
Proving the equivalence of Action-GDL and DPOP

Technical Report RR-IIIA-2008-04

Abstract

Distributed Constraint Optimization Problems
(DCOPs) are a general framework that can model
a large class of Multi-agent Coordination Problems
(MCPs). We propose a novel message-passing algo-
rithm, the so-called Action-GDL, as an extension to
the Generalized Distributive Law algorithm to efficiently
solve MCPs. We show the generality of Action-GDL by
proving that it has DPOP, the low-complexity, state-of-
the-art algorithm to solve DCOPs, as a particular case.
Finally, we provide empirical evidences to illustrate
that Action-GDL can outperform DPOP in terms of
computation, communication and parallelism.

1 Introduction

Multi-agent Coordination Problems (MCPs), also
called distributed multi-agent decision making problems,
are a class of problems in MAS focusing on how to coordi-
nate agents’ actions in order to yield a global desired be-
haviour for the MAS. Distributed Constraint Optimiza-
tion Problems (DCOPs) are an extension of Constraint
Optimization Problems (COPs) that can model a large
class of MCPs [5].

State-of-the-art complete algorithms to solve DCOPs
adopt two main approaches: search and dynamic pro-
gramming. Search algorithms, like ADOPT [3], require
linear-size messages, but an exponential number of mes-
sages. Dynamic programming algorithms, represented
by the DPOP algorithm and its extensions [6], only re-
quire a linear number of messages, but their complexity
lies on the message size, which may be very large.

In this paper, we formulate a new algorithm, the so-
called Action-GDL, that takes inspiration on the GDL
algorithm [1], extending and applying it to MCPs. GDL
is a general message-passing algorithm that exploits the
way a global function factors into a combination of lo-
cal functions generalizing a large family of well-known
algorithms (e.g. Viterbi’s, Pearl’s belief propagation, or
Shafer-Shenoy algorithms). Therefore, GDL has a wide
range of applicability. In our case, the rationale to apply
(and extend) GDL is that a DCOP requires the maxi-
mization of a global function resulting from the combi-
nation of local functions.

In order to ensure optimality and convergence,
Action-GDL must arrange, likewise GDL, the global
function to optimise into a distributed junction tree
(DJT) structure [2]. For this purpose, we introduce the
Distributed Junction Tree Generator (DJTG) algorithm
at the pre-processing phase of Action-GDL. DJTG is
a message-passing algorithm, based on the one formu-
lated in [4], that allows agents to distributedly compile a
DJT keeping any distribution of relations among agents.
Therefore, DJTG creates a DJT that adapts to the un-
derlying distributed nature of the problem.

Thereafter, we show how DPOP, the low complexity,
state-of-the-art algorithm to solve DCOPs is a particular
case of Action-GDL. To do so, we: (1) prove that given a
pseudotree there is a DJT such that Action-GDL mimics
DPOP execution; and (2) show how the DJTG algorithm
can compile, given the pseudotree, this DJT distribut-
edly. Moreover, we provide empirical evidence to show
that the generality of Action-GDL can be exploited to
outperform DPOP in terms of amount of computation,
communication, and parallelism.

This paper is structured as follows. Firstly, we pro-
vide a definition of DCOP (section 2) and the notation
we will use through out this paper (section 3). Section
4 introduces Action-GDL, as well as its connection with
GDL. Then, in section 6, we prove that Action-GDL
extends DPOP (described in section 5). Section 7 in-
troduces the DJTG algorithm and section 8 shows how
the DJTG algorithm can distributedly compile a DJT
such that Action-GDL mimics DPOP execution. Next,
section 9 provides some evidences of how to exploit the
generality of Action-GDL by showing how it can out-
perform DPOP when solving the same DCOPs. Finally,
section 10 draws some conclusions.

2 DCOP

Here we introduce the Distributed Constraint Opti-
mization Problem (DCOP), an extension to the Con-
straint Optimization Problem (COP). DCOPs can model
a large class of MCPs [5]. These problems consist of a
set of variables, each one taking on a value out of a finite
discrete domain. Each constraint in this context has a
set of variables as input specifying a cost, namely a rela-
tion. The goal of a COP algorithm is to assign values to
these variables so that the total utility is maximized. A

1

DCOP [6, 3] is an extension to a COP where variables are
distributed among agents. Let X = {x1, . . . , xn} be a set
of variables over domains D1, . . . ,Dn. Let r : Dr → <+,
where Dr is the projection of the joint domain space
D = D1 × . . . × Dn over variables in the domain of r,
be a utility relation that assigns a utility value to each
combination of values of its domain variables. Formally,
a DCOP is a tuple 〈A,X ,D,R, α〉 where: A is a set of
agents; X is a set of variables; Dn is the joint domain
space for all variables; R = {r1, . . . , rp} is a set of utility
relations; and α : X → A maps each variable to some
agent.

The objective function f is described as an aggrega-
tion (typically addition) over the set of relations. For-
mally:

f(d) =
p∑
i=1

ri(dri) (1)

where d is an element of the joint domain space D and
dri is an element of Dri . Solving a DCOP amounts to
choosing values for the variables in X such that the ob-
jective function is maximized (minimized).

In a DCOP each agent receives knowledge about all
relations that involve its variable(s) in addition to their
domains. In general, DCOP algorithms do not impose
any restriction regarding the number of variables that
can be assigned to each agent or the arity of the rela-
tions. However, although all algorithms we refer to in
this paper can deal with n-ary relations, for the sake of
simplicity we mainly restrict them to unary and binary
relations. Therefore, we will refer to unary relations in-
volving variable xi ∈ X as ri, and to binary relations
involving variables xi, xj ∈ X as rij .

A DCOP with binary relations is typically represented
with its primal-constraint graph, whose vertices stand for
variables and whose edges stand for binary relations, as
shown by the example depicted in figure 1 (a). DCOPs
can also be represented with its dual-constraint graph,
whose vertices stand for relations and whose edges link
relations that share some variable in their domains, as
shown by the example depicted in figure 1 (b).

x1

x2

x3 x4

r
1
2

r
2
3

r34

r 2
4

r
1
4

(a) Primal graph

r14

r12

r23

r34

r24

(b) Dual graph

x4

x2

x1 x3

r
1
2 r 2

3

r2
4

r
3
4

r
1
4

(c) Pseudotree

Figure 1: Different DCOP representations

3 Notation

Next we provide the definitions of a collection of func-
tions and operators that we shall employ throughout the
rest of this paper. Henceforth, given some variable set
X ⊆ X , DX will stand for the joint domain space of
variables in X. Furthermore, for exemplary purposes we
assume that each domain Di contains constant values
c1i , . . . , c

ni
i .

Definition 1 (DV) The domain variable function DV
returns the domain variables of a given set of relations.
Ex: DV ({r31}) = {x3, x1}, DV ({r31, r34}) = {x1, x3, x4}.

Definition 2 (Complementary variables) Given a
set of variables X and a relation r, we define the com-
plementary variables of X by r as the set of variables in
r that are not in X . Formally, X̄r = DV (r) \X.

Definition 3 (Utility message) A message from
agent ai to agent aj is a utility message over X ⊆ X ,
if the information sent is a utility relation over DX .
Henceforth, we shall denote that utility relation as µij.

Definition 4 (Assignment) Given a set of agents X ∈
X , an assignment σ over X sets a value to each variable
xk ∈ X and sets free the remaining variables.
Ex: X = {x1, x2, x3}, σ an assignment over X, σ(x1) = c21,
σ(x3) = c53, x2 is free in σ

Definition 5 (Value message) A message from agent
ai to agent aj is a value message over X ⊆ X if the
information sent is an assignment over X. Henceforth,
we shall denote such assignment by σij.

The combination operator joins the knowledge repre-
sented by two relations into a single one by adding their
values.

Definition 6 (Combination) Let r, s be two relations
and Dr⊗s = ×xk∈DV ({r,s}) Dk be their joint domain space.
The combination of r and s (noted r ⊗ s) is a utility
relation over Dr⊗s such that (r ⊗ s)(d) = r(dr) + s(ds)
for all d ∈ Dr⊗s, where dr ∈ Dr and ds ∈ Ds are the
projections of d over the domains of relations r and s
respectively.
Ex: (r13 ⊗ r14)(c21, c

5
3, c

1
4) = r13(c21, c

5
3) + r14(c21, c

1
4).

