible interferences that can appear when such expressions are used, and it
presents an extension of the APOP algorithm [?] for this setting with contextual
preferences.

Following the idea of value-based argumentation [?], there have also been

6 Juan C. L. Teze, Lluis Godo, Gerardo I. Simari

approaches that focused on providing grounds for formalizing the relationship
between values and actions, and integrating defeasible argumentation into the
agent reasoning process. For instance, in [?] the values that an agent holds are
used to compare plans, and several comparison strategies are formally defined.

Planning Problems in Multiagent Environments. In multiagent envi-
ronments, agents may need to jointly follow a course of action in order to
achieve a goal. The different viewpoints that agents have on the environment
may cause disagreements, and reaching an agreement requires the alignment
of viewpoints. Argumentation provides natural ways for conflict resolution in
collaborative decision making. Many works have advanced the state of the
art in argumentation-based multiagent planning. In [?; ?] the authors inves-
tigate the use of argumentation to solve conflicts between planning propos-
als caused by inconsistency between beliefs. Another interesting work that
combines the benefits of argumentation in multiagent environments empha-
sizes the use of defeasible temporal reasoning for negotiation dialogues [?;
?]; an extended and revised version of this work is proposed in [?]. In the same
vein, [?] introduces a proposal that models the argumentation process as a
planning process, and obtains an argumentation-based negotiation plan. In [?;
?], the authors present a multiagent extension of the DeLP-based Partial Order
Planning (POP) framework [?] for cooperative planning. Apart from individual
goals, the system may require to follow societal norms that promote systems
that follow the right behavior. The work of [?] addresses the question of what is
the best course of action to adopt in the presence of different goals and norms,
proposing a solution based on argumentation schemes for deliberative dialogues
in multiagent environments.

Explainable Planning. Explainable AI Planning [?] is a fairly recent research
area that involves explaining the outcome and results of planning systems. The
relevant question here is how can argumentation theory be exploited to explain
the results of planning systems. Argumentation has been widely recognized by
the Explainable AI community [?] as a powerful logical model of reasoning that
is capable of explaining the behavior of a system by linking any system decision
to the evidence supporting it. Some recent approaches like [?] build around a
set of argument schemes that create arguments that give explanations for a plan
and its key elements (i.e., actions, states, and goals). In [?], the explanations
of justifiability of the best plan are generated using an argumentation-based
dialogue. A proposal for resolving planning problems with assumption-based
argumentation (ABA) was presented in [?]. This work proposes to generate
explanations for both planning solutions as well as failed plans extracted from
dispute trees [?]. The work of [?] presents a prototype system implementation
based on ASPIC [?] for building arguments that justify why a plan should
be executed. Two alternatives for plan explanation are considered: visual
plan explanation via graphical representations, and textual representation of a
plan in a natural language created through a dialogue-based approach, where
participants take turns to make utterances that are used to establish whether

Defeasible Argumentation-based Epistemic Planning with Preferences 7

some argument (and therefore its conclusions) is justified.

2.2 Representation and Reasoning with Preferences

In many planning approaches [?; ?; ?], modeling user preferences with explicitly-
specified priorities plays a significant role, especially in decision-making pro-
cesses. This priority information is beneficial in the selection of appropriate
knowledge, and guides the planning process according to user needs. In this
section, we discuss how the notion of preference has been embedded in argu-
mentation and epistemic planning formalisms.

2.2.1 Preferences in Defeasible Argumentation

Defeasible Argumentation formalisms have received increased attention as an
advanced mechanism to formalize essential parts of what is known as common-
sense reasoning. One of the main issues the argumentative reasoning process
must address is confronting reasons to support or dismiss a claim that is under
scrutiny. For this purpose, there is a need for an analytical mechanism that
follows well-understood steps, starting by obtaining arguments and then com-
paring those in conflict to determine which arguments prevail; this last step
requires a comparison, which in turn needs a preference criterion on the set
of arguments to evaluate the strength or importance of arguments in order to
reach a decision.

Despite the clear significance of the outcome of a comparison among ar-
guments, there is neither a unique way of establishing a preference relation
between arguments nor a consensus in the argumentation literature regard-
ing which criterion should be used; for a comprehensive overview, see for in-
stance [?]. For example, some approaches choose to use a criterion that con-
siders an explicit order over rules [?; ?], whereas others consider an order over
literals [?; ?; ?] or even social values [?]. In [?], the authors extend the work
of [?] in order to take into account multiple values and various kinds of pref-
erences over values. In [?], the preference is defined in terms of the strength
or credibility of those agents that contribute with pieces of information to the
argument. Based on the idea of prioritized norms, [?] shows different variants
of lifting priorities over norms to priorities on arguments themselves, allowing
to capture a preference order over arguments. Differently from [?], where an
extension of ASPIC+ is proposed to use preferences to resolve attacks, [?] intro-
duces ABA+ considering preferences on assumptions rather than (defeasible)
rules. In [?], the author presents a formalism in Dung’s abstract argumentation
framework for metalevel argumentation-based reasoning about preferences be-
tween arguments, and applies it to Prakken and Sartor’s argument based logic
programming with defeasible priorities (ALP-DP).

Other approaches, such as [?; ?; ?], define a criterion based on a general-
ized specificity principle. Furthermore, there exist other formalisms that use
a combination of several fixed and predefined criteria [?; ?; ?; ?], while others
simply consider a general preference relation [?; ?]. Usually, in current argu-
mentation formalisms, the definition of the argument comparison criterion is

8 Juan C. L. Teze, Lluis Godo, Gerardo I. Simari

either fixed and embedded in the system, or it is modular. See the works of [?;
?; ?] for reviews of argument preference criteria present in the argumentation
literature.

2.2.2 Preferences in Epistemic Planning

In the work of [?], the authors argue that users’ preferences are of great im-
portance in selecting a plan for execution when the space of solution plans is
dense. While there is a significant body of research on preference within clas-
sical planning theory [?; ?; ?; ?; ?], most of the research in epistemic planning
has particularly been focused on methodologies and issues related to computa-
tional efficiency. Relatively limited efforts have been dedicated to addressing
other important aspects, such as generating high quality plans satisfying users’
preferences and constraints. For example, [?] presented a first proposal of a
language for specification of preferences for planning problems and included a
logic programming encoding of the language based on Answer Set Program-
ming (ASP). The language allows to handle four different preference categories:
about a state, an action, a trajectory, or multi-dimensional preferences. Re-
cently, [?] proposed an automated planning approach for the task of planning
with epistemic preferences, which incorporates weighted preferences and com-
putes the optimal plan by maximizing the sum of weights of the preferences
satisfied. In [?], the authors propose the use of a preference-based planning al-
gorithm that represents the argument selection criterion into the agent’s mental
state as preferences. The algorithm uses the agent’s preferences in order to se-
lect the best actions.

