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Preface

Logics provide a formal basis for the study and development of applica-
tions and systems in Artificial Intelligence. In the last decades there has
been a rapidly increasing number of logical formalisms capable of dealing
with a variety of reasoning tasks that require an explicit representation of
quantitative or qualitative weights associated with classical or modal logical
formulas (in a form or another).

The semantics of the weights refer to a large variety of intended mean-
ings: belief degrees, preference degrees, truth degrees, trust degrees, etc.
Examples of such weighted formalisms include probabilistic or possibilistic
uncertainty logics, preference logics, fuzzy description logics, different forms
of weighted or fuzzy logic programs under various semantics, weighted ar-
gumentation systems, logics handling inconsistency with weights, logics for
graded BDI agents, logics of trust and reputation, logics for handling graded
emotions, etc. The underlying logics range from fully compositional systems,
like systems of many-valued or fuzzy logic, to non-compositional ones like
modal-like epistemic logics for reasoning about uncertainty, as probabilistic
or possibilistic logics, or even some combination of them.

This IJCAI 2015 workshop, WL4AI-2015, is the third workshop with this
name. The first edition was successfully held in 2012 in collocation with
ECAI-2012, in Montpellier (France), and the second was held in 2013 in col-
location with IJCAI-2013, in Beijing (China). As in the preceding workshop
editions, the aim has been to bring together researchers to discuss about the
different motivations for the use of weighted logics in AI, the different types
of calculi that are appropriate for these needs, and the problems that arise
when putting them at work. As a result, we are very happy to gather in
this proceedings volume a very interesting set of contributions on different
greded logical formalisms and approaches that we believe are representative
of the richness of the area.

Finally, we would like to express our gratitude to:

• Anthony Hunter, for having accepted to give an invited talk at this
workshop.
• The program committee members for their commitment to the suc-

cess of this event and for their work.
• The authors of WL4AI-2015 for the quality of their contributions.

Marcelo Finger, Lluis Godo, Henri Prade and Guilin Qi
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Structural and Epistemic Approaches to
Probabilistic Argumentation

Anthony Hunter

University College London
London, UK

Abstract

Argumentation can be modelled at an abstract level using an argument graph (i.e. a
directed graph where each node denotes an argument and each arc denotes an attack by
one argument on another). Since argumentation involves uncertainty, it is potentially
valuable to consider how this can quantified in argument graphs. In this talk, we will
consider two probabilistic approaches for modeling uncertainty in argumentation. The
first is the structural approach which involves a probability distribution over the sub-
graphs of the argument graph, and this can be used to represent the uncertainty over the
structure of the graph. The second is the epistemic approach which involves a proba-
bility distribution over the subsets of the arguments, and this can be used to represent
the uncertainty over which arguments are believed. The epistemic approach can be
constrained to be consistent with Dungs dialectical semantics, but it can also be used
as a potential valuable alternative to Dungs dialectical semantics. We will consider
applications of probabilistic argumentation in handling enthymemes (arguments with
incomplete premises) and in selecting moves in an argumentation dialogue.
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Reasoning in Infinitely Valued G-IALCQ

Stefan Borgwardt
Theoretical Computer Science,

TU Dresden, Germany
Stefan.Borgwardt@tu-dresden.de

Rafael Peñaloza
KRDB Research Centre,

Free University of Bozen-Bolzano, Italy
rafael.penaloza@unibz.it

Abstract
Fuzzy Description Logics (FDLs) are logic-based
formalisms used to represent and reason with vague
or imprecise knowledge. It has been recently
shown that reasoning in most FDLs using truth val-
ues from the interval [0, 1] becomes undecidable
in the presence of a negation constructor and gen-
eral concept inclusion axioms. One exception to
this negative result are FDLs whose semantics is
based on the infinitely valued Gödel t-norm (G).
In this paper, we extend previous decidability re-
sults for G-IALC to deal also with qualified num-
ber restrictions. Our novel approach is based on
a combination of the known crispification tech-
nique for finitely valued FDLs and the automata-
based procedure originally developed for reasoning
in G-IALC. The proposed approach combines the
advantages of these two methods, while removing
their respective drawbacks.

1 Introduction
It is well-known that one of the main requirements for the de-
velopment of an intelligent application is a formalism capable
of representing and handling knowledge without ambiguity.
Description Logics (DLs) are a well-studied family of knowl-
edge representation formalisms [Baader et al., 2007]. They
constitute the logical backbone of the standard Semantic Web
ontology language OWL 2,1 and its profiles, and have been
successfully applied to represent the knowledge of many and
diverse application domains, particularly in the bio-medical
sciences.

DLs describe the domain knowledge using concepts (such
as Patient) that represent sets of individuals, and roles
(hasRelative) that represent connections between individ-
uals. Ontologies are collections of axioms formulated over
these concepts and roles, which restrict their possible inter-
pretations. The typical axioms considered in DLs are asser-
tions, like bob:Patient, providing knowledge about specific
individuals; and general concept inclusions (GCIs), such as
Patient v Human, which express general relations between
concepts. Different DLs are characterized by the constructors

1http://www.w3.org/TR/owl2-overview/

allowed to generate complex concepts and roles from atomic
ones. ALC [Schmidt-Schauß and Smolka, 1991] is a proto-
typical DL of intermediate expressivity that contains the con-
cept constructors conjunction (C u D), negation (¬C), and
existential restriction (∃r.C for a role r). If additionally qual-
ified number restrictions (>n r.C for n ∈ N) are allowed,
the resulting logic is denoted by ALCQ. Common reason-
ing problems in ALCQ, such as consistency of ontologies or
subsumption between concepts, are known to be EXPTIME-
complete [Schild, 1991; Tobies, 2001].

Fuzzy Description Logics (FDLs) have been introduced
as extensions of classical DLs to represent and reason with
vague knowledge. The main idea is to consider all the truth
values from the interval [0, 1] instead of only true and false.
In this way, it is possible give a more fine-grained seman-
tics to inherently vague concepts like LowFrequency or
HighConcentration, which can be found in biomedical on-
tologies like SNOMED CT,2 and Galen.3 The different mem-
bers of the family of FDLs are characterized not only by the
constructors they allow, but also by the way these construc-
tors are interpreted.

To interpret conjunction in complex concepts like

∃hasHeartRate.LowFrequency u
∃hasBloodAlcohol.HighConcentration,

a popular approach is to use so-called t-norms [Klement et
al., 2000]. The semantics of the other logical constructors
can then be derived from these t-norms in a principled way, as
suggested by Hájek [2001]. Following the principles of math-
ematical fuzzy logic, existential restrictions are interpreted as
suprema of truth values. However, to avoid problems with
infinitely many truth values, reasoning in fuzzy DLs is of-
ten restricted to so-called witnessed models [Hájek, 2005], in
which these suprema are required to be maxima; i.e., the de-
gree is witnessed by at least one domain element.

Unfortunately, reasoning in most FDLs becomes undecid-
able when the logic allows to use GCIs and negation un-
der witnessed model semantics [Baader and Peñaloza, 2011;
Cerami and Straccia, 2013; Borgwardt et al., 2015]. One of
the few exceptions known are FDLs using the Gödel t-norm
defined as min{x, y} to interpret conjunctions [Borgwardt et

2http://www.ihtsdo.org/snomed-ct/
3http://www.opengalen.org/
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al., 2014]. Despite not being as well-behaved as finitely val-
ued FDLs, which use a finite total order of truth values instead
of the infinite interval [0, 1] [Borgwardt and Peñaloza, 2013],
it has been shown using an automata-based approach that rea-
soning in Gödel extensions of ALC exhibits the same com-
plexity as in the classical case, i.e. it is EXPTIME-complete.
A major drawback of this approach is that it always has an ex-
ponential runtime, even when the input ontology has a simple
form.

In this paper, we extend the results of [Borgwardt et al.,
2014] to deal with qualified number restrictions, showing
again that the complexity of reasoning remains the same
as for the classical case; i.e., it is EXPTIME-complete. To
this end, we focus only on the problem of local consis-
tency, which is a generalization of the classical concept sat-
isfiability problem. We follow a more practical approach
that combines the automata-based construction from [Borg-
wardt et al., 2014] with reduction techniques developed for
finitely valued FDLs [Straccia, 2004; Bobillo et al., 2009;
Bobillo and Straccia, 2013]. We exploit the forest model
property of classical ALCQ [Kazakov, 2004] to encode or-
der relationships between concepts in a fuzzy interpretation
in a manner similar to the Hintikka trees from [Borgwardt
et al., 2014]. However, instead of using automata to deter-
mine the existence of such trees, we reduce the fuzzy on-
tology directly into a classical ALCQ ontology whose lo-
cal consistency is equivalent to that of the original ontol-
ogy. This enables us to use optimized reasoners for clas-
sical DLs. In addition to the cut-concepts of the form
C > q for a fuzzy concept C and a value q, which are used
in the reductions for finitely valued DLs [Straccia, 2004;
Bobillo et al., 2009; Bobillo and Straccia, 2013], we em-
ploy order concepts C 6 D expressing relationships between
fuzzy concepts. Contrary to the reductions for finitely valued
Gödel FDLs presented by Bobillo et al. [2009; 2012], our re-
duction produces a classical ontology whose size is polyno-
mial in the size of the input fuzzy ontology. Thus, we obtain
tight complexity bounds for reasoning in this FDL [Tobies,
2001]. An extended version of this paper appears in [Borg-
wardt and Peñaloza, 2015].

2 Preliminaries
For the rest of this paper, we focus solely on vague statements
that take truth degrees from the infinite interval [0, 1], where
the Gödel t-norm, defined by min{x, y}, is used to interpret
logical conjunction. The semantics of implications is given
by the residuum of this t-norm; that is,

x⇒ y :=

{
1 if x 6 y,
y otherwise.

We use both the residual negation 	x := x ⇒ 0 and the
involutive negation ∼x := 1− x in the rest of this paper.

We first recall some basic definitions from [Borgwardt
et al., 2014], which will be used extensively in the proofs
throughout this work. An order structure S is a finite set con-
taining at least the numbers 0, 0.5, and 1, together with an in-
volutive unary operation inv : S → S such that inv(x) = 1−x
for all x ∈ S ∩ [0, 1]. A total preorder over S is a transitive

and total binary relation 4 ⊆ S × S. For x, y ∈ S, we write
x ≡ y if x 4 y and y 4 x. Notice that≡ is an equivalence re-
lation on S. The total preorders considered in [Borgwardt et
al., 2014] have to satisfy additional properties; for instance,
that 0 and 1 are always the least and greatest elements, re-
spectively. These properties can be found in our reduction in
the axioms of red(U) (see Section 3 for more details).

The syntax of the FDL G-IALCQ is the same as that of
classical ALCQ, with the addition of the implication con-
structor (denoted by the use of I at the beginning of the
name). This constructor is often added to FDLs, as the
residuum cannot, in general, be expressed using only the
t-norm and negation operators, in contrast to the classical se-
mantics. In particular, this holds for the Gödel t-norm and its
residuum, which is the focus of this work. Let now NC, NR,
and NI be mutually disjoint sets of concept, role, and indi-
vidual names, respectively. Concepts of G-IALCQ are built
using the syntax rule
C,D ::= > | A | ¬C | C uD | C → D | ∀r.C | >n r.C,

where A ∈ NC, r ∈ NR, C,D are concepts, and n ∈ N. We
use the abbreviations

⊥ := ¬>,
C tD := ¬(¬C u ¬D),

∃r.C := >1 r.C, and
6n r.C := ¬(>(n+ 1) r.C)

Notice that Bobillo et al. consider a different definition of at-
most restrictions, which uses the residual negation; that is,
they define 6n r.C := (>(n + 1) r.C) → ⊥ [2012]. This
has the strange side effect that the value of 6n r.C is always
either 0 or 1 (see the semantics below). However, this dis-
crepancy in definitions is not an issue since our algorithm can
handle both cases.

The semantics of this logic is based on interpretations. A
G-interpretation is a pair I = (∆I , ·I), where ∆I is a non-
empty set called the domain, and ·I is the interpretation func-
tion that assigns to each individual name a ∈ NI an ele-
ment aI ∈ ∆I , to each concept name A ∈ NC a fuzzy
set AI : ∆I → [0, 1], and to each role name r ∈ NR a
fuzzy binary relation rI : ∆I × ∆I → [0, 1]. The inter-
pretation of complex concepts is obtained from the seman-
tics of first-order fuzzy logics via the well-known transla-
tion from DL concepts to first-order logic [Straccia, 2001;
Bobillo et al., 2012], i.e. for all d ∈ ∆I ,

>I(d) := 1

(¬C)I(d) := 1− CI(d)

(C uD)I(d) := min{CI(d), DI(d)}
(C → D)I(d) := CI(d)⇒ DI(d)

(∀r.C)I(d) := inf
e∈∆I

rI(d, e)⇒ CI(e)

(>n r.C)I(d) := sup
e1,...,en∈∆I

pairwise different

n
min
i=1

min{rI(d, ei), C
I(ei)}

Recall that the usual duality between existential and value
restrictions that appears in classical DLs does not hold in
G-IALCQ.
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A classical interpretation is defined similarly, with the set
of truth values restricted to 0 and 1. In this case, the semantics
of a conceptC is commonly viewed as a setCI ⊆ ∆I instead
of the characteristic function CI : ∆I → {0, 1}.

In the following, we restrict all reasoning problems to so-
called witnessed G-interpretations [Hájek, 2005], which in-
tuitively require the suprema and infima in the semantics to
be maxima and minima, respectively. More formally, the
G-interpretation I is witnessed if, for every d ∈ ∆I , n > 0,
r ∈ NR, and concept C, there exist e, e1, . . . , en ∈ ∆I

(where e1, . . . , en are pairwise different) such that

(∀r.C)I(d) = rI(d, e)⇒ CI(e) and

(>n r.C)I(d) =
n

min
i=1

min{rI(d, ei), C
I(ei)}.

The axioms of G-IALCQ extend classical axioms by al-
lowing to compare degrees of arbitrary assertions in so-called
ordered ABoxes [Borgwardt et al., 2014], and to state inclu-
sions relationships between fuzzy concepts that hold to a cer-
tain degree, instead of only 1. A classical assertion is an
expression of the form a:C or (a, b):r for a, b ∈ NI, r ∈ NR,
and a concept C. An order assertion is of the form 〈α ./ q〉
or 〈α ./ β〉 where ./ ∈ {<,6,=,>, >}, α, β are classical
assertions, and q ∈ [0, 1]. A (fuzzy) general concept inclu-
sion axiom (GCI) is of the form 〈C v D > q〉 for concepts
C,D and q ∈ [0, 1]. An ordered ABox is a finite set of or-
der assertions, a TBox is a finite set of GCIs, and an ontology
O = (A, T ) consists of an ordered ABox A and a TBox T .
A G-interpretation I satisfies (or is a model of) an order as-
sertion 〈α ./ β〉 if αI ./ βI (where (a:C)I := CI(aI),
((a, b):r)I := rI(aI , bI), and qI := q); it satisfies a GCI
〈C v D > q〉 if CI(d)⇒ DI(d) > q holds for all d ∈ ∆I ;
and it satisfies an ordered ABox, TBox, or ontology if it sat-
isfies all its axioms. An ontology is consistent if it has a (wit-
nessed) model.

Given an ontology O, we denote by rol(O) the set of all
role names occurring in O and by sub(O) the closure under
negation of the set of all subconcepts occurring in O. We
consider the concepts ¬¬C and C to be equal, and thus the
latter set is of quadratic size in the size of O. Moreover, we
denote by VO the closure under the involutive negation x 7→
1 − x of the set of all truth degrees appearing in O, together
with 0, 0.5, and 1. This set is of size linear on the size of O.
We sometimes denote the elements of VO ⊆ [0, 1] as 0 =
q0 < q1 < · · · < qk−1 < qk = 1.

We stress that we do not consider the general consistency
problem in this paper, but only a restricted version that uses
only one individual name. An ordered ABox A is local if it
contains no role assertions (a, b):r and there is a single indi-
vidual name a ∈ NI such that all order assertions in A only
use a. The local consistency problem, i.e. deciding whether
an ontology (A, T ) with a local ordered ABox A is consis-
tent, can be seen as a generalization of the classical concept
satisfiability problem [Borgwardt and Peñaloza, 2013].

Other common reasoning problems for FDLs, such as con-
cept satisfiability and subsumption can be reduced to local
consistency [Borgwardt et al., 2014]: the subsumption be-
tween C and D to degree q w.r.t. a TBox T is equivalent to
the (local) inconsistency of ({〈a:C → D < q〉}, T ), and

the satisfiability of C to degree q w.r.t. T is equivalent to the
(local) consistency of ({〈a:C > q〉}, T ).

In the following section we show how to decide local con-
sistency of a G-IALCQ ontology through a reduction to clas-
sical ontology consistency.

3 Deciding Local Consistency
Let O = (A, T ) be a G-IALCQ ontology where A is a lo-
cal ordered ABox that uses only the individual name a. The
main ideas behind the reduction to classical ALCQ are that
it suffices to consider tree-shaped interpretations, where each
domain element has a unique role predecessor, and that we
only have to consider the order between values of concepts,
instead of their precise values. This insight allows us to con-
sider only finitely many different cases [Borgwardt et al.,
2014].

To compare the values of the elements of sub(O) at differ-
ent domain elements, we use the order structure

U := VO ∪ sub(O) ∪ sub↑(O) ∪ {λ,¬λ},
where sub↑(O) := {〈C〉↑ | C ∈ sub(O)}, inv(λ) := ¬λ,
inv(C) := ¬C, and inv(〈C〉↑) := 〈¬C〉↑, for all concepts
C ∈ sub(O). The idea is that total preorders over U describe
the relationships between the values of sub(O) and VO at a
single domain element. The elements of sub↑(O) allow us
to additionally refer to the relevant values at the unique role
predecessor of the current domain element (in a tree-shaped
interpretation). The value λ represents the value of the role
connection from this predecessor. For convenience, we define
〈q〉↑ := q for all q ∈ VO.

In order to describe such total preorders in a classical
ALCQ ontology, we employ special concept names of the
form α 6 β for α, β ∈ U . This differs from previous re-
ductions for finitely valued FDLs [Straccia, 2004; Bobillo
and Straccia, 2011; Bobillo et al., 2012] in that we not only
consider cut-concepts of the form q 6 α with q ∈ VO, but
also relationships between different concepts.4 For conve-
nience, we introduce the abbreviations α > β := β 6 α ,
α < β := ¬α > β , and similarly for = and >. Furthermore,
we define the complex expressions
• α > min{β, γ} := α > β t α > γ ,

• α 6 min{β, γ} := α 6 β u α 6 γ ,

• α > β ⇒ γ := (β 6 γ → α > 1 )u(β > γ → α > γ ),

• α 6 β ⇒ γ := β 6 γ t α 6 γ ,

and extend these notions to the expressions α ./ β ⇒ γ etc.,
for ./ ∈ {<,=, >}, analogously.

For each concept C ∈ sub(O), we now define the classical
ALCQ TBox red(C), depending on the form ofC, as follows.

red(>) := {> v > > 1}
red(¬C) := ∅

red(C uD) := {> v C uD = min{C,D}}
red(C → D) := {> v C → D = C ⇒ D }

4For the rest of this paper, expressions of the form α 6 β denote
(classical) concept names.
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red(∀r.C) := {> v ∃r. 〈∀r.C〉↑ > λ⇒ C u
∀r. 〈∀r.C〉↑ 6 λ⇒ C }

red(>n r.C) := {> v >n r. 〈>n r.C〉↑ 6 min{λ,C} u
¬>n r. 〈>n r.C〉↑ < min{λ,C}}

Intuitively, red(C) describes the semantics of C in terms of
its order relationships to other elements of U . Note that the
semantics of the involutive negation ¬C = inv(C) is already
handled by the operator inv (see also the last line of the defi-
nition of red(U) below).

The reduced classical ALCQ ontology red(O) is defined
as follows:
red(O) := (red(A), red(U) ∪ red(↑) ∪ red(T )),

red(A) := {a:C ./ q | 〈a:C ./ q〉 ∈ A} ∪
{a:C ./ D | 〈a:C ./ a:D〉 ∈ A},

red(U) := {α 6 β u β 6 γ v α 6 γ | α, β, γ ∈ U} ∪
{> v α 6 β t β 6 α | α, β ∈ U} ∪
{> v 0 6 α u α 6 1 | α ∈ U} ∪
{> v α ./ β | α, β ∈ VO, α ./ β} ∪
{α 6 β v inv(β) 6 inv(α) | α, β ∈ U},

red(↑) := {α ./ β v ∀r. 〈α〉↑ ./ 〈β〉↑ |
α, β ∈ VO ∪ sub(O), r ∈ rol(O)},

red(T ) := {> v q 6 C ⇒ D | 〈C v D > q〉 ∈ T } ∪⋃
C∈sub(O)

red(C).

We briefly explain this construction. The reductions of the
order assertions and fuzzy GCIs inO are straightforward; the
former expresses that the individual a must belong to the cor-
responding order concept C ./ q or C ./ D, while the latter
expresses that every element of the domain must satisfy the
restriction provided by the fuzzy GCI. The axioms of red(U)
intuitively ensure that the relation “6” forms a total preorder
that is compatible with all the values in VO, and that inv is an
antitone operator. Finally, the TBox red(↑) expresses a con-
nection between the orders of a domain element and those of
its role successors.

The following lemmata show that this reduction is correct;
i.e., that it preserves local consistency.
Lemma 1. If red(O) has a classical model, then O has a
G-model.

Proof. By [Kazakov, 2004], red(O) must have a tree
model I, i.e. we can assume that ∆I is a prefix-closed sub-
set of N∗, aI = ε, for all n1, . . . , nk ∈ N, k > 1, with
u := n1 . . . nk ∈ ∆I , the element u↑ := n1 . . . nk−1 ∈ ∆I

is an r-predecessor of u for some r ∈ rol(O), and there are
no other role connections. For any u ∈ ∆I , we denote by
4u the corresponding total preorder on U , that is, we define
α 4u β iff u ∈ α 6 β

I , and by ≡u the induced equivalence
relation.

