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Abstract: Probabilistic models of competence assessment join the benefits of automation with human
judgment. We start this paper by replicating two preexisting probabilistic models of peer assessment
(PG1-bias and PAAS). Despite the use that both make of probability theory, the approach of these
models is radically different. While PG1-bias is purely Bayesian, PAAS models the evaluation process
in a classroom as a multiagent system, where each actor relies on the judgment of others as long
as their opinions coincide. To reconcile the benefits of Bayesian inference with the concept of trust
posed in PAAS, we propose a third peer evaluation model that considers the correlations between
any pair of peers who have evaluated someone in common: PG-bivariate. The rest of the paper
is devoted to a comparison with synthetic data from these three models. We show that PG1-bias
produces predictions with lower root mean squared error (RMSE) than PG-bivariate. However, both
models display similar behaviors when assessing how to choose the next assignment to be graded
by a peer, with an “RMSE decreasing policy” reporting better results than a random policy. Fair
comparisons among the three models show that PG1-bias makes the lowest error in situations of
scarce ground truths. Nevertheless, once nearly 20% of the teacher’s assessments are introduced,
PAAS sometimes exceeds the quality of PG1-bias’ predictions by following an entropy minimization
heuristic. PG-bivariate, our new proposal to reconcile PAAS’ trust-based approach with PG1-bias’
theoretical background, obtains a similar percentage of error values to those of the original models.
Future work includes applying the models to real experimental data and exploring new heuristics to
determine which teacher’s grade should be obtained next to minimize the overall error.

Keywords: peer assessment; multiagent system; probabilistic model; comparative analysis; Bayesian
network

1. Introduction

Automated assessment and feedback of open-response assignments remain a challenge
in computer science despite recent milestones in natural language processing. Compe-
tence assessment is a sensitive topic (current “AI Act” under discussion at the European
Parliament pinpoints student assessment based on AI as high risk) with a clear impact
on the certification of students as competent professionals and on their educational ca-
reer progress.

Despite the efforts on opening the black box of neural networks, current neural models
are rarely equipped with logical narratives of the decision chains that lead them to a final
prediction or classification. Nevertheless, transparency and explainability are desirable
requisites for automated assessment systems.

As a result, many researchers propose hybrid solutions combining the benefits of
automation with human judgment. Specifically, they propose using peer assessments to
help the teacher in the evaluation of students in large classrooms. Furthermore, numerous
studies from the field of psychology point out that peer evaluation methods positively
impact students’ formative process, leading toself-reflection [1–3].

Among the hybrid solutions in the bibliography, there are many that make use of
Bayesian models to infer the grade of an assignment given a list of peer assessments ([4–7]).
On the other hand, Gutierrez et al. [8] successfully built a network of trust among peers
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and the teacher that determines the relative importance that each peer’s opinion has in
the computation of the assignment’s grade. This second approach, called PAAS, is very
attractive as it exploits the naturalness with which a class of students evaluating each other
can be modeled through multiagent theory.

The main objective of this article was to conceive a model that benefits from the
Bayesian tradition in peer-assessment models while taking advantage of the concept of
trust proposed by Gutierrez et al. [8]. As a result, we present PG-bivariate, a Bayesian
model that translates the notion of trust among reviewers to a Bayesian approach thanks to
its use of correlations among graders as the main feature to be learned by the model. Once
PG-bivariate was implemented, we set out to compare it with one of the aforementioned
Bayesian models and with PAAS in different experimental contexts. Given its theoretical
robustness and the fact that it had been tested on an overwhelming number of more than
63,000 peers, the Bayesian model we chose to reimplement was PG1-bias [4].

The three models (PG-bivariate, PG1-bias and PAAS) were then compared in the
context of competency assessment. All of them use a probabilistic approach to estimate a
probability distribution for each automatic grade. Their inputs are always peer assessments
and a given percentage of the teacher’s grades (ground truths). Despite their commonalities,
the relying idea varies for each model: whilst PG1-bias [4] and PG-bivariate are Bayesian
network models, PAAS [8] applies multiagent system theory. More specifically, it is a
competency assessment model: Given a community of agents and a human leader whose
assessing criterion is to be mimicked, PAAS builds a matrix representing each agent’s trust
in the rest.

The contributions of this work include (1) a Python reimplementation of PAAS, (2) a
Python reimplementation of PG1-bias, (3) a new model that integrates PAAS’ use of trust
measures with the Bayesian approach of PG-bivariate, and (4) a comparative analysis
among the three models using simulated data and homogeneous units of measurement of
the performance of the models.

This paper is structured as follows: In Section 1.2, we briefly review the concept of
Bayesian network. After describing the materials and methods in Section 2, we present our
models in Section 3. We experimentally evaluate the three models and compare them in
Section 4. The discussion is presented in Section 4. Finally, we conclude in Section 5.

1.1. Related Work

The statistical models we present in this paper are part of a tradition of algorithms
focused on score prediction. For instance, Bachrach et al. [6] makes use of a Bayesian
model to grade tests. This model has two parts: a part that estimates the probability that a
participant p will know the correct answer to a question q, represented by a variable cpq;
and a second part that models the probability of each potential answer rpq of participant p
to question q as a variable that depends on the correct answer to question q, yq, and also
on cpq.

On the other hand, Sterbini and Temperini [5] exploited peer-evaluation among stu-
dents to support the teacher when grading open-answers. To do so, they represented each
student as a triplet of discrete variables: knowledge, judgment, and correctness, which
are interrelated. Each student is asked to choose the best of three peer answers, and her
choice is influenced by the triplet representing the student. The correctness of the three
peer answers presented to her also makes an impact on that choice.

De Alfaro and Shavlovsky [9] created a web-based tool for collaborative grading and
evaluation of homework assignments. Similarly to our setup, students played in this
platform both the role of graders and gradees. In addition, to encourage quality peer
reviews, they made the final grade received by the students dependent on (i) the consensus
grade computed for the student’s submission, (ii) an accuracy grade that measures the
precision of the student in grading submissions, and (iii) a helpfulness grade that measures
how helpful the reviews written by the student were. Such precision was computed
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by comparing the grades assigned by the student with the grades given to the same
submissions by other students.