Regarding approaches using argumentation, [?] focused on providing grounds
for formalizing the relationship between values and actions, and for integrating
defeasible argumentation into the agent reasoning process. In this formalism,
the main idea is that of using values to compare plans, and several compar-
ison strategies are formally defined. The authors propose to arrange values
hierarchically, and exploit an agent’s preferences over values using such a hier-
archy. Finally, as already mentioned above, [?] and its extension [?] deal with
defeasible argumentation-based epistemic planning with an approach to han-
dle contextual preferences that can dynamically change via knowledge-based
priorities.

The research efforts in the area discussed in this section are summarized in
Figure 1. As we have mentioned, the formalization and use of mechanisms for
handling preferences have not been widely adopted in the epistemic planning
literature. In fact, tackling the fundamental question of whether the notion
of preference can be embedded in argumentation and epistemic planning for-
malisms makes it a particularly challenging research topic. In this context,
in the next section we provide some details of the approach developed in [?],
which takes that direction.

Defeasible Argumentation-based Epistemic Planning with Preferences 9

Reference PR AP ME EP P

Pollock et al.[?] ✓

Rahwan et al.[?] ✓

Garćıa et al.[?] ✓

Bench-Capon et al.[?] ✓

Belesiotis et al.[?] ✓ ✓

Amgoud et al.[?] ✓

Monteserin et al.[?] ✓ ✓ ✓

Pardo et al.[?] ✓ ✓

Toniolo et al.[?] ✓ ✓

Shams et al.[?] ✓ ✓ ✓

Fan et al.[?] ✓ ✓

Pardo et al.[?] ✓ ✓

Teze et al.[?] ✓ ✓

Oren et al.[?] ✓ ✓

Shams et al.[?] ✓

Teze et al.[?] ✓ ✓

Teze et al.[?] ✓ ✓

Parsons et al.[?] ✓ ✓

Figure 1. Comparison of argumentation-based planning approaches in terms
of five categories, where check marks indicate a focus on the respective cate-
gory. Abbreviations: PR (Practical Reasoning), AP (Automated Planning),
ME (Multiagent Environment), E (Explainability), and P (Preferences).

3 Argumentation-based Epistemic Planning with
Preferences

With the goal of providing more details about a specific approach, in this
section we present an overview of an epistemic planning framework proposed
in [?; ?], which is a formalism that incorporates defeasible argumentation as
a reasoning mechanism in the construction of plans. The main novelty of
this epistemic planning formalism centers on introducing a way to select the
priority assignment mechanism to modify the preferences among different pieces
of defeasible knowledge as the planner reasons and chooses which actions to
add to a plan. In the following, we start by describing a general architecture for
defeasible argumentation-based epistemic planning, and then show a P-DeLP-
based particular instantiation.

10 Juan C. L. Teze, Lluis Godo, Gerardo I. Simari

Figure 2. The Epistemic Planning Framework based on Argumentation (figure
reproduced from [?]).

3.1 An Argumentation-based Epistemic Planning Framework

The development of planning systems with defeasible reasoning and preferences
can be a very complex task involving several stages toward obtaining the final
system. In [?], instead of a specific solution, a set of guidelines is introduced
to support knowledge and software engineers in the analysis and design of
planning systems, focused on five central stages:

1. Planning domain analysis: In complex and dynamic environments, plan-
ning systems eventually may require dealing with contradictory and in-
complete knowledge about the domain. In this context, structured argu-
mentation has played a crucial role in capturing and representing this
type of knowledge. This stage is aimed at providing a detailed and
precise description of the planning domain and the user’s preferences,
which includes: a knowledge base in a formal language expressing do-
main information, and a specification of a preference relation over pieces
of knowledge. These preferences reflect the importance or priority of the
information that arguments built in the reasoning process will contain.

2. Planning problem analysis: In planning, the classic problem involves find-
ing a sequence of actions that, starting from an initial state, leads to a goal
state. A precise description of the planning problem requires a deeper
analysis to identify its properties. Several dimensions need to be consid-
ered, such as whether multiple actions can be taken concurrently or if
only one action is possible at a time, whether the objective is to reach a
designated goal state or to maximize a reward function, the presence of
one agent or multiple agents, or whether actions have associated proba-
bilities. These issues should be carefully analyzed during this stage. Also,
as we have already mentioned, it is often the case that certain planning
approaches are concerned not only with the final goal state after plan
execution, but also with attempting to address other important aspects,
such as users’ preferences [?] or value-driven actions [?].

3. Reasoning mechanism: This mechanism is in charge of interpreting the
available domain knowledge, generating arguments, and then comparing
those in conflict to decide on acceptance. A reasoner contains three main
components: an Inference Mechanism, which carries out inferences based
on available knowledge to be used in the construction of plans; a Conflict
Solver, which establishes a preference relation over the set of arguments
through an argument comparison criterion; and a Semantic Analyzer,
which aims at determining the acceptability of arguments by considering

Defeasible Argumentation-based Epistemic Planning with Preferences 11

the interaction between them. This last process can be done declara-
tively via conditions that a set of acceptable arguments must meet [?], or
procedurally with a specific algorithm [?].

4. Planning mechanism: Responsible for the general algorithm driving the
main planning system functionality, which consists in coordinating the
interactions among the components mentioned above, and obtaining a
sequence of actions to achieve the desired goals making use of defeasible
reasoning in the process. Most of the proposals in the literature generally
consider one of the following two approaches: either the whole plan is
viewed as an argument, and then defeasible reasoning is performed over
complete plans, or it is used as a tool for determining which actions are
applicable in a given state. Planning algorithms are also mainly based
on two approaches: progression planning and regression planning. The
former searches forward from a given initial state until a goal state is
reached, while the latter tries to improve this situation by beginning
from the goal state and generating the plan in inverse order.