We can readily generalize the combination op-
erator over a finite set of relations:

N
{r1,...,rm}

=

r1 ⊗ (r2 ⊗ . . . (rm−1 ⊗ rm) . . .).

The summarization operator sums up the utility that
a relation contains over a set of variables. Thus, the
summarization operator over a relation r and a set of
variables Xassesses the r maximum utility for the vari-
ables in X.

2

Definition 7 (Summarization) The summarization
operator of relation r over a set of variables X
is a utility relation over DXsuch that (

M
X

r)(dX) =

max
dX̄r∈DX̄r

r(dX , dX̄r).

Ex: (
M
{x3}

r13)(c23) = max
k∈D1

r13(k, c23).

Notice that we can employ the summarization operator
by specifying the variables to eliminate from a relation
as follows

M
\X

r =
M
X̄r

r =
M

DV (r)\X

r.

Definition 8 (Restriction) The restriction of a rela-
tion r by an assignment σ over X is a utility rela-
tion over DX̄r such that (5

σ
r)(dX̄r) = r(dX , dX̄r) where

dX ∈ DX contains the values set by σ to the variables in
X.
Ex: X = {x3}, σ(x3) = c23, (5

σ
r13)(c11) = r13(c11, c

2
3).

It is straightforward to generalize the restriction op-
erator over a finite set of assignments: 5

{σ1,...,σm}
r =

5
σ1

(. . . (5
σm

r) . . .).

4 The Action-GDL Algorithm

Notice that our objective is to solve MCPs, and in
particular DCOP problems, namely to maximize some
objective function, such as the one in equation 1, when
the problem is distributed among agents. For this pur-
pose, we propose to extend GDL [1].

4.1 The GDL Algorithm

GDL [1] is a general message-passing algorithm that
exploits the way a global function factors into a combina-
tion of local functions to compute the objective function
in an efficient manner. In order to ensure optimality
and convergence, GDL arranges the objective function
to assess in a junction tree structure (JT)[2].

Definition 9 A junction tree (JT) is a tree of cliques
that can be represented as a tuple 〈X , C,S,Ψ〉 where: X =

{x1, . . . , xn} is a set of variables; C = {C1, . . . , Cm} is a set
of cliques such that each clique Ci ⊆ X ; S is a set of
separators, where each separator is an edge between two
cliques containing the intersection of the cliques1; and
Ψ = {ψ1, . . . , ψm} is a set of potentials, where potential
ψi is a function assigned to clique Ci with domain ∆i ⊆
X . Furthermore, the following properties must hold:

• Single-connectedness. Separators create exactly
one path between each pair of cliques.

1Formally, a separator sij between clique Ci and Cj is defined

as sij = Ci ∩ Cj .

• Covering. Each potential domain is a subset of the
clique to which it is assigned, namely ∆i ⊆ Ci.

• Running intersection. If a variable xi is in two
cliques Ci and Cj, then it must also be in all cliques on
the (unique) path between Ci and Cj.

Likewise variables in DCOP, we assume that the
variables in a junction tree are defined over domains
D1, . . . ,Dn. Moreover, DCi stands for clique Ci domain
space, namely the joint domain space of the variables in
clique Ci.

GDL defines a message-passing phase for cliques to
exchange information about their variables. Once the
message-passing phase is over, each clique can compute
its state, namely its variables states. GDL is defined
over two binary operations [1] that in our case, since we
are concerned with the problem of maximizing an utility
function, correspond to the addition and the maximiza-
tion (the max-sum GDL).

x2 ψ1(x2)

x1 x2 x4

ψ2(x1, x2, x4)

x2 x3

ψ3(x2, x3)

x2 x2

Figure 2: JT

Message/local knowledge (bK)
1. µ21(x2) = max{x1,x4}ψ2(x1, x2, x4)
2. µ31(x2) = max{x3}ψ3(x2, x3)

3. bK1(x2) = ψ1(x2) + µ21(x2) + µ31(x2)
4. µ12(x2) = ψ1(x2) + µ31(x2)
5. µ13(x2) = ψ1(x2) + µ21(x2)

6. bK2(x1, x2, x4) = ψ2(x1, x2, x4) + µ12(x2)

7. bK3(x2, x3) = ψ3(x2, x3) + µ13(x2)

Table 1: Trace of GDL

To illustrate the way the max-sum GDL operates,
consider the following example. Say that our goal
is to distributedly maximize some objective function
f(x1, x2, x3, x4) = ψ1(x2)+ψ2(x1, x2, x4)+ψ3(x2, x3), whose
factors (ψ1, ψ2 and ψ3) are arranged in the directed JT
of figure 2. Nodes in the figure stand for cliques and
edges for separators. Table 1 shows a trace of GDL when
scheduled fully serially2. In that schedule, since the JT
is directed, messages are send in two different message-
passing phases: (i) one up the tree in which each clique
sends a message to its clique parent when, for the first
time, it has received messages from all of its children; (ii)
one down the tree so that each clique sends a message to
its children when it receives a message from its parent.
At round 1, clique C2 = {x1, x2, x4} sends a message µ21 to
clique C1 = {x2} with the values of its local function, ψ2,
after ’filtering out’ dependence on all variables but those
common to C2 and C1 (namely variables which are not
in their separator). At round 3, after clique C1 receives
the values of its children’s local functions for its variable
x2, it combines those values into bK1. bK1 is a function
that stands for C1 knowledge over its variables, namely
x2. At that point, since C1 has received messages from
all its neighbors, bK1 contains all the information related
to x2. At rounds 4 and 5, clique C1 sends messages to its

2Fully parallel and hybrid schedules are also feasible as dis-
cussed in [1].

3

children that contain the combination of its local func-
tion, ψ1, with other children messages. Thus, C2 receives
a message from C1 that contains the potential ψ1 com-
bined with µ31. Then it can compute bK2(round 6).

Finally, notice that GDL goes far beyond the example
above. In fact, it generalizes a large family of well-known
algorithms (e.g. the min-sum or Viterbi’s, the max-
product or Pearl’s belief propagation, or Shafer-Shenoy).
Moreover there is a wealth of theoretical and analytical
results in approximated iterative versions of GDL when
applied to different structures rather than JTs [1].

4.2 Extending GDL to solve DCOPs

In this section we introduce Action-GDL, a novel
message-passing algorithm that takes inspiration on the
GDL algorithm [1], extending and applying it to MCPs.
Then, in section 6, we will show the generality of Action-
GDL by proving that DPOP, the low complexity, state-
of-the-art algorithm is a particular case of this algorithm.

Recall that our goal is to solve MCPs represented as
DCOPs. Therefore, the capability of computing any ob-
jective function, as provided by GDL, is not enough. We
need to go one step beyond GDL to allow a group of
agents make a joint decision (regarding their variables’
values) that maximizes any objective function. For this
purpose, we propose an extension to GDL, the so-called
Action-GDL algorithm.

Consider a MCP setting. As explained above in GDL,
when a clique has received messages from all its neigh-
bors, it has all information related to its variables and
it can compute its objective function. In MCP, clique
variables are decision variables and computing a clique
objective function stands for assigning values to these de-
cisions. Therefore, when a clique infers their state, there
is no need to propagate more information related to its
variables since we can propagate directly the decisions
taken. In other words, there is no need to propagate
messages containing relations down the tree because all
a child requires to make a decision is its father’s deci-
sions (variables’ assignments). It implies that in MCPs,
when the first message-passing phase of GDL, up to the
tree, is over, the second message-passing phase of GDL,
down the tree, is no longer necessary. Thus, we require
a second message-passing phase for cliques to exchange
decisions down the tree, which is precisely the extension
that Action-GDL introduces. Henceforth, we shall refer
to the first message-passing phase as utility propagation,
and to the second one as value propagation. It is relevant
to notice that the value propagation phase ensures that
whenever multiple optimal joint decisions are feasible,
cliques converge to the very same joint decision, namely
to the very same solution of a DCOP.

Table 2 displays a trace of Action-GDL over the JT in
figure 2. Steps 1, 2 and 3 are the same as GDL. However,
at step 4 the root clique assesses the optimal value for

x2 (x∗2 = c∗2) and propagates this value down the tree
through value messages to cliques C2 and C3 (steps 5 and
6). At steps 7-8 and 9-10, C2 and C3 assess the values
of x1, x4 and x3, respectively, using its parent decision
value c∗2.