Perhaps more related to Piech et al. [4]’s work, Ashley and Goldin [10] devised
a hierarchical Bayesian model to mine peer assessment data. However, although they
do account for graders’ biases similarly to the models in this work, they mainly use
the resulting posterior distribution over the conjoint parameter space to answer queries
regarding the suitability of the employed rubric criteria.

1.2. Bayesian Networks

Conditional probability distributions allow decoupling of joint probability distribu-
tions into sequences of conditional probability distributions over lower-dimensional spaces
and marginal probability distributions. This decomposition eases the reasoning about the
model and allows to better incorporate domain expertise. The methodology that constructs
joint probability distributions by applying the chain rule to conditional and marginal
probability distributions is known as generative modeling (Figure 1).

Figure 1. Iterative addition of variables to a generative model. This methodology constructs a joint
probability distribution from intermediate conditional probability distributions.

Likewise, it is also possible to start with a coarse model represented by a joint proba-
bility distribution and then increase the complexity of the model by adding new variables
as parents of that layer (Figure 2).

Figure 2. Reverse construction of a joint probability distribution. In this case, we begin with a
marginal distribution over some few variables and then increase the complexity by conditioning this
distribution over a new set of (ancestor) nodes.

A joint distribution that factorizes into marginal and conditional distributions can
be represented by a probabilistic graphical model (PGM). In particular, this section will
introduce the fundamentals of Bayesian networks, a kind of PGM that will be used during
the description of two from three of the probabilistic models implemented for this research.

1.3. Representation

A Bayesian network (BN) is a directed acyclic graph G = (V, E) and a set of parameters
Θ = {θ1, θ2, ..., θn} labeling the probability distributions associated with the nodes in the
graph. This graph represents a decoupled joint probability distribution, such that
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1. The vertices represent the random variables that we model.
2. For each vertex Xi, there is a conditional probability distribution π(Xi|pai).

The chain rule for Bayesian networks states that a Bayesian network M = (G, Θ) can
be expressed as the product of marginal and conditional probability distributions associated
to its nodes:

πM(
−→
X ) =

n

∏
i=1

π(Xi|pai; Θi) (1)

where
−→
X = {X1, X2, ..., Xn} and pai stands for parent nodes and denotes the set of variables

with a direct edge towards Xi. The symbol Θi represents the parameters of the probability
distribution associated with that same vertex. If a node has no parents, then the probability
distribution associated with it is marginal. As a side note, when depicting a Bayesian
network, observed nodes will be shaded.

In addition, some representations will introduce the plate notation, a method of
representing variables that repeat in a graphical model. Instead of drawing each repeated
variable individually, a plate (rectangle) is used to group variables into a subgraph that
repeat together, and a quantity is drawn on the plate to represent the number of times the
subgraph repeats in the plate. It is assumed that the subgraph is duplicated that many
times, the variables in the subgraph are indexed by the repetition number, and any links
that cross a plate boundary are replicated once for each subgraph repetition.

Before deepening into the dependencies between variables in a Bayesian network, let
us introduce some important concepts that will be used in the presentation of the models
implemented in this research, namely parents, children, ancestors, ancestral ordering, and
Markov blanket.

• Given a node X in a Bayesian network, its parent nodes are the set of nodes with a
direct edge towards X.

• Given a node X in a Bayesian network, its children nodes are the set of nodes with an
incoming edge from X.

• Given a node X in a Bayesian network, its ancestors are given by the set of all variables
from which we can reach X through a directed, arbitrarily long path.

• Given the set of all the variables modeled in a Bayesian network, X = {X1, X2, ..., XN},
an ancestral ordering of the variables is followed when traversing the network; if
every time we reach a variable X, we have already visited its ancestors.

• Given a node X in a Bayesian network, its Markov blanket is given by its parents, its
children, and the parents of its children.

1.4. Flow of Probabilistic Influence

The structure of a Bayesian network contains information regarding how variables in
the model interact with each other. In other words, it is possible to determine whether the
injection of information about a variable X updates our knowledge about another variable
Y in the graph.

Considering the case of only two variables X and Y, if X is a parent of Y, then any
update in the probability distribution associated with X will be reflected in changes in
the probability distribution associated with Y. Likewise, knowing Y will update our
information about X.

If we now think about three variables X, Y, W, three main situations can be distin-
guished:

1. If W is an intermediate node and all the edges go in the same direction (Figure 3),
then an update in X will be reflected in Y if and only if W is not an observed variable,
and vice versa: an update in Y will be reflected in X if and only if W is not an
observed variable.

2. The same applies if W is a parent of two children X and Y (Figure 4). Again, there
will be a flow of probabilistic influence from X to Y if and only if W is not observed.
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3. Finally, if X and Y are parents of W (v-structure, Figure 5), then the situation reverses,
and there is a flow of probabilistic influence from X to Y if and only if W is observed.

X

W

Y

Figure 3. Case 1.

X

W

Y

Figure 4. Case 2.

X

W

Y

Figure 5. Case 3.

In short, it can be stated that in Bayesian networks, influence flow is stopped by
observed nodes and nonobserved v-structures. A v-structure is observed if W or any of its
descendants is observed.

Formally, we say that there is a flow of probabilistic influence from X to Y if there is
an active trail from X to Y, where an active trail is defined as follows:

• Let G be a DAG.
• Let X1 
 ... 
 X2 be a trail in G.
• A trail is active given a set of observed variables W if

1. Whenever there is a v-structure Xi−1 → Xi ← Xi+1, Xi or one of its descendants
is in W.

2. no other node along the trail is in W.

Let X, Y, and W be three disjoint sets of variables in G. W d-separates X from Y in G if
XY|W holds in G. XY|W holds in G if there is no active trail between any variable in X and
any variable in Y given W.
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Given a variable Xj and its Markov blanket, Mbj, for any set of variables Xc ⊆
(V\Mbj):

XcXj|Mbj (2)

Hence, the Markov blanket of a variable in a BN d-separates that variable from the
rest of the network.