5. Output design: This step includes effective ways to interpret the process
by which the planning decisions are made. Plan explainability is essen-
tial for helping users to understand and improve trust in plans [?], and
such explanations can take on several forms. Visual plan explanation [?]

presents a graphical view of a plan, with nodes representing actions, edges
linking them, and different filtering options available to the user. Other
approaches [?] involve a textual description of the plan in natural lan-
guage. Related works [?] use argumentation for providing mechanisms to
construct arguments that can be useful to justify why a plan should be
executed.

Figure 2 schematically illustrates an epistemic planning framework based on
the methodological guidelines described above.

In the rest of the section, we will sketch a particular instantiation of the
above generic epistemic planning framework presented in [?]. We first recall
the P-DeLP argumentation system upon which the planning formalism is built,
then we present the planning formalism itself along with related algorithms,
and finally we proceed to show computational complexity results associated
with this framework.

3.2 P-DeLP: An Extension of the DeLP Argumentation
Framework Dealing with Ordinal Preferences

Possibilistic Logic (see e.g., [?] for full details) is a logic of qualitative uncer-
tainty, alternative to other more numerical uncertainty models like the prob-
abilistic one, where what really matters is the likelihood order induced on
propositions by the uncertainty values they take, and not the absolute val-
ues themselves. It is thus an ordinal model that is very suitable for handling
preferences [?; ?; ?]. Possibilistic Defeasible Logic Programming (P-DeLP) [?;

12 Juan C. L. Teze, Lluis Godo, Gerardo I. Simari

?] is a structured argumentation framework that extends the DeLP frame-
work [?] by allowing to attach weights to argument conclusions. The ultimate
answer to queries is based on the existence of warranted arguments computed
through a qualitative dialectical analysis. The top-down proof procedure of
P-DeLP is based on the one used in Defeasible Logic Programming.

In P-DeLP, a knowledge base represents domain knowledge and user prefer-
ences encoded as prioritized DeLP rules. Given a set of literals L, a weighted
clause is a pair (R;ω), where R is a rule L← L1 , . . . , Lk or a fact L (i.e.,
a rule with empty antecedent), L,L1, . . . , Lk ∈ L, and the weight ω ∈ [0, 1]
expresses the priority or preference degree of the clause, interpreted as a lower
bound for the conditional necessity degree Nec(L | L1 ∧ . . . ∧ Lk) in the case
R = L← L1 , . . . , Lk , or a lower bound for the necessity degree Nec(L) in the
case R = L. Note that, by considering Nec(L | L1 ∧ . . . ∧ Lk) we are following
the usual notational conventions in Logic Programming [?] that regards the set
of literals in the body of a clause L1, . . . , Lk as a conjunction of these literals.
Also, following [?], P-DeLP rules can be represented as schematic rules with
variables; as usual in Logic Programming, schematic variables are denoted with
initial uppercase letters. To keep the usual terminology in defeasible reasoning,
we distinguish between strict and defeasible clauses: a clause (R;ω) is referred
to as strict if ω = 1 (top priority) and defeasible otherwise (i.e., if ω < 1). The
higher the weight ω, the higher the priority of the clause. Given a set P of
weighted clauses, often referred to as a P-DeLP program or simply a program,
we will distinguish the set of all the clauses in P considered as strict, denoted
Π, and the set of all the defeasible clauses in P, denoted ∆. When useful,
we will write P = (Π,∆) to refer to the set of weighted clauses, discriminating
strict and defeasible clauses.

Example 1 The following application domain was introduced in [?], and con-
sists of a scenario where a cooking service robot was designed to prepare a meal
considering the user’s particular preferences. Consider the following P-DeLP
program modeling the robot’s knowledge.

Π1 =

{
(open now(superfour); 1)

(∼good products(superfour); 1)

}

∆1 =

{
(suggest(S)← open now(S); 0.2)

(∼suggest(S)← ∼good products(S); 0.7)

}
Observe that the set Π1 of strict clauses has two facts, and the set ∆1 has

two defeasible rules, which can be interpreted as follows: “S is a supermarket
that is open now (open now(S))” is a reason to suggest it, whereas if “S does
not offer good products (∼good products(S))” then there exist reasons against
suggesting it. Moreover, the weights attached to the defeasible rules indicate
that the second rule has more priority or is more preferred than the first rule.
Recall that weights in P-DeLP are purely ordinal, so what really matters here
is the preference ordering they induce.

Defeasible Argumentation-based Epistemic Planning with Preferences 13

We will use the symbol “ |∼” to denote the possibilistic inference meta-relation
between a program P and a weighted literal (L;ω), i.e., P |∼ (L;ω) will express
that from P it is possible to build a sequence (L1;ω1), . . . , (Ln;ωn) of weighted
literals such that (a) (Ln;ωn) = (L;ω), and (b) each (Li;ωi) with i < n either
belongs to P or has been obtained by the application of the following generalized
modus ponens rule

(H ← H1 , . . . ,Hk ;β)

(H1; γ1), . . . , (Hk; γk)

(H; min(β, γ1, . . . , γk))
[GMP]

where (H ← H1 , . . . ,Hk ;β) ∈ P and all weighted literals (H1; γ1), ..., (Hk; γk)
appear before (Li;ωi) in the sequence. Note that this rule is sound with respect
to the semantics of necessity degrees as introduced for instance in [?]. Indeed,
if Nec(Hi) ≥ γi for i = 1, . . . , k and Nec(L | H1∧ . . .∧Hk) ≥ β, then Nec(H) ≥
min(β, γ1, . . . , γk).

1

A P-DeLP program P = (Π,∆) is said to be contradictory if, for some
atom a, P |∼(a;ω) and P |∼(∼a;β), with ω > 0 and β > 0. Since the strict
part Π represents non-defeasible information, we will assume that Π is non-
contradictory itself. When reasoning from a contradictory program P, the
P-DeLP system builds arguments from P.

An argument for a literal L with necessity degree ω > 0, denoted ⟨A, (L;ω)⟩,
is a minimal, non contradictory set of defeasible rules A such that together
with the program’s strict knowledge allows the derivation of L with a given
weight ω (the smallest weight of the clauses involved in the derivation), that
will be regarded as the conclusion supported by the argument A.