#.Messages/local knowledge bK #.Messages/local knowledge bK
1. µ21(x2)=max{x1,x4} ψ2(x1, x2, x4) 6. σ13(x2)=c∗2
2. µ31(x2)=max{x3} ψ3(x2, x3) 7. bK2(x1, x4)=ψ2(x1, σ12, x4)

3. bK1(x2)= bK1(x2) + µ31 + µ21 8. (c∗1 , c
∗
4)=arg maxd∈D2×D4

bK2(d)

4. c∗2=arg maxd∈D2
bK1(d) 9. bK3(x3)=ψ3(σ13, x3)

5. σ12(x2)=c∗2 10.c∗3=arg maxd∈D3
bK3(d)

Table 2: Trace of Action-GDL

Another major difference between Action-GDL and
GDL has to do with the way they solve a problem. GDL
runs over a JT as formalised by definition 9. Hence, all
cliques are considered to be located in a single agent,
which is in charge of running GDL. Under Action-GDL
a set of (distributed) agents cooperatively exchange in-
formation to reach the joint decision that solves a MCP.
That is, unlike GDL, Action-GDL supports the distribu-
tion of the problem, namely of a JT, so that cliques can
be distributed to different agents. This is accomplished
by running Action-GDL over a distributed junction tree
(DJT):

Definition 10 A distributed junction tree (DJT) is
a tuple 〈A,X , C,S,Ψ, β〉 where 〈X , C,S,Ψ〉 is a JT; A =

{a1, . . . , am} is a set of agents; and β : C → A maps each
clique to one agent.

An example of DJT is given in figure 3(c). Likewise
JTs, circles stand for cliques, and edges for separators,
both labelled with their variables’ indices. Moreover, the
background of each clique is labelled with the agent’s
index to which is associated. However We also definebN(Ci) = {Cj |sij ∈ S} as a function that returns the cliques
connected by a separator to clique Ci, namely its neigh-
boring cliques. Since a DJT is a tree of cliques it can
also be defined as a directed tree. In a directed DJT we
define two additional relationships among cliques: bP (Ci),
which returns the parent of Ci; and cCh(Ci), which returns
the children of Ci.

Algorithm 1 outlines Action-GDL. Given a DJT
〈A,X , C,S,Ψ, β〉 , each agent a ∈ A involved in Action-
GDL, only needs to know the subset of the DJT
that involves the cliques it has assigned. Hence, ev-
ery agent is assumed to start knowing a tuple 〈 bP (Ci),cCh(Ci),ψi, bS(Ci),βi〉 for each one of its cliques Ci, where Ŝ
returns a clique’s separators (bS(Ci) = {sik|sik ∈ S}), and
βi returns the agents assigned to clique Ci’s parent or
children.

During the utility propagation phase (lines 1-10),
agents exchange utility messages. The initial knowledge
for each clique is its potential (line 2). For each clique,
its agent waits until receiving a utility message from each
of its children cliques (lines 3-4). These messages con-
tain a utility relation over the variables shared by both

4

cliques (their separator) and are sent by agents assigned
to the children cliques. Every time that the agent re-
ceives a new utility message, it incorporates it (by using
the combination operator) to its local knowledge (line 5).
After combining utility messages from all the children of
a clique, if that clique has a parent (line 7), its agent sum-
marizes that part of its local knowledge that is of interest
to the clique’s parent (by means of a utility relation over
its separator) and sends it to the agent associated to the
parent’s clique (line 9). Let cMi =

O
Cj∈dCh(Ci)

µji(s
ji) be the

combination of all utility messages received for clique Ci.
Then the utility message that the agent assigned to Ci
sends for its parent clique Cp = bP (Ci) (to the agent βi(Cp))
is the summary over its clique variables of the combina-
tion of its potential and the utility messages received
from its children. Formally:

µip(s
ip) =

M
sip

[ψi ⊗ cMi] (2)

During the value propagation phase (lines 11-21),
agents compute the optimal values for their variables
and exchange value messages, namely decisions. Given
a clique, its agent waits until receiving a value message
(containing value assignments) for all variables in com-
mon (in the separator) with its clique parent (line 12-
13). At that point, the agent has received all the knowl-
edge, in form of utility (from children) and value (from
the parent) messages, required for computing the objec-
tive function related to its clique variables. The agent
restricts its knowledge by incorporating the already in-
ferred decisions (line 14) and computes the optimal val-
ues for the rest of its clique variables (line 16). Formally,
given clique Ci, after its agent receives a value message
σji(sij) for the variables in its separator with Cj , it can
update its local knowledge as follows:bKi = 5

σji(sij)

[ψi ⊗ cMi] (3)

Hence, Ci’s agent can assess the optimal assignments
for unassigned variables by maximising its local knowl-
edge as follows:

d∗ = arg max
d∈DC̄i

bKi(d) (4)

where C̄i = DV (bK) = Ci\sij is the set of clique variables
excluding the variables in the separator between Ci and
its parent Cj .

Once an agent knows the variables’ values for one of
its cliques, it can propagate them down the tree (lines
18-21). Notice however that it only propagates variable
assignments that are required by its children cliques,
namely assignments for variables in their separator.

5 DPOP

DPOP[6] is an optimal state-of-the-art dynammic
programming algorithm to solve DCOPs. DPOP ar-

Algorithm 1 Action-GDL(〈A,X , C,S,Ψ, β〉)
Each agent a ∈ A for each one of its cliques Ci
starts with 〈 bP (Ci), cCh(Ci), Ci, ψi, bS(Ci), βi〉 and runs:

1: Phase I: UTILITY Propagation
2: bKi = ψi
3: for all Cj ∈ cCh(Ci) do
4: Wait for utility message µji from Cj ’s agent (that is

βi(Cj))
5: bKi = bKi ⊗ µji
6: end for
7: if Ci is not the tree’s root, let Cp = bP (Ci) then

8: Let sip ∈ bS(Ci) be the separator between i and its
parent

9: Send µip =
M
sip

bKi to Cp’s agent (that is βi(Cp))

10: end if
11: Phase II: VALUE propagation
12: if Ci is not the tree’s root, let Cp = bP (Ci) then
13: Wait for a value message σpi from Cp’s agent (that is

βi(Cp))
14: bKi = 5

σpi

bKi; /*Restrict bKi with the value message*/

15: end if
16: d∗ = arg max

d∈D
DV (bKi)

bKi; /*Fix the values for the free vari-

ables*/
17: d∗Ci = d∗∪σpi; /*Put together the assesed values and the

value message received. Assume the root gets an empty
value message*/

18: for all Cj ∈ cCh(Ci) do
19: Let σij = d∗Ci [sij]; /*Project into the separator*/
20: Send σij to Cj ’s agent (that is βi(Cj))
21: end for
22: return d∗Ci ;

ranges the DCOP problem in a pseudotree structure.
From [6], a pseudotree arrangement of a graph G is a
rooted tree with the same vertices as G and the prop-
erty that adjacent vertices from the original graph fall in
the same branch of the tree.

x4

x2r24

x1
r14
⊗
r12

x3
r34
⊗
r23

〈2
4
〉 〈2

4
〉

〈
4
〉

(a) DPOP

4

2 4

2 3 41 2 4

2 ©
−−
−
−→

1
2

3
4

4 ←− 1 ©

−→2
42©

2
3

4
←−
−−1©

1
2

4
−−
−→1©

←
−

2
4

(b) DJTG

44ψ4 = {}

22 4ψ2 = r24

11 2 4
ψ1 =

r14

⊗
r12

33 2 4
ψ3 =

r34

⊗
r23

2 4 2 4

4

(c) DJT γ

Figure 3: DPOP & Action-GDL equivalent execu-
tions

Figure 1(c) shows a pseudotree for the constraint

5

graph in figure 1(a). A pseudotree of a constraint graph
has two kinds of edges: tree edges (boldfaced lines);
and pseudoedges, edges in the constraint graph (dashed
lines). A pseudotree defines two relationships between
variables: (1) parent/children for variables connected
through an edge (e.g. in figure 1(c) x2 is the parent of
x3); (2) pseudoparent/pseudochildren for variables con-
nected through a pseudoedge (e.g. in figure figure 1(c)
x3 is a pseudochild of x4). Therefore, we can repre-
sent a pseudotree as a pair 〈P, PP 〉, where P and PP are
functions that map each variable to its parent and pseu-
doparents, respectively. We also define the function
all parents (AP) as follows AP (xi) = {P (xi)} ∪ PP (xi).
We obtain functions Ch and PCh, which return a vari-
able’s children and pseudochildren respectively, from the
functions above as Ch(xi) = {xj ∈ A|P (xj) = xi} and
PCh(xi) = {xj ∈ A|PP (xj) = xi}.

