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d Institut d’Investigació en Intel·ligència Artificial - Consell Superior d’Investigacions

Cientı́fiques (IIIA-CSIC)
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Abstract. The use of mathematical simulation models of diseases in economic
evaluation is an essential and common tool in medicine aimed at guiding decision-
making in health. Cost-effectiveness analyses are a type of economic evaluation
that assess the balance between health benefits and the economic sustainability of
different health interventions. One critical aspect of these models is the accurate
representation of the disease’s natural history, which requires a set of parameters
such as probabilities and disease burden rates. While these parameters can be ob-
tained from scientific literature, they often need calibration to fit the model’s ex-
pected outcomes. However, the calibration process can be computationally expen-
sive and traditional optimization methods can be time-consuming due to relatively
simple heuristics that may not even guarantee feasible solutions. In this work, we
investigate the use of Bayesian optimization to enhance the calibration process by
leveraging domain-specific knowledge and exploiting inherent structural properties
in the solution space. Specifically, we examine the effect of additive kernel decom-
position and constraint handling for efficient search. Our preliminary results show
that this improved Bayesian optimization procedure asymptotically improves the
calibration process, leading to faster convergence and better solutions for larger
simulation models.

Keywords. bayesian optimization, gaussian processes, additive kernels, constrained
optimization, simulation models, cost-effectiveness models, cancer research
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1. Introduction

Healthcare interventions are increasingly evaluated based on their cost-effectiveness due
to usual budgetary constraints, ensuring equitable and efficient distribution of healthcare
services. These constraints mean that not all available and effective interventions can be
included in health plans. In many countries, it has become standard policy to assess the
costs of new healthcare interventions in relation to their expected benefits before imple-
menting them. Cost-effectiveness analysis (CEA) using mathematical simulation models
is a crucial tool in this context, enabling us to assess the value of healthcare interven-
tions and determine which ones offer the best value for money in the long term[1]. By
comparing the costs and benefits of alternative interventions, policymakers and health-
care providers can prioritize strategies and allocate resources to achieve the maximum
health benefits for the population. Ultimately, the goal of healthcare is to improve health
outcomes, and CEA plays a vital role in achieving this objective[2].

CEA usually relies on simulation models that mimic disease processes to project the
effects of different medical strategies on health outcomes over time[3]. There are dif-
ferent types of models but some of the most common simulate the traversal of a group
of individuals through different health states (figure 1). These models can generate var-
ious outcomes, but they always produce two critical measures: the average cost and the
average life expectancy, usually measured in Quality-Adjusted Life Years (QALYs)[4].
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Figure 1. Lung cancer markov model state diagram

In order to execute the simulations, input parameters are required to describe the dis-
ease process, such as probabilities, hazard ratios, or disease burden rates extracted from
scientific literature. Due to the inherent uncertainty of these values, it is often necessary
to calibrate the model before proceeding with the analysis. Calibration consists in adjust-
ing the input parameters until the resulting output approximates a target value identified
in the scientific literature, such as disease incidence, prevalence, or mortality. This opti-
mization process can be especially taxing for complex models, and may necessitate the
use of advanced techniques to efficiently explore the solution space.

Moreover, calibrations can be highly dimensional optimization problems with many
arbitrary constraints between parameters, dictated by the specific medical domain. In this
work, we explore the challenges associated with calibrating simulation models and pro-
pose methods to overcome them. Our research provides valuable insight into novel ways
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to calibrate these simulation models more efficiently using Bayesian Optimization (BO).
We also investigate the circumstances under which it outperforms common methods used
in the field.

2. Background

2.1. Bayesian Optimization

BO is a powerful technique for optimizing expensive, black-box functions that are dif-
ficult or time-consuming to evaluate[5]. The key advantage of this method is that it can
find the global optimum of the function with relatively few evaluations, even in high-
dimensional spaces. This is because the method actively seeks out the most promising
areas of the input space to evaluate next, rather than simply evaluating points at ran-
dom or using simple heuristics. The downside is that the method can be computationally
expensive, especially for functions with a large number of input variables or when the
surrogate model is complex.

BO has been successfully applied to a wide range of optimization problems in ma-
chine learning, including hyperparameter tuning, experimental design, and automatic al-
gorithm configuration. It can help to quickly identify good values of the hyperparameters
or experimental conditions, without having to exhaustively search the entire parameter
space.