Example 2 The following arguments ⟨A1, (suggest(superfour); 0.2)⟩ and
⟨A2, (∼suggest(superfour); 0.7)⟩ can be built from the P-DeLP program P1

presented in Example 1, where:

A1 =
{

(suggest(superfour)← open now(superfour); 0.2)
}

A2 =
{

(∼suggest(superfour)← ∼good products(superfour); 0.7)
}

and the literals (suggest(superfour); 0.2) and (∼suggest(superfour); 0.7) are
obtained by applying the GMP inference rule presented above to the strict facts
in Π1 and the weighted rules in A1 and A2, respectively.

Given a program program P and a literal L as input, the answer of the
P-DeLP system to the query L is based on checking for the existence of war-
ranted arguments for L, computed through an exhaustive dialectical analysis

1Recall that a necessity measure Nec on a propositional language L is a mapping Nec :
L → [0, 1] such that Nec(⊤) = 1,Nec(⊥) = 0, and Nec(φ∧ψ) = min(Nec(φ),Nec(ψ)). Then,
the corresponding (qualitative) notion of conditional necessity is usually defined as follows:
Nec(φ | ψ) = Nec(¬ψ ∨ φ) if Nec(¬ψ ∨ φ) > Nec(¬ψ), and Nec(φ | ψ) = 0 otherwise.

14 Juan C. L. Teze, Lluis Godo, Gerardo I. Simari

that involves the construction and evaluation of arguments that either support
or interfere with the query under analysis. That is, the warrant process evalu-
ates whether there exists for some weight α > 0 an argument ⟨A, (L;α)⟩ from
P that cannot be defeated; see [?; ?] for more details about the entire warrant
process.

3.3 A P-DeLP-based Planning Framework Instantiation

Having prioritized information can particularly be useful to guide the reasoning
process in a planning problem. One of goals in [?] was to allow the adjustment
of the priority weights on rules to be used by P-DeLP’s inference mechanism
when selecting actions in the planning process. The priority degree associated
with a defeasible rule is then context-dependent, where the notion of context
is understood – in a general sense – as conditions favoring a particular priority
criterion.

Given a finite set of rules R, a priority criterion prc is formally defined as an
assignment ρprc : R→ [0, 1) of priority degrees to the rules in R. For simplicity,
we will write prc(R) instead of ρprc(R), and given a set of (weighted) defeasible
rules ∆ and a priority criterion prc, we will write ∆prc to denote the set of
rules resulting from updating the weights of the rules of ∆. If prc assigns the
minimal weight 0 to a defeasible rule R (i.e., if prc(R) = 0), this means that
R plays no role at all under criterion prc. On the other hand, note that by
definition it is not allowed to assign a maximal weight 1 to a (defeasible) rule
since in that case it would become a strict rule.

Example 3 Consider the defeasible rules of the P-DeLP program P1 from
Example 1, and the two criteria pref rocio and pref aldo prioritizing rules ac-
cording respectively to the preferences of Rocio and Aldo, who are homeowners.
The following are the corresponding sets of updated rules according to these
criteria:

∆pref rocio =

{
(suggest(S)← open now(S); 0.6)

(∼suggest(S)← ∼good produts(S); 0.4)

}

∆pref aldo =

{
(suggest(S)← open now(S); 0.2)

(∼suggest(S)← ∼good produts(S); 0.9)

}

Since arguments rely on defeasible knowledge, when they are evaluated it
can be the case that there exist arguments supporting contradictory literals,
so that a particular argument comparison strategy to deal with the conflicting
arguments is required. A specific strategy presented in [?] relies on comparing
the weights of arguments. Using this strategy and the priorities of Example
3 specified in ∆pref rocio, the argument ⟨A1, (suggest(superfour); 0.6)⟩ is pre-
ferred over the argument ⟨A2, (∼suggest(superfour); 0.4)⟩, since A1 provides
a greater weight for the conclusion than A2.

One of the features of the planning framework we describe in this section is a

Defeasible Argumentation-based Epistemic Planning with Preferences 15

mechanism that dynamically modifies preferences (or priorities) among pieces
of defeasible knowledge depending on the current state of the world the planner
is acting upon, that will be described below. In the planning system, a state
of the world Ψ is represented as a consistent set of literals, considered to hold
true.

Example 4 The following consistent set of facts can represent a possible state
of the world in a given moment:

Ψ4 =

lunchtime

open now(superfour)

superM (superfour)

∼good products(superfour)

recipe(pastaPuttanesca)

,

where it is lunch time, superfour is a supermarket that is open now but does
not offer good products, and that a recipe for preparing pasta puttanesca is
available.

Defeasible argumentation is used for reasoning over the preconditions to
execute actions. Indeed, a set of domain defeasible rules ∆ together with a set
Ψ of literals describing the current state of the world define a P-DeLP program
(Ψ∗,∆), where Ψ∗ = {(L, 1) | L ∈ Ψ}, upon which the planner system can
perform defeasible reasoning about whether preconditions of a given action are
warranted. We will denote by warrL(Ψ,∆) the set of literals warranted by the
program (Ψ∗,∆).

To do so in a specific context, the planning system can use a particular prior-
ity order over the defeasible knowledge that will be obtained after evaluating a
given expression. The idea is to associate to every action a suitable conditional
expression that will select, by means of guards, the priority criteria to be used
in each given context depending on the world’s current state.

A guard is a set of literals γ, and it is satisfied by a state Ψ when γ ⊆ Ψ. In
its simplest form, a conditional-preference expression E can be just a priority
criterion prc, and in that case the priority assignment corresponding to this
criterion is applied over defeasible rules. In general, E can be of the form
E = [γ : E1;E2], where γ is a guard and where E1 and E2 can be in turn
either priority criteria or further conditional expressions. In such a case, if E
is evaluated, and γ is satisfied in the current state Ψ (i.e., γ ⊆ Ψ), then E1 is
evaluated; otherwise, E2 is evaluated. This recursive evaluation procedure is
applied until a priority criterion is obtained.

Example 5 Let us consider the following conditional preference about the two
priority criteria introduced in Example 3:

� “If it is lunch time, use Rocio’s preferences, otherwise use Aldo’s prefer-
ences”,

16 Juan C. L. Teze, Lluis Godo, Gerardo I. Simari

This informal statement can be captured with the following conditional-preference
expression:

E1 = [{lunchtime} : E2;E3],

where the (non-conditional) expressions E2 and E3 stand for

E2 = pref rocio,

E3 = pref aldo.

Consider now the state Ψ4 introduced in Example 4. It is clear that the guard
“lunchtime” is satisfied by the state Ψ4, and thus the result of evaluating E1 at
Ψ4 is the priority criterion E2 = pref rocio.