DPOP has three phases: (1) a preprocessing phase
to arrange a DCOP into a pseudotree; (2) a message-
passing phase for agents to exchange utilities about their
variables; and (3) a message-passing phase for agents to
propagate value of their variables inferred. Algorithm
2 encodes the last two phases in terms of the opera-
tors introduced in section 3. Such encoding will ease
the comparison with Action-GDL in section 6. Figure
3(a) depicts the DPOP execution over the pseudotree of
figure 1(c).

Algorithm 2 DPOP(〈A,D,R〉,〈P, PP 〉)
Each agent ai ∈ A, assigned
to variable xi, starts with 〈Pi,Chi,
PPi, PChi,K0

i ,Di〉 where K0
i = ri ⊗

O
xk∈AP (xi)

rik and runs:

1: Phase I: UTILITY Propagation
2: for all xj ∈ Ch(xi) do
3: Wait for the utility message µji from aj
4: Ki = Ki ⊗ µji;
5: end for
6: if xi is not the tree’s root, let xp = P (xi) then

7: Send µip =
M
\xi

Ki to ap

8: end if
9: Phase II: VALUE propagation

10: if xi is not the tree’s root, let xp = P (xi) then
11: Wait for σpi
12: Ki = 5

σpi

Ki;

13: end if
14: d∗i = arg max

di∈Di
Ki; /* Assess best value for xi */

15: d∗ = d∗i ∪σpi; /* Put together the assessed value and the
message received. Assume that the root gets an empty
value message */

16: for all xj ∈ Ch(xi) do
17: Send σij = d∗[DV (µji)] to aj /* Send the part of the

assignment that is of interest to agent j*/
18: end for
19: return d∗i ;

In DPOP the initial local knowledge of an agent ai
about is variable xi, namely K0

i , is a combination of
some unary relation involving xi and of some binary re-
lations linking xi with one of its parent or pseudoparent
variables. Formally,

K0
i = ri ⊗ [

O
xk∈AP (xi)

rik] (5)

Thus, in figure 3(a) the initial knowledge of a1 about x1

is composed of relations r14 and r12 (no unary relation
in that case).

During the first message-passing phase, the UTILITY
propagation phase (lines 1-8), each agent a receives, for
each one of its assigned variables xi, utility messages
from all its children variables. Let Mi =

O
xj∈Ch(xi)

µji be

the combination of all utility messages received by agent
a for variable xi. Then, the utility message that agent a
exchanges for each one of its variables, xi, with the agent
related to its parent variable, xp, is the summarization of
its current knowledge filtering out xi (line 7). Formally:

µip =
M
\xi

[K0
i ⊗Mi] (6)

During the second message-passing phase, the
VALUE propagation phase (lines 9-18), each agent a re-
ceives for each of its variables, xi, a value message from
the agent assigned to its parent variable, xp, contain-
ing variable assignments for all variables in the domain
of the utility message that this agent has sent to it in
the previous phase, namely σki(DV (µik)). Once agent a
has received a value message for xi from its parent xp,
the agent restricts its knowledge by incorporating the
assigned variables (line 12) as follows:

Ki = 5
σpi(DV (µip))

[K0
i ⊗Mi] (7)

Then, agent a can assesses the value of xi as the one that
maximizes its local knowledge (line 14) , namely:

d∗i = arg max
d∈Di

Ki(d) (8)

Thereafter, agent a propagates to agents related to xi’
children a value message that contains value assignments
for all variables in the domain of the utility message re-
ceived from them in the previous phase (line 17). For-
mally:

σij(DV (µji)) = d∗DV (µji) (9)

where xj ∈ Ch(xi) and d∗DV (µji)
stands for the values to

be assigned to the variables in the domain of the utility
message µji. Each agent ai obtains these values from the
assignment received from its parent along with its own
assignment to xi (line 15).

6 Generality of Action-GDL

In this section we prove that DPOP is a particular
case of Action-GDL when Action-GDL is executed under

6

certain DJTs. We say that two distributed algorithms
are equivalent if (i) agents perform the same computa-
tion and (ii) agents exchange the same messages. Re-
call that DPOP runs over pseudotrees. To show that
Action-GDL generalizes DPOP, we prove that given any
pseudotree we can build a DJT so that the execution
of Action-GDL over this DJT is equivalent to the exe-
cution of DPOP over the pseudotree. To prove it, we
firstly define a mapping from pseudotrees to DJTs. Sec-
ondly, we prove that given any pseudotree, the execution
of DPOP over the pseudotree is equivalent to the exe-
cution of Action-GDL over the DJT produced by our
mapping for the pseudotree.

In the next section we introduce the DJTG algorithm
that distributedly computes mapping γ at a cost that is
negligible with respect to the cost of solving the problem.
Hence, the theoretical result provided in this section,
together with the DJTG algorithm, ensure that Action-
GDL is an efficient DCOP solver.

6.1 Mapping pseudotrees into junction
trees

To define this mapping, we first need to define the
notions of directly related variables (DRV) and inherited
related variables (IRV) for a variable in a pseudotree. We
say that a variable is directly related to another one if
it is either: the very same variable, a variable of one of
its parents, or a variable of one of its pseudoparents. We
say that a variable is inherited related to another one
if either: any of the children of the former is inherited
related to the latter, or the latter is a pseudoparent of
the former.

Definition 11 Given a variable xi in a pseudotree, its
set of directly related variables is

DRV (xi) = {xi} ∪AP (xi) (10)

Definition 12 Given a variable xi in a pseudotree, its
set of inherited related variables is

IRV (xi) =
[

xj∈Ch(xi)

(IRV (xj) ∪ PP (xj)) \ {xi} (11)

We can proceed to define a mapping, which we shall
name γ, that builds a DJT from each pseudotree.

Definition 13 (γ) Let γ be a function that
given a DCOP Φ = 〈A,X ,D,R, α〉 and a pseu-
dotree PT = 〈P, PP 〉 maps them to a DJT
γ(Φ, PT) = 〈A,X , C,S,Ψ, β〉, where:

1) The set of cliques C = {C1, . . . , C|X|} contains one
clique per variable in the pseudotree. The clique Ci
contains all the variables directly or inherited related
to variable xi.

Ci = DRV (xi) ∪ IRV (xi) (12)

2) The set of potentials Ψ contains one potential asso-
ciated to each clique. Each clique potential ψi is the
combination of: (i) a unary relation ri that involves
the clique decision variable xi; and (ii) the binary
relations that link xi with its parent or one of its
pseudoparents. Formally:

ψi = ri ⊗ [
O

xj∈AP (xi)

rij] (13)

3) The set of separators S contains one separator sij

per pair of cliques Ci and Cj such that xj is parent
of xi in the pseudotree. By definition of junction
tree, each separator sij contains the intersection of
its cliques (sij = Ci ∩ Cj).

4) β is constructed as follows: each clique Ci is associ-
ated to the agent that controls variable xi, formally
β(Ci) = α(xi).

Figure 3(a) shows a pseudotree PT over the DCOP Φ
of figure 1(c) while figure 3(d) shows the DJT=γ(PT,Φ).

We also formulate, in addition to Eq. 12 a recursive
definition for cliques in the mapping γ that will ease
our proofs. Therefore we define each clique Ci in γ as
the directly related variables of its variable, xi, and the
union of variables of each clique child excluding the child
variable. Formally:

C
′
i = DRV (xi) ∪

24 [
xk∈Ch(xi)

C
′
k \ {xk}

35 (14)

Next we prove that the two definitions given for cliques in
mapping γ, namely equations 12 and 14, are equivalent
(Lemma 1).

Lemma 1 Equations 12 and 14 are equivalent

Proof 1 We prove the lemma by induction on the depth
of variable xi. In the base case we consider a variable xi
whose depth is 1, a leaf in the pseudotree. Observe that
in that case both equations, Eq. 12 and Eq. 14, define
the xi clique as its directed related variables DRV (xi).

Induction Step: Take a variable, xi, whose depth is
n+1.