As a first step in the construction of a G-model of O, we
define the auxiliary function v : U×∆I → [0, 1] that satisfies
the following conditions for all u ∈ ∆I :

(P1) for all q ∈ VO, we have v(q, u) = q,

(P2) for all α, β ∈ U , we have v(α, u) 6 v(β, u) iff α 4u β,

(P3) for all α ∈ U , we have v(inv(α), u) = 1− v(α, u),

(P4) if u 6= ε, then for all C ∈ sub(O) it holds that
v(C, u↑) = v(〈C〉↑, u).

We define v by induction on the structure of ∆I starting
with ε. Let U/≡ε be the set of all equivalence classes of ≡ε.
Then 4ε yields a total order 6ε on U/≡ε. Since I satisfies
red(U), we have

[0]ε <ε [q1]ε <ε · · · <ε [qk−1]ε <ε [1]ε

w.r.t. this order. For every [α]ε ∈ U/≡ε, we now set
inv([α]ε) := [inv(α)]ε. This function is well-defined by the
axioms in red(U). On all α ∈ [q]ε for q ∈ VO, we now
define v(α, ε) := q, which ensures that (P1) holds. For the
equivalence classes that do not contain a value from VO, note
that by red(U), every such class must be strictly between [qi]ε
and [qi+1]ε for qi, qi+1 ∈ VO. We denote the ni equivalence
classes between [qi]ε and [qi+1]ε as follows:

[qi]ε <ε E
i
1 <ε · · · <ε E

i
ni
<ε [qi+1]ε.

For every α ∈ Ei
j , we set v(α, ε) := qi + j

ni+1 (qi+1 − qi),
which ensures that (P2) is also satisfied. Furthermore, ob-
serve that 1− qi+1 and 1− qi are also adjacent in VO and we
have

[1− qi+1]ε <ε inv(Ei
ni

) <ε · · · <ε inv(Ei
1) <ε [1− qi]ε

by the axioms in red(U). Hence, it follows from the definition
of v(α, ε) that (P3) holds.

Let now u ∈ ∆I be such that the function v, satisfying
the properties (P1)–(P4), has already been defined for u↑.
Since I is a tree model, there must be an r ∈ NR such
that (u↑, u) ∈ rI . We again consider the set of equiva-
lence classes U/≡u and set v(α, u) := q for all q ∈ VO
and α ∈ [q]u, and v(α, u) := v(C, u↑) for all C ∈ sub(O)
and α ∈ [〈C〉↑]u. To see that this is well-defined, consider
the case that [〈C〉↑]u = [〈D〉↑]u, i.e. u ∈ 〈C〉↑ = 〈D〉↑

I .
From the axioms in red(↑) and the fact that (u↑, u) ∈ rI ,
it follows that u↑ ∈ C = D

I , and thus [C]u↑ = [D]u↑ .
Since (P2) is satisfied for u↑, we get v(C, u↑) = v(D,u↑).
The same argument shows that [q]u = [〈q〉↑]u = [〈C〉↑]u
implies v(q, u↑) = v(C, u↑). For the remaining equiva-
lence classes, we can use a construction analogous to the case
for ε by considering the two unique neighboring equivalence
classes that contain an element of VO ∪ sub(O) (for which
v has already been defined). This construction ensures that
(P1)–(P4) hold for u.

Based on the function v, we define the G-interpretation If
over the domain ∆If := ∆I , where aIf := aI = ε;

AIf (u) :=

{
v(A, u) if A ∈ sub(O),
0 otherwise; and

rIf (u,w) :=

{
v(λ,w) if (u,w) ∈ rI ,
0 otherwise.
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We show by induction on the structure of C that

CIf (u) = v(C, u) for all C ∈ sub(O) and u ∈ ∆I . (1)

For concept names, this holds by the definition of If . For >,
we know that >If (u) = 1 = v(>, u) by the definition of
red(>) and (P2). For ¬C, we have

(¬C)If (u) = 1− CIf (u) = 1− v(C, u) = v(¬C, u)

by the induction hypothesis and (P3). For conjunctionsCuD,
we know that

(C uD)If (u) = min{CIf (u), DIf (u)}
= min{v(C, u), v(D,u)}
= v(C uD,u)

by the definition of red(C uD) and (P2). Implications can be
treated similarly.

Consider a value restriction ∀r.C ∈ sub(O). For every
w ∈ ∆I with (u,w) ∈ rI , we have w ∈ 〈∀r.C〉↑ 6 λ⇒ C

I

since I satisfies red(∀r.C). By the induction hypothesis,
the fact that w↑ = u, (P2), and (P4), this implies that
v(∀r.C, u) 6 v(λ,w) ⇒ v(C,w) = rIf (u,w) ⇒ CIf (w),
and thus

(∀r.C)If (u) = inf
w∈∆I , (u,w)∈rI

rIf (u,w)⇒ CIf (w)

> v(∀r.C, u).

Furthermore, by the existential restriction introduced in
red(∀r.C), we know that there exists a w0 ∈ ∆I such that
(u,w0) ∈ rI and w0 ∈ 〈∀r.C〉↑ > λ⇒ C

I . By the same
arguments as above, we get

v(∀r.C, u) > rIf (u,w0)⇒ CIf (w0)

> (∀r.C)If (u),

which concludes the proof of (1) for ∀r.C. As a by-product,
we have found in the element w0 the witness required for
satisfying the concept ∀r.C at u.

Consider now >n r.C ∈ sub(O). For any n-tuple
(w1, . . . , wn) of different domain elements with
(u,w1), . . . , (u,wn) ∈ rI , by red(>n r.C) there must be an
index i, 1 6 i 6 n, such that wi /∈ 〈>n r.C〉↑ < min{λ,C} I .
Using arguments similar to those introduced above, we
obtain that

v(>n r.C, u) > min{rIf (u,wi), C
If (wi)

>
n

min
j=1

min{rIf (u,wj), C
If (wj)}.

On the other hand, we know that there are n different el-
ements w0

1, . . . , w
0
n ∈ ∆I such that (u,w0

j ) ∈ rI and

wj ∈ 〈>n r.C〉↑ 6 min{λ,C} I for all j, 1 6 j 6 n. As
in the case of ∀r.C above, we conclude that

v(>n r.C, u) 6
n

min
j=1

min{rIf (u,w0
j ), CIf (w0

j )}

6 (>n r.C)If (u) 6 v(>n r.C, u),

as required. Furthermore, w0
1, . . . , w

0
n are the required wit-

nesses for >n r.C at u. This concludes the proof of (1).
It remains to be shown that If is a model of O. For every

〈a:C ./ q〉 ∈ A, we have aI = ε ∈ [C ./ q]I , and thus
CIf (aIf ) = v(C, ε) ./ v(q, ε) = q by (1), (P1), and (P2). A
similar argument works for handling order assertions of the
form 〈a:C ./ a:D〉. To conclude, consider an arbitrary GCI
〈C v D > q〉 ∈ T and u ∈ ∆I . By the definition of red(T )
and (P1), we have v(q, u) 6 v(C, u) ⇒ v(D,u). Thus, (1)
and (P2) yield CIf (u) ⇒ DIf (u) > q. Thus, If satisfies all
the axioms in O, which concludes the proof.

For the converse direction, we now show that it is possible
to unravel every G-model of O into a classical tree model of
red(O).
Lemma 2. If O has a G-model, then red(O) has a classical
model.

Proof. Given a G-model I of O, we define a classical in-
terpretation Ic over the domain ∆Ic of all paths of the form
% = r1d1 . . . rmdm with ri ∈ NR, di ∈ ∆I , m > 0. We set
aIc := ε and

rIc := {(%, %rd) | % ∈ ∆Ic , d ∈ ∆I}
for all r ∈ NR. We denote by tail(r1d1 . . . rmdm) the el-
ement dm if m > 0, and aI if m = 0. Similarly, we set
prev(r1d1 . . . rmdm) to dm−1 if m > 1, and to aI if m = 1.
Finally, role(r1d1 . . . rmdm) denotes rm whenever m > 0.
For any α ∈ U and % ∈ ∆Ic , we define αI(%) as

CI(tail(%)) if α = C ∈ sub(O);

CI(prev(%)) if α = 〈C〉↑, C ∈ sub(O);
q if α = q ∈ VO;

role(%)I(prev(%), tail(%)) if α = λ;

1− role(%)I(prev(%), tail(%)) if α = ¬λ.

Note that for % = ε this expression is only defined for
α ∈ VO ∪ sub(O). We fix the value of αI(ε) for all other α
arbitrarily, in such a way that for all α, β ∈ U we have
αI(ε) 6 βI(ε) iff inv(β)I(ε) 6 inv(α)I(ε). We can now
define the interpretation of all concept names α 6 β with
α, β ∈ U as

α 6 β
Ic := {% | αI(%) 6 βI(%)}.

It is easy to see that we have % ∈ α ./ β
Ic iff αI(%) ./ βI(%)

also for all other order expressions ./, and that Ic satisfies
red(U). We now show that Ic satisfies the remaining parts of
red(O).

For any order assertion 〈a:C ./ a:D〉 ∈ A we have
CI(aI) ./ DI(aI). This implies that CI(ε) ./ DI(ε),
and thus aI = ε ∈ C ./ D

Ic , as required. A similar ar-
gument works for assertions of the form 〈a:C ./ q〉. Con-
sider now a GCI 〈C v D > q〉 ∈ T and any % ∈ ∆Ic .
We know that CI(tail(%)) ⇒ DI(tail(%)) > q, and thus
% ∈ q 6 C ⇒ D

Ic .
For red(↑), consider any α, β ∈ VO ∪ sub(O), r ∈ rol(O),

and % ∈ α ./ β
Ic . Thus, it holds that αI(%) ./ βI(%). Ev-

ery r-successor of % in Ic must be of the form %rd. Since
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〈α〉I↑ (%rd) = αI(%) ./ βI(%) = 〈β〉I↑ (%rd), we know that
all r-successors of % satisfy 〈α〉↑ ./ 〈β〉↑ .

It remains to be shown that Ic satisfies red(C) for all con-
cepts C ∈ sub(O). For C = >, the claim follows from the
fact that >I(%) = >I(tail(%)) = 1. For ¬C, the result is
trivial, and for conjunctions and implications, it follows from
the semantics of u and→ and the properties of min and⇒,
respectively.

Consider the case of ∀r.C and an arbitrary domain element
% ∈ ∆Ic , and set d := tail(%). Since I is witnessed, there
must be an e ∈ ∆I such that

〈∀r.C〉I↑ (%re) = (∀r.C)I(d)

= rI(d, e)⇒ CI(e)

= λI(%re)⇒ CI(%re).

Since (%, %re) ∈ rIc , this shows that ∃r. 〈∀r.C〉↑ > λ⇒ C is
satisfied by % in Ic. Additionally, for any r-successor %re of %
we have

〈∀r.C〉I↑ (%re) = (∀r.C)I(d)

6 rI(d, e)⇒ CI(e)

= λI(%re)⇒ CI(%re),

and thus ∀r. 〈∀r.C〉↑ 6 λ⇒ C is also satisfied.
For at-least restrictions >n r.C, we similarly know that

there are n different elements e1, . . . , en such that, for all i,
1 6 i 6 n,

〈>n r.C〉I↑ (%rei) = (>n r.C)I(d)

=
n

min
j=1

min{rI(d, ej), C
I(ej)}

6 min{rI(d, ei), C
I(ei)}

= min{λI(%rei), C
I(%rei)}.

Since also the elements %re1, . . . , %ren are dif-
ferent, this shows that the at-least restriction
>n r. 〈>n r.C〉↑ 6 min{λ,C} is satisfied by Ic at %.
On the other hand, for all n-tuples (%re1, . . . , %ren) of
different r-successors of % and all i, 1 6 i 6 n, we must
have

〈>n r.C〉I↑ (%rei) = (>n r.C)I(d)

>
n

min
j=1

min{rI(d, ej), C
I(ej)}

=
n

min
j=1

min{λI(%rej), C
I(%rej)},

and thus there must be at least one j, 1 6 j 6 n, such that

%rej ∈ 〈>n r.C〉↑ > min{λ,C} Ic .

In other words, there can be no n different elements of the
form %re that satisfy %re ∈ 〈>n r.C〉↑ < min{λ,C} Ic , i.e.

% /∈ >n r. 〈>n r.C〉↑ < min{λ,C} Ic .

In contrast to the reductions for finitely valued Gödel
FDLs [Bobillo et al., 2009; 2012], the size of red(O) is al-
ways polynomial in the size of O. The reason is that we

do not translate the concepts occurring in the ontology recur-
sively, but rather introduce a polynomial-sized subontology
red(C) for each relevant subconcept C. Moreover, we do not
need to introduce role hierarchies for our reduction, since the
value of role connections is expressed using the special ele-
ment λ. EXPTIME-completeness of concept satisfiability in
classical ALCQ [Schild, 1991; Tobies, 2001] now yields the
following result.
Theorem 3. Local consistency in G-IALCQ is EXPTIME-
complete.

4 Conclusions
Using a combination of techniques developed for infinitely
valued Gödel extensions of ALC [Borgwardt et al., 2014]
and for finitely valued Gödel extensions of SROIQ [Bobillo
et al., 2009; 2012], we have shown that local consistency in
infinitely valued G-IALCQ is EXPTIME-complete. Our re-
duction is more practical than the automata-based approach
proposed by Borgwardt et al. [2014] and does not exhibit the
exponential blowup of the reductions developed by Bobillo
et al. [2009; 2012]. Beyond the complexity results, an impor-
tant benefit of our approach is that it does not need the devel-
opment of a specialized fuzzy DL reasoner, but can use any
state-of-the-art reasoner for classical ALCQ without modifi-
cations. For that reason, this new reduction aids to shorten
the gap between efficient classical and fuzzy DL reasoners.

In future work, we want to extend this result to full con-
sistency, possibly using the notion of a pre-completion as in-
troduced in [Borgwardt et al., 2014]. Our ultimate goal is
to provide methods for reasoning efficiently in infinitely val-
ued Gödel extensions of the very expressive DL SROIQ,
underlying OWL 2 DL. We believe that it is possible to treat
transitive roles, inverse roles, role hierarchies, and nominals
using the extensions of the automata-based approach devel-
oped originally for finitely valued FDLs in [Borgwardt and
Peñaloza, 2013; 2014; Borgwardt, 2014].

As done previously in [Bobillo et al., 2012], we can also
combine our reduction with the one for infinitely-valued
Zadeh semantics. Although Zadeh semantics is not based on
t-norms, it nevertheless is important to handle it correctly, as
it is one of the most widely used semantics for fuzzy appli-
cations. It also has some properties that make it closer to the
classical semantics, and hence become a natural choice for
simple applications.

A different direction for future research would be to in-
tegrate our reduction directly into a classical tableaux rea-
soner. Observe that the definition of red(C) is already
very close to the rules employed in (classical and fuzzy)
tableaux algorithms (see, e.g. [Baader and Sattler, 2001;
Bobillo and Straccia, 2009]). However, the tableaux proce-
dure would need to deal with total preorders in each node,
possibly using an external solver.
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Abstract
A Timed Abstract Argumentation Framework
(TAF) is a formalism where arguments are only
valid for consideration in a given period of time,
which is defined for every individual argument.
The original proposal is based on a single, abstract
notion of attack between arguments. In this work
we expand the TAF formalism in order to include
the relation of support. This leads to a bipolar
timed argumentation framework, where classical
argument extensions can be defined.

1 Introduction
In [Cobo et al., 2010b; 2010a] a novel framework is proposed,
called Timed Abstract Framework (TAF), combining argu-
ments and temporal notions. In this formalism, arguments
are relevant only in a period of time, called its availability
interval. This framework mantains a high abstract level in
an effort to capture intuitions related with the dynamic inter-
play of arguments as they become available and cease to be
so. The notion of availability interval refers to an interval of
time in which the argument can be legally used for the partic-
ular purpose of an argumentation process. Thus, this kind of
timed-argument has a limited influence in the system, given
by the temporal context in which these arguments are taken
into account. timed abstract frameworks capture the previ-
ous argument model by assigning arguments to an availabil-
ity interval of time. In [Cobo et al., 2010b] a skeptical, timed
interval-based semantics is proposed, using admissibility no-
tions. As arguments may get attacked during a certain period
of time, defense is also time-dependent, requiring a proper
adaptation of classical acceptability. In [Cobo et al., 2010a],
algorithms for the characterization of defenses between timed
arguments are presented.

In the last years, the study of a support relation has been
centered on the study of support as an explicit interaction be-
tween arguments. Several formal approaches were consid-
ered, such as deductive support, necessary support and evi-
dential support among others [Cohen et al., 2014]. A sim-
ple abstract formalization of argument support is provided
in the framework proposed by Cayrol and Lagasquie-Schiex
in [Cayrol and Lagasquie-Schiex, 2005]. This framework ex-
tends Dung’s notion of acceptability [Dung, 1995] by distin-

guishing two independent forms of interaction between ar-
guments: support and attack. Besides the classical semantic
consequences of attack, new semantic considerations are in-
troduced that rely on the support of an attack and the attack
of a support.

In this work we provide Timed Argumentation Frame-
works with this basic notion of support, leading to Bipolar
Timed Argumentation Frameworks. In order to state the
relevance of our formalization, we analyze first a classical
example of bipolar argumentation case, introduced in [Am-
goud et al., 2008] about editorial publishing, as follows.

Suppose a scenario where an Editorial is considering
about presenting an important note relating to a public per-
son P. For that, the chief editorial writer considers the follow-
ing arguments, that are related to the importance and legality
of the note.

I: Information I concerning person P should be published.

P: Information I is private, so P denies publication.

S: I is an important information concerning P’s son.

M: P is the new prime minister, so everything related to P is public.

Some conflicts appear during the above discussion. That
is the case of the conflict between arguments P and I, and
between arguments M and P . On the other hand, there is
a relation between arguments P and S, which is clearly not
a conflict. Moreover, S provides a new piece of information
enforcing argument P .

Although this is a proper example to introduce positive
argument relations, it does not consider time evolution in
an explicit way. From a temporal perspective the analysis
made over the information of the example takes place over a
particular snapshot of time where all arguments are valid or
available. The editorial publishing example can be adapted
to consider the evolution of information in time by making
explicit the moments where those arguments can be used.

Based on the arguments presented previously, I and P can
be both considered as general information applicable at any
moment, a sort of editorial rules. However, the argumentM
is available during the period of time where P is prime min-
ister. Before that, argument M does not apply. And after
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leaving the Primer Minister Office, the information about P
is less relevant for publication. Then, a new prime minister
P2 may be a more important public person than P, at least
for media purposes. The publisher may dismiss information
about P.

According to this, it is possible to state the following argu-
ments:
I: Information I concerning person P should be published.

P: Information I is private so, P denies publication.

S: I is an important information concerning P’s son.

T : I is an important information concerning P2’s son.

M: P is the new prime minister so, everything related to P is public.

N : P2 is the new prime minister so, everything related to P2 is
public.

Some additional information about this scenario is essen-
tial to make a proper analysis: the periods of time where P2
and P are prime ministers as well as the birth dates of their
children. Suppose the following time specification for the pre-
vious arguments.

Argument Temporal Availability
I [0,∞)
P [0,∞)
S [2013, Apr − 2013, Oct]
T [2012, F eb− 2012, Jun]
M [2012, Oct− 2014, Oct]
N [2010, Jun− 2012, Oct)

This time information can be depicted as in Figure 1. It
shows the intervals of time in which every argument is avail-
able or relevant, i.e. it can be taken into account in the argu-
ment scenario.

time //
2010 2011 2012 2013 2014

0 Jun Jan Jan Feb Jun Oct Jan Apr Oct Jan Oct Jan

I

P

T S

M

N

Figure 1: Availability Distribution for the Arguments.

This work is organized as follows. In the following sec-
tion, we review the classical version of Bipolar Argumenta-
tion Framework (BAF), which allows the representation of
support and conflict relation defined over arguments. Then,
we introduce an extension of this formalism, where the tem-
poral notion associated to the arguments is taken into account.
Later, semantic elaborations are presented.

2 Bipolar Abstract Argumentation
When representing the essential mechanism of argumenta-
tion, the notion of bipolarity is a natural one. Abstracting

away from the inner structure of the arguments, this frame-
work proposed by Cayrol and Lagasquie-Schiex in [Cayrol
and Lagasquie-Schiex, 2005], extend Dung’s notion of ac-
ceptability distinguishing two independent forms of interac-
tion between arguments: support and attack.
Definition 1 (Bipolar Argumentation Framework) A
Bipolar Argumentation Framework (BAF) is a 3-tuple
Θ = 〈Arg, Rd, Rs〉, where Arg is a set of arguments, Rd and
Rs are disjoint binary relations on Arg called defeat (or
attack) relation and support relation, respectively.
In order to represent a BAF’s, Cayrol and Lagasquie-Schiex
extended the notion of graph presented by Dung in [Dung,
1995] adding the representation of support between argu-
ments. In this new representation, it is possible to represent
the support and attacks between abstract arguments. This no-
tion is defined as follows.
Definition 2 (Bipolar Argumentation Graph) Let Θ =
〈Arg, Rd, Rs〉 be a BAF. We define a directed graph for Θ,
denoted as GΘ, taking as nodes the elements in Arg, and
two types of arcs: one for the attack relation (represented by
plain arrows), and one for the support relation (represented
by squid arrows).

The interaction between the two relations among argu-
ments, allowed to introduce supported and secondary defeat
which combine a sequence of supports with a direct defeat.
This notion is presented in the following definition.
Definition 3 (Supported and Secondary Defeat) Let Θ =
〈Arg, Rd, Rs〉 be an BAF, and A,B ∈ Arg two arguments.