2. Materials and Methods

All the analyses in this comparative study have been carried out with synthetic data.
More specifically, for the generation of the data points injected into the Bayesian network
models, ancestral sampling was used. According to this method, once a prior distribution
πS (θ) and an observational model πS (ỹ|θ) are specified, then we can iteratively generate
an ensemble of reasonable model configurations and observations by sampling first from
the prior

θ̃ ∼ πS (θ)

and then observations from the corresponding data generating process,

ỹ ∼ πS (ỹ|θ̃)

Each simulated data point ỹ adds an independent sample to the synthetic database.
This database is then used as input for the model to fit. Please refer to Section 3 for further
information about the parameters of the Bayesian network models presented in this paper.
With regards to the non-Bayesian model (PAAS), its equivalence with the original Java
implementation in Gutierrez et al. [8] was tested in Section 3.2.2. As for the data fed to
it, we replicated the synthetic experiment presented in Gutierrez et al. [8] for a class of
50 students.

3. Results
3.1. Probabilistic Models of Peer Assessment

In the last decade, the boom of massive online courses (MOOCs) has propitiated that
some platforms that provide online educational resources direct efforts towards imple-
menting technologies that somehow automate the assessment process. The goal is to help
teachers evaluate usually large numbers of assignments in this teaching modality.

The variability of answers to open questions and their challenges to natural language
processing (NLP) techniques make automatic assessment a limited tool to deal with this
task. The more unique or creative an assignment is, the less appropriate it is to rely on
purely computer-based assessment methodologies [11]. Many authors have proposed
peer assessment techniques as a promising alternative to speed up evaluation in online
courses. Moreover, according to these voices, this methodology may provide other potential
benefits such as helping students see the task from an assessor’s perspective and boosting
self-reflection, as well as providing valuable feedback [3,12].

The three models of peer assessment that were studied in this paper are presented in
this section. All of them are probabilistic and focus on an educational context and they all
address a common question: How can we generate an automatic quality assessment of a
submission not yet evaluated by the teacher in charge?

3.1.1. Personalized Automated Assessments

Provided a community (a class) and a leader or special member from that community
(the teacher), the aim of Gutierrez et al. [8] is to predict as accurately as possible the
personalized assessments that a teacher in a class would make. The key idea behind this
model is to unequally weigh the opinion of the members in the community (the students)
so that the closer a student’s marking style is to the teacher’s style, the more relevant that
student’s opinion will be to predict the teacher’s opinion.

The closeness in marking styles will be represented as a trust value. That is, the
teacher’s trust in a student depends on the similarity between the teacher’s (past) assess-
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ments and the student’s (past) assessments of the same assignments. In what follows, a
one-to-one mapping between assessed students (a.k.a. gradees) and assignments is pre-
sumed. In other words, for all the experiments in this work, every student completed one
and only one assignment (a.k.a. exam).

In the case there were no commonly assessed exams by the teacher and a given student,
the authors propose a key concept: indirect trust. In short, an indirect trust measure is
computed as the reputation of the student within the community, where this reputation is
biased towards the teacher’s perspective.

Model

Let ε represent a person who needs to assess a set I of objects and let P be a set of
peers able to assess objects in I . In the context of our analysis, this would be a teacher that
wants to assess a number of assignments (I) completed by students that are evaluated by
other students (P). Assessments made by peers v ∈ {ε} ∪ P on an object u ∈ I , noted zv

u,
are elements from an ordered evaluation space E .

An automated assessment of ε’s opinion on an object u, noted eε
u, is a probability

distribution P = {x1 7→ α1, x2 7→ α2, ..., xn 7→ αn}, where xi ∈ E and αi ∈ [0, 1], with ∑i αi =
1. A value αi represents the probability that ε’s true assessment of u is xi. Hence, the more
peaked the grading distribution on an object is, the more confident we will be that the
automated assessment closely approaches ε’s. Inversely, the flat, equiprobable distribution
will be the one denoting ignorance of ε’s true assessment.

Given a history of past peer assessments over u, Ou, the ultimate goal of PAAS is to
compute

P(Xε
u = x|Ou)

That is, we aim to compute the probability distribution representing ε’s evaluation on
every object given the assessments of peers on that object.

To that end, every individual evaluation zv
u from Ou is taken into account, and the

probability P(Xε
u = x|zv

u) is computed as a function of the trust (expected similarity between
previous assessments) that ε has on v.

In our context, this trust is computed using the assignments graded in common by the
teacher, i, and a student, j. In the case that there are no assignments in common, an indirect
trust measure is obtained based on the notion of transitive trust: the trust that i has on
student j can be computed from the trust i has on student k and the trust that student k has
on student j. As there are many possible paths connecting i to j, appropriate aggregation
functions have to be provided.

Direct Trust

When two agents i and j have commonly assessed one or more objects, a direct
trust relationship between them Ti,j can be computed. This direct trust is modeled as a
probability distribution on the difference between the evaluations performed by i and j.
This way, we keep information about whether j, for instance, underevaluates with respect to
i, or overevaluates, or shows any other possible pattern. Information about their evaluation
dissimilarities is summarized in that probability distribution.

The evaluation difference between two assessments performed by i and j is defined as

diff (i, j) = zi
u − zj

u

If diff (i, j) > 0, it follows from the above definition that agent i over rates u with
respect to j. The opposite occurs if diff (i, j) < 0.

From the previous definitions, it is clear that a situation of complete agreement between
two agents is represented by

Ti,j = {0 7→ 1}

In what follows, we will denote that situation as O.
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Indirect Trust

If the leader has no objects assessed in common with a student j, a relation of indi-
rect trust is computed. Since the model deals with probability distributions, it becomes
necessary to define aggregation operators for probability distributions. These operators
compute an indirect trust distribution from two trust distributions by combining differences
in an additive way. The basic idea is that if the difference of opinions between k and j
is x, and the difference of opinions between k and the teacher is y, then the difference of
opinions between j and the teacher is x + y. Translating the above to probabilities and
assuming independence of opinions, a combined distance distribution operator

⊗
can be

defined as follows.