Having defined what conditional-preference expressions are, they can be used
to formally define the set of actions a planner system may use to change the
world and achieve its goals. Three elements specify an action A: its precon-
ditions P, its consequences X, and the preferences E under which P will be
evaluated.

An action is a triple A = ⟨X,P,E ⟩, where X = {X 1,X 2, . . . ,X n} is a
consistent set of literals representing the consequences of executing A, P =
{P1,P2, . . . ,Pn} is a set of literals representing the preconditions that need
to be satisfied before A can be executed, and E is a conditional-preference ex-
pression representing the preferences under which to evaluate preconditions P.
We will use the following notation for actions:

{X 1 ,X 2 , . . . ,X n}
(A,E)←−−− {P1 ,P2 , . . . ,Pn}.

Intuitively, given a context represented by a state Ψ and a defeasible knowl-
edge base ∆, an action A = ⟨X,P,E ⟩ specifies that “if all preconditions of A
are warranted by the argumentation system (Ψ,∆prc), where prc is the criterion
obtained by evaluating E at Ψ, then after executing A the postconditions X
will be added to the state Ψ”.

Example 6 Consider the application domain presented in Example 1, and the
conditional-preference expressions of Example 5. The actions that the robot can
perform are the following:

A6 =

{food prod ordering} (order food products,E1)←−−−−−−−−−−−−−− {recipe(R), superM (S), suggest(S)}

{ing ready} (search storage,E1)←−−−−−−−−−−− {recipe(R), storage(R)}

{ing ready} (receive food products,E2)←−−−−−−−−−−−−−− {food prod ordering}

{homemade meal} (cooking,E1)←−−−−−−− {ing ready}

These actions can be interpreted as follows:

— order food products: ordering food products from a supermarket. There
must exist a supermarket available for making an order.

Defeasible Argumentation-based Epistemic Planning with Preferences 17

— search storage: searching for the correct ingredients from the house stor-
age. The ingredients in the recipe must be in the storage.

— receive food products: receiving the supermarket’s products at home. There
must exist a food product order.

— cooking: cooking at home. All of the recipe’s ingredients must be available.

Apart from the domain knowledge to reason during the planning process,
the planner will have a set of actions that will be available for modifying the
world.

Formally, a preference-based planning domain is a triple (∆,C,A) where:

− ∆ is a set of defeasible rules.

− C is a set of priority criteria over rules of ∆.

− A = {A1,A2, . . . ,An} is a set of actions, where for each A ∈ A, and
A = ⟨X,P,E ⟩, such that for every prc in E it holds that prc ∈ C.

As already mentioned, checking whether an action can be executed involves
checking its applicability, i.e., checking whether the literals of the set of pre-
conditions can be warranted. After an applicable action is executed, the state
itself is consistently modified with each effect after removing any possible con-
flict. The new state resulting from executing an action A in the state Ψ will be
denoted by ΨA = (Ψ \ X) ∪ X, where X is the set of the complemented literals
in X.

Example 7 Consider the set of defeasible rules ∆1 defined in Example 1, the
set of criteria C3 = {pref rocio, pref aldo} of Example 3, and the set of ac-
tions A6 presented in Example 6. Suppose the robot’s planning system has the
following domain (∆1,C3,A6) and the state Ψ4 presented in Example 4, where:

Ψ4 =

lunchtime

open now(superfour)

superM (superfour)

∼good products(superfour)

recipe(pastaPuttanesca)

.

Consider now the action order food products in A6 and the priority criterion
pref rocio obtained after evaluating E1. This action is applicable in Ψ4 ac-
cording to the priorities defined by pref rocio because one of its preconditions,
recipe(pastaPuttanesca), is in Ψ4 and its other precondition, suggest(superfour),
belongs to warrL(Ψ4,∆pref rocio) since there exists a non-defeated argument for
⟨A1, (suggest(superfour); 0.6)⟩ where:

A1=
{

(suggest(superfour)← open now(superfour); 0.6)
}

18 Juan C. L. Teze, Lluis Godo, Gerardo I. Simari

The resulting state of executing the action order food products in state Ψ4 is
then the following:

Ψsel recipe(pastaPuttanesca) = (Ψ4 \ X) ∪ X =

lunchtime

open now(superfour)

superM (superfour)

∼good productse(superfour)

recipe(pastaPuttanesca)

food prod ordering

where X = {food prod ordering}.

Since the execution of an applicable action leads to a new state, another
action could be applicable at this new state, and so on. A sequence S =
[A1,A2, . . . ,An] will be regarded as an applicable sequence of actions at a state Ψ
if (1) A1 is applicable at Ψ, and (2) every action Ai, 2 ≤ i ≤ n, is applicable in
(...(ΨA1)...)Ai−1 . We will use ΨS or Ψ[A1,...,An] as a shorthand for (...(ΨA1)...)An . In
fact, the main aim of any planning system is to find a sequence of actions that,
starting from an initial state, leads to a state where a given goal is satisfied.

A preference-based planning problem is a tuple (Ψ,∆,C,A,G), where:

— Ψ is a consistent finite set of weighted literals representing an initial state,

— (∆,C,A) is a preference-based planning domain,

— G is a consistent finite set of literals representing the system’s goals.

A solution to a preference-based planning problem is an applicable sequence
of actions such that when executed in an initial state, it leads to a state that
satisfies the conditions in G.

Example 8 Consider the following preference-based planning problem T =
(Ψ4,∆1,C3,A6,G8), where

— Ψ4 is the state presented in Example 4,

— (∆1,C3,A6) is the planning domain presented in Example 7,

— G8 = {homemade meal}

A possible solution for this planning problem is the plan:

S1 = [select recipe, search storage, cooking]

since S1 is a sequence of applicable actions at Ψ4, and G8 ⊆ ΨS1 .

So far, we have presented a planning formalism that integrates preferences
into the construction of plans. In particular, the approach provides the possi-
bility of expressing contextual preferences under which the preconditions of a

Defeasible Argumentation-based Epistemic Planning with Preferences 19

specific action should be evaluated. To encode these preferences, conditional
priority expressions are used, allowing the user to specify possibly different
priority criteria depending on the state of the world. In the next section,
we present a partial order planning algorithm that considers the conditional-
preference expressions formalized above.