– A supported defeat from A to B is a sequence
A1 R1 ... Rn−1 An, with n ≥ 3, where A1 = A and
An = B, such that ∀i = 1...n− 2, Ri = Rs and Rn−1 = Rd.

– A secondary defeat from A to B is a sequence
A1 R1 ... Rn−1 An, with n ≥ 3, where A1 = A and
An = B, such that R1 = Rd and ∀i = 2...n− 1, Ri = Rs.

In [Cayrol and Lagasquie-Schiex, 2005], Cayrol and
Lagasquie-Schiex state that a sequence reduced to two argu-
ments A Rd B (a direct defeat A → B) is also considered as
a supported defeat from A to B.
Example 1 Given a BAF Θ = 〈Arg, Rd, Rs〉, where:

Arg = {A;B; C;D; E ;F ;G;H; I;J },
Rd = {(B,A); (A,H); (C,B); (G, I); (J , I); (F , C)}, and

Rs = {(D, C); (H,G); (I,F); (E ,B)}.

D C B E
N // N // N

!!

Noo

F N

BB

A N

  
N N//

\\

Noo Noo

J I G H

Figure 2: Bipolar argumentation graph.
We analyze the bipolar argumentation framework Θ char-

acterized by the bipolar interaction graph depicted in Fig-
ure 2. For instance, J and H support defeat I, since H
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support G, and I is attacked by G and J (direct attacker);
in addition, J and G secondary defeat F , because I support
F , which is attacked by J and G. However, A support de-
feat G throughH support, and due to this G is defeated; also,
B support defeat A (direct attacker), but D support defeat
B through C. Note that, the support defeat from G to F be-
comes invalid sinceA defeatH which is a support of G, in an
irrevocable way.

Cayrol and Lagasquie-Schiex in [Cayrol and Lagasquie-
Schiex, 2005] argued that a set of arguments must be in some
sense coherent to model one side of an intelligent dispute.
The coherence of a set of arguments is analyzed internally
(a set of arguments in which an argument attacks another in
the set is not acceptable), and externally (a set of arguments
which contains both a supporter and an attacker for the same
argument is not acceptable). The internal coherence is cap-
tured extending the definition of conflict free set proposed
in [Dung, 1995], and external coherence is captured with the
notion of safe set.

Definition 4 (Conflict-free and Safe) Let Φ = 〈Arg, Rd, Rs〉
be an BAF, and S ⊆ Arg be a set of arguments.

– S is conflict-free iff @A,B ∈ S such that there is a supported
or a secondary defeat from A to B.

– S is safe iff @A ∈ Arg and @B, C ∈ S such that there is a
supported defeat or a secondary defeat from B toA, and either
there is a sequence of support from C to A, or A ∈ S.

The notion of conflict-free in the above definition requires to
take supported and secondary defeats into account, thus be-
coming a more restrictive definition than the classical version
of conflict-freeness proposed by Dung. In addition, Cayrol
and Lagasquie-Schiex show that the notion of safety is power-
ful enough to encompass the notion of conflict-freeness (i.e.,
if a set is safe, then it is also conflict-free).

Based on the previous notions, Cayrol and Lagasquie-
Schiex in [Cayrol and Lagasquie-Schiex, 2005] extend the
notions of defence for an argument with respect to a set of ar-
guments, where they take into account the relations of support
and conflict between arguments.

Definition 5 (Defence of A from B by S) Let S ⊆ Arg be
a set of arguments, and let A ∈ Arg be an argument. S
defends collectively A iff ∀ B ∈ Arg if B is a supported or
secondary defeat ofA then ∃ C ∈ S such that C is a supported
or secondary defeat of B.

Cayrol and Lagasquie-Schiex proposed three different defi-
nitions for admissibility, from the most general to the most
specific one. The most general notion is based on Dung’s
admissibility definition. Later, they extended the notion of d-
admissibility taking into account external coherence. Finally,
external coherence is strengthened by requiring closure under
Rs.

Definition 6 (Admissibility in BAF) Let Φ = 〈Arg, Rd, Rs〉
be a BAF. Let S ⊆ Arg be a set of arguments. The admissi-
bility of a set S is defined as follows:

– S is d-admissible if S is conflict-free and defends all its ele-
ments.

– S is s-admissible if S is safe and defends all its elements.

– S is c-admissible if S conflict-free, closed for Rs (contain all
the arguments supporting the elements of S) and defends all
its elements.

Example 2 (Continued Example 1) The set S1 = {J ; C;
D;A; E} is d-admissible, since it is conflict free and defend
all its elements; however, it is not s-admissible, because C
and E belong to S1, where C is a supported defeat of B and E
support B, and for that S1 is not safe. It is important to note
that, if a set of arguments does not satisfy the s-admissibility,
then does not satisfy the c-admissibility; for that S1 is not c-
admissible. The set S2 = {J ; C;D;A} is s-admissible, since
it is safe and defend all its elements; in addition, it is closed
for Rs, so S2 is c-admissible too.

From the notions of coherence and admissibility, and by
extending the propositions introduced in [Dung, 1995], Cay-
rol and Lagasquie-Schiex in [Cayrol and Lagasquie-Schiex,
2005] proposed different new semantics for acceptability.
Definition 7 (Stable extension) Let Φ = 〈Arg, Rd, Rs〉 be a
BAF. Let S ⊆ Arg be a set of arguments. S is a stable ex-
tension of Φ if S is conflict-free and for all A /∈ S, there is a
supported or a secondary defeat of A in S.

Definition 8 (Preferred extension) Let Φ = 〈Arg, Rd, Rs〉
be a BAF. Let S ⊆ Arg be a set of arguments. S is a d-
preferred (resp. s-preferred, c-preferred) extension if S is
maximal (for set-inclusion) among the d-admissible (resp. s-
admissible, c-admissible) subsets of Arg.

Example 3 (Continued Example 1) In our example, the set
of arguments S1 = {J ; C;D;A; E} is the stable extension,
since there exist a defeater for the arguments I, F , G and H
(as we explain in 1). However, as we see in the example 2,
this extension is not safe.
Based on definition 8, we can compute the following preferred
extensions:

S1 is a maximal (with respect to set-inclusion) d-admissible
set, so S1 is a d-preferred extension.

S2 = {J ; C;D;A} is a maximal s-admissible sets, so S2 is a
s-preferred extensions.

S2 is a maximal c-admissible set, therefore S2 is a c-preferred
extension.

3 Towards a Temporal Argumentation
Framework

Our interest is to provide bipolar argumentation frameworks
with a time-based notion of argument interaction. Time mod-
elization is achieved by the use of an abstract notion of avail-
ability of arguments, which is a metaphor for a dynamic rel-
ative importance. Arguments are either available or not for
a specific interval of time. This may be interpreted as an ar-
gument being relevant, strong, appropriate or any other no-
tion of relative importance among arguments. The premise is
that this availability is not persistent, yet it can be intermittent
through time. In such a dynamic scenario, defeat and support
may be sporadic and then proper time-based semantics need
to be elaborated.

Let A, B and C be three arguments such that B Rd A and
C Rs B, as shown in Figure 3(a). This is a minimal example

IJCAI-15 Workshop on Weighted Logics for Artiticial Intelligence (WL4AI-2015)

11



of a supported defeat. In the classical definition of bipolar
argumentation framework, the set S = {C,B} is conflict-
free. When considering availability of arguments, different
conflict-free situations may arise. Suppose at moment t1 ar-
guments C and A are available while B is not. Then the set
S1 = {C,A} is conflict-free, since the attacker of A is not
available i.e.not relevant or strong at this particular moment.
Suppose later at moment t2 argument B becomes available.
Then S1 is no longer conflict-free since C supports a (now
available) defeater of A. Suppose later at moment t3 argu-
ment B is not available again. Then set S1 regains its conflict-
free quality. Hence, a set of arguments in a timed context is
not a conflict-free set by itself, but regarding certain moments
in time. The set S1 is conflict-free in t1 and in t3, and more
generally speaking, in intervals of time in which availability
of related arguments does not change.

A N

C N

��
N

AA

B

(a)

A N

C N

$$
N

FF

B

(b)

Figure 3: Arguments Relations

In a similar fashion, consider the scenario of Figure 3(b),
where B Rs A and C Rd B. Suppose at moment t1 argu-
ments C and A are available while B is not. Again, the set
S1 = {C,A} is conflict-free. Suppose at moment t2 ar-
guments B and A are available while C is not. Then the
set S1 = {A,B} is conflict-free. If all the arguments are
available at time t3, then there is a conflict underlying in
{C,A}. In a dynamic environment, the set of conflict-free
sets changes through time. Thus, the notion of acceptabil-
ity in a bipolar argumentation scenario must be adapted when
properly considered in a timed context.

In the following section the formal model of Timed-
Bipolar Argumentation Framework is introduced and the cor-
responding argument semantics are presented.

4 Modeling Temporal Argumentation with
T-BAF

The Timed Bipolar Argumentation Framework (T -BAF ) is
an argumentation formalism where arguments are valid only
during specific intervals of time (called availability intervals).
Attacks and support between arguments are considered only
when the arguments involved in the action of attack or support
are available. Thus, when identifying the set of acceptable
arguments the outcome associated with a T -BAF may vary
in time.

In order to represent time, we assume that a correspon-
dence was defined between the time line and the set of real
numbers. A time interval, representing a period of time with-
out interruptions, will be then represented as defined below.

Definition 9 (Time Interval) A time interval I represents a
continuous period of time, identified by a pair of time-points.
The initial time-point is called the startpoint of I , and the
final time-point is called the endpoint of I . The intervals can
be:

closed: defines a period of time that includes the defi-
nition points (startpoint and endpoint). Closed intervals
are noted as [a− b].
open: defines a period of time without the start and en-
point. Open intervals are noted as (a− b).

semi-closed: the periods of time includes one of the def-
inition points but not both. Depending wich one is in-
cluded, they are noted as (a− b] (includes the endpoint)
or [a− b) (includes the startpoint).

As is usual, any of the intervals shown is considered empty if
b < a, and the interval [a−a] represents the point in time {a}.
For the infinite endpoint, we use the symbol +∞ and−∞, as
in [a−+∞) or (−∞− a] respectively, to indicate that there
is no upper or lower bound for the interval respectively, and
an interval containing this symbol will always be closed by
“)” or “(” respectively.

To model discontinuous periods of time we introduce the
notion of set of time intervals. Although a set of time inter-
vals suggests a representation as a set of sets (set of intervals),
we chose a flattened representation as a set of reals (the set of
all real numbers contained in any of the individual time inter-
vals). Hence, we can directly apply traditional set operations
and relations on sets of time intervals.

Definition 10 (Time Intervals Set) A set of time intervals,
or just intervals set, is a finite set T of time intervals.

Note that T ⊆ R; when convenient, we will use the set of
sets notation for sets of time intervals. Concretely, a time
interval set T will be denoted as the set of all disjoint and ⊆-
maximal individual intervals included in the set. For instance,
we will use {(1 − 3], [4.5 − 8)} to denote the time interval
set (1− 3] ∪ [4.5− 8).

Now we formally introduce the notion of Timed Bipo-
lar Argumentation Framework (T -BAF ), which extends the
BAF of Cayrol and Lagasquie-Schiex by incorporating an
additional component, the availability function, which will
be used to capture those time intervals where arguments are
available.

Definition 11 (Timed Bipolar Argumentation Framework)
A Timed Bipolar Argumentation framework (or simply
T -BAF ) is a triple Ω = 〈Arg, Rd, Rs, Av〉, where Arg is a
set of arguments, Rd is a binary relation defined over Arg
(representing attack), Rs is a binary relation defined over
Arg (representing support), and Av : Arg −→ ℘(R) is an
availability function for timed arguments, such that Av(A) is
the set of availability intervals of an argument A.

Remarks: Since the arguments are only available during a
certain period of time (availability intervals), it is correct to
think that the relationship between arguments occurs when
the arguments involved are active at the same time, i.e.,
given two arguments A,B ∈ Arg, we say that (A,B) ∈ Rd
(or (A,B) ∈ Rs) iff TA ∩ TB 6= ∅. We denote as T d(A,B)
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and T s(A,B) to refer the time in which the attack (support)
between A and B is available, respectively.

Firstly we present the notion of t-profile, binding an ar-
gument to a set of time intervals in which this argument is
available, which constitutes a fundamental component for the
formalization of time-based acceptability.

Definition 12 (T-Profile) Let Ω = 〈Arg, Rd, Rs, Av〉 be a
T -BAF . A timed argument profile for A in Ω, or just
t-profile forA, is a pair 〈A, TA〉 whereA ∈ Arg and TA is a
set of time intervals where A is available, i.e., TA ⊆ Av(A).
The t-profile 〈A, Av(A)〉 is called the basic t-profile of A.

We will call the set of t-profiles, as a collection of t-profiles,
which fulfill the requisites presented in the following defini-
tion.

Definition 13 (Collection of T-Profiles) Let Ω = 〈Arg, Rd,
Rs, Av〉 be a T -BAF . Let 〈X1, TX1

〉, 〈X2, TX2
〉, · · ·

, 〈Xn, TXn
〉 be t-profiles . The set C = {〈X1, TX1

〉,
〈X2, TX2

〉, · · · , 〈Xn, TXn
〉} is a collection of t-profiles iff

it verifies the following conditions:
i) Xi 6= Xj for all i, j such that i 6= j, 1 ≤ i, j ≤ n.

ii) TXi 6= ∅, for all i such that 1 ≤ i ≤ n.

Given a collection of t-profiles, there will be occasions in
which it will be necessary to appeal to the set of arguments
involved in these t-profiles. For that, we will define in the
following definition how we obtain the argument associated
with a t-profile.

Definition 14 (Arguments from a Collection of T-profiles)
Let C be a collection of t-profiles. The function

∏
Args(C)

defined as
∏
Args(C) = {X | 〈X , TX 〉 ∈ C}, obtain the set

of arguments Args involved in a collection of t-profiles C.

Based on the notion of t-profile, the availability of arguments
varies in time. In order to manipulate and combine these el-
ements it is necessary to introduce two new concepts corre-
sponding to the intersection and inclusion of t-profiles, de-
noted as t-intersections and t-inclusions, formalized below:

Definition 15 (t-intersection) Let Ω = 〈Arg, Rd, Rs, Av〉 be
a T -BAF . Let C1 and C2 be two collections of t-profiles .
We define the t-intersection of C1 and C2, denoted C1 ∩t C2,
as the collection of t-profiles such that:
C1 ∩t C2 = {(X, TX ∩ T ′X ) | 〈X , TX 〉 ∈ C1, 〈X , T ′X 〉 ∈ C2, and
TX ∩ T ′X 6= ∅}

Definition 16 (t-inclusion) LetC1 andC2 be two collections
of t-profiles . We say that C1 is t-included in C2, denoted as
C1 ⊆t C2, if for any t-profile 〈X , TX 〉 ∈ C1 there exists a
t-profile 〈X , T ′X 〉 ∈ C2 such that TX ⊆ T ′X .

In T -BAF , taking into account a collection of t-profiles as
basis, it is possible to generate a sequence of t-profiles from
the existing relations between the arguments that are involved
in them.

Definition 17 (Sequence of T-profiles) Let Ω = 〈Arg, Rd,
Rs, Av〉 be a T -BAF . Let C = { 〈X1, TX1

〉, 〈X2, TX2
〉,

· · · , 〈Xn, TXn
〉 } be a collection of t-profiles. Let Args =∏

Args(C) be a set of arguments involved in the collection

C. We will say that each t-profile of C composes a sequence
of t-profiles iff ∀i = 1...n − 1 verifies that (Ai, Ai+1) ∈ Rs
or (Ai, Ai+1) ∈ Rd, where Ai, Ai+1 ∈ Args and ∩tTAi 6=
∅ ∀i = 1...n.

The following definitions reformulate BAF formalization
considering t-profiles instead of arguments. First, we will de-
fine the notion of supported and secondary defeat over time
in T -BAF .

Definition 18 (Supported Defeat over Time) Let Ω =
〈Arg, Rd, Rs, Av〉 be an T -BAF . Let 〈A, TA〉 and 〈B, TB〉
two t-profiles. Let 〈A1, TA1

〉 〈A2, TA2
〉 · · · 〈An−1, TAn−1

〉
〈An, TAn

〉 be a sequence of t-profiles, with n ≥ 3, 〈A1, TA1
〉

= 〈A, TA〉 and 〈An, TAn
〉= 〈B, TB〉, such that ∀i = 1...n−1,

(Ai, Ai+1) ∈ Rs and (An−1, An) ∈ Rd. We will define the
time interval in which 〈A, TA〉 supported defeat 〈B, TB〉, de-
noted as T Sup(A-B), is defined as T Sup(A-B) = ∩ni=1TAi .

We say that a sequence reduced to two arguments A Rd B (a
direct defeatA → B) is also considered as a supported defeat
from A to B.

Definition 19 (Secondary Defeat over Time) Let Ω =
〈Arg, Rd, Rs, Av〉 be a T -BAF . Let 〈A, TA〉 and 〈B, TB〉
two t-profiles. Let 〈A1, TA1

〉 〈A2, TA2
〉 · · · 〈An−1, TAn−1

〉
〈An, TAn

〉 be a sequence of t-profiles, with n ≥ 3, 〈A1, TA1
〉

= 〈A, TA〉 and 〈An, TAn〉 = 〈B, TB〉, such that (A1, A2) ∈
Rd and ∀i = 2...n, (Ai, Ai+1) ∈ Rs. We will define the time
interval in which 〈A, TA〉 secondary defeat 〈B, TB〉, denoted
as T Sec(A-B), is defined as T Sec(A-B) = ∩ni=1TAi

.

Example 4 We will introduce an abstract example, through
which we will clarify the concepts introduced until now. In
this case we introduce the notion of time availability into the
arguments presented in Example 1.

Given a T -BAF Ω = 〈Arg, Rd, Rs, Av〉, where:
Arg = {A;B; C;D; E ;F ;G;H; I;J },
Rd = {(B,A); (A,H); (C,B); (G, I); (J , I); (F , C)},
Rs = {(D, C); (H,G); (I,F); (E ,B)}, and

Av = {〈A, {[0−100]}〉; 〈B, {(90−150]}〉; 〈C, {[30−180]}〉;
〈D, {[0− 60]}〉; 〈E , {[100− 160)}〉; 〈F , {[50− 90]}〉;
〈G, {[60− 120]}〉; 〈H, {[40− 80]}〉; 〈I, {(70− 110]}〉;
〈J , {[0− 90)}〉}.

D[0−60] C[30−180) B(90−150] E[100−160)

N // N // N

!!

Noo

F[50−90] N

>>

A[0−100] N

}}
N Noo

``

Noo Noo

J[0−90) I(70−110] G[60−120] H[40−80)

Figure 4: Bipolar argumentation graph with Timed Availability
We analyze the timed bipolar argumentation framework Ω
characterized by the bipolar interaction graph depicted in
Figure 4, and temporal distribution depicted in Figure 5.
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Figure 5: Temporal Distribution

In this example, we will pay attention to the relations that
arise from the leaf nodes of the graph, in order to clarify the
Definitions 18 and 19. On one hand, J support defeat I in
the time intervals T Sup(J -I) = TJ ∩ TI = {(70 − 90)}, and

J secondary defeat F in the time intervals T Sup(J -F) = TJ ∩
TI ∩ TF = {(70 − 90)}. Also, analysing the leaf argument
D, the support defeat from D to B is invalidate since the time
interval T Sup(D-B) = {∅}, where T Sup(D-B) = TD∩TC∩TB = {∅}.
On the other hand, from the argument E , there exist a support
defeat from E to A in the time interval T Sup(E-A) = TE ∩ TB ∩
TA = {[100− 100]}.

Note that, in this case, the relations between arguments
it is taking into account in an independent way, i.e., it is not
taken into account how the attack from an argumentA can be
affected by the attacks which A has over time. For example,
the support defeated from E to A is invalidate, because B is
defeated in the time interval in which it is available.

Once defined the relations of attack over time using the t-
profiles, we will adapt the conditions of conflict-free and safe
used in BAF taking into account the temporary notions.

Definition 20 (Conflict-free and Safe) Let Ω = 〈Arg, Rd,
Rs, Av〉 be an T -BAF , and S be a collection of t-profiles.

– S is conflict-free iff @〈A, TA〉, 〈B, TB〉 ∈ S such that
T Sup
(A-B) 6= ∅ or T Sec

(A-B) 6= ∅.

– S is safe iff @〈A, TA〉, 〈B, TB〉 ∈ S and @〈B, TB〉, 〈C, TC〉 ∈
S such that T Sup

(A-B) 6= ∅ or T Sec
(A-B) 6= ∅, and either there is a

sequence of support from 〈C, TC〉 to 〈A, TA〉, or 〈A, TA〉 ∈ S.

Example 5 The collection of t-profiles C1 =
{〈A, {[0 − 100]}〉; 〈C, {[30 − 50), (90 − 180)}〉;
〈D, {[0 − 60]}〉; 〈E , {[100 − 160)}〉; 〈F , {[50 − 90]}〉;
〈G, {[80 − 120]}〉; 〈J , {[0 − 90)}〉} is conflict-free but
not safe, since the argument D support C and F attacks C
in the time interval set {[50 − 60]}; on another case, the
argument B is supported and attacked by E and C, respec-
tively, in the time interval set {[100 − 150]}. The collection
C2 = {〈A, {[0 − 100]}〉; 〈D, {[0 − 50)}〉; 〈C, {[30 − 50),
(90 − 100), (150 − 180)}〉; 〈E , {(150 − 160)}〉;
〈F , {(60 − 90]}〉; 〈G, {[80 − 120]}〉; 〈J , {[0 − 90)}〉}
is conflict-free and safe.

The following definitions reformulate BAF formalization
for abstract argumentation considering t-profiles instead of
arguments. In this way, we can consider the defense of an ar-
gument over time taking into account the corresponding sup-
port and secondary defeat.