Definition 1. Given trust distributions P and Q over the numeric interval [−b, b] we define their
combined distance distribution, noted R = P⊗Q, as:

r(X = x) =

∑
x1+x2=x

p(X = x1) ∗ q(X = x2) if x ∈ (−b, b)

∑
x1+x2≤−b

p(X = x1) ∗ q(X = x2) if x ≤ −b

∑
x1+x2≥b

p(X = x1) ∗ q(X = x2) if x ≥ b

(3)

This aggregation combines the distributions along a path between two peers.
From that definition, it follows that

⊗
is commutative, and its neutral element is

the probability distribution representing the complete agreement between two peers (O).
In case there are several possible paths from the teacher to a student j, an aggregation
operator

⊕
is defined to combine the aggregations computed along the different paths:

Definition 2. Given probability distributions P and Q over the numeric interval [a, b], we define
P⊕Q, as

P⊕Q = arg min
T∈{P,Q}

(EMD(T,O)) (4)

with EMD standing for Earth mover’s distance (a.k.a Wasserstein distance). (Informally, if the
distributions are interpreted as two different ways of piling up a certain amount of dirt over the
region D, the EMD is the minimum cost of turning one pile into the other, where the cost is assumed
to be the amount of dirt moved times the distance by which it is moved [13]).

This aggregation is optimistically performed; it assumes that the combined distance
that is closer to O (i.e., the one that brings the student’s and teacher’s opinions closer) is
the true one. This operator is both commutative and associative. Thus, the order in which
distributions (i.e., paths) are combined is irrelevant.

Incremental Updates

Every time an object is assessed by a peer, PAAS launches an overall update of the
trust values and hence of the student marks. This update can be simplified as follows:

1. Initially, the default direct trust distribution Ti,j between any two peers i and j is the
one describing ignorance (i.e., the flat equiprobable distribution F). When j evaluates
an object α that was already assessed by i, Ti,j is updated as follows:

2. Let P(Xu = x) for x = diff (i, j) be the probability distribution of the assessment
difference between i and j. The new assessment must be reflected in a change in
the probability distribution. In particular, P(Xu = x) is increased a fraction of the
probability of X not being equal to x:

P(Xu = x) = P(Xu = x) + γ · (1− P(Xu = x)) (5)
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For instance, if the probability of x is 0.6 and γ is 0.1, then the new probability of x
becomes 0.6 + 0.1× (1− 0.6) = 0.64. As in the example, the value of γ must be closer
to 0 than to 1, for considerable changes can only be the result of information learned
from the accumulation of many assessments.

3. The resulting Ti,j is then normalized by computing the distribution that respects the
new computed value and has a minimal relative entropy with the previous probability
distributions:

Ti,j(X) = argminP′P′(X)∑x′ p(Xαx′) log p(Xαx′)
p′(Xαx′)

such that {p(Xαx) = p′(Xαx)}
(6)

where p(Xαx′) is a probability value in the original distribution, p′(Xαx′) is a proba-
bility value in the potential new distribution P′, and {p(Xαx) = p′(Xαx)} specifies
the constraint that needs to be satisfied by the resulting distribution.
These direct trust distributions between peers are stored in a matrix C.

4. To encode the decrease in the integrity of information with time (information decays
with time, I may be sure today about your high competence playing chess, but maybe in five
years time I will be no longer sure if our interactions stop. You might have lost your abilities
during that period), the direct trust distributions in C are decayed towards a decay limit
distribution after a certain grace period. In our case, the limit distribution is the flat
equiprobable F. When a new evaluation updates a direct trust distribution Ti,j, Ti,j is
first decayed before it is modified.

5. The indirect trust distributions between ε and each peer are stored in a distributions
vector

−→
tε .

Initially,
−→
tε contains the probability distributions describing ignorance F. When

matrix C is updated,
−→
tε is also updated as a product of its former version times

matrix C:
tk+1
ε,j =

⊕
0<i≤n

Ti,j ⊗Tk
ε,i (7)

6. If a direct trust distribution Tε,j exists between ε and j, the indirect trust distribution
tε,j is overwritten with Tε,j after the update of the indirect trust distributions.

Please notice that the decay in the direct distributions Ti,j affects the indirect dis-
tributions tε,j as well. This is because the indirect trust distributions are computed as
aggregations of combinations of direct trusts.

3.1.2. Tuned Models of Peer Assessment in MOOCs

Looking for an answer to the same question posed by PAAS, the authors from Tuned
Models of Peer Assessment in MOOCs [4] propose a Bayesian network model to represent the
variables affecting the grade that a peer gives to another. Bayesian inference differentiates
itself from other forms of inference by extending probability theory to the parameter space.

In this case, the space over which the probability is allocated is Z × Θ, where Z
is the observational space and Θ is the parameter space. Observations are denoted as
zv

u ∈ Z, where u refers to the gradee and v to the grader. On the other hand, Θ is the
space parameter.

More specifically, PG1-bias considers that zv
u is influenced by the following:

1. The assignment’s true score, su ∈ R. In the case of the implementation presented here,
this is the teacher’s grade.

2. The grader’s bias, bv ∈ R. This bias reflects a grader’s tendency to either inflate or
deflate their assessment by a certain number of percentage points. The lower these
biases, the more accurate the grades will be.

3. The grader’s reliability, τ ∈ R, reflecting how close on average a grader’s peer
assessments tend to land near the corresponding assignment’s true score after having
corrected for bias. In this context, reliability is a synonym for precision or inverse
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variance of a normal distribution. Notice that the reliability of every grader is fixed to
be the same value.