3.4 Argumentation in Partial Order Planning with Contextual
Preferences

The formalism described above can decide whether a plan is a solution to
a preference-based planning problem, but it does not describe how to con-
struct such a plan for achieving the goals of a planning system. In the follow-
ing, an extension of the APOP [?] algorithm, called P-APOP (Argumentative
Partial Order Planning with Preferences), is introduced to build plans using
conditional-preference expressions. We will first show an illustrative example
of how a complete plan incorporating arguments and actions is obtained in
P-APOP before we go into the algorithm specifics in Section 3.5.

The P-APOP algorithm has as input the system’s goals and an initial state,
and outputs a partial-order plan that is a solution for the planning problem.
That is, the planner starts with an initial partial plan consisting of a start step
whose effects encode the initial state and a finish step whose preconditions en-
code the goals to be achieved, in the sense of aiming at having them warranted
through the argumentation process. The initial plan is then incrementally com-
pleted with new steps until all the preconditions of these steps are warranted.
Intuitively, this process generates a new partial plan whenever a new step is
considered. Two types of steps are identified: action steps, that represent the
execution of an action, and argument steps, that provide arguments to support
the preconditions of some action step. Unlike actions, arguments are not only
used to support some plan step, but they are also used to interfere or support
other arguments in the plan.

Figure 3 shows a sequence of partial plans and how a complete plan is ob-
tained by means of actions and arguments for the preference-based planning
problem (Ψ4,∆1,C3,A6,G8) presented in Example 8. The preconditions of
the finish step represents the system’s goals G8 and the effects of the start step
encode the initial state Ψ4. In the graphical representation, action steps are
depicted by square nodes labeled with the action name. The literals appear-
ing below an action step represent the action’s preconditions, and the literals
appearing above represent its effects. Moreover, the literal that appears on
the right-hand side of an action step represents the selected priority criterion
obtained from the conditional-preference expression associated with the action.
Argument steps are represented by triangles labeled with the argument name.
The literal at the top of the triangle is the conclusion of the argument. On the
other hand, the solid arrows represent causal links of the plan, and they are
used to link an effect of an action step with a precondition of another action
step or with a literal in the base of an argument step. The solid arrows that
link the conclusion of an argument step and a precondition of an action step

20 Juan C. L. Teze, Lluis Godo, Gerardo I. Simari

represent support links of the plan. The ordering constraints are represented
by dashed arrows. These constraints allow an order to be established between
steps, whereas causal and support links allow to identify the source of each
literal in a plan.

In Figure 3-(a), the finish action step has one unsatisfied precondition
(homemade meal). The action cooking is the only one available that can be
used to satisfy this precondition. Thus, cooking is added (Fig. 3-(b)) to the
plan by the planning process, and its precondition becomes a subgoal to be
achieved. Observe that ing ready is achieved by two action steps: search storage
and receive food products. If search storage (Fig. 3-(c)) is chosen, a new step
is added; now, recipe(pastaPuttanesca) and storage(pastaPuttanesca) must be
satisfied as preconditions. The literal recipe(pastaPuttanesca) is satisfied by the
start step, but none of the available actions achieve storage(pastaPuttanesca),
and from the rules in ∆pref rocio, it is not possible to build an argument for
storage(pastaPuttanesca) either. In that case, the algorithm fails in finding a
step to achieve a subgoal, so the control is returned to the point in the algorithm
where the choice was made. Now receive food products (Fig. 3-(d)) is chosen, a
new step is added, and the precondition food prod ordering must be satisfied.
The literal food prod ordering is consequence of the action order food products;
therefore, the corresponding step order food products (Figure 3-(e)) is added
to the plan. The literals recipe(pastaPuttanesca) and superM (superfour) are
satisfied by the start step, and from the rules in ∆pref rocio, where pref rocio is
the priority criterion used after evaluating E1, it is possible to build argument
⟨A1, (suggest(superfour); 0.6)⟩ supporting (suggest(superfour); 0.6), as well
as ⟨A2, (∼suggest(superfour); 0.4)⟩, which attacks the former (for the detailed
structure, see Example 2). Then, argument ⟨A1, (suggest(superfour); 0.6)⟩ is
selected since it has a greater weight and the literal in the base of the rule
body conforming A1 is achieved by the start step, and thus a plan is finally
formulated.

Note that if the criterion pref aldo were selected, order food products would
not be applicable since A2 would have a greater weight than A1, and under this
criterion suggest(superfour) would become non-warranted – consequently, no
solution plan could be formulated. This exemplifies the fact that the criterion
selected for a specific action and the information considered for such selection
are very relevant in the argumentative reasoning process, since the use of a
different criterion can change the warrant state of an action’s preconditions,
clearly affecting its applicability.

As a final remark, note that the planning process does not establish a single
specific sequence of actions, but rather focuses on defining a set of ordering con-
straints, specifying which actions must be executed before others. To determine
whether a partial-order plan is a solution for a preference-based planning prob-
lem, it is necessary to first establish a correspondence between partially- and
totally-ordered plans by applying a topological sorting to derive a total-order
solution, as usual in the partial-order planning paradigm. Given a totally-

Defeasible Argumentation-based Epistemic Planning with Preferences 21

homemade_meal

finish

start start

finish

homemade_meal

Action step

Argument step

Causal link

Ordering

constraint

cooking

homemade_meal

ing_ready

pref_rocio

(a) (b)

finish

homemade_meal

cooking

homemade_meal

ing_ready

pref_rocio

start

(c)

finish

homemade_meal

cooking

homemade_meal

ing_ready

pref_rocio

start

(d)

receive_food_ products

ing_ready

food_prod_ordering

pref_rocio

finish

homemade_meal

cooking

homemade_meal

ing_ready

pref_rocio

start

(e)

receive_food_ products

ing_ready

food_prod_ordering

pref_rocio

order_food_products

food_prod_ordering

recipe(pastaPuttanesca), superM(superfour),
suggest(superfour)

pref_rocio

suggest(superfour)

∼ suggest(superfour)

Figure 3. Partial plans for Example 8.

22 Juan C. L. Teze, Lluis Godo, Gerardo I. Simari

ordered sequence of action steps Seq derived from a particular partial plan,
where each action step is consistent with the ordering constraints of the corre-
sponding plan, we will denote with Plan(Seq) = [A1,A2, . . . ,An] the sequence
of actions obtained by replacing each action step in Seq with its corresponding
action. Note that start and finish steps are not included in Plan(Seq) because
they do not correspond to the execution of any action – they are only required
to represent the initial state and goals of the problem. Finally, a partial-order
plan is a solution to a preference-based planning problem T when the sequence
of actions Plan(Seq) = [A1,A2, . . . ,An] is a solution to T .