Definition 21 (Defense of A from B by a collection C) Let
Ω = 〈Arg, Rd, Rs, Av〉 be an T -BAF , and C be a conflict-
free collection of t-profiles. Let 〈A, TA〉 and 〈B, TB〉 two
t-profiles, where B attacks A through a support or secondary
attacks such that T Sec(B-A) 6= ∅ and/or T Sup(B-A) 6= ∅. The defense
t-profile of A from B with respect to C, denoted as T B(A|C) is
defined as follows:

T B(A|C) =def Av(A) ∩ (T B(A|C|Sup) ∪ T B(A|C|Sec))

where T B(A|C|Sup) =def

⋃
C∈{X | 〈X ,TX 〉∈C, (X ,T Sup

(X -B) 6=∅}
T Sup(C-B)

and T B(A|C|Sec) =def

⋃
C∈{X | 〈X ,TX 〉∈C, (X ,T Sec

(X -B) 6=∅}
T Sec(C-B).

Intuitively, A is defended from the attack of B when B
is not available, plus those intervals where the attacker B is
available but it is in turn attacked by an argument C in the
collection C. The following definition captures the defense
profile of A, but considering all its attacking arguments.

Definition 22 (Acceptable t-profile of A w.r.t. C) Let Ω =
〈Arg, Rd, Rs, Av〉 be an T -BAF . The acceptable t-profile for
A w.r.t. C, denoted as T(A|C), is defined as follows:

T(A|C) =def

⋂
B∈{X | T Sup

(X -A)
6=∅ ∨ T Sec

(X -A)
6=∅}

(Av(A) \ (T Sup(B-A) ∪ T
Sec

(B-A))) ∪ T
B

(A|C)

where T B(A|C) is the time interval where A is defended of its
attacker B by C. Then, the intersection of all time intervals
in which A is defended from each of its attackers by the col-
lection C, is the time interval where A is available and is
acceptable with respect to C.

Example 6 In this example, we will show how the acceptable
t-profile of I from a collection C3 = {〈A, {[0 − 100]}〉 is
calculated.
T(I|C3) = (Av(I) \ (T Sec(G-I) ∪ T

Sec
(H-I))) ∪ (T G(A|C3) ∪

T H(A|C3)) = (70− 110] \ ((70− 110] ∪ (70− 80))) ∪ ((70−
110] ∪ (70− 80)]) = (70− 110]

In this section, we extend the three different definitions
for admissibility proposed by Cayrol and Lagasquie-Schiex
in [Cayrol and Lagasquie-Schiex, 2005], througth the new
version of conflict-freeness and safety.

Definition 23 (Admissibility in T-BAF) Let Ω = 〈Arg, Rd,
Rs, Av〉 be an T -BAF . Let C be a collection of t-profiles.
The admissibility of a collection C is defined as follows:

– C is td-admissible if C is conflict-free and defends all its ele-
ments.

– C is ts-admissible if C is safe and defends all its elements.

– C is tc-admissible if C conflict-free, closed for Rs and defends
all its elements.

Example 7 The collection of t-profiles C4 =
{〈A, {[0 − 100)}〉; 〈C, {[30 − 50), (70 − 180)}〉;
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〈D, {[0 − 60]}〉; 〈E , {[100 − 160)}〉; 〈F , {[50 − 70]}〉;
〈G, {(80−120]}〉; 〈J , {[0−90)}〉} is td-admissible since it is
conflict-free and defends all its elements over time. However,
C4 is not a ts-admissible or tc-admissible collection of t-
profiles. C5 = {〈A, {[0−100]}〉; 〈C, {[30−50), (70−180)}〉;
〈D, {[0 − 60]}〉; 〈E , {(150 − 160)}〉; 〈F , {[50 − 70]}〉;
〈G, {(80− 120]}〉; 〈J , {[0− 90)}〉} is ts-admissible because
its safe and defends all its elements. In addition, C5 is closed
for Rs, then it is tc-admissible.

Now, we can define the acceptability semantics for T -BAF .

Definition 24 (Stable extension over Time) Let Ω = 〈Arg,
Rd, Rs, Av〉 be an T -BAF . Let C be a collection of t-profiles.
C is a t-stable extension of Ω if C is conflict-free and for all
〈A, TA〉 /∈ C, verifies that TA \ (

⋃
T Sec(B-A) ∪

⋃
T Sup(B-A)) = ∅

for all 〈B, TB〉 ∈ C.

Definition 25 (Preferred extension over Time) Let Ω =
〈Arg, Rd, Rs, Av〉 be an T -BAF . Let C be a collection of t-
profiles. C is a td-preferred (resp. ts-preferred, tc-preferred)
extension if C is maximal (for set-t-inclusion) among the td-
admissible (resp. ts-admissible, tc-admissible).

The relations between t-preferred extensions and t-stable
extensions is given in the following proposition.

Proposition 1 Let Ω = 〈Arg, Rd, Rs, Av〉 be an T -BAF ,
then:

- A t-stable extension also is a td-preferred (resp.
ts-preferred, tc-preferred) extension.

- A tc-preferred extension is t-included in a ts-preferred
(resp. td-preferred) extension.

- A ts-preferred extension is t-included in a td-preferred
extension.

Given an T -BAF Ω = 〈Arg, Rd, Rs, Av〉, and an argument
A ∈ Arg, we will use t-PRd(A), t-PRs(A), t-PRc(A) and
t-ES(A) to denote the set of intervals on which A is accept-
able in Ω according to td-preferred, ts-preferred, tc-preferred
and t-stable semantics respectively, using again the skeptical
approach where it corresponds. The following property es-
tablishes a connection between acceptability in our extended
temporal framework T-BAF and acceptability in Cayrol and
Lagasquie-Schiex’s frameworks.

Lemma 1 Let Ω = 〈Arg, Rd, Rs, Av〉 be an T -BAF and let α
representing a point in time. Let Θ′α = 〈Arg′α, Rαd , Rαs 〉 be a
bipolar abstract framework obtained from Ω in the following
way: Arg′α = {A ∈ Arg | α ∈ TA}, Rαd = {(A,B) ∈
α ∈ T d

(A,B)} and Rαs = {(A,B) ∈ α ∈ T s
(A,B)}. Let E

a collection of t-profiles in Ω, and E′α = {A | T(A|E) ∈
E and α ∈ T(A|E)}. It holds that, if E is an td-preferred
extension (resp. ts-preferred, tc-preferred, and t-stable) w.r.t.
Ω, then E′α is a d-preferred extension (resp. ts-preferred, tc-
preferred, and t-stable) w.r.t. Θ′α.

Intuitively, the BAF Θ′α represents a snapshot of the T-BAF
framework Ω at the time point α, where the arguments and
attacks in Θ′α are those that are available at the time point α
in Ω. Then, this Lemma states that an td-preferred extension
(resp. ts-preferred, tc-preferred, and t-stable) E for T-BAF at

the time point α coincides with a d-preferred extension E′α
(resp. ts-preferred, tc-preferred, and t-stable) of Θ′α.

In addition, we formally establish that two arguments with
an attack path cannot coincide in time when both belong to
the same extension in a given semantics.

Proposition 2 Let Ω = 〈Arg, Rd, Rs, Av〉 be an T -BAF , and
〈A, TA〉 and 〈B, TB〉 be two t-profiles, where B defeats A
through a support or secondary attacks, then it holds that:

– t-PRd(A) ∩ t-PRd(B) = ∅;
– t-PRs(A) ∩ t-PRs(B) = ∅;
– t-PRc(A) ∩ t-PRc(B) = ∅; and

– t-ES(A) ∩ t-ES(B) = ∅

Example 8 In our example, the set of arguments C4 is the
stable extension, since there exist a defeater for each t-profile
that not belong to C4. In addition, C4 is a td-preferred ex-
tension since it is the maximal td-admissible collection of t-
profiles. On another hand, C5 is a ts-preferred extension be-
cause it is the maximal ts-admissible collection of t-profiles.
Also, C5 is closed by Rs, then it is tc-preferred extension.

We presented a proper adaptation of bipolar argumentation
to consider time. It is worthwhile to notice that when time
becomes irrelevant, i.e.reduced to a particular instant or all
arguments are available in exactly the same periods of time,
the behavior of T -BAF is equivalent to the original BAF.

5 Related Work
As discussed in the introduction, reasoning about time is an
important concern in commonsense reasoning. Thus, its con-
sideration becomes relevant when modeling argumentation
capabilities of intelligent agents [Rahwan and Simari, 2009].

There have been recent advances in modeling time in argu-
mentation frameworks. In [Mann and Hunter, 2008] a calcu-
lus for representing temporal knowledge is proposed, and de-
fined in terms of propositional logic. The use of this calculus
is then considered with respect to argumentation, where an ar-
gument is defined in the standard way: an argument is a pair
constituted by a minimally consistent subset of a database en-
tailing its conclusion; thus, this work is related to [Augusto
and Simari, 2001].

Two important approaches that share elements of our re-
search appear in [Barringer and Gabbay, 2010] and [Bar-
ringer et al., 2012]. In the first one [Barringer and Gab-
bay, 2010], the authors present a temporal argumentation ap-
proach, where they extend the traditional Dungs networks us-
ing temporal and modal language formulas to represent the
structure of arguments. To do that, they use the concept of
usability of arguments defined as a function that determines if
an argument is usable or not in a given context, changing this
status over time based on the change in a dynamics context.
In addition, they improved the representational capability of
the formalism by using the ability of modal logic to repre-
sent accessibility between different argumentative networks;
in this way, the modal operator is treated as a fibring operator
to obtain a result for another argumentation network context,
and then apply it to the local argumentation network context.
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In [Barringer et al., 2012], they study the relationships of sup-
port and attack between arguments through a numerical argu-
mentation network, where both the strength of the arguments
and the strength that carry the attack and support between
them is considered. This work pays close attention to the re-
lations of support and attack between arguments, and to the
treatment of cycles in an argumentative network. Further-
more, they offer different motivations for modeling domains
in which the strengths can be time-dependent, presenting a
brief explanation of how to deal with this issue in a numerical
argumentation network.

Finally, Godo et.al. in [Godo et al., 2012] and Budán et.al.
in [Budán et al., 2012], explored the possibility of express-
ing the uncertainty or reliability of temporal rules and events,
and how this features may change over time. This introduces
the possibility of formalizing arguments and the correspond-
ing defeat relations among them by combining both temporal
criteria and belief strength criteria.

6 Conclusions and Future Work
In this work we expanded temporal argumentation frame-
works (TAF) to include an argument support relation, as in
classical bipolar argumentation frameworks. In this formal-
ization, arguments are only valid for consideration (available
or relevant) in a given period of time, which is defined for ev-
ery individual argument. Hence, support and defeat relation
are sporadic and proper argument semantics are defined. We
bring admissibility-based extensions for bipolar scenarios to
the context of timed argumentation, providing new formaliza-
tions of argument semantics with time involved.

Future work has several directions. We view temporal
information as an additional dimension that can be applied
to several argumentation models. We are interested in the
formalization of other timed argument relations, specially
the ones defined in the backing-undercutting argumentation
framework of [Cohen et al., 2011]. Also, we will investi-
gate how the approach could be developed by considering
a timed version of Caminadas labelling, where an argument
has a particular label for a specified period of time. Besides
interval-based semantics defined in this present work, we are
also interested in new integrations of timed notions in ar-
gumentation, such as temporal modal logic [Gabbay, 2003;
Barringer et al., 2012]. We are developing of a framework
combining the representation capabilities of BAF with an al-
gebra of argumentation labels [Budán et al., 2013] to repre-
sent timed features of arguments in dynamic domains.
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Abstract
Argumentation theory is a powerful paradigm that
formalizes commonsense reasoning with the inten-
tion to simulate the human ability to resolve a spe-
cific problem in an intelligent way. A classical
argumentation process takes into account only the
properties related to the intrinsic logical soundness
of an argument in order to determine its acceptabil-
ity status. However, these properties are not always
the only ones that matter to establish the argument’s
acceptability – there exist other qualities describing
the soundness of an argument affecting the accept-
ability process, such as its weight, social vote, and
trust degree, among others. In this work, we rede-
fine the argumentative process to improve the argu-
mentation analysis considering the special features
associated with the arguments to obtain more re-
fined results. In this way, we propose adding meta-
level information to the arguments in the form of
labels representing quantifiable data ranking over a
fuzzy range of valuations.

1 Introduction
One of the general goals of artificial intelligence is the im-
plementation of systems that display intelligent behavior in
determining the solution to real-world problems – such prob-
lems are usually immersed in contexts in which knowledge
relevant to the domain is incomplete, inconsistent, or both.
Within AI, argumentation has been extensively studied as a
human-like reasoning process that follows a commonsense
strategy to resolve disagreement. In a general sense, argu-
mentation can be defined as the study of the interaction of
arguments for and against conclusions, with the purpose of
determining which conclusions are acceptable; these accept-
able claims are then used to resolve real-world problems.
Argumentation-based formalisms are applied in many areas
such as legal reasoning, intelligent web search, recommender
systems, autonomous agents, and many others.

Traditional argumentation systems do not include the no-
tion of domain dependent features associated with an argu-
ment or attacks. However, in many real-world problems it is
necessary to provide further details regarding argument fea-
tures in order to obtain more refined results, which may be

based on intrinsic logical soundness as well as other quali-
ties that can be weighted to improve the acceptability pro-
cess. For instance, each argument may have associated dif-
ferent features, such as its strength [Bench-Capon, 2002],
weight [Dunne et al., 2011], temporal availability inter-
vals [Mann and Hunter, 2008], reliability varying on time [?],
among others. In the same vein, some proposals have applied
fuzzy theories to enrich the expressive power of the classical
argumentation model in two ways: by representing the rela-
tive strength of the attack and support relationships between
arguments, and by representing the acceptability degree of ar-
guments.

Given these intuitions, the argumentation process based on
argument valuations is defined in three steps: (i) determine
the domain-dependent attributes that will be associated with
arguments, (ii) characterize the arguments, and (iii) determine
their acceptability. In the first step, it is necessary to perform
an analysis of the application domain determining the fea-
tures associated with the knowledge that describes such do-
main, e.g., the reliability of the knowledge sources, the user
references, social votes, among others. In the second step, the
attributes associated with arguments can be determined inde-
pendently of the interactions with other arguments, or those
that are dependent on the relations (support and attack) that
the argument has with other arguments. In the third step, it
is possible to analyze the acceptability of arguments in two
ways: individual acceptability, where the acceptability of an
argument depends on its attributes, and collective acceptabil-
ity, where a set of arguments satisfies certain properties.

In this work we will combine these proposals, generaliz-
ing and providing a flexible structure which allows different
instantiations of its elements to create models for particu-
lar goals. This formalization, called Labeled Argumentation
Framework (LAF), leverages the knowledge representation
capabilities provided by the Argument Interchange Format
(AIF) [Chesñevar et al., 2006]; we will introduce an Alge-
bra of Argumentation Labels that allows to represent argu-
ment features through labels, propagating them in the model
through a series of operations defined for that purpose. These
labels are defined as elements in the interval [0, 1], and de-
scribe the quality of arguments, which can be affected by the
interactions between arguments such as support, conflict, and
aggregation. Once the propagation process is completed, the
final argumentation labels associated with the arguments are
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obtained, and we can then establish the acceptability of argu-
ments using the fuzzy value that each label represents.

We thus increase the representation capability of argumen-
tation systems in order to represent the real world features
of arguments through the use of labels, providing the pos-
sibility of operating over these labels in the argumentation
domain. In this way, we contribute to the successful integra-
tion of argumentation in different artificial intelligence appli-
cations, such as autonomous agents in decision support sys-
tems, knowledge management, recommender systems, intel-
ligent web search, and others of similar importance. For ex-
ample, in an agent decision-making problem the arguments
may have associated features that influence the final deci-
sion. In this way, the agent uses this information to determine
which of these options is the most convenient. In particu-
lar, it would be interesting to assign to the arguments a trust
and preference measurement, representing the trust that the
agent gives to the information source and the preference of
the agent over the characteristics of the possible solutions, re-
spectively. The proposed formalism allows the representation
of argument features, propagating and combining these fea-
tures in the argumentation domain interpreting the support,
aggregation and conflict relation among arguments.

This paper is structured as follows: in Section 2, we in-
troduce an abstract algebra for handling the labels associated
with the arguments; the core contribution of the paper is pre-
sented in Section 3 as the formalism characterizing Labeled
Argumentation Frameworks (LAF); finally, in Section 4 we
discuss related work, and in Section 5 we conclude and pro-
pose future work.

2 Algebra of Argumentation Labels
In this section, we introduce the use of labels as a tool for aid-
ing in the assessment of arguments. To be useful, these labels
must represent information about the arguments and how they
interact. A natural way of representing this information is to
use a scale that measures a particular feature of the argument,
such as associated trust or user preferences. We consider a
fuzzy range between two distinguished elements: ⊥ and >,
where ⊥ represents the least possible degree in which an ar-
gument may possess a certain attribute, and > the maximum.

We define an algebra of argumentation labels as an ab-
stract algebraic structure. This algebra carries the set of the
operations related to argument manipulation in the argumen-
tation domain. The effect of aggregation, support, and con-
flict of arguments will be reflected on their labels inform-
ing how the arguments have been affected. The algebra is
based on an ordered set allowing the comparison of the labels,
where this set is characterized in an abstract way adapting to
the different requirement of a particular application.
Definition 1 (Algebra of Argumentation Labels) An alge-
bra of argumentation labels is a 7-tuple which has the form
A = 〈A,≤,�,⊕,	,>,⊥〉 where:

– A is a set of labels called the domain of labels.

– ≤ is a partial order relation on A. > is the greatest element of
A, while ⊥ is the least one.

– � : A × A → A is called a support operation and satisfies
that:

commutative: for all α, β ∈ A,α � β = β � α.
monotone: for allα, β, γ ∈ A, ifα ≤ β , thenα� γ ≤ β � γ.
associative: for allα, β, γ ∈ A, α� (β � γ) = (α� β)� γ.
> is the neutral element for �: for all α ∈ A, α � > = α.

– ⊕ : A×A→ A is called an aggregation operation and satis-
fies that:
commutative: for all α, β ∈ A,α ⊕ β = β ⊕ α.
monotone: for all α, β, γ ∈ A, if α ≤ β, then α⊕ γ ≤ β ⊕ γ.
associative: for allα, β, γ ∈ A, α⊕ (β ⊕ γ) = (α⊕ β)⊕ γ.
⊥ is the neutral element for ⊕: for all α ∈ A, α ⊕ ⊥ = α.

– 	 : A×A→ A is called a conflict operation and satifies that:
For all α, β ∈ A, α 	 β ≤ α.
For all α ∈ A, α 	 α = ⊥.
Right neutral element: for all α ∈ A,α 	 ⊥ = α.
For all α, β ∈ A, if α = > and β < >, then α 	 β = α.
For all α, β ∈ A, if α 	 β = ⊥ and β 	 α = ⊥, then
α = β.
For all α, β ∈ A, (α ⊕ β) < >, then ((α ⊕ β) 	 β) = α.

Operation � is used to determine the valuation of an argu-
ment based on the valuations of the arguments supporting it.
It is clear that one wants this dependency to be invariant of
the order in which the supporting arguments are considered,
and therefore the operation is both commutative and associa-
tive. Monotonicity is also easy to justify: if an argument is
supported by stronger arguments, its valuation must be higher
than that of one with lesser valuations for its supporters. Fi-
nally, an argument should not have a valuation higher than the
lesser of its supporters.

Operation ⊕ determines the valuation that represents the
collective strengthening of the reasons supporting the same
conclusion, reflecting that a conclusion is more credible if
there are several reasons behind it. Thus, a claim that can be
supported by different arguments can accrue or aggregate the
valuations of those arguments. The most natural way of doing
this would be to directly add the valuations, if that operation
is available; the operation therefore has some of the properties
of addition: it is commutative and associative, with a neutral
element. Arguments with the least possible valuation ⊥ do
not add to the accrual.

The conditions on operation 	 state that the conflict op-
erator acts with respect to the aggregation operation similar
to how subtraction acts with respect to the addition of real
numbers. Note that if an argument has a label with valuation
α ⊕ β because it has accrued the valuations of other argu-
ments, and then it is attacked by an argument with valuation
β, and α⊕β < >, its valuation becomes reduced to α. Thus,
the conflict operation is in some sense an inverse of the ac-
crual operation. When α ⊕ β = >, some information is lost
and for that 	 is not an inverse of the accrual in all cases.

There are many possible examples of algebras of labels,
and it is important to determine the most appropriate one to
use in each case. This is a methodological question involving
the semantics of the domain, which could be tackled by de-
vising experiments using examples where the desired conclu-
sion is well known, or by performing tests using the cognitive
evaluation of human subjects to approximate their assessment
of the valuations obtained after their interactions.
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3 Labeled Argumentation Framework
The main objective of an argumentative framework is to im-
itate the human reasoning mechanism to solve problematic
situations in an intelligent way, taking into account incom-
plete and contradictory information. In this kind of frame-
works it is useful to attach additional information about the
special characteristic of the arguments. For example, argu-
ments could be built from an agent’s knowledge, where each
has attached a measure of the reliability of the information
source. In the end, the agent determines their action based on
the most reliable information available.

In this section we focus on the development of a formalism
called Labeled Argumentation Framework (LAF), combining
the knowledge representation features provided by AIF with
the processing of meta-information using the algebra of ar-
gumentation labels. This framework will allow us to repre-
sent arguments taking into account their internal structure,
the interactions between arguments, and special features of
the arguments through argumentation labels. The effects pro-
duced by the interactions of support, conflict, and aggrega-
tion among arguments are reflected by the operations defined
in the algebra of labels. In this way, the final label attached
to each argument is obtained. Using this information, we can
establish the acceptability status of arguments providing ad-
ditional information, such as degree of justification, restric-
tions on justification, and explanation. In [Budán et al., 2014;
Budán et al., 2015], we present an earlier version of this for-
malism. However, in this work we introduce the treatment of
different kinds of cycles involved in an argumentation graph.
Towards this end, we create a system of equations that repre-
sents the constraints that all the valuations associated with the
knowledge in the argumentation graph must fulfill, providing
an algorithm to obtain such a system independent of the kind
of argumentation graph.