The posterior probability distribution is computed as the product of the prior over the
parameters times the likelihood function evaluated on the observations (times a constant
depending only on the observations):

πS (su, bv, τ|zv
u) ∝

∫
Θ

πS (su, bv, τ)πS (zv
u|su, bv, τ)dθ (8)

The authors propose that the prior distribution πS (su, bv, τv) can be decoupled into
three marginal probability distributions:

πS (su, bv, τ) = πS (su)πS (bv)πS (τ) (9)

That is, the parameters are mutually independent. These priors have the form, accord-
ing to Piech et al. [4], of

πS (bv) = N (0,
1
η0

) (10)

πS (su) = N (µ0,
1

γ0
) (11)

πS (τ) = G−1(α0, β0) (12)

Whereas the likelihood function is given by

πS (zv
u|su, bv, τ) = N (su + bv,

1
τ
) (13)

The resulting PGM is shown in Figure 6.

zv
u

bv τ su

η0 α0 β0 µ0 γ0

UV

Z

Figure 6. PG1-bias [4].

Partially Known Parameters

As Figure 6 shows, once the evidence zv
u is injected, there is an active trail towards sv,

which implies that we do not need an example of a teacher’s grade to make inference about
how they would grade any student in the class. This active trail does not mean, however,
that we are not allowed to introduce some ground truths grades sv in the Bayesian network.
In that case, sv is said to be a partially known parameter, and its injection should result
in a reduction of the variance of the posterior distribution. Half-shaded nodes represent
partially known parameters in BNs.

3.1.3. PG-Bivariate: A Bayesian Model of Grading Similarity

We contribute in this section with a novel Bayesian model of peer assessment, PG-
bivariate. The approach adopted here tries to reconcile the benefits of Bayesian inference
with the concept of trust posed in PAAS [8]. The key idea is to use a probability distribution
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to model the similarities as graders between any pair of peers in the system (teacher
included). The chosen form for the probability density function modeling the similarities is
a bivariate normal distribution. Figure 7 shows the graph representing the joint probability
distribution of our model in a toy example with three students and a teacher, ε. The small,
dark squares represent the relationship variablesR between graders.

zε z2

z3 z4

µs σs µ2 σ2

µ3 σ3 µ4 σ4

Figure 7. PG-bivariate.

More specifically, consider a class with S students and a teacher ε. Each student vi
assesses a number mi of peer students. The allocation of assignments to graders is such
that every student is assessed by the same number n of peers. Denoting the assessments by
peer v as ~zv, we wish to compute the grades that the teacher would give to each student, ~zε.
The model proposes that ~zv is sampled from a normal probability density function with
parameters µv and σv. We could add complexity to the model and encode causal reasoning
over these parameters by populating the layers above µv and σv. We limit, however, to this
basic level of characterization, without adding any more variables influencing location or
scale. Please notice that in this case, z are vector variables containing the assessments of
each peer to her assigned reviewees. In the case of zε, it is a partially known vector: making
it a completely observed variable would imply that the teacher has assessed all the students
in the class, which is not the case.

In line with the concept of direct trust coined by PAAS’ authors, we define a bivari-
ate vector formed by the set of common assessments {(zv1

i , zv2
i ), (zv1

j , zv2
j ), . . . , (zv1

k , zv2
k )}

between two peers v1 and v2, hereafter denoted asRv1,v2 . This sequence is sampled from a
bivariate normal distribution such that

• The location vector, ~µv1v2 = (µv1, µv2) is composed of each of the peers’ location
parameters separately.

• The covariance matrix Σv1v2 contains the individual variances in its diagonal. The off-
diagonal components codify the correlations between v1 and v2 when grading.

Putting it all together, the equations for PG-bivariate model are

zvi ∼ N (µvi , σvi ) ∀vi (14)

Rvi ,vj ∼ N (~µvivj , Σvivj) ∀vi, vj (15)

where ~µvivj = (µvi , µvj ), Σvivj =

(
σ2

vi
σvivj

σvivj σ2
vj

)
, and (vi, vj) refers to a pair of graders

having a set of evaluations in common.
We propose the following prior distributions for the hyperparameters:

σvi ∼ Cauchy(x0, γ) (16)

µvi ∼ N (�̄, ⊃̄) (17)
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As for the modeling of the covariance matrix Σ, denoting by D a diagonal matrix
whose elements are the square root of the elements in the diagonal of Σ, D =

√
Diag(Σ),

then the correlation matrix Ω is related to the covariance matrix Σ by

Ω = D−1ΣD−1 (18)

Stan offers correlation matrix distributions, which have support on the Cholesky
factors of correlation matrices. Cholesky’s decomposition is unique: Given a correlation
matrix Ω of dimension K, there is one, and only one, lower triangular matrix L such
that LLT = Ω. We call such a matrix its Cholesky factor, and, according to Stan, even
though models are usually conceptualized in terms of correlation matrices, it is better to
operationalize them in terms of their Cholesky factors.

Hence, we used the prior
L ∼ LkjCorr(η)

The observations in this system are vectors of peer grades ~zv, whereas the inference
target is the vector of teacher grades, ~zε = ~s. Please notice that in this case, no explicit
mention is being made to the indirect trust. We limit our explicit modeling to the relation-
ship between graders having a set of peers to assess in common. Nevertheless, from the
graphical model, it can be seen that there exists a flow of probabilistic influence from any
variable of typeR to the rest of them. That is:, a change in the available information about
the relationship between any pair of peers is reflected in an update of all the other variables
Rvivj for all pairs {vivj}, including those containing the professor. In turn, this directs the
flow of probabilistic influence towards the parameters of the distribution from whichRvivj

is sampled, namely ~µvivj and Σvivj .

Partially Known Parameters

Similarly to PG1-bias, PG-bivariate allows a flow of probabilistic influence from any
peer’s grades to the teacher’s grading distribution without the need to have an example
of how the teacher grades. However, it is possible to improve the inference results by
introducing some of the teacher’s grades in the system. Hence, the components in~s will be
considered partially known parameters as well.