3.5 The P-APOP Algorithm

In P-APOP, finding a partial plan consists in completing a plan by adding
steps to achieve goals, as illustrated in Figure 3. For a better understanding
of the P-APOP algorithm, in this section we operationally describe its main
algorithms.

The P-APOP algorithm starts with an initial plan and seeks to complete it
with new steps, attempting to resolve the threats that could appear. These
threats appear when the effect of a new action added in the plan is to delete
a literal satisfying a precondition already solved by other action steps. In this
sense, when involving actions and arguments to construct plans, different types
of threats can arise. In [?], the authors identify different types of threats that
could arise in argumentation-based planning and propose methods to resolve
each of them. A new type of interference is introduced in [?] when condi-
tional expressions are used: an action might have interferences with the guards
appearing in these expressions. Thus, the P-APOP algorithm first builds a
null plan, which consists of six empty sets containing: action steps, argument
steps, ordering constraints, subgoals, causal links, and support links. Then,
it attempts to complete it with the recursive procedure complete plan (see
Algorithm 1) until all the steps’ preconditions are warranted.

To achieve its goal, besides the initial state Ψ and the goals G, function
complete plan considers ∆ and A as input parameters. The set ∆ contains
defeasible rules whose weights will be possibly changed by the use of a different
priority criterion when new action steps are added to the plan. For convenience,
it is assumed that the initial weights of the rules in ∆ are provided by a certain
distinguished priority criterion in the set C of criteria the system works with.
The procedure complete plan begins with an unsatisfied subgoal; then, it is
necessary to identify those steps that can be used to achieve such a subgoal.
Towards this end, the procedure get steps is in charge of building plan steps
to support an unsatisfied subgoal. The set Steps contains either actions in A,
or a set of argument steps for SubGoal built from ∆prc under a given criterion
prc. If no argument can be built, then only actions are considered. Note that
if the algorithm fails in finding a step to achieve a subgoal, the backtracking
point is updated and the control is returned at the point in the algorithm where
a step choice (statement choose) was made.

Once the set Steps has been built, a step is chosen and the sets included in

Defeasible Argumentation-based Epistemic Planning with Preferences 23

Plan are updated. As we have already mentioned, after a new step is added to
the plan, new threats could occur. The procedure resolve plan will consider
all steps in the plan to detect possible interference cases that can appear and
try to resolve each of them. This particular function checks four different types
of threats involving arguments and actions:

� action-action: A precondition L is threatened by an action step A if the
complemented literal L is an effect of A.

� action-argument : Let ⟨A, (L;α)⟩ be an argument supporting a precon-
dition of an action step Aj ; an action step Ai threatens the argument
⟨A, (L;α)⟩ if an effect of Ai negates any literal present in the set of all
literals that appear as bodies of rules in the argument ⟨A, (L;α)⟩. Step Ai

comes before ⟨A, (L;α)⟩.

� argument-argument : Let ⟨A, (L;α)⟩ be an argument added to a plan to
support the precondition of an action step A; then, ⟨A, (L;α)⟩ is threat-
ened by an argument ⟨B, (Q;β)⟩ if ⟨B, (Q;β)⟩ is a defeater for ⟨A, (L;α)⟩,
and ⟨B, (Q;β)⟩ is ordered to appear before ⟨A, (L;α)⟩ in the plan.

� guard-action: Let E be a conditional-preference expression. The guard
γ in E is threatened by an action step A if one of its effects negates a
literal present in γ, and the satisfaction state of such a guard becomes
non-satisfied.

Different threat resolution methods may be applied for each kind of threat,
such as including new ordering constraints for moving the cause of the threat
to a harmless position or eliminating the threat with a counterargument or a
new action step. A detailed description of the algorithms that deal with these
problems can be found in [?; ?; ?]. Note that unresolved threats involve back-
tracking, which implies removing the last added step from Plan, and considering
pending alternatives. The basic idea behind P-APOP is to search through a
plan space, which can be characterized as a tree where each node represents a
partial-order plan. If a failure occurs, the algorithm backtracks to the parent
node. Note that the rollback process involved in the backtracking step requires
identifying any links, ordering constraints, subgoals, and dependency tree as-
sociated with the failed step, and removing them without changing the rest of
the plan.

Progress through the P-APOP algorithm consists of analyzing partially com-
plete plans and modifying them in a way that brings them closer to a solution.
It is easy to see that any linear plan that satisfies a partially ordered plan is
such that all action step preconditions are necessarily satisfied, and backtrack-
ing ensures that the search space is eventually exhausted.

Summary of Complexity Results. After showing how the P-DeLP system
can be considered together with partial-order planning techniques to consider
arguments as planning steps, and sketching the P-APOP algorithm for con-
structing plans, we now focus on a major issue that arises in plan construction

24 Juan C. L. Teze, Lluis Godo, Gerardo I. Simari

Algorithm 1 Function to complete plan

1: function complete plan(Plan,∆,A,Ψ): Plan
2: if Plan.SubGoals = ∅ then return Plan;
3: end if
4: choose SubGoal from Plan;

5: Steps := get steps(SubGoal,Plan,∆,A,Ψ);
6: if Steps = ∅ then fail;
7: end if
8: choose Step from Steps;

9: if Step is an action step or Step is an argument step then update Plan
10: end if
11: resolve threats(Plan,∆);
12: complete plan(Plan,∆,A,Ψ);

13: end function

processes, which is related to the computational requirements that they must
satisfy. Thus, understanding the inherent complexity of the reasoning tasks
is crucial towards efficient implementations of defeasible argumentation-based
planning systems. In that respect, the following decision problem is studied:

Does there exist a plan P such that, executed starting in state Ψ,
arrives at goal G following priorities C and satisfies the constraints
imposed by ∆ and A?

Here we summarize from [?] both data and combined complexity results of
query answering in the context of P-DeLP in order to analyze the difficulty
of resolving preference-based planning problems under a variety of conditions.
These results are based in turn on the work of [?], where the author provides
several complexity results for SATPLAN – the decision problem of establishing
whether an instance of propositional planning is satisfiable – and several of
its restricted versions. These results, in combination with the those for DeLP
reported in [?; ?], are leveraged for this analysis.