Then, by Eq. 14, xi clique is defined as:

C
′
i = DRV (xi) ∪

24 [
xj∈Ch(xi)

C
′
j \ {xj}

35
By induction hypothesis we rewrite children cliques C′j

using Eq.12:

C
′
i = DRV (xi) ∪

24 [
xj∈Ch(xi)

[DRV (xj) ∪ IRV (xj)] \ {xj}

35
After eliminating {xj} from directed and inherited re-
lated variables:

C
′
i = DRV (xi) ∪

24 [
xj∈Ch(xi)

AP (xj) ∪ IRV (xj)

35
7

Since P (xj) is already contained in DRV (xi) :

C
′
i = DRV (xi) ∪

24 [
xj∈Ch(xi)

IRV (xj) ∪ PP (xj)

35
Finally, by definition of inherited related variables

(Eq. 12):

C
′
i = DRV (xi) ∪ IRV (xi)

Hence we have proved that both definitions, Ci (Eq.
12) and C′i (Eq. 14) are equivalent.

Before proving that the execution of DPOP
over a pseudotree 〈P, PP 〉 is equivalent to the
execution of Action-GDL over the DJT =
γ(〈A,X ,D,R, α〉, 〈P, PP 〉), we should provide with
two observations about DJT that we will use in our
proofs.

Observation 1 Observe that due to the cliques compo-
sition (Eq. 12), the variables that compose a separator
between xi and xj (the intersection of their cliques) con-
tains all variables from clique Ci excluding xi. Formally:

Ci ∩ Cj = Ci ∩

264DRV (xj) ∪

264 [
Ck∈dCh(Cj)

Ck \ {xk}

375
375

We can take Ci out of the union since it is child of Cj:

Ci∩Cj = Ci∩

26664DRV (xj) ∪ Ci \ {xi} ∪
[

Ck∈dCh(Cj)
k 6=i

Ck \ {xk}

37775
Observe that the term Ci appears in both sides of the
intersection. Therefore, since xi it is not in DRV (xj)
nor in other cliques children {Ck ∈ cCh(Cj)|k 6= i}:

Ci ∩ Cj = Ci \ {xi}

Finally we can rewrite the definition of a separator
sij in mapping γ, previously defined as the intersection
of their cliques Ci ∩ Cj, as :

sij = Ci \ {xi} (15)

Observation 2 Considering what is stated by Eq. 15,
we can reformulate the variables that compose each clique
Ci in a DJT defined by mapping γ (Eq. 14) as the union
of the directly related variables of xi with the union of all
variables in the separators between clique Ci and each of
its children. Formally:

Ci = DRV (xi) ∪

24 [
Ck∈dCh(Ci)

Ck \ {xk}

35 =

DRV (xi) ∪

24 [
Ck∈dCh(Ci)

ski

35
Notice variables from a separator ski can also be ex-

pressed as the domain of the utility message µki(ski) sent
through this separator. Hence, the equation above can be
rewritten as:

Ci = DRV (xi) ∪

 ⋃
Ck∈cCh(Ci)

DV (µki(ski))

 (16)

6.2 Proving equivalence

In this section we show how DPOP is a particular
case of Action-GDL. To do so, we have to prove that
given a pseudotree there is a DJT such that Action-GDL
mimics DPOP execution. More formally, we have to
prove that:

Theorem 1 Given a DCOP Φ and a pseudotree PT,
the execution of DPOP(Φ, PT) is equivalent to Action-
GDL(γ(Φ, PT)).

The proof of this theorem is immediate if we have
previously demostrated that for both algorithms: (1)
the computation performed and the messages exchanged
during the utility propagation phase are the same
(Lemma 2); and (2) the messages exchanged during the
value propagation phase are also the same and that they
converge to the same solution (Lemma 3).

Next sections contains the proofs of lemmas 2 and 3
as well as of theorem 1.

6.2.1 Utility propagation

Lemma 2 Given a DCOP Φ and a pseudotree PT, the
computation performed and the messages exchanged by
each agent during the utility phase of DPOP (Φ,PT) and
Action-GDL(γ(Φ, PT)) are the same.

Proof 2 We prove Lemma 2 by induction on d, the
depth of variable xi in the pseudotree PT.

Consider case d = 1 (xi is a leaf).
During a DPOP execution, xi exchanges with its par-

ent xp in the PT the following utility message (see Eq.
6):

µip =
M
\xi

[K0
i ⊗Mi]

Since xi is a leaf:

µip =
M
\xi

K0
i

During the Action-GDL execution, clique Ci, related to
variable xi, exchanges with its clique parent Cp, related
to variable xp, the following utility message (see Eq. 2):

µip(s
ip) =

M
sip

[ψi ⊗ cMi]

8

Since Ci relates to xi and by definition of γ (point 3)
separators link cliques as are linked their variables in the
PT, Ci is a leaf. Therefore we can rewrite the above
expression as:

µip(s
ip) =

M
sip

ψi

Replacing sip by the definition of separator in Eq. 15:

µip(sip) =
⊕
Ci\{xi}

ψi

Therefore, for both algorithms to exchange the same
message in that case, two conditions must hold: (1)
both messages must combine the same relations which
is straightforward from observing ψi and K0

i definitions
(Equations 5 and 13 respectively); and (2) both messages
must summarize over the same variables.

On the one hand, observe that the set of variables
that the DPOP message summarizes on is composed of
the variables in the K0

i domain excluding xi, namely
DV (K0

i) \ {xi}. K0
i domain correspond with the set of

directly related variables of xi (see equation 5). Thus,
the set of variables that DPOP message summarizes on
is DRV (xi) \ {xi} . On the other hand, the set of vari-
ables that the Action-GDL message summarizes on is
composed of Ci excluding xi. Ci clique, since it is a leaf,
is uniquely composed of the directly related variables of
xi (see Eq. 14). Thus, the Action-GDL message also
summarizes on DRV (xi) \ {xi} and messages are equal
in that case.

Assume that lemma 2 holds for all variables whose
depth is less than or equal to n in the pseudotree. Now
consider variable xi whose depth is n + 1. We consider
the subtree having xi as root, with all variables under
xi in the pseudotree whose depth is at most n. Since
by induction both algorithms exchange the same utility
messages for variables in these subtrees whose depth is
equal to or less than n, all the utility messages sent by
variables under xi are equal in both executions. Hence,
we only have to prove that lemma 2 holds for utility mes-
sages sent by xi.

During the execution of DPOP, variable xi exchanges
with its parent xp the following utility message (see Eq.
6):

µip =
M
\xi

[K0
i ⊗Mi]

Where Mi =
O

xj∈Ch(xi)

µji.

During Action-GDL execution clique Ci, related to
variable xi, exchanges with its parent clique Cp, related
to variable xp, the following utility message (see Eq. 2):

µij(s
ip) =

M
sip

[ψi ⊗ cMi]

Where cMi =
O

Cj∈dCh(Ci)

µji(s
ji). Replacing sip by the defi-

nition of separator in Eq. 15:

µij(s
ip) =

M
Ci\{xi}

[ψi ⊗ cMi]

Again, for messages exchanged in DPOP and Action-
GDL executions to be equal two conditions must hold:
(1) both messages must combine same relations; and (2)
both messages must summarize over the same variables.

That both messages combine the same relations is
straightforward from: (1) the ψi and K0

i definitions from
equations 5 and 13 respectively; and (2) considering that
by induction the utility messages exchanged with their
children are equal in both algorithms.

Now we will prove that both messages also summa-
rize over the same set of variables. Firstly, observe that
the set of variables that the DPOP message summarizes
on is composed of the union of variables in the K0

i do-
main excluding xi and the domain of the utility mes-
sages exchanged with its children. As we have shown
in the base case (d = 1), the K0

i domain is composed
of the directed related variables of xi. Thus, the set
of variables that the DPOP message summarizes on is
composed of {DRV (xi) ∪

S
xj∈Ch(xi)

DV (µji)} \ {xi}. On
the other hand, the set of variables that the Action-
GDL message summarizes on is composed of Ci exclud-
ing xi. Ci clique, as specified by Eq. 16, is {DRV (xi) ∪S
xk∈dCh(xi)

DV (µki(s
ki))} \ {xi}. Therefore, since by in-

duction messages exchanged for variables under xi are
the same in both algorithms, messages exchanged for xi
are equal in both algorithms.