3.2. Experiments

The following results refer to synthetic databases, though future work includes apply-
ing the models to real data. Similar to in previous sections, the term ground truth is used
here. In this context, ground truth is a synthetic data point with a known value that serves
as input to the model.

3.2.1. Experiments on Bayesian Networks
Posterior Predictive Sampling

Posterior predictive sampling (Equation (19)) is a useful method to compare predic-
tions of new data based on past observations with the real data points. This comparison
gives a sense of the estimations’ quality and may help during the tuning of the hyperpa-
rameters.

πS (y|ỹ) =
∫

πS (θ|ỹ)πS (y|θ)dθ (19)

We sampled from the posterior predictive distribution of the two tested BN models,
namely PG1-bias and PG-bivariate, comparing the histograms of predictions with the his-
togram of samples. Sampling from the posterior predictive distribution helped us calibrate
the models’ hyperparameters for the prior distribution. In general, weakly informative and
very weakly informative priors were proposed. However, we introduced some domain
knowledge by centering the distributions of grades around positive numbers and restricting
the variance parameters to only positive values, to name a couple of examples.
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Recalling the prior distribution equation for model PG1-bias (Equation (10)), the cho-
sen values in our implementation for (α0, β0, γ0, η0, µ0) were α0 = 0.01 (very weak prior),
β0 = 0.01 (very weak prior), γ0 = 10.0 (weak prior), η0 = 1.0, and µ0 = 5.0, whereas in the
case of PG-bivariate, the chosen hyperparameters were x0 = 0.0 (weak prior), γ = 0.25
(weak prior), µ̄ = 5.0, σ̄ = 10.0 (weak prior), and η = 1.0 (weak prior).

Figure 8 represents a histogram of predicted peer grades z’s from the posterior predic-
tive distribution in model PG1-bias for a class of 50 students (without ground truths). We
observe the experimental histogram of observed peer grades in blue, z̃. The histogram of
predictions (z) represents the distribution of data not part of the training set. This kind of
prediction was repeatedly executed (20 times) to ensure that the results were consistent.
Peer grades ranged from 0 to 10, following Equation (13).

Figure 8. Posterior predictive sampling from PG1-bias.

We calculated the percentage overlapping between the histogram of samples and the
histogram of predictions using the vector of elementwise minima [14]. The overlapping
range was between 0% (no overlap) and 100% (identical distributions). On average, we
observed an overlapping of 82%. The range of values obtained for the overlapping in all
the performed experiments was between 76% and 84%.

This value implies that the model captures the data generation system’s dynamics,
which results in samples z that follow a very similar distribution to that from which z̃
were sampled.

A similar figure to Figure 8 is obtained when we perform a posterior predictive
sampling of the model presented in this paper, PG-bivariate. The overlapping, in this
case, fell within the range [73–81%], with an average value of 77% in 20 different runs (see
Figure 9).

Although in this case, the model does not offer a causal explanation of the parameters
µv and σv from the normal distribution governing zv (Equation (14)), the dynamics of the
data generation system are captured. Intuitively, one would have expected a notably worse
performance than PG1-bias for several reasons. First of all, PG1-bias models each use
peer grade as a random variable that follows its normal distribution. On the other hand,
the definition of the location parameter as the sum of the real grade and the graders’ bias
allows a direct ascension of the flow of probabilistic influence towards sv. In the case of
PG-bivariate, we adopt the perspective of a passive observer, representing the set of grades
emitted by a referee as a random variable following a normal probability density function.
Notice that in this case, no mention of who is evaluated by whom is being made. Hence,
the location parameter µv cannot be decoupled as in the former case to further ease the
probabilistic influence flow.
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Figure 9. Posterior predictive sampling from PG-bivariate.

Studying the Error Evolution

To compare the performance of both models based on Bayesian networks, we studied
the evolution of the models’ root mean squared error (RMSE, Equation (20)) as a function of
the number of observed true grades, keeping the number of students in a class, S, constant.

RMSE =

√√√√ 1
N

N

∑
n=1

(yn − ỹn)2 (20)

where ỹ is the true value, y is the prediction, and N stands for the number of data points.
Grades ranged from 0 to 10, both included. We examined the error evolution in both models
as we introduced more teachers’ grades as ground truths. We assessed two different criteria
to determine which new grade to introduce in each step of the loop:

1. Random choice (baseline): The next observed ground truth is chosen randomly.
2. Total RMSE decreasing policy: At each iteration, we picked and observed the true

grade (i.e., the teacher’s grade) of that student whose assessment was introducing the
highest root mean squared error.

As a result, we obtain four curves for each model:

• The red line shows the evolution of the estimations’ RMSE as we introduce new
ground truths following a random policy.

• The yellow, discontinuous line shows the evolution of the estimations’ RMSE without
considering the known ground truths to correct for overly optimistic low error values.
Additionally, in this case, a random policy for ground truth injection is followed.

• The blue line shows the evolution of the estimations’ RMSE as we introduce new
ground truths following an RMSE decreasing policy.

• The violet, discontinuous line shows the same information as the yellow line for the
case of the RMSE decreasing policy.

Figure 10 shows the resulting four lines in the case of PG1-bias. Looking at the
pair of continuous lines, we can see how RMSE falls as the number of known ground
truths increases in all cases. As expected, computing the RMSE of all the grades (ground
truths included) produces more optimistic errors. Moreover, it seems that the RMSE of the
unknown grades (discontinuous lines) decreases much more slowly than for the continuous
counterpart, that is, adding new ground truths does not reflect quickly on better quality
of the predictions. According to Figure 6, introducing a ground truth su has an impact on
the bias bv of those peers v who have made an assessment of u: zv

u. There is also a flow of
probabilistic influence towards the grader’s reliability τ, which in the case of PG1-bias is
common to all students. The informativeness of the prior determines the relative relevance
that observed data and domain expertise have on the posterior distribution parameters.



Appl. Sci. 2022, 12, 2368 15 of 21

Hence, we believe that the choice of an informative prior over bv is preventing the model
from showing an erratic behavior as new data is incorporated, but it also makes it more
insensitive to the observations.