Figure 4 illustrates several complexity results for a hierarchy of different
planning problems, and shows how the computational complexity varies from
PTIME to EXPTIME, depending on different restrictions that can be con-
sidered. The results for SATPLAN are summarized in the first complexity
column reproduced from [?], whereas the main data and combined complexity
results for P-DeLP (the decision problem of whether a literal is warranted) are
given in the second column, and they are direct consequences of those in [?;
?]. Finally, the third column gives the complexity results for the preference-
based planning problem under each set of restricted versions. For a more
detailed discussion on these results, see [?].

Defeasible Argumentation-based Epistemic Planning with Preferences 25

Hierarchy of Planning Problems

* preconds
* postconds

* preconds
1 postconds

2 +preconds
2 postconds

* preconds
* +postconds

1 +precond
2 postconds

1 precond
* postconds

* +preconds
1 postcond

1 precond
1 +postcond

1 preconds
* postconds
k goals

0 precond
* postconds

Planning P-DeLP Preference-based
planning

PSPACE-complete

NP-hard

NP-complete

PTIME

EXPTIME
[combined]

co-NP-hard
[combined]

NP
[data]

PTIME
[data]

Complexity

EXPTIME,
PSPACE-hard

[combined]

DP-hard
[combined]

NP-complete
[data]

PTIME
[data]

Figure 4. Overview of complexity results for a variety of problems (figure
reproduced from [?]).

4 Conclusions and Perspectives

In this chapter, we have been mainly concerned with a defeasible argumentation-
based approach to epistemic planning. This is a relatively recent field involving
aspects of automated planning, knowledge representation, and defeasible rea-
soning. In order to develop theoretical formalisms and planning systems that
are both expressive and practically efficient, it is necessary to combine the state
of the art from all these areas. Over the years, for instance, particular attention
has already been paid in the literature to efforts towards capturing more and
more complex and challenging planning settings than the classical one such as
planning under uncertainty, with preferences or multi-agent planning.

More specifically, in this chapter we have first provided main motivations
for the need to use argumentation in the context of planning systems. Then,
we have given an overview of relevant works on argumentation-based epistemic
planning, focusing particularly on approaches arising in four research fields:
practical reasoning, automated planning, multi-agent planning, and explainable
planning. This was followed by a discussion of the use of preferences in both
defeasible argumentation and planning formalisms. Finally, we presented an
overview of a specific preference-based planning system, which combines partial
order planning with defeasible reasoning.

Looking forward, we can identify several topics and research directions in
the area of defeasible planning. We now briefly discuss some of the ones we
find particularly interesting:

26 Juan C. L. Teze, Lluis Godo, Gerardo I. Simari

� The study of planning processes as search through a space of plans natu-
rally lends to analytical studies of computational complexity. Analyses of
aspects related to efficiency in the use of resources are of great importance,
but little progress has been made in this direction in argumentation-based
planning. Much work can still be done in the realm of algorithms and
complexity, such as studying sub-problems for which efficiency guarantees
can be established.

� Incorporating humans in the planning loop, especially in collaborative
settings, presents several important challenges that must be addressed.
Explainable planning seeks to build trust and transparency when inter-
acting with humans; thus, even though explainability is not a new topic,
it is another promising research line in the realm of epistemic planning.

� While defeasible planners have been effectively applied in different do-
mains, it is important to achieve implementations with empirical evalua-
tions in real settings, and compare obtained results with other approaches
from the literature in terms of effectiveness and efficiency. There are many
opportunities in this line of work.

� The P-APOP algorithm does not leverage heuristics, so another promis-
ing direction to analyze in the future is the adaptation of the algorithm to
include different heuristic methods that allow the reduction of the search
space and, consequently, the overall computational cost.

� In abstract argumentation frameworks, the specification of different se-
mantics encodes different criteria of acceptability of (sets of) arguments.
Establishing a correspondence between our framework and such argu-
mentation semantics, and their associated properties, is a promising line
of work that can serve to investigate how the selection of the best plan(s)
can be based on well-established properties.

� Conditional-preference expressions constitute a key component in the
argumentation-based planning framework we have described in Section 3
to decide which actions to keep while constructing plans. A detailed
study of such expressions and properties that characterize them for ra-
tional decision-making is an interesting open task for future research.

� Another important topic is the relationship between the notion of threat
and attack present in the argumentation literature. On the other hand,
it would also be especially interesting to study how to incorporate values
into defeasible rules based on rationality principles, like the ones proposed
by [?]. This is a challenging objective for future research.

� Finally, the study of other preference representation models and tools
– such as operators for combining or prioritizing contexts – is also a
challenge that deserves attention.

Defeasible Argumentation-based Epistemic Planning with Preferences 27

These research directions are only a few of the ones that stand out; the goal
of this chapter was to describe an area that shows promising early results, but
with many opportunities for both basic and applied research and development.

Acknowledgements

The authors are indebted to Guillermo R. Simari for inspiring discussions.
This work was funded in part by Universidad Nacional del Sur (UNS) under

grants PGI 24/ZN057 and PGI 24/N055, Consejo Nacional de Investigaciones
Cient́ıficas y Técnicas (CONICET) under grant PIP 11220210100577CO, Agen-
cia Nacional de Promoción Cient́ıfica y Tecnológica, Argentina under grant
PICT-2018-0475 (PRH-2014-0007), and Universidad Nacional de Entre Ŕıos
(UNER) under grant PDTS-UNER 7066). Godo acknowledges partial sup-
port by the Spanish project LINEXSYS (PID2022-139835NB-C21) funded by
MCIN/AEI/10.13039/501100011033.

Juan C. L. Teze
Fac. de Cs. de la Adm., Universidad Nacional de Entre Ŕıos (UNER)
Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET)
Email: carlos.teze@uner.edu.ar

Lluis Godo
Artificial Intelligence Research Institute (IIIA)
Spanish National Council for Scientific Research (CSIC)
Email: godo@iiia.csic.es

Gerardo I. Simari
Department of Computer Science and Engineering, Universidad Nacional del
Sur (UNS), Institute for Computer Science and Engineering (ICIC UNS-CONICET),
Argentina, and School of Computing and Augmented Intelligence, Arizona
State University, USA
Email: gis@cs.uns.edu.ar