As we have mentioned, it is necessary to use a knowledge
representation framework to enable modeling of the argumen-
tation structures and the relationships that exist among them.
For this purpose, we use the Argument Interchange Format
(AIF), which is composed of a set of argument-related con-
cepts used to unify the representation of different argumenta-
tion formalisms and schemes. In this formalism, arguments
are represented as a set of nodes in a directed graph, called an
argument network (see [Chesñevar et al., 2006] for full de-
tails), where it is possible to visualize the relationships that
exist among argument structures.

Definition 2 (Labeled Argumentation Framework) A La-
beled Argumentation Framework (LAF) is a 5-tuple of the
form Φ = 〈L,R,K,A,F〉 where:
L is a logical language for knowledge representation
(claims) about the domain of discourse. We assume that the
connectives of this language include one distinguished sym-
bol “∼” denoting strong negation.
R is a set of (domain independent) inference rules
R1, R2, . . . , Rn defined in terms of L (i.e., with premises and
conclusion in L).
K is the knowledge base, composed of formulas of L describ-
ing knowledge about the domain of discourse.

A is a set of algebras of argumentation labels
A1,A2, . . . ,An, one for each feature that will be repre-
sented by labels.
F is a function that assigns to each element of K an n-tuple
of elements 1 in the algebras Ai, i = 1, . . . , n. This is, F :
K −→ A1 × A2 × . . .× An.

We use the language L to specify the knowledge base about
a particular domain, and the set of inferences is specified by
inference rules that represent domain-independent patterns of
reasoning such as deductive inference rules (modus ponens,
modus tollens, etc.), defeasible inference rules (defeasible
modus ponens, defeasible modus tollens, etc.), or argumenta-
tion schemes (expert opinion, Position to Know, etc.), among
others. Every formula ∼∼ϕ of L is considered equivalent to
ϕ. Thus, we can assume that no subexpression of the form
“∼∼ϕ” appears in the formulas of the language, yet the set
of formulas in L is closed with respect to “∼”. It is important
to note that the use of two or more consecutive “∼” inL is not
allowed in order to simplify the definition of conflict between
claims – this does not limit its expressive power or general-
ity of the representation. We denote with ϕ the negation of a
formula in L, so ϕ is ∼ϕ and ∼ϕ is simply ϕ.

Example 1 Consider a Labeled Argumentation Framework
Φ = 〈L,R,K,A,F〉 where:
– L is a language defined in terms of two disjoint sets: a set
of presumptions and a set of defeasible rules, where a pre-
sumption is a ground atom X or a negated ground atom∼X ,
where ∼ represents strong negation; a defeasible rule is an
order pair, denoted C−≺ P1, . . . , Pn, whose first component
C is a ground atom, called conclusion and the second com-
ponent P1, . . . , Pn is a finite non-empty set of ground atom,
called premises.
–R = { dMP}, where dMP is defined as follows:

dMP: P1,...,Pn C−≺ P1,...,Pn
C

(Defeasible Modus Ponens)

– A = {A,B} is the set of algebras of labels where:
A represents the trust degree attached to arguments. The do-
main of labels A is the real interval [0, 1] and represents a
normalized trust valuation, where > = 1 is the maximum
valuation and neutral element for �, while ⊥ = 0 is the min-
imum and neutral element for ⊕ and 	. Let α, β ∈ A be
two labels, the operators of support, conflict and aggregation
over labels representing the trust valuations associated with
arguments, are specified as follows:

α � β = αβ

The support operator models the trust of a conclusion based
on the conjunction of the trust valuation corresponding to the
premises that support it.

α ⊕ β = α+ β − αβ

The aggregation operator states that if there are more than
an argument for a conclusion, its trust valuation is the sum of

1When no confusion can occur we will follow the usual con-
vention of mentioning elements in an algebra instead of referring to
elements in the corresponding carrier set of that algebra.
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the trust of the arguments supporting it with a penalty term
on this aggregation.

α 	 β =

{
α− β
1− β if α ≥ β, β 6= 1

0 otherwise.

This conflict operator reflects that the trust valuation of a
conclusion is weakened by the trust of its contrary.

B is an algebra of argumentation labels representing a pref-
erence level attached to arguments. The domain of labels B
is again the real interval [0, 1] and represents a normalized
preference valuation. The operations of the algebra B are
specified as follows:

α � β = min(α, β)

The support operator reflects that an argument is as preferred
as its weakest support, based on the weakest link rule.

α ⊕ β = min(α+ β, 1)

The aggregation operation reflects the idea that if we have
more than one argument for a conclusion, its preference valu-
ation is the sum of the preference valuations of the arguments
that support it.

α 	 β =

{
1 if β < α = 1
max(α− β, 0) otherwise.

This conflict operation reflects that valuation of a conclusion
is weakened by the preference valuation of its contrary.
– K is the following knowledge base; next to each presump-
tion we show the trust and preference valuation associated
by F . These valuations are indicated between brackets,
where the first element represents the trust valuation and the
second the preference valuation, using a colon to separate it
from a presumption. In particular, the valuations attached to
the rules represent the trust and preference of the connection
between the antecedent and consequent of the rule. Rules are
ground. However, following the usual convention [Lifschitz,
1996], some examples will use “schematic rules” with
variables; to distinguish variables from other elements of a
schematic rule, we denote variables with an initial uppercase
letter. We display below the set of formulas of L forming K:

r1 : P(X)−≺ Q(X) : [0.75, 1] N(a) : [0.75, 1]

r2 : Q(X)−≺ R(X), S(X) : [0.75, 1] ∼M(a) : [0.75, 0.9]
r3 : P(X)−≺ U(X) : [0.75, 0.9] S(a) : [0.5, 0.9]

r4 : ∼Q(X)−≺ M(X) : [0.25, 1] U(a) : [1, 0.5]

r5 : M(X)−≺ N(X) : [0.25, 1] R(a) : [0.5, 0.6]

r6 : ∼M(X)−≺ K(X) : [1, 1] K(a) : [1, 1]

r7 : ∼N(X)−≺ ∼M(X) : [1, 1] E(a) : [1, 0.8]

r8 : ∼P(X)−≺ L(X) : [1, 0.8]

r9 : L(X)−≺ E(X) : [1, 1]

r10 : O(X)−≺ L(X) : [1, 1]

r11 : L(X)−≺ O(X) : [1, 0.8]


Next, we present the notion of argumentation graph, which

is used to represent the argumentative analysis derived from
a LAF. We assume that there are no two nodes in a graph that
are named with the same sentence of L, so we will use the
naming sentence to refer to I-nodes in the graph.

Definition 3 (Argumentation Graph) Let Φ =
〈L,R,K,A,F〉 be a LAF. Its associated argumentation
graph is the digraph G = (N,E), where N 6= ∅ is the set of
nodes and E is the set of the edges where:

i) each element X ∈ K or derived from K through R is
represented by an I-node X ∈ N .

ii) for each application of an inference rule defined in Φ,
there exists an RA-nodeR ∈ N such that: the inputs are
all I-nodes: P1, . . . , Pm ∈ N representing the premises,
and the output is an I-node Q ∈ N representing the
conclusion.

iii) if X and X are in N , then there exists a CA-node with
edges to and from both I-nodes X and X .

Example 2 Applying the inference rules defined in R over
the knowledge base K presented in Example 1, we get the
argumentation graph as shown in Figure 1.

Once the argumentation graphG is obtained, we proceed to
attach a label to each I-node in G representing the valuations
with the extra information that we want to represent. Each
feature of an I-node is represented through an algebra Ai of
A, assigning two valuations µX

i and δXi , where µX
i represents

the aggregated valuation, obtained through the accrual and
support operations defined in the algebra Ai, while δXi is the
weakened valuation, obtained through the conflict operation.
Next, we present the labeling procedure for an argumentation
graph. Through this process we obtain a system of equations
that characterizes the knowledge contained in the formalism.

Definition 4 (Labeling Procedure for a Graph) Let Φ =
〈L,R,K,A,F〉 be a LAF, and G be the corresponding ar-
gumentation graph. Let Ai be one of the algebras in A, rep-
resenting a feature to be associated with each I-node X . A
labeled argumentation graph is an assignment of two valua-
tions in each of the algebras to all I-nodes of the graph, de-
noted with µX

i and δXi , where µX
i , δXi ∈ Ai ∪ {?}, are such

that µX
i accounts for the aggregation of the reasons support-

ing the claim X , δXi displays the state of the claim after tak-
ing conflict into account, and µX

i =? or δXi =? represent the
cases where the valuations of a claim X will remain undeter-
mined. Thus, if X is an I-node, the valuation associated with
X is determined by the followings equations:

i) If X has no inputs, then X has a label that corresponds
to it as an element of K; thus, we define µX

i = F(X).

ii) IfX has input from a CA-node representing conflict with
an I-node X , then: δXi = µX

i 	 µX
i .

If there doesn’t exist an I-node X , then: δXi = µX
i .

iii) If X is an element of K with inputs from RA-
nodes R1, . . . , Rk, where each Rs has premises
XRs

1 , . . . , XRs
ns

, then:

µX
i = F(X)⊕

[
⊕k

s=1

(
�ns

t=1δ
XRs

t
i

)]
If X is not an element of K and has inputs from
RA-nodes R1, . . . , Rk, where each Rs has premises
XRs

1 , . . . , XRs
ns

, then:
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Figure 1: Representation of an argumentation graph

µX
i = ⊕k

s=1

(
�ns

t=1δ
XRs

t
i

)
To get this equation, we first use the support opera-
tion applied to the weakened valuations assigned to the
premises of each of the rules Rs that form the body of
an argument supporting X , and then we calculate the
accrual of all these arguments.

The label of an I-node X is an n-tuple of pairs of valuations:(
(µX

1 , δ
X
1 ), (µX

2 , δ
X
2 ), . . . , (µX

n , δ
X
n )
)
.

In LAF, there are two kinds of cycles possibly involved in
an argumentation graph: cycles produced by the application
of inference rules or cycles produced by multiple conflicts.
On the one hand, the cycles of applications of inference are
produced by fallacious specification, modeling ill-founded
reasons for a specific claim. For that, the I-nodes involved
in this kind of cycles do not provide a valid information for
the reasoning process. Therefore, these reasoning chains are
not taken into account, giving place to undetermined value or
reducing the aggregation value for some I-nodes of the graph.

On the other hand, when in the graph there are cycles pro-
duced by multiple conflicts between two or more lines of ar-
gumentation, our procedure is able to determine the system of
equations representing the constraints that all the valuations
associated with the knowledge of the argumentation graph
must fulfil, i.e., we establish a system of equations where each
set of values satisfying such system is a possible configura-
tion of values that stabilizes the propagation of the attributes
of the knowledge in the graph. This problem is akin to a
problem in linear or non linear programming, depending on
the operations chosen and the number of variables determined
by the number of conflict cycles involved. Note that the sys-
tem of equations is compatible determinate for acyclic argu-
mentation graphs, while for cyclic argumentation graphs the
associated system of equations is compatible indeterminate.

Next, we present the algorithms that are necessary for ob-
taining the valuations associated with each I-node of an argu-
mentation graph. In Algorithm 1, we produce a solution for a

Algorithm 1: Labeling procedure for a graph G
Input: Argumentation graph G, and the knowledge base K.
Output: System of equations EQS for valuations µX

i and δXi
associated with some (possibly all) I-node Xi of G.

Initialize EQS as an empty system of equations;
for each I-node X in G not visited do

EQS := EQS ∪ GetEquations(X,G,K,EQS);
return Solve(EQS).

system of equations that describes the behavior of the knowl-
edge contained in the argumentation graph using a solver –
the specific solver used will depend on the operators defined
in the algebra and the user’s preferences. Then, in Algo-
rithm 2, we analyze each node of the graph with the purpose
of specifying the equations that determine the valuations of
the I-nodes of the graph, detecting RA-node cycles and I-
nodes with undetermined valuations, i.e., the I-nodes only in-
volved with invalid RA-nodes. To do that, we analyze the
chains of inference rules that support an I-node to determine
the support valuation associated with it. In this process, it is
possible to detect inferences cycle chains for the support of
an I-node, producing I-nodes with undetermined valuations.
Note that the propagation of the characteristics through a rea-
soning chain is based on the weakening of valuations associ-
ated with each I-node that integrate such chain, giving rise to
a dependence or condition in the argumentation graph propa-
gation.

The following result states the computational cost of this
procedure.
Proposition 1 The worst-case running time of Algorithm 1
is O(m × t), where m is the number of I-nodes and t is the
number of RA-nodes in the graph.

Intuitively, as a loose upper bound, we can say that the la-
beling process for an argumentation graphG has a worst-case
running time inO(n3). This intuition comes from the follow-
ing analysis: first, we need to label each I-node of the graph
(O(n)); second, for each I-node it is necessary to analyze all
the RA-nodes that it has (O(n)); third, for each RA-node it
is necessary to analyze all the premises that it has (O(n));
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Algorithm 2: Procedure that derives equations for the
valuations associated with the I-nodes in the graph

Input: An I-node X , the argumentation graph G and the
knowledge base K.

Input/Out: System of equations EQS for valuations µX
i and

δXi associated with some (possibly all) I-nodes Xi of G.

Mark the I-node X as visited;
if X has Input from RA-nodes then

if X is an element of K then
Aggregation := F(X);

else
Aggregation := ⊥i;

QuantInvalid := 0;
for each RA-node R input of X do

CycleRA := 0; Support := >i;
for each premise P input of the RA-node R do

if P is no visited then
LabelingFunction(P,G,K,EQS);

if δPi 6= ? then
Support := Support� δPi ;

else
// P is involved in an RA-Cycle

CycleRA := 1; ;

if CycleRA = 0 then
// The RA-node is correct

Aggregation := Aggregation⊕ Support; ;
else

// The RA-node is invalid

QuantInvalid := QuantInvalid + 1; ;

if QuantInvalid = number of RA-nodes for X then
µX
i := ?;

else
Add µX

i = Aggregation to EQS;

else
Add µX

i = F(X) to EQS;

if X has input from CA-nodes then
if X is not visited then

LabelingFunction(X,G,K);

if µX
i 6= ? and µX

i 6= ? then
Add δXi = µX

i 	 µX
i and δXi = µX

i 	 µX
i to EQS;

else
if µX

i 6= ? and µX
i = ? then

Add δXi = δXi = µX
i to EQS;

δXi = µX
i ;

else
δXi = µX

i ;
Add δXi = µX

i to EQS;

else
Add δXi = µX

i to EQS;
return EQS

and fourth, for contradictory literals we analyze and obtain
the corresponding weakness value (O(1)). However, an argu-
mentation graph is defined with three kinds of nodes: I-nodes,
RA-nodes and CA-nodes, being n the cardinality of the entire

set of nodes. Thus, considering a cardinality m of I-nodes, t
of RA-nodes, and k of CA-nodes, we can refine the above
O(n) terms to O(m), O(t), and O(m), respectively. Then,
the computational complexity of the labeling process is more
accurately described as O(m2 × t). Note that when model-
ing real-world examples there is usually an upper bound on
the number of premises that support an I-node through the
application of an inference rule represented by an RA-node.
This upper bound can be defined as p = 5 in the worst-case,
so we clearly have p ∈ O(1). Therefore, we can conclude
that the computational complexity of the labeling process is
O(m× t).

The semantics of an argumentation graph is determined by
the possible solutions to the system of equations EQS gen-
erated by the labeling process for such graph. In this sense,
each set of values satisfying the system of equations is a valid
labeling for the argumentation graph representing a possible
solution or model of EQS. Formally, we have:

Definition 5 (Model of a LAF) Let Φ = 〈L,R, K,A,F〉
be a LAF, G be the corresponding argumentation graph, and
EQS be the system of equations output by Algorithm 2. A
valid labeling for G, denotedM(Φ), is any set of values µXi

i

and δXi
i that constitute a solution to EQS.

We now illustrate the concept of model of a LAF over the
running example.

Example 3 Consider again the setup from Example 1. The
following system of equations EQS represents the constraints
that all the valuations associated with the knowledge of the
argumentation graph G associated with this instance of LAF
must fulfill. Note that, for reasons of readability, we do not
include the equations that determine the valuations of the leaf
nodes of the graph G, which are trivial.

e1 : µ
P(a)
1 = (δ

Q(a)
1 � δr11 ) ⊕ (δ

U(a)
1 � δr31 )

e2 : µ
Q(a)
1 = δ

R(a)
1 � δ

S(a)
1 � δr21

e3 : δ
Q(a)
1 = µ

Q(a)
1 	 µ

∼Q(a)
1

e4 : µ
∼Q(a)
1 = δ

M(a)
1 � δr41

e5 : δ
∼Q(a)
1 = µ

∼Q(a)
1 	 µ

Q(a)
1

e6 : µ
M(a)
1 = δ

N(a)
1 � δr51

e7 : δ
M(a)
1 = µ

M(a)
1 	 µ

∼M(a)
1

e8 : δ
∼M(a)
1 = µ

∼M(a)
1 	 µ

M(a)
1

e9 : δ
N(a)
1 = µ

N(a)
1 	 µ

∼N(a)
1

e10 : δ
∼N(a)
1 = µ

∼N(a)
1 	 µ

N(a)
1

e11 : µ
∼M(a)
1 = (δ

K(a)
1 � δr61 ) ⊕ F(∼M(a))

e12 : µ
∼N(a)
1 = δ

∼M(a)
1 � δr71

e13 : δ
P(a)
1 = µ

P(a)
1 	 µ

∼P(a)
1

e14 : δ
∼P(a)
1 = µ

∼P(a)
1 	 µ

P(a)
1

e15 : µ
∼P(a)
1 = δ

L(a)
1 � δr81

e16 : µ
L(a)
1 = δ

E(a)
1 � δr91


Figure 2 depicts one possible solution to EQS, which repre-

sents one possible model of the LAF. Note that the graph con-
tains a cycle produced by fallacious specification (drawn with
gray nodes and arrows), modeling ill-founded reasons for the
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Figure 2: Model for LAF represented through an argumentation graph G

involved claims. For this reason, these reasoning chains are
not taken into account.

Once the I-nodes are labeled, we can consider their ac-
ceptability status. In this sense, the acceptability status as-
sociated with an I-node depends on their features, defining
different degrees of acceptability. Such statuses associated
with each I-node are useful in the decision support process,
since they specify a stance (for example, ensured, unchal-
lenged, weakened, or rejected) over the information that the
node contains. For example, all I-nodes with attributes equal
to > are ensured, providing information of high quality.

4 Discussion and Related Work
The work of [Elvang-Gøransson et al., 1993] analyzes the
fact that non-trivial arguments may be constructed for and
against a specific proposition in the presence of an inconsis-
tent database; the problem arises when determining which
conclusion must be accepted. The authors define a particu-
lar concept of acceptability, which is used to reflect the dif-
ferent acceptability levels associated with an argument; then,
they argue that “the more acceptable an argument, the more
confident we are in it”. Additionally, they define acceptabil-
ity classes to assign linguistic qualifiers to the arguments.
There are some similarities between this proposal and our
own; starting from the consideration of a knowledge base
from which it is possible to find the parts that compose an
argument, the relationships that exist among the arguments
are then analyzed, and the acceptability class that they be-
long to is determined. However, they do not take into account
the domain-dependent characteristics associated with the ar-
guments. In another related work [Krause et al., 1995] the
authors propose a formalism in which “arguments have the
form of logical proof, but they do not have the force of log-
ical proof ”; thus, they present a concrete formal model for
practical reasoning in which a structured argument – rather
than some measure – is used for describing uncertainty, i.e.,
the degree of confidence in a proposition is obtained by an-
alyzing the structure of the arguments relevant to it. In this

way, their formalism is focused on the representation of un-
certainty, and proposes a way to calculate the aggregation of
reasons for a certain proposition.

In [Cayrol and Lagasquie-Schiex, 2005], a two-step argu-
mentation process is described: (i) the calculation of a val-
uation of the relative strength of the arguments, and (ii) the
selection of the most acceptable among them. The focus is
on defining a gradual valuation of arguments based on their
interactions, and then establishing a graded concept of ac-
ceptability of arguments. The authors assert that an argument
is all the more acceptable if it can be preferred to its attack-
ers, and propose a domain of argument valuations where ag-
gregation and reduction operators are defined; however, they
do not consider the argument structure, and the evaluation
of the arguments are solely based on their interaction. In
our work, we determine the valuation of arguments through
their internal structure, considering the different interactions
among them, propagating the valuations associated with the
arguments using the operations defined in the algebra of ar-
gumentation labels. It is important to note that, unlike the
proposal of Cayrol and Lagasquie-Schiex, the operations as-
signed to each relation among arguments are defined by the
user – this provides the possibility of explicitly considering
the domain of the problem. Moreover, we provide the ability
of assigning more than one valuation to the arguments de-
pending on the features we wish to model.

Further works that discuss the use of fuzzy logic can be
seen in two groups: those that use fuzzy sets and relations
to refine Dung’s semantics ([Janssen et al., 2008],[Tamani
and Croitoru, 2014]), and those that use fuzzy logic to assign
weights to different parts of the reasoning mechanism behind
the construction of arguments ([Schroeder and Schweimeier,
2001; Schweimeier and Schroeder, 2004], [Chesñevar et al.,
2004; Alsinet et al., 2008]), as we do here. The main innova-
tions with respect to the latter are that we allow for a flexible
use of different operations and introduce the conflict opera-
tion to weaken claims in the knowledge base.