Thus, utility messages sent by agent at depth n + 1
are equal in both execution and lemma 2 holds.

6.2.2 Value propagation

Lemma 3 Given a DCOP Φ and a pseudotree PT the
value assigned by each agent to its variable and the
messages exchanged during the value propagation phase
of DPOP (Φ,PT) and Action-GDL(γ(Φ, PT)) are the
same.

Proof 3 Note that it follows from lemma 2 that mes-
sages exchanged during the UTIL propagation phase are
equal. Hence, to prove theorem 1 it only remains to
prove that messages exchanged in the VALUE propaga-
tion phase are equal and both algorithms converge to the
same solution.

We prove this by induction on d, the depth of the pseu-
dotree PT defined over Φ.

When d = 1, each variable xi is a leaf that has nei-
ther parent nor pseudoparents in the pseudotree. Then,
in DPOP algorithm, each variable xi is inferred as (by
Eq.17):

d∗i = arg max
d∈Di

Ki(d)

9

Where Ki is defined (see Eq. 7) as

Ki = 5
σpi(DV (µip))

[K0
i ⊗Mi]

Where xp stands for the xi parent in the pseudotree.
Since xi is a leaf it has no children and since d = 1
it has no parent. Therefore we can rewrite the above
equation as:

d∗i = arg max
d∈Di

ri(d)

On the other hand, following Action-GDL each clique
Ci, related to variable xi, infers its clique variables as
(by Eq. 4):

d∗Ii = arg max
d∈DIi

bKi(d)

Where Ii = Ci \ sip and K̂i = 5
σpi(sip)

[ψi ⊗ M̂i] where

Cp = P̂(Ci) (see Eq. 3). Since Ci is a leaf it has no
children and since d = 1 it has neither parent nor pseu-
doparents. Therefore K̂i = ψi and the above equation
can be rewritten as:

d∗Ci = arg max
d∈DCi

ψi(d)

Taking the definition of Ci clique as the specified by
Eq. 12, namely Ci = DRV (xi) ∪ IRV (xi), we observe
that since Ci is a leaf and has no parent its clique only
contains variable xi. Moreover, as is stated by the po-
tential definition (Eq.13), in this case, the potential ψi
is uniquely composed of a single relation ri, the unary
relation defined over xi, being values inferred by both al-
gorithms equal.

Assume that the induction hypothesis holds for all
pseudotrees whose depth is at most n. Now take PT
a pseudotree whose depth is n + 1. We can decompose
this pseudotree as the root variable connected by directed
edges and by a set of pseudoedges to a set of pseudotrees
whose depth is at most n. The induction hypothesis holds
in all these pseudotrees whose depth is at most n and we
only need to prove it for the root variable xi at level n+1.

On the one hand, in DPOP, variable xi is inferred as:

d∗i = arg max
d∈Di

Ki(d) (17)

Once its variable have been inferred xi propagates to
each of its children xj ∈ Ch(xi) a value message that
contains the assignment for all variables in the domain
of the utility message received from xj (see Eq. 9). This
assignment of variables comes from the assessed value xi
and the value message received from its parent. Since xi
is the root variable, the only assignment it propagates is
xi = d∗i .

On the other hand, in Action-GDL, clique Ci, related
to variable xi, infers the following variables (see Eq. 4):

d∗Ii = arg max
d∈DIi

bKi(v) (18)

Where Ii = Ci\sip is the set of clique variables excluding
the variables in the separator between Ci and its parent
Cp = P̂ (Ci) and since Ci is the root Ii = Ci.

Once its clique Ci has been inferred, it propagates to
each one of its clique children Cj ∈ Ĉh(Ci) a value mes-
sage that contains an assignment for the variables in the
separator sij.

Formally:

ϕij(s
ij) = d∗sij (19)

Where d∗sij is a projection of d∗Ci containing only the
value for the variables in the separator sij.

To be equal both algorithms: (1) value messages ex-
changed must contain assignments for the same vari-
ables; and (2) they must infer the same variables and
assign them the same values.

Firstly, to satisfy that value messages exchanged must
contain assignments for the same variables is quite
straightforward given above formulations. Observe that
DPOP exchanges for xi a value message with each one
of its children that contains values for the variables in
the domain of the utility message received from them
and that this domain must be equal to xi. Then in
Action-GDL clique Ci exchanges a value message with
each one of its children that contains an assignment for
all variables in the separator. Since the domain of the
utility message received from each one of its children in
Action-GDL is equal to the separators and we have al-
ready proved that both algorithms exchange the same util-
ity messages in the previous phase, then we can conclude
that both algorithm exchange value messages with assign-
ments for the same variables.

Secondly, to satisfy that that both algorithms infer the
same variables and assign the same values, we have to
prove that :(1) Ci is composed uniquely by variable xi
(they infer the same variables); and (2) Ki = K̂i. (they
infer variables with same values).

We prove (1) by defining Ci using Eq. 12:

Ci = DRV (xi) ∪ IRV (xi)}

Since xi is root variable it has no parent neither pseudo-
parents:

Ci = {xi} ∪ IRV (xi)

Since by the xi is the root and inherited related variables,
by its definition (see Definition 12), have always higher
depth than xi :

Ci = {xi}

Therefore Ci is composed uniquely by variable xi.
Now we have to prove (2) that both algorithms also

infer the same value for variable xi, thus Ki = K̂i.
Given the definition of Ki (see Eq.7) :

Ki = 5
σpi(DV (µip))

[K0
i ⊗Mi]

10

Where xp = P (xi) and Mi =
O

xk∈Ch(xi)

µki. Since xi is

the root variable it has no parent and Ki = K0
i ⊗Mi.

And the definition of K̂i (see Eq. 3)

K̂i = 5
σpi(sip)

[ψi ⊗ M̂i]

Where Cp = P̂ (Ci) and cMi =
O

Cj∈Ch(Ci)

µji(s
ji) . Since Ci

is the root clique it has no parent and K̂i = ψi ⊗ M̂i.
We observe that both algorithms converge to the same

value for variable xi by (1) observing that K0
i and ψi

definitions are equal (see Eq. 13 and Eq. 5 respectively);
and (2) that utility messages exchanged in the previous
phase are also equal in both algorithms (by lemma 2).

Hence both algorithms exchange the same value mes-
sages and converge to the same solution and Theorem 1
holds.

7 The DJTG algorithm

As explained in section 4, in order to ensure opti-
mality and convergence, Action-GDL is restricted to be
executed over a DJT (as given by definition 10). How-
ever, it has been argued [5] that traditional methods to
compile JTs, these are triangulation methods based on
the one proposed in [2], are not suitable when applied
to problems that are distributed by nature because they
produce JTs disregarding the structure of the problem.
Therefore, here we propose an alternative algorithm, the
so-called Distributed Junction Tree Generator (DJTG)
that distributedly compiles a DJT, by exchanging a lin-
ear number of messages, that captures the distribution
of control and relations required by the problem. Such
DJT can be readily fed into, and hence solved by Action-
GDL.

Given a spanning tree defined over a set of relations
(a tree whose nodes are relations as depicted in figure
4(a)) distributed among agents, DJTG produces a DJT.

The DJTG algorithm receives as input a tuple
〈A,X ,R, κ, ST 〉, where A is a set of agents, X is a set
of variables, R is a set of relations, function κ : R → A
maps relations to agents, and ST ⊆ R × R stands for
the edges in the spanning tree defined over the relations
in R. Figure 4(a) illustrates an input to DJTG. Observe
that relation r12 is assigned to agent a1 and it is linked
to relations r23 and r14 by edges in the ST .

DJTG has two phases: 1) a preprocessing phase where
agents create an arrangement with the same components
as a DJT that may not satisfy the running intersection
property (RIP); followed by 2) a message-passing phase
that calculate the unique set of minimal cliques that sat-
isfy the RIP.