2.2. Gaussian Processes

Gaussian Processes (GPs) are non-parametric regression models that represent each ob-
servation as a random variable drawn from a normal distribution f (x)∼N (μ(x),k(x,x))
[6]. The covariance function or kernel is the mechanism to give a GP its expressive
power, and its choice will heavily depend on the kind of function we aim to model[7].

The squared exponential (SE) kernel k(x,x′) = σ2e−
||x−x′ ||2

2l2 is a popular choice, despite
significant drawbacks such as its locality and sensitivity to the curse of dimensionality[8].
In general, modeling complex high dimensional functions using a single kernel can be
computationally expensive using local kernels, making this a first class research prob-
lem (e.g. [12][13]). Additive kernel decomposition[9] addresses this problem by break-
ing down the kernel into a sum of simpler kernels, each of which captures a different
aspect of the relationship between the input variables. This approach can capture both
local and global interactions between the input variables. Additionally, additive kernel
decomposition can improve the interpretability of the model, as each kernel term can be
associated with a specific interaction term. This can help users understand which orders
of interaction are important for the current optimization problem.

Additive kernels suffer from the non-identifiability problem: the kernel hyperparam-
eters are not uniquely identifiable from the observed data, which can lead to challenges in
model selection and interpretation. To ensure a unique decomposition, Lu et al[11] pro-
posed an extension of additive kernels by including an extra constant kernel k̃add0(x,x

′)
with an additional variance hyperparameter σ2

0 and an orthogonality constraint to gen-
erate Orthogonal Additive Kernels (OAK)[11]. Assuming a normal input distribution
xi ∼N (μi,δ 2

i ), the following constrained base kernel is derived:
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(1)

One important advantage of these additive kernels is that we can interpret the σ2
i as

the contribution of each individual order to the total kernel. Since many problems often
rely on a few low-order interactions, we can truncate the higher orders and limit the com-
putational cost while retaining most of the information present in the full decomposition.
To achieve this, OAK kernels can be useful in accurately identifying each contribution
and providing an accurate representation on the actual composition on the function.

3. Methodology

In this section we will describe the simulation model and the optimization methods we
will use to calibrate it. These include BO and the rest of techniques that will be compared.

3.1. Description of the Simulation Model

We use a lung cancer model presented in a published cost-effectiveness analysis[14] as
a fast benchmark for BO on simulation models. This Markov-based microsimulation
model simulates a cohort’s progression through six different health states from 35 to 79
years of age, in monthly intervals. The transition probabilities used in the model were
age-specific, with distinct values for each 5-year age group (i.e. 35-39, 40-44, ..., 75-79).
The state diagram for this model is pictured in figure 1.

Certain inherent constraints, such as ensuring that the sum of the probabilities in
each row equals one or that certain probabilities are zero, were imposed on the matrices.
This allowed the number of parameters to be optimized per age group to be reduced from
36 to 11. From the nine age groups, each one with a set of 11 parameters, only the first
few of these were calibrated in this study. As a result, the problem was simplified to the
calibration of 11 parameters, rather than the original 11 · 9 = 99 parameters associated
with the full simulation. Furthermore, this model was designed to be computationally
inexpensive, taking less than 10ms to simulate. By introducing arbitrary delays in the
model we can observe the relationship of optimization times and model simulation times
for different optimization methods.

The calibration target for the model was defined as the weighted sum of the eu-
clidean distances between the observed and expected outputs of interest, namely lung
cancer incidence (45%), lung cancer mortality (45%) and mortality from other causes
(10%), computed for each age group.
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3.2. Optimization Methods

In cost-effectiveness analysis, it is common to have an initial estimate of a good solution
based on approximate values found in the scientific literature. For all optimization ex-
periments conducted, a solution space of plus or minus ±50% was considered for each
input variable, centered around this initial value.

First, we used different optimization methods to illustrate the performance differ-
ences between regular BO and classical methods. For this purpose we used python imple-
mentations of commonly used methods: a hill-climbing technique (Nelder-Mead2[15]),
metaheuristics (Simulated Annealing (SA)3[16] and Particle Swarm Optimization4[17]),
and BO with GPs5. The default hyperparameter values were used for these methods, ex-
cept for Particle Swarm Optimization, where the number of particles was set to 1,000
times the number of age groups calibrated.