Considering the intuitions of these research lines, we for-
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malized the foundations for an argumentative framework that
integrates AIF into the system. Labels provide a way of rep-
resenting salient characteristics of the arguments, generaliz-
ing the notion of value. Using this framework, we will be
able to establish argument acceptability, where the final la-
bels propagated to the accepted arguments provide additional
acceptability information, such as degree of justification, re-
strictions on justification, and others.

5 Conclusions
In this paper, we proposed that giving an argumentation for-
malism more representational capabilities can enhance its use
in different applications that require different elements to sup-
port conclusions.

Our work has focused on the development of a Labeled
Argumentation Framework, (LAF) combining the KR capa-
bilities provided by the Argument Interchange Format (AIF)
together with the management of labels by an algebra devel-
oped to that end. We have associated operations in an alge-
bra of argumentation labels to three different types of argu-
ment interactions, allowing to propagate information in the
argumentation graph. From the algorithm used to label an
argumentation graph, it is possible to determine the accept-
ability of arguments and the resulting extra data associated
with them. A peculiarity of the conflict operation defined
in the algebra is that it allows the weakening of arguments,
which contributes to a better representation of application do-
mains. In the examples presented, we used the reliability of
the source and a measure of the accuracy associated with the
arguments in order to support decision making. Finally, we
are currently developing an implementation of LAF that ex-
tends the existing DeLP system2 [Garcı́a and Simari, 2014].
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J. Gómez Lucero, and Guillermo R. Simari. An AIF-
based labeled argumentation framework. In Foundations
of Information and Knowledge Systems, pages 117–135.
Springer, 2014.

[Budán et al., 2015] Maximiliano C. D. Budán,
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Abstract
In the last decade, several works have emerged try-
ing to reflect and model the way human beings rea-
son and make decisions. Walton proposes a set
of argumentation schemes based on a set of ques-
tions that determine patterns of reasoning. In this
work, we will consider a particular scheme from the
literature, called Argumentation Scheme by Anal-
ogy. We formalize the concept on analogy be-
tween arguments based on a model of the similar-
ities between the objects/situations the arguments
describe; by means of this model we are able to ex-
press the critical questions proposed by Walton in
a more formal way. Furthermore, we show how to
instantiate the attack relation in Dung’s Argument
Frameworks in order to capture, analyzing the argu-
ments acceptability in a collective way, the notion
of an analogy relation, partitioning in this way a set
of arguments into sets of analogous arguments.

1 Introduction
Whenever intelligent agents need to solve a certain problem,
it is common for them to seek into their knowledge base for
solutions from previous similar problems, where the context
information fits both the new and the known problem. The
agent will provide epistemically justified reasons for deci-
sions that are taken in the process of finding a solution to
the new problem. This reasoning process, based on similar
past experiences, is guided by thought patterns and involves
an argumentation process, i.e., a process by which reasons are
given in favour of a particular conclusion.

Consider the following situation where a person needs a
recommendation about edible seeds intake being beneficial
to improve its health. The recommendation system compare
the common properties of the edible seeds, their benefits, and
contraindications. To accomplish this, the system’s reasoning
process must find items to compare alternatives, i.e., some
common descriptors to the options under consideration.

The above example describes a particular pattern of reason-
ing that is used in order to reach a goal or a conclusion. Sev-
eral patterns of reasoning have been expressed in a semifor-

mal way by Walton [Walton, 2005; 2006; Walton et al., 2008;
Walton, 2010] using a set of critical questions that shape the
argumentation schemes. Meanwhile, as the field of Artificial
Intelligence carries out research in computational argumen-
tation to achieve useful systems based on common sense, it
seems desirable and reasonable to try to formalize argumen-
tation schemes within such a theory.

A particular type of argumentation scheme corresponds to
Argument from Analogy [Walton, 2010; Macagno and Wal-
ton, 2009; Walton, 2012], which represents a very common
form of everyday human reasoning. In these schemes, two
cases are analyzed for similarities and differences between
them, using a form of inductive inference where the similari-
ties between the cases lead to postulate a further not yet con-
firmed similarity. The argumentation from analogy allows to
solve a new case based on already solved cases, or in other
words, to use previous experiences to consider a new case.

In a general sense, argumentation can be associated with
an interactive process where arguments for and against con-
clusions are offered with the purpose of determining which
conclusions are acceptable [Simari and Loui, 1992; Besnard
and Hunter, 2008; Rahwan and Simari, 2009]. Several
argument-based formalisms have considered an argument like
as abstract entity without internal structure [Dung, 1995;
Cayrol and Lagasquie-Schiex, 2005b], while other works that
specify concrete forms of building arguments [Besnard and
Hunter, 2001; Prakken, 2010a; Garcı́a and Simari, 2014]. In
addition, there exist some argumentative formalisms that rep-
resent the attributes associated to arguments providing more
information to determine arguments acceptability [Bench-
Capon, 2002; Cayrol and Lagasquie-Schiex, 2005a]. How-
ever, these formalisms do not deal with the problem of clas-
sifying similar arguments considering the natural descriptors
inherent to each argument.

In this work, we will propose an extension of Dung’s ab-
stract argumentation framework that allows to determine the
degree of similarity or difference between arguments, based
on a set of descriptors that are common to the arguments that
are being analyzed. In this way, we will determine and rep-
resent analogies between arguments. This extension, that we
will call Analogy Argumentation Framework (AnAF), is mo-
tivated by the use of inferential mechanisms of argumenta-
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tion based on the idea of argumentation from analogy that,
aforesaid, is used in everyday situations in which a conclu-
sion is obtained based on previous similar observations. The
formalization of an AnAF requires to be able to compare two
arguments taking into account a set of descriptors.

This paper is structured as follows: A brief introduction
to argumentation schemes is presented in Section 2. In Sec-
tion 3 we recall the basic elements of abstract argumentation
and, in Section 4 we present the concept of analogy. Section 5
contains the core contribution of the paper, there the Analogy
Argumentation Framework is formally developed and stud-
ied. Finally, in Section 6 and Section 7 we present the rele-
vant related work and conclusions and proposed future work,
respectively.

2 Argumentation Schemes
Argumentation schemes consist of a set of questions,
premises and conclusions that describe a pattern of human
thought [Walton, 2006]. These patters are used daily, for in-
stance in conversations and, for that reason, some research
areas, such as the legal area, learning environments, and
AI, have found that these schemes are useful tools to model
agents’ reasoning or to train people to acquire specific skills.
Several argumentation schemes have been proposed by Wal-
ton [Walton, 2006; Walton et al., 2008], such as arguments
coming from experts, popular opinion, or signs, among oth-
ers. These schemes are gaining importance in the field of AI,
particularly because they allow the representation of defeasi-
ble arguments or reasoning patterns. These patterns can be
refuted by those who thinks critically in relation to a given
position. In this paper, we focus on the Argumentation from
Analogy Scheme.

Argumentation from Analogy Scheme
This argumentation scheme compares two situations C1 and
C2 (or cases, as Walton refers to them in the setting of law) to
find similarities and differences between them. In this pattern
of thought, C1 is the source case or known case and C2 is
the target case or new case [Walton et al., 2008]. Two cases
may be similar in a given context, but they may be different
in another. The defeasible character is introduced by the spe-
cific differences between C1 and C2. Walton defined three
critical questions that are appropriate for using the scheme of
argument from analogy:

1. Are there differences between C1 and C2 that would
tend to undermine the force of the similarity cited?

2. Is the feature A true (false) in C1?
3. Is there some other case C3 also similar to C1, but in

which the feature A is false (true)?

In Walton’s words [Walton, 2006]: “In general, the first crit-
ical question for the argument from analogy tends to be the
most important one to focus on when evaluating arguments
from analogy. If one case is similar to another in a certain
respect, then that similarity gives a certain weight of plausi-
bility to the argument from analogy. But if the two cases are

dissimilar in some other respect, citing this difference tends
to undermine the plausibility of the argument.”.

From these critical questions, Walton[Walton et al., 2008]
proposed a scheme of argument by analogy governed by the
following premises and conclusions:

1. Major Premise: Generally, is C1 similar to C2?

2. Relevant Similarity Premise: The similarity between C1

and C2 observed so far is relevant to the further similar-
ity that is in question.

3. Minor Premise: Is proposition A true (false) in C1?

4. Conclusion: Is proposition A true (false) in C2.

Both the Major Premise as the Relevant Similarity Premise
are used to determine the analogy between two cases. While
the Minor Premise and the Conclusion aspire to find the so-
lution to a new case on the basis of a past case. In this paper,
we propose to translate the two first ones at a level nearer to
the implementation.

In a recent work [Walton, 2010], Walton analyzed differ-
ent possibilities for this type of schema and offered his un-
derstanding of how the schema integrates with the usage of
argument from classification and the argument from prece-
dent when applied in case-based reasoning by the use of a
dialogue structure.

3 Abstract Argumentation
Dung introduced in [Dung, 1995] the Abstract Argumenta-
tion Frameworks (AFs) as an abstraction of a defeasible ar-
gumentation system. These AFs consider abstract entities
with no internal structure, called arguments, which are related
among each other via an attack relation. This abstraction al-
lows the definition of a number of general argumentation se-
mantics based on acceptability, which then can be applied to
different concrete argumentation system instantiating the AF.

Definition 1 (Argumentation Framework [Dung, 1995])
An argumentation framework (AF) is a pair described as
〈AR,Atts〉, where AR is a set of arguments and Atts is a
binary relation Atts ⊆ AR×AR.

If it is the case that (A,B) ∈ Atts, we say that A attacks
B, or that B is attacked by A; in general, we do not assume
that Atts is symmetric, unless stated explicitly. we say that S
attacks an argument C when there exists at least an argument
A ∈ S, such that (A,C) ∈ Atts.

Given an AF, intuitively an argument A ∈ AR is consid-
ered acceptable if A can be defended from all its attackers
(arguments) with other arguments in AR; this is formalized
in the following definitions that we recall from [Dung, 1995].

Definition 2 (Acceptability) Let AF = 〈AR,Atts〉 be an
argumentation framework.

– A set S ⊆ AR is said conflict-free if there are no argu-
ments A, B ∈ S such that (A,B) ∈ Atts.

– A ∈ AR is acceptable with respect to S ⊆ AR iff for
each B ∈ AR, if B attacks A then there exists C ∈ S
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such that (C,B) ∈ Atts; in such case it is said that A is
defended of B by S.

– A conflict-free set S is admissible iff each argument in S
is acceptable with respect to S.

– An admissible set S ⊆ AR is a complete extension of
AF iff S contains every argument acceptable with re-
spect to S.

From the above definitions, different semantics refining
admissibility have been introduced by Dung [Dung, 1995].
Given AF = 〈AR,Atts〉 the following semantics were de-
fined:

– Grounded semantics: A set S ⊆ AR is a grounded ex-
tension of AF iff S is a complete extension that is min-
imal with respect to set inclusion.

– Preferred semantics: A set S ⊆ AR is a preferred exten-
sion of AF iff S is a ⊆ − maximal admissible set.

– Stable semantics: A set S ⊆ AR is a stable extension
of AF iff S is conflict-free and attacks every argument
which is not in S.

Example 1 Consider the following set of arguments with no
internal structure: AR = {A,B,C,D,E,F} where:
A To incorporate chia seeds to your diet is a healthy choice

since they are rich in vegetal fats, proteins, antioxidants,
and minerals. This seeds helps to reduce conditions such
as oxidative stress.

B Amaranth seeds provide vitamin A, E, from the B group,
calcium, iron, and phosphorus. So this seeds help us in
preventing deficiency anemia.

C Sesame seeds provide high quantity of calcium, antiox-
idants, fatty acids, and proteins. Therefore, to ingest
sesame seeds is important in preventing osteoporosis.

D Chia seeds are harmful to hypotensive individuals be-
cause it lowers blood pressure. Therefore, it is not al-
ways healthy to incorporate them into the daily diet.

E The consumption of sesame seeds increases blood
cholesterol levels. So, the incorporation of sesame seeds
in excess is harmful to your health.

F The consumption of sesame seeds increases blood
cholesterol levels only when these are consumed in ex-
cess. Therefore, if ingested in moderation the benefits
from sesame seeds are plentiful.

We can see that Atts = {(D,A), (E,C), (F,E)}. Examples
for conflict-free are the sets: S1 ={A, B, C, F}; S2 ={D,
E}; S3 ={B, C, F}; S4={D}; and S5={B, C, F, D}.

The argument C is acceptable because there exists F that
defends C from the attack from E. The argument A is not
acceptable, since there does not exist another argument that
defends it from the attack of D. For this reason, the set S3 and
S5 are admissible, and the set S1 is not. The set S5 is a com-
plete extension of AF, is a grounded and preferred extension,
but is not a stable extension of AF.

While Dung’s framework considers that the arguments
have no internal structure, in this paper we need to consider
arguments decomposed into a set of premises and a claim or
conclusion. Furthermore, for the purpose of contributing to
the formalization of the reasoning by analogies, we will also
consider that there exists a set of descriptors inherent to the
arguments in the framework; the details of this extension will
be discussed in the next section.

4 The Concept of Analogy
The term analogy has been widely studied as to their mean-
ing and usage [Gentner et al., 2001; Gentner and Colhoun,
2010; Prade and Richard, 2014; Douglas and Sander, 2013].
Hesse [Hesse, 1966] argues that the word is self-explanatory
and that two objects or situations are similar if they share
some properties and differ in others. Walton [Walton, 2010]
agrees with this perspective adding that two things are simi-
lar when they are visibly similar or they look similar. Gen-
tner [Gentner et al., 2001] linked the concept of analogies
with the representation of the agent’s knowledge through the
pattern’s repetition. First, these patterns should be identified
to find relations of correspondence with new situations. Then,
it is important to perform a mapping of domains so that these
relations of correspondence do not produce a fallacious rea-
soning. As to how to determine when two arguments are sim-
ilar, Hesse in [Hesse, 1966] uses a comparison between ar-
guments based on the use of mathematical proportions. On
the other hand, in a refinement of Hesse’s idea, Walton points
out that it is not easy to clearly define the comparison be-
tween arguments as this requires interpreting the similarities
and differences between them at various levels.

Offering another view, Carbonell [Carbonell, 1983] pro-
poses a technique based on how we solve problems. This
technique takes into account previous experience information
useful for solving a new problem, as long as both occur in
similar contexts; that is, the context of the problem deter-
mines a set of constraints under which the proposed solution
is feasible. In [Sowa and Majumdar, 2003], Sowa argues that
it is possible to make a comparison between arguments es-
tablishing a function of similarity or correspondence between
them. By using another function, referred to as the estima-
tion function, it is possible to find the differences between
the arguments. In a parallel effort, Cecchi et al. in [Cecchi
and Simari, 2002] characterized and formalized relationships
that capture the behavior of a preference criterion among ar-
guments; while this does not refer specifically to arguments
from analogy, it shows the usefulness in approaching the anal-
ogy between two arguments as a binary relation.

Clearly, these questions have received different answers
and remain the focus of different research lines. Briefly, we
can say that two objects or situations are analogous when
they have some similar properties, maintaining other prop-
erties different. The similarity is then related to the proper-
ties shared between two objects or situations being compared.
However, the comparison of two arguments depends on the
agent’s perception, which can be influenced by the agent’s
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beliefs, goals, or external environment. All these factors are
considered as a constraint set that governs the mapping of two
arguments in order to establish similarities and differences
between them.

Following previous work, our proposal is to formalize the
concept of analogy between two arguments A and B. In this
work we consider arguments as abstract entities but disaggre-
gated in premises and a claim. Furthermore, we extend the
representation of arguments with a set of descriptors that rep-
resent a word or a label describing an aspect of the object (or
objects) that the argument is referring to. In this sense, we as-
sume the existence of a universe of descriptors denoted with
D, where the set of descriptors associated with an argument A
is denote with desc(A) such that desc(A) ⊆ D. We exemplify
this proposal as follows:

Example 2 We now present the arguments given in Exam-
ple 1 considering them in a disaggregated form:

Argument A:

– Premise 1: To incorporate chia seeds to your diet is
a healthy choice since they are rich in vegetal fats,
proteins, antioxidants, and minerals.

– Premise 2: A food that provides antioxidants helps
to reduce conditions such as oxidative stress.

– Claim: The incorporation of chia seeds in your diet
helps to reduce conditions such as oxidative stress.

Argument B:

– Premise 1: Amaranth seeds provide vitamin A, E,
from the B group, calcium, iron, and phosphorus.

– Premise 2: Foods that provide vitamin from the B
group help in preventing deficiency anemias.

– Claim: The incorporation of amaranth seed to your
diet helps in preventing deficiency anemias.

An example of a universe of descriptors for a nu-
tritional/health related knowledge base that con-
tains these two arguments could be the set D =

{type of food, health benefits, dietary contribution, health risks}.
Given these two arguments we could specify the follow-
ing descriptors: desc(A) = {type of food, health benefits,
dietary contribution} = desc(B), stating that the arguments
refer to a particular type of food (that are seeds in this
case), specific contributions to a diet, and the benefits of its
consumption to ones’ health.

Based on these considerations, we formulate the following
definition:

Definition 3 (Context Constraint) Let D a set of descrip-
tors. A context constraint, denoted as ∆, is a subset of D
that represent the relevant aspect to perform the arguments
comparison in a particular domain.

A context constraint specifies conditions under which ar-
guments can be compared. In this sense, two arguments can
only be compared if they share at least some descriptors. In
the rest of the paper, whenever there is no ambiguity, we will
refer to context constraints simply as contexts.

Example 3 Continuing with the setting of Example 2, the
elements defined above could be instantiated as follows.
Let ∆1 = {type of food, dietary contribution} be a context
indicating that two arguments can be compared in this
environment whenever they refer to a type of food and
dietary contributions of this food. Other contexts could be
∆2 = {health benefits}.

Consider now arguments C and E:

Argument C:

– Premise 1: Sesame seeds provide high quantity of
calcium, antioxidants, fatty acids, and proteins.

– Premise 2: The excess of consumption of food that
provides essential fatty acids implies a high con-
sumption of saturated fats.

– Premise 3: Dietary saturated fat increases blood
cholesterol levels.

– Claim: The incorporation of sesame seeds in excess
to your diet can increase blood cholesterol levels.

Argument E:

– Premise 1: If you drive after taking drugs, your
ability to drive may be impaired and your reactions
could be slower.

– Premise 2: A driver who is impaired is at risk of
having an accident.

– Claim: Driving after taking drugs increases the
risk of having a car accident.

Argument C also refers to a type of food (seeds) and
its contributions to a person’s diet, however, this argu-
ment actually focuses on the risks that its consumption
in excess could cause. Therefore, we have desc(C) =

{type of food, dietary contribution, health risks}. On the other
hand, we have E that also refers to risks to a person’s
health but not related to the consumption of food. A suit-
able set of descriptors for argument E could be desc(E) =

{drug consumption, activity, health risks}. C and E are compa-
rable only in ∆3 = {health risks}.

Given that arguments commonly arguments are expressed
in natural language, in order to disambiguate among the dif-
ferent objects or situations described in them we assume the
existence of a function µ that establishes the relation between
each descriptor in ∆ and the set of concepts to which the ar-
gument is referring to– these concepts could, for instance, be
just words in natural language or more complex concepts in
an ontology. We will not focus on formalizing these concepts;
however, intuitively, we can say that using the mapping func-
tion it is possible obtain the set of words or concepts that a
given argument A ∈ AR refers to. As an example of how to
formalize such a function, it could be based on the intensional
relational structure, or conceptualization presented in [Guar-
ino et al., 2009] as a triple consisting of a universe of dis-
course, a set of possible worlds or values that characterize
a system, and a set of conceptual relations on two previous
ones.
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Example 4 For instance, in Figure 1, we have a mapping
function µ that establish for each (possibly all) argument in
AR a relation between a descriptor ”dietary contribution”
included in the context D and the concept of the ontology,
such as vegetal fats, proteins, antioxidants, among others.

A

B

C

…
dietary_contribution

type_of_food

healt_benefits

AR 

…

Ontology

A, dietary_contribution, vegetal_fats, proteins, antioxidants, minerals 
B, dietary_contribution, calcium, iron, phosphorous 

C, dietary_contribution, calcium, antioxidants, proteins, fatty_acids 
D, dietary_contribution,  
E, dietary_contribution, 
F, dietary_contribution,  

 Mapping Function



dietary_contribution

vegetal_fats proteins antioxidants mineralsproteins

...

Figure 1: Mapping Function

Given a mapping structure µ, it is possible to define the
similarity between two arguments A and B. For this, we con-
sider the concordance degree between the values of the de-
scriptors for both arguments. To do that, we assume the exis-
tence of the following function:

Definition 4 (Similarity Function) Given a set of argu-
ments AR, a context ∆, and a mapping function µ. We de-
fine the function αµ : AR × AR → [0...1] as the similarity
function that determine the similarity degree between two ar-
guments of AR based on µ.

We have provided a very general definition of similarity de-
gree since we argue that it can be computed in different ways
depending on the particularities of the knowledge represen-
tation model of the problem and the application domain. As
an instance, we could use something as simple as comput-
ing the Hamming Distance between two words (or a set of
words), or we could use the number of descriptors of the ar-
guments A and B who take the same value, over the num-
ber of descriptors of the arguments A and B that take differ-
ent values. Alternatively, if the domain is modelled through
an ontology we can use Semantic Similarity and Distance
Measure between ontology concept’s [D’Amato et al., 2008;
Saruladha et al., 2010].

It is important to remark that in this initial approach, there
is no difference in calculating αµ(A,B), or αµ(B,A), i.e., we
assume that similarity degree is symmetric. Also, we make no
assumption of distinction among the constraints in ∆, how-
ever, an interesting special case for future work could be the
study the addition of a preference relation over the elements
in ∆, incorporating a natural way of comparing the different
context restrictions, and also how different types of prefer-
ence could affect the behavior of the framework.