In the preprocessing phase, each agent a creates in-
dividually a clique Cj for each one of its relations rj

a1
a2

a2 a3

r14

r12
r23

r34
r42

(a) Spanning tree

a1

a2

a2 a3

1 4

1 2 4

2 3 4

3 4

4 2 3

1 ©
−−
−
−→

1
4

1
2

3
4

←
−
−
−−

4 ©

−−−→1 2 42©

2 3 4←−−−3©

4©
1 2 3 4

←−−
−−

−−−
−→

3 4
1©

2 ©
−−
−→

2
3

4

1
2

3
4

←
−
−
−−

3 ©

(b) DJTG execution

11 4
ψ1 =
r14

11 2 4
ψ2 = r12

22 3 4ψ3 = r23

2 ψ4 = r343 4

3ψ5 = r42 2 3 4

1 4

2 4

2 3 4

3 4

(c) Junction tree

Figure 4: DJTG execution

whose potential is each relation itself, namely ψj = rj .
Cliques are initially set to their potential domain, namely
Ci = ∆i, in order to readily ensure the covering prop-
erty. Moreover, for every two relations ri, rj connected
in the ST , agents create a separator sij linking their
corresponding cliques Ci and Cj . Figure 4 (b) shows the
structure produced by the preprocessing phase. Boxes
stand for cliques containing numbers that stand for vari-
ables’ indices. Cliques are assigned to agents. For in-
stance, clique C1 with variables x1, x4 and clique C2 with
x1, x2 are assigned to a1. The variables correspond to
the domains of the cliques’ potentials, namely the do-
mains of r14 and r12 respectively. Cliques C1 and C2 are
connected as their relations r14 and r12 in the ST .

The second phase of DJTG is responsible for ensur-
ing the RIP. In that phase, each agent exchanges for each
one of its cliques, Ci, reachability messages with agents
related to Ci’s neighbors that contain the set of reachable
variables from Ci. The set of reachable variables from a
clique Ci to Cj is calculated as the union of Ci poten-
tial domain, ∆i, with variables reachable from other Ci
neighbors rather than Cj .

Formally, a reachability message ϕij from Ci to Cj is
assessed as:

ϕij = ∆i ∪

2664 [
Ck∈ bN(Ci)

k 6=j

ϕki

3775 (20)

where N̂ stands for a function that returns the neigh-
bours of a clique. Figure 4(b) shows the messages ex-
changed over the preprocessed arrangement. Single-
directed arrows between boxes stand for messages ex-
changed between cliques. Each arrow is labelled with
some variables’ indices and a circled number standing
for the order of the message in the message-passing ex-
ecution. Thus, agent a1 sends a message to agent a2

for clique C3 that contains variables (x1, x2, x4), namely
the variables that can be reached from clique C2. These
variables are the result of the union of C2 potential do-
main, namely (x1, x2), with the reachable variables from
C2, namely (x1, x4). Once an agent receives, for a given
clique, reachability messages from all its neighbours, it
redefines its clique adding variables that are in more than

11

one reachability message. Formally a clique Ci is rede-
fined as follows:

Ci = ∆i ∪

26664 [
Cj ,Ck∈ bN(Ci)

j 6=k

ϕji ∩ ϕki

37775 (21)

For instance, in figure 4(b) agent a2 receives
two reachability messages for clique C3: one with
(x1, x2, x4) from clique C2 associated to a1, another one
with (x2, x3, x4) from clique C5 associated to a3. Since
both messages contain x4, agent a2 knows that its clique
C3 must also carry x4 to satisfy the RIP.

After computing cliques, it is straightforward to assess
separators (see definition 9).

Finally, figure 4(c) depicts the DJT as produced by
DJTG from the initial distribution of relations in figure
4(a). Circles stand for cliques, labelled with the variables
each one contains, and edges between cliques stand for
separators labelled with their variables. Notice that by
creating a clique per relation and by assigning each clique
to the agent associated to that relation, DJTG manages
to preserve the initial distribution of the problem.

After computing cliques, it is straightforward to as-
sess separators (see definition 9). Finally, figure 4(c)
depicts the DJT as produced by DJTG from the ini-
tial distribution of relations in figure 4(a). Notice that
by creating a clique per relation and by assigning each
clique to the agent associated to that relation, DJTG
manages to preserve the initial distribution of the prob-
lem. This alternative way of building a JT, by directly
ensuring the RIP over a set of relations was initially for-
mulated in [4] in the context of sensor networks. How-
ever, they restricted each agent to control a single clique
whose potential results from the combination of relations
located to the agent. DJTG extends the algorithm in
[4] to: (1) allow each agent to be associated to more
than one clique; and (2) accept as an input a spanning
tree defined over some set of relations, without making
any assumptions on their composition. In the next sec-
tion we show how given a DCOP Φ and a pseudotree
〈P, PP 〉, the DJTG algorithm can arrange the problem
into a DJT γ(Φ, 〈P, PP 〉) (see definition 13). This proof
completes the proof of equivalence of DPOP and Action-
GDL, given in section 6, by showing that there is a dis-
tributed algorithm that can compile a DCOP problem
given a pseudotree into a DJT that makes the execution
of DPOP and Action-GDL equal.

8 Building the mapping

In this section we show how, given a DCOP Φ =
〈A,X ,D,R, α〉 and a pseudotree 〈P, PP 〉, the DJTG al-
gorithm, explained in section 7, arranges the problem
into a DJT = γ(Φ, 〈P, PP 〉) (see definition 13). Thus,
it proves that exists a distributed algorithm that can

compile a DCOP problem given a pseudotree arrange-
ment over variables into a DJT that corresponds to the
one specified by mapping γ.

As explained in section 7, the DJTG algorithm is
executed over an spanning tree ST defined over a set of
relations R̂ distributed among agents. We will show that
the DJTG algorithm distributedly buildsγ(Φ, 〈P, PP 〉)
given:

(1) A set of relations R̂ that contains one relation
per variable in the pseudotree. Each relation r̂i ∈ R̂
is the result of combining all relations associated to its
related variable xi, where relations are associated to the
lowest variable of its domain in the pseudotree. Thus,
r̂i = ri ⊗

⊗
rj∈AP (ri)

rij ; and

(2) An spanning tree ST defined over R̂ which is based
on the pseudotree 〈P, PP 〉 as follows: if two variables
xi,xj are connected in the pseudotree so are their corre-
sponding combined relations r̂i,r̂j in the ST. We define
the spanning tree ST as a function N : R̂ → 2R̂ that
returns for each relation r̂i ∈ R̂ its neighboring relations
in the ST .

(3) A distribution κ that maps relations to agents as
follows: each relation r̂i ∈ R̂ is assigned to the agent
related to variable xi in the DCOP by function α. Thus,
κ(r̂i) = α(xi).

Theorem 2 Given a DCOP Φ and a pseudotree
〈P, PP 〉 defined over Φ the DJTG compiles a DJT =
γ(Φ, 〈P, PP 〉)

Proof 4 In the preprocessing phase of the DJTG, each
agent a creates one clique Ci per relation assigned {r̂i ∈
R̂|κ(r̂i) = a} whose potential is each relation itself,
namely ψi = r̂i. Therefore, since R̂ contains one re-
lation per variable in the pseudotree, the set of cliques C
also contains one clique for variable in the pseudotree.
Moreover, since r̂i = ri ⊗

⊗
rj∈AP (ri)

rij for all r̂i ∈ R̂,
potentials are defined as ψi = ri ⊗

⊗
rj∈AP (ri)

rij for all
ψi ∈ Ψ. Moreover agents create a separator sij, linking
their corresponding cliques Ci and Cj, for every two rela-
tions r̄i,r̄j connected in the ST. Since these two relations
correspond to two variables connected in the pseudotree,
the set of separators S contains one separator sij per
pair of cliques Ci and Cj such that xj is parent of xi in
the pseudotree.

Therefore, notice that the second, third and fourth
condition of the mapping γ are straightforward since they
are already fulfilled after the preprocessing phase of the
DJTG algorithm. Thus, we only have to prove that af-
ter ensuring the running intersection property (RIP), the
DJTG algorithm produces cliques as defined in equation
12.