Figure 10. Reported RMSE for model PG1-bias.

In general, the random policy yielded worse results for the discontinuous and con-
tinuous pairs of lines (red line showing higher error than the blue line, and yellow line
showing higher error than the violet line).

We can see in Figure 11 the corresponding curves for PG-bivariate. In this case,
the value of the RMSE was higher, which indicates that our predictions are, in general,
worse than those of PG1-bias. We see again that the random policy yields worse results
than the RMSE-decreasing policy (red line above blue line, and yellow line above violet
line). As in the previous case, the slopes of the continuous lines are sharper than those of
the discontinuous lines, which implies that the probabilistic influence from the observed
teacher grades towards the predictions does not flow easily. The discontinuous lines also
make it evident that when the number of grades we are computing the RMSE with is small
(last portion of the graph), fluctuations of the RMSE increase.

Figure 11. Reported RMSE for model PG-bivariate.
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3.2.2. Experiments on PAAS

To make sure that PAAS software was being correctly implemented in Python, the syn-
thetic experiment reported in Gutierrez et al. [8] was reproduced. We worked here under
the premise that obtaining similar figures to the originals with our implementation would
be a guarantee that the model functioning was being correctly replicated. This experiment
consisted of a simulation of a classroom of 200 students with 200 submitted assignments,
where each assignment was evaluated by 5 students (1000 peer assessments performed).
In order to show a critical case, the authors simulated that half of the assignments were
evaluated accurately by half of the students (that is, those students provided the same
mark as the teacher), and the other half of the assignments were evaluated poorly (that is,
randomly) by the rest of the class. In the simulation, they followed two policies to pick the
next ground truth to observe as well. Such policies were a random one and another seeking
to reduce the entropy of the grades by selecting the assignment with the highest entropy in
its probability distribution, where entropy is computed as in information theory:

H(P(su|{zv
u}v∈S) = ∑̃

s
P(su = s̃|{zv

u}v∈S) · lnP(su = s̃|{zv
u}v∈S) (21)

The reported error line by Gutierrez et al. [8] is shown in Figure 12 (up). Down, we
represent the obtained error for our implementation of PAAS in Python and a class of
50 students. We can see that although the original implementation shows a lower error
for the first iterations, the behavior of both the original and our Python implementation is
similar: both errors decrease as new ground truths are introduced in the system, and the
entropy heuristic decreases the error faster than the random one. Furthermore, in both
implementations, a crossing of the lines occurs when the number of observed ground truths
is between 20% and 30%. From that point on, the performance of the heuristic-driven
model is better.

Figure 12. Cont.
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Figure 12. Percentage error using random (red line) and entropy decreasing (violet, discontinuous
line) assessment order as a function of the number of observed teacher’s grades for classes of 200
and 50 students using synthetic data. The upper figure represents the original implementation by
Gutierrez et al. [8]. Below, our results are shown.

3.2.3. Comparison of the Three Models

In order to compare the results, it was necessary that all of them were in the same unit.
We adapted the BN models and computed their percentage of error to make comparisons
(Equation (22)). This is the error function that will be represented in the following figures:

ε =
Σu∈S |s̃u − su|

S
(22)

where S is the number of students, s̃u is the u’s true grade, and su is the prediction. The
experimental setups on which PAAS was tested considered quality assessments (that is,
the graders were asked up to what degree, in their opinion, did an assignment meet a set
of criteria). Although the model allowed both qualitative (e.g., {bad, good, excellent}) or
quantitative assessments, in the latter case, only integer grades were considered. Hence,
for the comparisons to be fair, the Bayesian network models were adapted to predict
integer grades ranging from 0 to 3 (both included). We ran this comparison mimicking the
experimental arrangement described in the previous Section 3.2.2 for a synthetic class of
50 students.

Figure 13 shows the models’ comparison using the best policy of each of them. From all
of them, PG1-bias keeps showing the lowest error when the number of known ground
truths is small. Once past that region, both PG1-bias and PG-bivariate show similar shapes
downwards, although PG1-bias keeps being solidly and continuously superior. Looking at
PAAS’ results and despite its initial results being poor, we can see a sharp decrease in error
once some evaluations were introduced as knowledge in the network, showing, from that
point on, a similar, though fluctuating, performance to PG1-bias.
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Figure 13. Percentage error as a function of the number of observed ground truth grades reported by
the three studied models.

4. Discussion

The difficulties faced by neural models to make logical narratives of the decision
chains that lead them to a final prediction pose a controversy on their applications in
sensitive topics. One example is automatic grading and the ethical implications that it
entails. These limitations have led the research to bet on hybrid solutions combining the
benefits of automation with human judgment.

The first goal of this paper was to reproduce two models (PG1-bias, by Piech et al. [4]
and PAAS, by Gutierrez et al. [8]) of peer assessment. Both proposals estimate a probability
distribution for each automatic grade using a probabilistic approach. These models’ inputs
are peer assessments and a percentage of the teacher’s grades (ground truths). However,
their theoretical foundations are different, and a common experimental setting was de-
signed to make fair comparisons. All the code was written in Python, which implied the
conversion of PAAS’ original code from Java and the familiarization with Stan’s Python
interface (pystan) to reimplement PG1-bias.

Our second goal was to implement a model that combined the first’s powerful the-
oretical background with the second’s multiagent-based ideas. As a result, PG-bivariate
translates the notion of trust among reviewers to a Bayesian approach thanks to its use of
correlations among graders as the main feature to be learned by the model. This allows for
the obtention of automatic grades of the same quality as those of PG1-bias without the need
for complex causal reasoning over the distribution parameters representing each grader’s
grading style.