With these elements in place, we can now propose a notion
of analogy between arguments. Intuitively, we can agree that
if for the arguments being compared the similarity degree is

greater than 0.5 under the constraint set, then it can be consid-
ered that the arguments are analogous; otherwise, differences
prevail and they are considered as not analogous. The follow-
ing definition formalizes the notion analogy relation between
arguments that we adhere to in this work.

Definition 5 (Analogy Relation) Let AR be a set of argu-
ments, ∆ be a context, and αµ be a similarity function. An
analogy relation, denoted R∆, is defined as R∆ ⊆ AR×AR,
where (A,B) ∈ R∆ iff αµ(A,B) > 0.5, and verifies that:

– R∆(A,B) = R∆(B,A);

– R∆(A,A) = 1;

– R∆(A,B) = 0 Iff µ(A) ∩ µ(B) = ∅.
Note that we make no assumption about the relation to be
transitive; this is, if A R∆ B and B R∆C, then not necessarily
must the case that A R∆C. It may happen that µ(A)∩µ(B) 6=
∅, µ(B) ∩ µ(C) 6= ∅, but µ(A) ∩ µ(C) = ∅. In this case,
αµ(A,B)>0, αµ(B,C)>0 and αµ(A,C)<0.

Example 5 Picking up the Example 2, we need to center on
the value that each of the descriptors takes for every argu-
ment, according to the context ∆. For this comparison, we
take a context ∆ = {dietary contribution}. In this case,
the similarity function regarding ∆ could be defined as1:

| µ(A) ∩ µ(B) |
| µ(A) ∩ µ(B) |

This function calculates the similarity degree using the num-
ber of descriptors of the arguments A and C who take the
same value, over the number of descriptors of those argu-
ments that take different values. In the same way we pro-
ceeded with the arguments B and C. Arguments A and C are
analogous in this context because αµ(A,C) = 0.5. However,
arguments B and C are not analogous in this context, due to
αµ(B,C) = 0.33.

The definition of the analogy relation between arguments
under a constraint set just introduced above will allow us to
reformulate the critical questions for guiding the argumen-
tation from analogy scheme. The question Are A and B
analogous? Can be now reformulated as: is it the case that
R∆(A,B)? Note that considering the similarity function de-
fined above which is the base of the relation R∆ the differ-
ences between two arguments are implicitly represented by
this function.

In the next Section, we will instantiate Dung’s framework
introducing the possibility of taking into consideration the
similarities between arguments in order to capture the rela-
tion of analogy between a set of arguments.

5 Analogy Argumentation Framework
The formalization of argumentation schemes is related to the
formalization of reasoning patterns which makes them more
useful to the AI domain. In this section, we will propose a

1We will use | X | to denote the cardinality of a set X.
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formalization that instantiates the argumentation framework
(AF) proposed by Dung introducing an attack relation in a
more specific way, where there exists an attack between two
arguments if they are no analogous. This abstract argumenta-
tion framework instantiation, called Analogy Argumentation
Frameworks (AnAF), is based on the concepts of satisfaction
of a context and similarity function defined previously, that
allows specify the attack.

Definition 6 (Analogy Argumentation Framework (AnAF))
An Analogy Argumentation Framework (AnAF) is a tuple
Θ = 〈AR,∆, αµ, Attsµ〉, whereAR is a set of arguments, ∆
is a context, and αµ is a similarity function, and Attsµ is an
attack relation between arguments such that (A,B) ∈ Attsµ
iff αµ(A,B) < 0.5.

Definition 7 (An-Acceptability) Let Θ = 〈AR,∆, αµ,
Attsµ〉 be an analogy argumentation framework.

– A set S ⊆ AR is said analogy-conflict-free if there are
no arguments A and B ∈ S such that (A,B) ∈ Attsµ.

– A ∈ AR is an-acceptable with respect to S ⊆ AR iff for
each B ∈ AR, if (A,B) ∈ Attsµ then there exists C ∈ S
such that (A,B) ∈ Attsµ; in such case B is attacked by
S.

– An analogy-conflict-free set S is an-admissible iff each
argument in S is an-acceptable with respect to S.

– An an-admissible set S ⊆ AR is an analogy-complete
extension of Θ iff S contains every argument an-
acceptable with respect to S.

– An analogy-grounded semantics: A set S ⊆ AR is an
analogy-grounded extension of Θ iff S is an analogy-
complete extension that is minimal with respect to set
inclusion.

- An analogy-preferred semantics: A set S ⊆ AR is an
analogy-preferred extension of Θ iff S is a ⊆ - maximal
admissible set.

- An analogy-stable semantics: A set S ⊆ AR is an
analogy-stable extension of Θ iff S is analogy-conflict-
free and attacks every argument which is not in S.

Intuitively, the extensions provided by a particular seman-
tics partitionAR into sets of arguments that are pairwise anal-
ogous, giving in this sense the following relation between the
extensions proposed here and the analogy relation presented
in the previous section.

Proposition 1 Giving an analogy argumentation framework
Θ = 〈AR,∆, αµ, Attsµ〉, an analogy relation R∆, and an
extension S of a specific semantic of Θ. Then, all arguments
A,B ∈ S satisfies that (A,B) ∈ R∆.

Proposition 2 Giving an analogy argumentation framework
Θ = 〈AR,∆, αµ, Attsµ〉, an analogy relation R∆, and two
extensions S1 and S2 of a specific semantic Θ. Then, there
exists no pair of arguments A,B ∈ AR where (A,B) ∈ R∆

such that A ∈ S1 and B ∈ S2.

Example 6 Continuing Example 4, we complete this accord-
ing to AnAF definition. We consider the set of arguments:
AR = {A,B,C,D,E,F}, the context ∆ = {dietary contribution},
and tvalues obtain for the similarity function defined in the
previous section, which are: αµ(A,B) = 0; αµ(A,C) = 0.5;
αµ(A,D) = 0; αµ(A,E) = 0; αµ(A,F) = 0; αµ(B,C) = 0.33
αµ(B,D) = 0; αµ(B,E) = 0; αµ(B,F) = 0; αµ(C,D) = 0;
αµ(C,E) = 0; αµ(C,F) = 0. We have that:

– S1 = {A,C} is an analogy-conflict-free set; S2 = {A,C,B}
is an no analogy-conflict-free set because αµ(B,C) = 0.33;
S3 = {D,E,F} is an analogy-conflict-free set.

– C∈AR is an-acceptable with respect to S1, due to αµ(B,C) =
0.33 and exist A∈S1 such that αµ(A,B) = 0. How-
ever, C∈AR is no an-acceptable with respect to S3, due to
αµ(D,C) = 0.33 and no exist an argument in S3 that attacks
C. The arguments D,E,F are an-acceptable with respect to S3.

– The set of arguments S3 is an-admissible, while S1 and S2 are
no an-admissible.

– S3 is an analogy-complete of AnAF.

– S3 is an analogy-preferred semantics.

6 Related Works
Few studies exist formalizing the argumentation schemes pro-
posed by Walton. However, there are several extensions of
Dung’s framework that are inspiring for this paper. Am-
goud [Amgoud et al., 2010] put forward that argumentation
from analogies has not been exploited profitably by AI, be-
ing the structure-mapping model [Bohan and Keane, 2004]
the exception. Nevertheless, any attempt to deal with the
use of analogies in the argumentative process should include
three aspects: the difference of an argumentative process
from analogies with the argumentative process in general, the
definition of attacks and the evaluation of arguments in this
new approach. Prakken [Prakken, 2010a] proposed Argu-
mentation Systems with Structured Arguments, which used
the structure of arguments and external preference informa-
tion to define the a defeat relation. Regarding argumentation
schemes, Prakken [Prakken, 2010b] proposes that modeling
reasoning using argumentation schemes necessarily involves
developing a method combining issues of non-monotonic
logic and dialogue systems. Nielsen et al. [Nielsen and Par-
sons, 2007] claim that Dung’s framework is not enough to
represent argumentation systems with joint attacks and they
generalize it allowing a set of arguments to attack on a sin-
gle argument. Modgil [Modgil, 2009] also extends Dung’s
framework, preserving abstraction and expressing the pref-
erence between arguments. Regarding to preference relation
between arguments, Cecchi et al. [Cecchi and Simari, 2002]
defined this as a binary relation considering two particular cri-
teria, specificity and equi-specificity, together with priorities
between rules, defining preferred arguments and incompara-
ble arguments.

Specifically, with regards to formalizing argumentation
schemes, Hunter [Hunter, 2008] presented a framework for
meta-reasoning about object-level arguments allowing the
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presentation of richer criteria for determining whether an
object-level argument is warranted. These criteria can use
meta-information corresponding to the arguments, including
the proponents and their provenances and an axiomatization
using this framework for reasoning about the appropriated
conduct of the experts introducing them.

7 Conclusions and Future Works
We have presented a formalism based on the comparison of
arguments through descriptors. A descriptor is a word or a
label that describes an aspect or element that the argument
refers to. The arguments can be compared if they share a set
of descriptors that represent the context of comparison. In or-
der to compare the arguments, we have defined an analogy re-
lation that considers the similarities and differences between
arguments under certain context. We have reformulated the
critical questions proposed by Walton [Walton et al., 2008;
Walton, 2006] on the basis of this analogy relation. Then,
we have proposed an extension to Dung’s work, called AnAF
which is based on the relation of similarity and difference be-
tween arguments, and in which the attack is replaced by the
difference function between the arguments.

The goal of this formalization is to make it more useful to
use reasoning patterns based on similarities and difference ar-
guments in the field of AI. For example, the proposal may be
useful for rankings on web searches, or in the domain of rec-
ommender systems to suggest how to solve a problem based
on previously solved problems.

Related to argumentation schemes based on analogies, are
Argumentation schemes based on a verbal classification that
focus on properties that have a particular object or individual.
The property (or set of properties) determines whether an ob-
ject or individual is part of a class. A deductive form of this
scheme is expressed by Walton et.al. [Walton et al., 2008] as
follows, taking into account that A is one object or individual,
and [X] and [Y] are kinds or classes of things (or individuals):

1. “All elements of [X] can be classified as a element of [Y].
2. A is an element of [X].
3. Therefore, A is a element of[Y].

This argumentation scheme is rebuttable since natural lan-
guage is used in order to formulate the property (or the set
of properties) to be met by an object or person in order to be
considered part of a class and natural language expressions
can have ambiguous meaning, even though the form of de-
ductive reasoning is correct. The reason for this is that the
meaning attributed to words depends on the context in which
the classification is made, and therefore the semantics of the
expressions can be attacked. The rebuttable argumentation
scheme proposed by Walton et. al. [Walton et al., 2008] from
verbal classification is described as follows:

- Major Premise: If one thing A can be classified accord-
ing to a verbal category C, then A has a property P, gov-
erning the classification2.

2Such properties can be nouns, adjectives, verbs, conjunctions,

- Minor Premise: A can be classified as part of the verbal
category C.

- Conclusion: A has property P.

The critical questions governing this scheme are:

- Does A definitely have P, or is there room for doubt?

- Can the verbal classification (in the second premise) be
said to hold strongly, or is it one of those weak classifi-
cations that is subject to doubt?

The argumentation based on verbal classification can be
seen as a special case of the argumentation based on analo-
gies, in which arguments should share a property or a set of
properties, and these properties must be interpreted unam-
biguously. While in the argumentation scheme from analogy
two objects or individuals are compared, and similarities and
differences between are identified based on a set of context
constraints, in the argumentation scheme from verbal classi-
fication, we seek to answer whether, in a given context, an
object or individual shares a certain property that identifies it
as part of a class. As future work we will explore the adap-
tation of AnAF to reason with argumentation schemes from
verbal classification.

As future work we will also develop an implementation of
AnAF by using the existing DeLP [Garcı́a and Simari, 2004]
system as a basis3. The resulting implementation will be ap-
plied to different domains that require modeling decision sup-
port systems associated with context restrictions.
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Abstract

Symmetry breaking is a technique for speeding
up propositional satisfiability testing by adding
constraints to the formula that restrict the
search space while preserving satisfiability. In
this work, we extend symmetry breaking to the
problem of model finding in weighted and un-
weighted relational theories, a class of problems
that includes MPE inference in Markov Logic
and similar statistical-relational languages. Af-
ter describing the extension of symmetry break-
ing to weighted ground theories, we explore
methods for finding and breaking symmetries
directly in quantified theories. We introduce
term symmetries, which are induced by an ev-
idence set and extend to symmetries over a re-
lational theory. We provide a detailed analysis
of the important special case of term equivalent
symmetries, showing that such symmetries can
be found in low-degree polynomial time and
can be completely broken by constraints that
are linear in the size of the theory. Finally,
we discuss connections between relational sym-
metry breaking and work on lifted inference in
statistical-relational reasoning.

1 Introduction
Symmetry-breaking is an approach to speeding up satis-
fiability testing by adding constraints, called symmetry-
breaking predicates (SBPs), to a formula [Crawford et
al., 1996; Aloul et al., 2003; Katebi et al., 2010]. Sym-
metries in the formula define a partition over the space
of truth assignments, where the assignments in a parti-
tion either all satisfy or all fail to satisfy the formula.
The added SBPs rule out some but not all of the truth
assignments in the partitions, thus reducing the size of
the search space while preserving satisfiability.

We extend the notion of symmetry-breaking to model-
finding in relational theories. A relational theory is spec-
ified by a set of first-order axioms over finite domains,
optional weights on the axioms or on the predicates of
the theory, and a set of ground literals representing ev-
idence. By model finding we mean satisfiability testing

(unweighted theories), weighted max-SAT (weights on
axioms), or maximum weighted model finding (weights
on predicates). The weighted versions of model finding
encompass MPE inference in Markov Logic and similar
statistical-relational languages.

Next, we introduce methods for finding symmetries
in a relational theory that do not depend upon solving
graph isomorphism over its full propositional grounding.
We show how graph isomorphism can be applied to just
the evidence portion of a relational theory in order to
find the set of what we call term symmetries. We go on to
define the important subclass of term equivalent symme-
tries, and show that they can be found in O(nM logM)
time where n is the number of constants and M is the
size of the evidence. (Although graph isomorphism algo-
rithms usually run quickly in practice, the complexity of
graph isomorphism is thought to be super-polynomial.)

We then turn to the problem of efficient generation
of SBPs. An inherent problem in symmetry-breaking is
that even a propositional theory may have an exponen-
tial number of symmetries, and so breaking them indi-
vidually would increase the size of the theory exponen-
tially. The usual approach has been to simply break
only a portion of the symmetries. We show that term
equivalent symmetries provide a compact representation
of an exponential number of symmetries, and can be bro-
ken by a small (linear-size) SBP. We also introduced an
improved method for generating SBPs for general term
symmetries. Our method exploits the structure of the
quantified theory in order to create stronger and more
compact SBPs, thus helping close the gap between par-
tial and complete symmetry breaking.

Finally, we note connections symmetry-breaking has
to work on lifted inference in statistical-relational learn-
ing [Kimmig et al., 2014], and describe work in progress
on an empirical and theoretical comparison of the two.

2 Background

2.1 Symmetry Breaking for SAT

Symmetry-breaking for satisfiability testing, introduced
by [Crawford et al., 1996], is based upon concepts from
group theory. A permutation θ is a mapping from a set
L to itself. A permutation group is a set of permutations
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that is closed under composition, contains the identity
and a unique inverse for every element. A literal is an
atom or its negation. A clause is a cojunction over lit-
erals. A CNF theory T is a set (conjunction) of clauses.
Let L be the set of literals of T . We consider only per-
mutations that respect negation, that is θ(¬l) = ¬θ(l)
(l ∈ L). The action of a permutation on a theory, writ-
ten θ(T ), is the CNF formula created by applying θ to
each literal in T . θ is a symmetry of T if θ(T ) = T . A
symmetry is an isomorphism of a theory that results in
the same theory.

A model M is a truth assignment to the atoms of a
theory (and by extension to all formulas over the atoms).
The action of θ on M , written θ(M), is the model where
θ(M)(P ) = M(θ(P )). The key property of θ being a
symmetry of T is that M |= T iff θ(M) |= T . The
orbit of a model M under a symmetry group Θ is the
set of models that can be obtained by applying any of
the symmetries in Θ. A symmetry group divides the
space of models into disjoint sets, where the models in
an orbit either all satisfy or all do not satisfy the theory.
The idea of symmetry-breaking is to add clauses to T
that rule out many of the models, but are guaranteed to
not rule out at least one model in each orbit. Note that
symmetry-breaking preserves satisfiability of a theory.

Symmetries can be found in CNF theories using a re-
duction to graph isomorphism, a problem that is thought
to require super-polynomial time in the worst case, but
which can often be efficiently solved in practice [Luks,
1982]. The added clauses are called symmetry-breaking
predicates (SBPs). If we place a fixed order on the atoms
of theory, then a model can be associated with a binary
number, where the i-th digit, 0 or 1, specifies the value of
the i-atom, false or true. Lex-leader SBPs rule out mod-
els that are not the lexicographically-smallest members
of their orbits.

A theory may have an exponential number of symme-
tries; thus, despite the fact that graph isomorphism is
relatively fast in practice, finding all symmetries (and
breaking them) is often impractical. Partial symmetry-
breaking is still useful. It is possible to devise new SBPs
that can break exponentially more symmetries than the
standard form described above; we do so in Sec. 5.

2.2 Relational Theories

We define a relational theory as a tuple T = (F,W,E),
where F is a set of first-order formulas, W a mapping
of predicates and negated predicates to strictly positive
real numbers (weights), and E is a set of evidence. We
restrict the formulas in F to be built from predicates,
variables, quantifiers, and logical connectives, but no
constants or function symbols. E is a set of ground lit-
erals; that is, literals built from predicates and constant
symbols. Each constant symbol has a unique type. Uni-
versal and existential quantification is over the set of the
theory’s constants C (i.e. the constants that appear in
its evidence). Any constants not appearing explicitly in
the evidence can be incorporated by adding to evidence
a unary predicate for the type of the constant. Any for-

mula containing a constant can be made constant-free,
by introducing a new unary predicate for each constant,
and then including that predicate applied to that con-
stant in the evidence. A ground theory can be seen as a
special case of a relational theory where each predicate
is argument free.

Grounding a theory is the operation of converting
F to a ground (propositional) theory, by replacing
universally-quantified subformulas by conjunctions over
all type-consistent substitutions of constants for the vari-
able, similarly replacing existentially-quantified subfor-
mulas by disjunctions and substituting the truth values
of literals appearing the evidence E.

We define the weight of a positive ground literal
P (C1, . . . , Ck) of a theory as W (P ), and the weight of
negative ground literal ¬P (C1, . . . , Ck) as W (¬P ). In
other words, all positive groundings of literal have the
same weight, as do all negative groundings. The weight
of model M with respect to a theory (F,W,E) is 0 if
M fails to satisfy any part of F or E; otherwise, it is
the product of the weights of the ground atoms that are
true in M . Maximum weighted model-finding is the task
for finding a model of maximum weight with respect to
T . A relational theory can be taken to define a prob-
ability distribution over the set of models, where the
probability of model is proportional to its weight. Maxi-
mum weighted model-finding thus computes MPE (most
probable explanation) for a given theory. Ordinary sat-
isfiability corresponds to the case where W simple sets
the weights of all literals to 1.

Languages such as Markov Logic [Domingos and
Lowd, 2009] use an alternative representation and spec-
ify real-valued weights on formulas rather than positive
weights on predicates and their negations. The MPE
problem can be formulated as the weighted-maxSAT
problem, i.e., finding a model maximizing the sum of
the weights of satisfied clauses. This can be translated
to our notation by introducing a new predicate for each
original formula, whose arguments are the free variables
in the original formula. F asserts that the predicate is
equivalent to the original formula, and W asserts that
the weight of the new predicate is e raised to the weight
of the original formula. Solving weighted maxSAT
in the alternate representation is thus identical to solv-
ing maximum weighted model-finding in the translated
theory. For the rest of the discussion in this paper, we
will assume that the theory is specified with weights on
predicates (and their negations).

3 Symmetries for Weighted Model
Finding and Weighted MAXSAT

Niepert extended the notion of symmetries for the case of
weighted theories in [Niepert, 2012]. We will show how
SBPs can be used to efficiently solve the weighted model
finding problem (and equivalently, weighted Max-SAT
problem).

Let T be a CNF theory with a set of literals L and
weights specified on literals. A permutation θ of the
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set L is a symmetry of T if θ maps T back to itself,
i.e. θ(T ) = T , while preserving the weights on each
clause. The problem of finding symmetries in an un-
weighted theory can be solved using colored graph iso-
morphism [Aloul et al., 2003]. A graph G = (V,E) is
constructed having a node for every clause, and a node
for every literal, with color 1 for clause nodes and color
2 for literal nodes. The clause nodes are linked to the
corresponding literal nodes. There are Boolean consis-
tency edges between each pair of negated literals. There
is a one to one correspondence between automorphisms
of the graph G and symmetries in the theory. This can
be extended to weighted theories by introducing another
set of nodes, one for each weight value. All these nodes
are given distinct colors (and also different from colors
of clause and literal nodes). There is an edge between
a literal and the corresponding weight value node. It is
easy to see that automorphisms over this modified graph
correspond to symmetries of the weighted theory. This
formulation is similar to the one given in [Niepert, 2012].

Since symmetries are defined to preserve weights over
literals, the weight of any model M is preserved under
the action of a symmetry. This means that every model
in an orbit under the action of a symmetry group Θ is
guaranteed to have the same weight. Hence, we can use
the technique of symmetry breaking (as detailed Sec-
tion 2) to eliminate all but one (or few) of the models in
each orbit, while ensuring that the transformed problem
has the same max-weighted model.

4 Symmetries in Relational Theories
In this section, we will formally introduce the notion of
symmetries over relational theories and give efficient al-
gorithms to find them. For the ease of exposition, unless
otherwise stated, we will assume that all the constants
come from the same type. The analysis given below eas-
ily extends to the case of typed constants. Symmetries of
a relational theory can be defined in terms of symmetries
over the corresponding ground theory.