During an DJTG execution, agent a computes clique
Ci as:

12

Ci = ∆i ∪

26664 [
Cj ,Ck∈ bN(Ci)

j 6=k

(ϕji ∩ ϕki)

37775
Among the neighbors of the clique Ci in the spanning

tree we can distinct between the neighbor that correspond
to the parent variable in the pseudotree, namely Pi =
Ck|xk = P (xi) and these that correspond to one of the
children’s variables, namely Chi = {Cj |xj ∈ Ch(xi)}.
Therefore we can rewrite the above equation as follows:

Ci = ∆i ∪

2664 [
Ck,Ct∈Chi

k 6=t

(ϕti ∩ ϕki)

3775 ∪
24 [
Ck∈Chi

(ϕkPi ∩ ϕkPi)

35
Since potentials are defined following equation 13, we

have that ∆i = DV (ri ⊗
O

xj∈AP (xi)

rij) = DRV (xi). After

replacing ∆i in the above equation:

Ci = DRV (xi) ∪

2664 [
Ck,Ct∈Chi

k 6=t

(ϕti ∩ ϕki)

3775 ∪
24 [
Ck∈Chi

(ϕkPi ∩ ϕkPi)

35
By definition of pseudotree (see section 5), variables

in different branches can not have direct dependencies
among them. Therefore, as potentials are defined as
equation 13, the intersection of reachable variables from
different children of a clique, Ci, in the spanning tree
contain at most variable xi which is already contained in
DRV (xi). Therefore,

Ci = DRV (xi) ∪

24 [
Ck∈Chi

(ϕkPi ∩ ϕkPi)

35 (22)

Moreover, as potentials are defined as equation 13,
variables reachable from Ci children are: all variables
that are under xi in the pseudotree, its parents and pseu-
doparents. Furthermore, since the edges of the spanning
tree used correspond to the edges of the pseudotree, all
agents whose potential domain contains xi are under Ci
in the spanning tree, never in a higher level or in another
branch. Notice that it means that xi is only reachable
from its Ci’s children and not from its parent. Hence, all
variables from agents under Ci, along with its parents,
can not be reachable from Ci’s parent. Therefore the in-
tersection between variables reachable from Ci children
with variables reachable from Ci parent are the union
of the pseudoparents of variables under xi excluding all
agents under xi in the pseudotree. Observe that this set
of agents exactly corresponds with the definition of inher-
ited related variables of xi (see definition 12). Finally,
equation 22 can be rewritten as:

Ci = DRV (xi) ∪ IRV (xi)

The above expression corresponds to the clique defini-
tion given by equation 12 and theorem 2 holds.

9 Exploiting Action-GDL

At this point we have learned that Action-GDL gen-
eralises DPOP. It is now reasonable to wonder about the
benefits that such generality delivers. In what follows
we argue that Action-GDL can yield better algorithmic
performance than DPOP. Action-GDL can achieve such
improvement because: (i) DJTs allow to explore prob-
lem arrangements that cannot be represented via pseu-
dotrees; and (ii) it can assess multiple variables’ values at
once. To show the benefits of Action-GDL with respect
to DPOP, we empirically compare the computation and
communication costs of both algorithms when solving
the same DCOP. Moreover, we also compare the maxi-
mum degree of parallelism each algorithm can achieve.

x1

x2

x3r123

〈 1 〉

〈1 2〉

(a) DPOP

11
ψ1 = { }

21 2

ψ2 = { }

31 2 3

ψ3 = r123

1

1 2

(b) DJT γ

1
ψ1 = { }

2
ψ2 = { }

31 2 3

ψ3 = r123

(c) Modified DJT

11
ψ1 = { }

21 2

ψ2 = { }

31 2 3

ψ3 = r123

1 1 2

(d) DJT rooted at 2

Figure 5: Example of experimented rearrange-
ments

Our first experiment is aimed at showing the commu-
nication and computation savings achieved by Action-
GDL with respect to DPOP. Such savings are obtained
by adequately transforming the problem arrangement
represented by a pseudotree. Consider the example de-
picted in figure 5. Figure 5(a) shows a pseudotree. Ob-
serve that although variables x1, x2 do not have any
relation, since DPOP can only eliminate variables one
by one, its execution would propagate utility messages
over these variables. Figure 5(b) depicts the DJT pro-
duced by mapping γ of definition 13 when applied to the
pseudotree. Hence, according to theorem 1 the execu-
tion of Action-GDL over this DJT and the execution of

13

DPOP over the pseudotree are equivalent. However, we
can further transform the DJT in figure 5(b) to obtain
savings. Notice that the definition of mapping γ (from
pseudotree to DJT) forces that each clique contains its
variable although it is not part of its potential domain
(equation 11). If we do not enforce such constraint, the
DJTG algorithm generates the DJT of figure 5(c), which
can be regarded as a rearrangement of the one in figure
5(b). When running over the DJT in figure 5(c), Action-
GDL does not need to exchange any utility messages,
reducing the computation required to solve the problem.
Hence there is a rationale for the rearrangement that we
propose. Notice that when running Action-GDL, a vari-
able’ value is assessed at the clique that concentrates all
its information. In figure 5(c), the values of x2, x3 are
assessed at the clique containing x1, x2, x3. That clique
is in charge of propagating its decisions. Hence, there is
no need to propagate utility messages involving x1 and
x2 up the tree.

Next we compare the size of the messages exchanged
and the amount of computation required by Action-GDL
and DPOP when solving the same DCOP as the num-
ber of variables grows. Given a number of variables
n ∈ {10, 30, 50, 70, 90}, we generate 2000 DCOPs, each
one with 1.5·n constraints whose arity is randomly picked
from 2 to 4. We create pseudotrees for DPOP using the
DFS-MCN heuristic [5] and DJTs for Action-GDL con-
sidering the rearrangement of the DJT produced by map-
ping γ as explained above. Figure 6 (upper) shows the
average savings (in percentage) in communication and
computation of Action-GDL with respect to DPOP3.
Observe that a simple rearrangement of the DJT leads
to significant savings in communication and computation
costs, which increase as the number of variables grows.

In our second experiment we show that we can help
Action-GDL to reduce the maximum degree of paral-
lelism with respect to DPOP. We propose to found such
improvement on another rearrangement of the DJT pro-
duced by mapping γ. This time we propose to change the
root of the DJT. Figure 5(d) illustrates such rearrange-
ment for the DJT in figure 5(b). Observe that changing
the root of a DJT never changes either the computation
or the communication costs because cliques and separa-
tors remain the same. Notice also that we cannot ex-
plore such an arrangement in DPOP because changing
the root of a pseudotree can lead to a non-valid pseu-
dotree. For instance, choosing x2 as a root in the pseu-
dotree of figure 5(a) makes it an non-valid pseudotree
(because of the dependency between variables x1 and
x3). Next we measure and compare the MPC, formally
defined as MPC = maxPi∈P

P
Cj∈Pi d

|Cj |, where P stands
for the set of all paths, a path Pi contains all cliques from
the i-th clique to the root, and d stands for the variable
domain size. To run this experiment we employ the same
pseudotrees generated for our first experiment above and

3Percentage assessed as
(DPOP−ActionGDL)

DPOP
· 100

we set d = 2. We rearrange DJTs for Action-GDL as ex-
plained above to select as clique root the one that reduces
the MPC the most. Figure 6 (lower) shows our empirical
results by depicting the average (in percentage) improve-
ment in MPC3 that Action-GDL achieves. Observe that
the gain in parallelism can be very significant (from 25%
to 40% of MCP reduction), and it increases as the num-
ber of variables grows.

Figure 6: Experimental results

10 Conclusions

In this paper we show how the novel message-passing
algorithm, the so-called Action-GDL, to solve MCP’s has
DPOP has a particular case. To do so, we prove that :
(1) given a pseudotree there is a DJT such that Action-
GDL mimics DPOP execution; and (2) that DJTG al-
gorithm compiles, given the pseudotree, this DJT dis-
tributedly. Moreover, we provide empirical evidence to
show how we can computationally exploit the generality
of Action-GDL. Thus, we show that Action-GDL can
outperform DPOP in terms of the amount of compu-
tation, communication and parallelism of the algorithm
solving cost. Therefore, Action-GDL can efficiently solve
DCOPs.

References

[1] S. M. Aji and R. J. McEliece. The generalized dis-
tributive law. IEEE Transactions on Information
Theory, 46(2):325–343, 2000.

[2] F. V. Jensen and F. Jensen. Optimal junction trees.
In UAI, pages 360–366, 1994.

[3] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo.
Adopt: asynchronous distributed constraint opti-
mization with quality guarantees. Artif. Intell.,
161(1-2):149–180, 2005.

[4] M. A. Paskin, C. Guestrin, and J. McFadden. A
robust architecture for distributed inference in sensor
networks. In IPSN, pages 55–62, 2005.

14

[5] A. Petcu. A Class of Algorithms for Distributed Con-
straint Optimization. PhD thesis, EPFL, Lausanne,
2007.

[6] A. Petcu and B. Faltings. A scalable method for
multiagent constraint optimization. In IJCAI, pages
266–271, 2005.

15