For a second, distinct set of experiments we developed a new BO implementation
with GPs from scratch using the R programming language. This implementation was
used as a rapid prototyping environment to evaluate different enhancements to the op-
timization process for our specific domain, without being concerned by execution time
at this stage. This implementation uses the Expected Improvement acquisition function,
with Particle Swarm Optimization to search for the maximum. Finally, both the SE and
the OAK kernels were implemented. Other runtime optimizations such as GPU use are
beyond the scope of this work.

Note that the methods implemented in python were used exclusively for a fair execu-
tion time comparison between optimization methods in a common python runtime envi-
ronment, while the methods implemented in R were used only for a fair error comparison
among BO alternatives, without considering execution time.

3.3. Hyperparameter tuning

Before starting the BO procedure we learn the lengthscales l1, ..., lD and the variances
σ1

0 ,σ
2
1 , ...,σ

2
n of the OAK kernel in a two stage process. This approach allows us to break

down a potentially complex hyperparameter tuning task for high-dimensional problems
into low-dimensional, manageable problems.

In the first stage, lengthscales are found by maximizing the marginal likelihood for
each dimension separately. This approach is followed due to the implicit assumption that
our simulation models have a strong additive component of order 1 and that a linear
combination of one-dimensional kernels can be a reasonable approximation. These opti-
mization subtasks are D simple univariate convex problems: for small and large length-
scales the kernel overfits and underfits, respectively, producing low-likelihood models.
Each optimum is a unique value between these two extremes, quick to find using simple
binary search.

In the second stage, the marginal likelihood is maximized for the whole set of vari-
ances, given the previously found lengthscales. This is a (D+1)-dimensional optimiza-
tion subtask, solved using Nelder-Mead[15].

2https://docs.scipy.org/doc/scipy/reference/optimize.minimize-neldermead.html
3https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_

annealing.html
4https://pyswarms.readthedocs.io/en/latest/
5https://secondmind-labs.github.io/trieste/1.1.2/index.html
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4. Results

Our interest in these experiments are about the comparative performance of BO versus
the rest of methods used in the calibration of simulation models. We can see the rela-
tionship between simulation time and calibration time for each method in figure 2. For
very fast models the inference overhead of BO dominates and other methods are able
to calibrate faster by simulating the model many times. However, as the simulation time
increases, the Bayesian method efficient approach in number of function evaluations re-
sults in faster calibration times. Specifically, for a model with 11 parameters and sim-
ulation times of less than 250ms, we observed the Bayesian approach outperform the
alternative methods.

In contrast, as the dimensionality of our problem grows, the Bayesian method over-
head increased significantly, as shown in the y-intercept of figure 2. The calibration times
for the other methods also increased but, overall, the simulation time threshold where
the Bayesian approach outperforms the other methods increases exponentially with the
number of parameters, from 0.2 seconds to 0.35, 0.95 and 3.25 seconds. The bottom left
plot in figure 2 projects that Bayesian calibration of all 99 parameters would be the best
technique when each simulation takes approximately 5 minutes of computation.
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Figure 2. Total calibration time in log scale against model simulation time required to attain similar levels of
error. The bottom left figure shows the exponential trend (in log scale) in the necessary simulation time before
the bayesian method becomes the fastest method, as a function of the number of parameters. The bottom right
figure is a zoomed-in plot of the same figure removing the log scale. The methods used in this comparison were
all implemented in python.

In any case, the focus of our research in this work is the number of evaluations,
where we see a sharp drop in error when using BO to achieve a similar level of accuracy
compared to other methods, as shown in figure 3. Although each iteration requires a
significant amount of time due to the Bayesian inference step, this overhead will become
less relevant as the size of the model increases.
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Figure 3. Time series of the lung cancer model calibration error (using 1 age group). The error is plotted
against the number of evaluations by method.