Despite the similarities between previous literature and the algorithms presented here,
some important distinctions should be noted: first, in contrast to the Bayesian model by
Bachrach et al. [6], the variables considered in PG1-bias and PG-bivariate to predict the
scores of the submitters are not only related to circumstances entailing the submitters,
but also to the grades given by their peers and to the grading ability of such peers. Plus,
instead of relying on highly abstract variables such as Sterbini and Temperini [5] do (e.g.,
judgment, knowledge), PG1-bias and PG-bivariate work with more traceable variables such
as true scores and grader’s accuracy and reliability when correcting. Finally, and perhaps
most importantly, all the algorithms in this work try to mimic the behavior that an expert
would have had when faced with the task of grading a set of assignments. Hence, the trend-
ing opinion among peers is not what determines the quality of an assessment or what
guides the prediction of an automatic score, in contrast to De Alfaro and Shavlovsky [9].
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Regarding our experiments on Bayesian network models, the posterior predictive
analysis showed that the distribution of new samples conditioned on the observed data
was very similar to the distribution of samples. The posterior predictive distribution is
influenced by the model configurations consistent with the relevant domain expertise and
the observed data. This makes it ideal for informing predictions about future interactions
with the latent system. Comparisons between the posterior predictive distribution and the
observed data also measure how well our model approximates the latent system. Hence,
we conclude that both models captured the data generating process.

When comparing these two models between them, specifically when analyzing the
evolution of RMSE as a function of known ground truths (teacher’s grades), we can see that
PG1-bias is slightly better. Not only does it report lower RMSE, but we observed that the
computation times were shorter than in our model. According to the PyStan [15], most of
the computation time during sampling with the NUTS algorithm is dedicated to calculating
the Hamiltonian gradient. Looking at our computation times, PG-bivariate’s phase space
has a more problematic surface to the sampler than that one of PG1-bias’. Hence, we
conclude that although PG-bivariate uses a more simple definition of the distribution
parameters (avoiding higher layers above µv and σv), in this case, a higher abstraction
might be desirable to reduce the number of parameters to fit. Regarding the higher RMSE
values reported by our model, our hypothesis is that better and more informed choices of
the hyperparameters will yield lower errors in the future, further facilitating the flow of
probabilistic influence between variables. However, it is worth noting that PG-bivariate
showed a similar behavior to PG1-bias in what policies are concerned: the random policy
resulted in worse results than the one driven by the std error minimization policy. On the
other hand, it is interesting to see that PG-bivariate offers remarkably good performance
(the error of the predictions falls below 20% when only 20% of the ground truths are
observed) despite its simplicity. The model can make predictions using the observed data
and the correlations between graders, which somehow encode PAAS’s direct trust. The flow
of probabilistic influence between these relationship variables behaves in this case as PAAS’
indirect trust. Given the success of PAAS in obtaining good automatic ratings, we find it
interesting to continue exploring to what extent abstract variables can be dispensed within
a Bayesian model that codifies the notion of trust between peers.

In Section 3.2.2, we showed that our Python implementation of PAAS, pyPAAS,
reported a similar behavior to that by Gutierrez et al. [8]. To make fair comparisons among
all models, we adapted the Bayesian inference models to compare with pyPAAS. More
specifically, the synthetic data experiment was replicated for the three models. Under these
conditions, PG1-bias and PG-bivariate reported similarly low errors in situations of scarce
ground truths. From 10% ground truths, the three models offer results of similar quality. It
is worth mentioning that the calculation times for PAAS and our model were higher than
those for PG1-bias when the class size started to become relatively large.

Throughout this research, synthetic data was used. Future work will apply the models
to real experimental settings. Exploring new heuristics to determine which ground truth to
observe next is also an exciting research line to continue this work.

Finally, regarding the robustness of our method, the simultaneous concurrence of three
circumstances guarantees that the model is shielded from potential malicious coalitions:

1. The small number (5) of peers assessing each assignment.
2. The fact that these graders are chosen randomly.
3. The fact that the process is entirely anonymous concerning the students (the graders

do not know who are they assessing, and the gradees do not know the identity of
their graders).

In future work, we plan to identify the scenarios where each of these models is
preferable. Specifically, it would be interesting to confirm the hypothesis that the two
models PG-bivariate and PAAS (that implicitly penalize bad raters) perform better than
PG1-bias under alliance and coalition dynamics among students. Applying the models to
real experimental settings is also on the near horizon. Such settings may cover all those
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situations that can be modeled as consisting of multiple agents with different reputations
issuing an opinion (e.g., peer review). Further improvements of PG-bivariate should find
a point of compromise between the conceptual simplicity of the model and the number
of parameters that it requires in exchange. Finally, exploring new heuristics to determine
which ground truth to observe next is also an exciting research line to continue this work.

5. Conclusions

Our paper compares two state-of-the-art automatic evaluation methods ([4,8]) with a
new model. This new model combines the Bayesian background of Piech et al. [4]’s with
the use of a trust graph over the referees proposed by Gutierrez et al. [8]. As a result, we
obtain a hierarchical Bayesian model that dispenses with the choice of abstract variables in
favor of others that are easily interpretable. Similar to PAAS, this modeling through a trust
graph explicitly shields the algorithm against bad graders.

There remain several issues to be addressed in future work. First, it is necessary
to find a point of compromise between the conceptual simplicity of the model and the
number of parameters that it requires in exchange for said simplicity. For example, in the
case of PG-bivariate, dispensing with variables above the parameters µs and σs induces
the necessity to calculate the parameters of all the bivariate distributions that describe
correlations between students with some correction in common. This seems to cause a
difficult phase space for the sampler because of the relatively long computation times.
Second, we believe that further research that helps identify the scenarios where each of the
compared models performs better is an interesting continuation line. For instance, it would
be interesting to test whether the models that implicitly penalize bad raters perform better
than PG1-bias under alliance and coalition dynamics among students.

Similar to other studies of the area ([5,6,8]), we find that following a greedy policy that
maximizes the entropy reduction induced by new observations yields better predictions of
the grades. Exploring new heuristics to determine which ground truth to observe next is
also an exciting research line to continue this work.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
BN Bayesian network
DAG Directed acyclic graph
MOOC Massive open online course
NLP Natural language processing
PAAS Personalized automated assessments
PGM Probabilistic graphical model
RMSE Root mean squared error
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