While exploring the results of BO with OAK kernels we found that one of the vari-
ables had very significant explanatory power by itself, which could produce misleading
results in the comparison. To address this issue, we introduced a third univariate SE ker-
nel that considers only this variable. Figure 4 shows the average progression of the error
during the optimization process for the three kernels and their interquartile range for a
sample of 30 random executions. The univariate SE kernel shows a lower average error
and lower spread than the full SE kernel, due to the reduction in dimensionality of the
problem that allows for an easier exploration of the solution space, with barely any in-
formation loss. However, the OAK kernel under a normality assumption for the inputs
is able to efficiently search the full 11-dimensional space to reach even better average
results than the univariate SE kernel, while reducing the dispersion as the optimization
progresses.
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Figure 4. Time series of the median BO error with its interquartile range as the shaded area. We used three
different kernels: the SE kernel (blue), the univariate SE kernel using only the most significant variable (green)
and the OAK kernel under a normality assumption for the inputs (red). The methods used in this comparison
were all implemented in R.
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5. Discussion

BO is currently considered a state-of-the-art optimization method in various domains
that involve costly function evaluations. Even though this result is already well known
in the literature, an important research question would be determining the threshold at
which the cost of the functions justifies the use of BO. Our findings show that simulation
models with execution times of only a few seconds can be expensive enough to warrant
the use of BO. In the cases when the function evaluations are not as costly, there are two
other critical points in each BO iteration that must be taken into account: the surrogate
model regression and the acquisition function optimization.

Regarding the former, SE kernels suffer greatly from the curse of dimensionality.
In high-dimensional problems, the number of observations to explore the solution space
quickly increases. This renders the regression unfeasible when trying to invert large
Gram matrices to calculate the posterior predictive distribution. To address this issue,
OAK kernels can reduce the number of necessary observations, mitigate the effects of an
expanding Gram matrix and enhance the efficiency of the search. The observed scaling
issues in figure 2, resulting from increasing dimensionality, justify the need for high-
dimensional improvements such as OAK kernels. Nevertheless, our experiments showed
that the asymptotic behaviour of BO persisted, making it the optimal choice for suffi-
ciently large models.

A remarkable insight about additive kernels can be found in the comparison made
in figure 4. As explained in the results, we considered a simulation model with eleven
parameters, where one of the parameters was found to have a significant impact in the
overall error. From a domain view, this parameter corresponds to the probability of death
from other causes, which in this simulation has a greater impact on a greater amount
of people than the rest. If we don’t use additive kernels the optimization process has to
explore all eleven dimensions and it is incapable of reducing the error over 100 iterations
(green line). If we focus on this significant parameter by itself (blue line) we can see
that the exploration finds much better solutions, but for more complex problems it might
be difficult to manually isolate the important variables. The additive kernel (red line) is
able to automatically detect this fact and perform what could be viewed as some kind
of variable selection, while at the same time managing to refine better solutions with the
rest of parameters.

The optimization of the acquisition function is the initial bottleneck, where the num-
ber of observations is still small enough so that the surrogate model regression is not yet a
problem. As the search space remains constant, this acquisition optimization doesn’t be-
come much more expensive as more data is observed. We used Particle Swarm Optimiza-
tion as an easy way to take advantage of parallelism in this area, but other approaches
mentioned in the next section are being considered as well[10].

Lu et al[11] mention that an interesting direction of work would be to extend OAK
kernels to BO leveraging the inferred low-order representation. In our tests we show that,
even with a straightforward application of OAK kernels on this simple example, a slight
improvement over the SE kernel is noticeable. This improvement is expected to be more
meaningful for complex models, where more structure can be leveraged. It is interesting
to note that these results hold even though some assumptions of the model were not
met. Specifically, hyperparameter tuning was performed with a dataset sampled from
a uniform input distribution, while the constrained kernels were calculated assuming
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normality in the input. Even if these distributions were consistent, we still would have the
problem of determining the input distribution for the actual optimization process, which
would be neither normal nor uniform.

6. Future Work and Conclusions

One particular aspect that we did not incorporate into this article is constraint handling.
Simulation models can be highly constrained problems, and these constraints are another
expression of the structure of the solution space. We have been able to manage arbi-
trary constraints successfully using additional surrogate models and a new Constrained
Expected Improvement acquisition function, as introduced by Gardnet et al[18].

We also mentioned in the discussion the convenience of exploiting the paralleliza-
tion potential of the different areas of the optimization process. For that purpose we use
the Particle Swarm method for the optimization of the acquisition function, but other
more sophisticated venues for parallelization include batched optimization[19], parallel
acquisition functions[20] or GPU approaches[21] among others.

Our research group recognizes the importance of efficiently calibrating increasingly
complex models, injecting relevant domain knowledge in the process. In this work we
have shown that using OAK kernels in a BO setting allows faster calibration times un-
der very common circumstances in the health economics field. This is the beginning of
several enhancements that are being implemented to have the tools to work with more
challenging models in the future.
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