Definition 4.1. Let T denote a relational theory. Let
the TG denote the theory obtained by grounding the for-
mulas in T . Let L denote the set of (ground) literals in
TG. We say that a permutation θ of the set L is a sym-
metry of the relational theory T , if θ maps the ground
theory TG back to itself i.e. θ(TG) = TG. We denote
the action of θ on the original theory as θ(T ) = T .

A straightforward way to find symmetries over a rela-
tional theory T is to first map it to corresponding ground
theory TG and then find symmetries over it using reduc-
tion to graph isomorphism. The complexity of finding
symmetries in this way is the same as that of graph
isomorphism, which is believed to be worst-case super-
polynomial. Further, the number of symmetries found
is potentially exponential in the number of ground liter-
als. This is particularly significant for relational theories
since the number of ground literals itself is exponential
in the highest predicate arity (i.e., number of variables
appearing in a predicate). Computing symmetries at

the ground level is prohibitively expensive with theories
having predicates with high arity and many constants.

The key intuition in our work is thus to exploit the
underlying (template) structure of the relational theory
to directly generate symmetries of the theory from the
evidence. e.g., if evidence set E = {R(A,B), R(A,C),
R(A,D)}, then we can define a symmetry group con-
sisting of all possible permutations of the elements in
the set {R(A,B), R(A,C), R(A,D)} (independent of the
formulas in the theory). As we will show, such symme-
try groups can be found (and represented) efficiently by
directly looking at the evidence set rather than dealing
with the ground theory.

4.1 Term Symmetries

We introduce the notion of symmetries defined over
terms (constants) appearing in a theory T , called term
symmetries.

Definition 4.2. Let T be a relational theory. Let C be
the set of constants appearing in the theory. Then, a
permutation θ over the terms set C is said to be term
symmetry with respect to evidence E if application of θ
on the terms appearing in E, denoted by θ(E), maps E
back to itself. We will also refer to θ as the evidence
symmetry for the set E.

Term symmetries can be found by reducing it to a col-
ored graph isomorphism problem over a Graph G with
distinct colored nodes for every predicate and a node
for every term (with the same color) For every atom
P (C1, . . . , Ck) in the evidence, we connect the node for
P with the node for C1; the node for C1 with the node
for C2; and so on until the kth node. Any automorphism
of G will map predicate nodes to themselves and terms
will be mapped in a manner that their association with
the corresponding predicate node in the evidence is pre-
served. Hence, automorphisms of G will correspond to
term symmetries in evidence E. Typed theories can be
handled by having a distinct color for terms belonging
to the same type. Next, we will establish a relation-
ship between permutation of terms in the evidence to
the permutations of literals in the ground theory.

Definition 4.3. Let T be a relational theory. Let
E be the evidence set and let C be the set of
terms appearing in E. Given a permutation θ
of the terms in the set C, we associate a cor-
responding permutation θT over the ground liter-
als of the form P (C1, C2, . . . , Ck)) in T , such that
θT (P (C1, C2, . . . , Ck)) = P (θ(C1), θ(C2), . . . , θ(Ck))
(and similarly for negated literals).

Given the theory permutations as defined above, each
symmetry θ over the terms is associated with a symmetry
of the theory T .

Lemma 4.1. Let T be a relational theory. Let E denote
the evidence set. Let C be the set of terms appearing in
E. If θ is an evidence symmetry of E, then, the associ-
ated theory permutation θT is also a symmetry of T .
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If |C| is the number of terms, the cost of finding term
symmetries is a function of |C| as opposed to directly
finding symmetries over the ground literals which is a
function of O(|C|k), k being the highest predicate arity.
Next, we present an important sub-class of term symme-
tries, called term equivalent symmetries, which capture
a wide subset of all the symmetries present in the theory,
can be computed very efficiently and also allow SBPs to
be calculated in a very efficient manner.

4.2 Term Equivalent Symmetries

Term equivalent symmetries divide the set of terms
in a set of equivalence classes such that any permu-
tation which maps terms within the same equivalence
class is a symmetry of the evidence set. Let Z =
{C1, C2, . . . , Cm} denote a partition of the term set C
into m disjoint subsets. We refer to each Ci as the ith

component of Z. Given a partition Z, we say that two
terms are term equivalent (with respect to Z) if they oc-
cur in the same component of Z. We define a partition
preserving permutation as follows.

Definition 4.4. Given a set of terms C and its disjoint
partition Z, we say that a permutation θ of the terms in
C is a partition preserving permutation of C with respect
to the partition Z if ∀Cj , Ck ∈ C, θ(Ci) = Cj implies that
∃Ci ∈ Z,Cj , Ck ∈ Ci. In other words, θ is partition pre-
serving if it permutes terms within the same component
of Z.

The set all partition preserving permutations (with
respect to a partition Z) forms a group. We will denote
this group by ΘZ . Next, we define the notion of term
equivalent symmetries.

Definition 4.5. Let T be a relational theory and E de-
note the evidence set. Let C be the set of terms in E
and Z be a disjoint partition of terms in C. Then, given
the partition preserving permutation ΘZ , we say that ΘZ

is a term equivalent symmetry group of C, if ∀θ ∈ ΘZ ,
θ is a symmetry of E. We will refer to each symmetry
θ ∈ ΘZ as a term equivalent symmetry of E.

A partition Z of term set C is a term equivalent parti-
tion if the partition preserving group ΘG is a symmetry
group of C. It is easy to see that a term equivalent
symmetry group divides the set of terms in equivalence
classes. The term equivalent symmetry group can be
thought of as composed of a set of symmetry subgroups
Θi’s, one for each term subset Ci, such that Ci allows for
all possible permutations of terms within the set Ci and
defines an identity mapping for terms in other subsets.
Note that the size of term equivalent symmetry group is
given by ΠK

i=1|Ci|!. Despite its large size, it can be very
efficiently represented by simply storing the partition Z
over the term set C. Next, we will look at an efficient
algorithm for finding a partition Z which corresponds to
a term equivalent symmetry group over C.

Let the evidence be given by E = {l1, l2, . . . , lk},
where each li is a ground literal. Intuitively, two terms
are term-equivalent if they co-occur with the same con-

text in the evidence. For example, if evidence for con-
stant A is {P1(A,D), P2(A,E,A), then the context for
term A is P1(∗, D), P2(∗, E, ∗). Note that here the posi-
tions where A occurred in the evidence has been marked
by a ∗. Any other term sharing the same context would
be term equivalent to A. To find the set of all the
equivalent terms, we first compute the context for each
term. Then, we sort each context based on some lexico-
graphic order defined over predicate symbols and term
symbols. Once the context has been sorted, we can sim-
ply hash the context for each term and put those which
have the same context in the same equivalence class. If
the evidence size is given by |E| = M and number of
terms in evidence is n, then, above procedure will take
O(n ·M · log(M) + n) time. The M · log(M) factor is
for sorting the context for each term, multiplied n times
(once for each term). Hashing takes a total of O(n) time.
There are n terms and after hashing each term, there is
constant amount of time required to check if the term
belongs to the same equivalence class earlier hashed in
the same slot.

5 Breaking Term Equivalent Symmetries
In this section we present a set of rules to break term
equivalent symmetries in a relational theory. The key
idea of symmetry breaking is to allow only one (or
few) of the models which belong to the same symme-
try group. Here, we interchangeably use “term equiv-
alent symmetry” to refer to the evidence symmetry as
well as the associated symmetry over the relational the-
ory. We assume that the term equivalent partition
Z = {C1, C2, . . . , Cm} corresponding to the evidence
set E has been computed as described in Section 4.
Note that there are |Z|! symmetry elements in each of
the respective symmetry subgroups and breaking them
individually is prohibitively expensive. By accounting
for the special structure of these symmetry subgroups,
which allow for all possible permutations within each
term set Z, we define a total ordering on the predicate
groundings corresponding to terms in each subset.

We fix an ordering over the terms, as well as over the
predicates. This induces an ordering over the ground
atoms as follows: first order by predicate, then by term
of the first argument, then by term of the second ar-
gument, and so on. Let that ordering of ground atoms
be G = {G1, G2, . . . }. We extend the notion of a term
permutation θ to apply to ground atoms as follows:

θ(Gi) = θ(P (t1, . . . , tk)) = P (θ(t1), . . . , θ(tk))

We denote a particular symmetry with a susbscript
that gives the permutation. For example, the sym-
metry that permutes C1 and C2 is θC1,C2

, and there-
fore θC1,C2

(P (C1)) = P (C2), and θC1,C2
(P (C1, C2)) =

P (C2, C1).
To break a term-equivalent symmetry θ, we construct

the following SBP:

SBP (θ) =
∧

i=1≤i≤m

( ∧
1≤j<i

Gj ⇔ θ(Gj)
)
⇒ (Gi ⇒ θ(Gi))

(1)
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This SBP can be simplified by omitting certain con-
juncts. If Gj does not contain either of the constants
swapped by θ, then that equivalence can be omitted.
Likewise for implications in which Gi does not contain
those constants. Finally, we can eliminate conjunctions
where Gi follows θ(Gi) in the ordering. This is because
since θ is symmetric (in the functional sense), the inner
conjunction would contain θ(Gi) ⇔ Gi, which entails
Gi ⇒ θ(Gi).

Consider a domain that contains a single unary pred-
icate P (x). The SBP generated from the Equation 1 for
each term subset Ci is:

P (Ci
l )⇒ P (Ci

l+1) ∀l, 1 ≤ l ≤ (ri − 1)

This SBP imposes a total ordering on all the predicate
groundings for the set of terms in the set Ci. The size
of this SBP is linear in |Ci|. For example, given a term
set {A,B,C,D}, the SBP does not allow the assignment
(0, 1, 0, 0) to (P (A), P (B), P (C), P (D)), because if the
second grounding takes a value of 1 and rest are zero,
then this is not the lexicographically smallest solution.
The equivalent (lexicographically smallest) solution is
(0, 0, 0, 1).

Next consider a theory with multiple unary predi-
cates and one type. When dealing with such a theory,
adding SBPs for a predicate might restrict the solution
space of other predicates. For example, consider the
formula P (x) ⇔ ¬Q(x). Considering a term equiv-
alent set Ci = {A,B,C,D}, if (0, 0, 0, 1) is an assign-
ment to ordered tuple (P (A), P (B), P (C), P (D)), then
the corresponding Q(x) groundings must take the value
(1, 0, 0, 0). Clearly, this is not in lexicographic order.
Therefore, we break symmetries for Q(x) groundings
only when the corresponding P (x) values are identical.

The Equation 1 gets around this problem by consid-
ering all the predicates for which SBPs were previously
added. Let P1, P2, . . . , Pm be the predicates whose SBPs
have already been constructed. Given a predicate P
being processed, let (P1, P2, . . . , Pm) denote the list of
predicates whose SBPs have been processed. Then, intu-
itively, we should impose an ordering on two groundings
of P (x), say P (A) and P (B) if all of the past predicate
groundings take the same value for these two ground-
ings. This is formalized in the SBP given above. When
applied to this theory for P (x) we get:( ∧

1≤h≤m

Ph(Ci
l ) = Ph(Ci

l+1)

)
⇒
(
P (Ci

l )⇒ P (Ci
l+1)

)
∀l, 1 ≤ l ≤ (ri − 1)

By adding SBPs for each constant pair (Ci
l , C

i
l+1) such

that the predicates occurring earlier in the sequence eval-
uate to the same truth value for both of the constants
in the pair, we avoid problems brought about by con-
straints such as P (x)⇔ ¬Q(x). The application of the
formulation applies straightforwardly to theories whose
predicates have multiple arguments.

Now that we have shown how to break a single term
equivalent symmetry, we will show how to break an en-
tire term-equivalent partition Z for a particular subset

of theories. Consider a theory T in which at most one
argument of each type appears in each predicate. Since
every term belongs to precisely one type, no term can
appear as more than one argument in a ground atom at
the same time. Thus, when applying a term equivalent
symmetry to a ground atom, at most one term will be
changed. Therefore, we can break all of the symmetries
in Z by breaking only the symmetries of terms that are
adjacent in the ordering of terms. More precisely, the
SBP for Z is ∧

i=1,...,|Z|−1

SBP (θti,ti+1)

By only breaking adjacent symmetries in the ordering,
we keep the size of the SBP linear in the number of terms
while still breaking all symmetries.

Now consider the case of a general theory, where pred-
icates may have more than one argument of the same
type. We can soundly break many symmetries in the
partition by breaking the symmetries between each pair
of constants. More precisely:∧

i=1,...,|Z|−1

( ∧
j=i+1,...,|Z|−1

SBP (θti,tj )

)
The number of SBPs is quadratic in the number of terms.
We plan to prove precisely how many of the symmetries
are broken with this method in a future publication, but
we hypothesize that it breaks all of the symmetries in
the term equivalent partition.

5.1 Solving a Reduced Theory
Given a theory T , we add the SBPs for each term-
equivalent symmetry group as described above. Let T r

be the pruned (modified) theory obtained after adding
SBPs as described above. Since the SBPs preserve sat-
isfiability, we can run any SAT solver on the resulting
ground theory of T r and obtain a satisfiable solution
(or correct unsatisfiable declaration) for T . If T has
weighted clauses, we can designate the SBPs as “hard”
clauses in T r and use any partial weighted MaxSAT
solver to find the max-weighted model of T . If T has
weighted predicates, we can use any max-weighted model
finder: the SBPs imposed separate orderings on the sep-
arate predicates, preserving the max model of T in T r.

6 Related Work
Our work has connections to research in in both the ma-
chine learning and constraint-satisfaction research com-
munities. Most research in statistical-relational machine
learning has concentrated on creating novel probabilistic
inference algorithms that directly exploit symmetries, as
opposed to symmetry-breaking’s solver-independent ap-
proach. Developments include lifted versions of variable
elimination [Poole, 2003; Braz et al., 2005], belief prop-
agation [Singla and Domingos, 2008; Singla et al., 2014],
and DPLL [Gogate and Domingos, 2011]. Our approach
of defining symmetries using group theory and detect-
ing them by graph isomorphism is shared by Bui et al.’s
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work on lifted variational inference [Bui et al., 2013]. Bui
notes that symmetry groups can be defined on the basis
of unobserved constants in the domain, while we have
developed methods to explicitly find symmetries among
constants that do appear in the evidence. Two lines of
work in SRL do make use of problem transformations.
First-order knowledge compilation [Van den Broeck et
al., 2011] transforms a relational problem into a form for
which MPE, marginal, and MAP inference is tractable.
This is a much more extensive and computationally com-
plex transformation than symmetry-breaking. Recent
work on MPE inference in Markov Logic has identified
special cases where a relational formula can be trans-
formed by replacing a quantified formula with a single
grounding of the formula [Mittal et al., 2014]. Relatively
little work in SRL has explicitly examined the role of ev-
idence, separate from the first-order part of a theory, on
symmetries. One exception is [Venugopal and Gogate,
2014], which presents a heuristic method for approxi-
mating an evidence set in order to increase the number
of symmetries it induces.

We briefly touch upon the extensive literature that
has grown around the use of symmetries in constraint
satisfaction. Symmetry detection has been based either
on graph isomorphism on propositional theories as in
the original work by by Crawford et. al [Crawford et
al., 1996]; by interchangeability of row and/or columns
in CSPs specified in matrix form [Meseguer and Tor-
ras, 2001]; by checking for other special cases of geomet-
ric symmetries [Sellmann and Hentenryck, 2005], or by
determining that domain elements for a variable are ex-
changeable [Audemard et al., 2006]. (The last is a special
case of our term equivalent symmetries.) Researchers
have suggested symmetry-aware modifications to back-
tracking CSP solvers for variable selection, branch prun-
ing, and no-good learning [Meseguer and Torras, 2001;
Flener et al., 2009]. A recent survey of symmetry break-
ing for CSP [Walsh, 2012] described alternatives to the
lex-leader formulation of SBPs, including one based on
Gray codes.

7 Conclusion and Future Work
In this work, we have provided the theoretical foundation
for using symmetry-breaking techniques from satisfiabil-
ity testing for weighted relational theories, including an
efficient way to detect and break a class of symmetries
in these domains. Future work includes a detailed set
of experiments and comparison with lifted inference ap-
proaches.
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Abstract

In a weighted modal logics framework, this paper
studies the definition of weighted extensions for
the classical modal axioms. It discusses the notion
of relevant weight values, in a specific weighted
Kripke semantics and exploiting accessibility re-
lation properties. Different generalisations of the
classical axioms are constructed and, from these, a
typology of weighted axioms is built, distinguish-
ing between four types, depending on their rela-
tions to their classical counterparts and to the, pos-
sibly equivalent, frame conditions.

1 Introduction
Weighted extensions of modal logics aim at increasing their
expressiveness by enriching the two classical modal opera-
tors, � and ♦, with integer or real valued degrees. These
extensions are based on infinitely many weighted modal op-
erators �α and ♦α, α denoting the numerical weights. These
modalities make it possible to introduce fine distinctions
among the pieces of knowledge modeled in the formalism,
which can then be used to infer nuanced new knowledge and
thus allow, for example, reasoning on partial beliefs.

In this framework, this paper studies weighted extensions
of the classical modal axioms: these, which can be seen
as defining rules for the combination of the modal opera-
tors � and ♦, establish relations between formulae in which
they occur once, repeatedly or in combination. For instance
the classical axiom (4), written ` �ϕ → ��ϕ, states that
an implication holds between a single occurrence and repeti-
tions of �. Similarly, axiom (D), ` �ϕ→ ♦ϕ, establishes a
relation between the two modal operators.

This paper first proposes a semantic interpretation for �α
and ♦α in the framework of Kripke’s semantics, based on
a relative counting of accessible validating worlds that re-
laxes the condition on the universal quantifier defining � in
Kripke’s semantics.The proposed semantics offers the advan-
tage of being informative enough to serve as a basis for the
definition of weighted axioms.

The paper then examines the transposition of these axioms
to the case of this weighted modal logic, setting rules for the
combination of the weighted modal operators �α and ♦α.

Starting with candidate weighted axioms, obtained by re-
placing each modality of a classical axiom with a weighted
one, each with its own weight, the paper discusses how these
weights depend on each other. This issue can be illustrated
by axiom (D), whose associated weighted candidate takes the
form ` �αϕ → ♦βϕ. The question is then to establish a
relevant valuation for β depending on α (or reciprocally).

We propose to address this task from a semantic point of
view, interpreting the candidates in the particular weighted
Kripke semantic we propose. The approach we apply identi-
fies weight dependencies which hold either in any frame or
under specific frame conditions. Moreover, we also study
whether the frames in which the obtained axioms hold all sat-
isfy specific conditions. This can be considered as opening
the way to the definition of a weighted correspondence the-
ory. Note that the aim here is not to build an axiomatisation
of the proposed weighted modal logic semantics, but to study
the transposition of classical axioms to the weighted case.

We then establish a typology of weighted modal axioms
that distinguishes between four types, depending on their re-
lation to their classic counterparts and to the frame conditions
the latter correspond to: type I groups axioms that cannot be
relaxed using the degrees of freedom offered by the proposed
weights. Type II is made of weighted axioms that preserve
the frame conditions of their usual versions. Types III and IV
contain the weighted axioms that require a modification of
the conditions imposed on the frame, respectively when cor-
respondence cannot be proved or when it can.

The paper is organised as follows: Section 2 presents an
informal comparative study of existing weighted modal log-
ics. Section 3 introduces the semantics used to build weighted
axioms with the method described in Section 4. Section 5
presents the resulting typology of weighted modal axioms.

2 Existing Weighted Modal Logics

After presenting the notations used in this paper, this section
briefly describes existing weighted extensions of modal log-
ics, first with the approaches that modify the definition of
Kripke frames, integrating weights either in the accessibil-
ity relation or in the worlds. It then describes the counting
models, that preserve the classical frame definition but alter
the quantification used in the modal operator definitions.
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2.1 Notations
Using the usual notations (eg see [Blackburn et al., 2001]),
a frame F = 〈W,R〉 is a couple composed of a non-empty
set W of worlds and a binary accessibility relation R on W .
A modelM = 〈F, s〉 is a couple formed by a frame F and a
valuation s which assigns truth values to each atomic formula
in each world in W .

For a given model M and any world w in W , we denote
by Rw its set of accessible worlds:

Rw = {w′ ∈W | wRw′} (1)

In addition, considering the usual definition of semantic va-
lidity for the symbol �, we define, for any formula ϕ, the set
Rw(ϕ):

Rw(ϕ) = {w′ ∈ Rw | M, w′ � ϕ} (2)

For any formula ϕ, the classical interpretations of �ϕ and
♦ϕ = ¬�¬ϕ are respectively based on the universal or ex-
istential quantification of accessible worlds which satisfy ϕ.
Using the previous notations, they are written:

M, w � �ϕ ⇔ ∀w′ ∈ Rw,M, w′ � ϕ (3)
⇔ Rw(ϕ) = Rw

M, w � ♦ϕ ⇔ ∃w′ ∈ Rw,M, w′ � ϕ (4)
⇔ Rw(ϕ) 6= ∅
⇔ |Rw(ϕ)| > 0

2.2 Weighted Accessibility Relation
A first category of weighted modal logics extends the clas-
sical Kripke model by replacing the accessibility relation R
with a set of indexed relations Rα, usually with α ∈ [0, 1].
They then define weighted modalities �α, respectively asso-
ciated with each relation Rα, in accordance with the defini-
tions given in Eq. (3) and (4). Three approaches can be distin-
guished depending on the interpretation of the weight, which
can belong to different formal frameworks such as probabil-
ity theory, possibility theory [Zadeh, 1978] or fuzzy set theory
[Zadeh, 1965].

In the probabilistic case [Shirazi and Amir, 2007], the in-
terpretation given to the accessibility weights relies on the
conditional probability of transition from one world to an-
other. Combinations of weights are, therefore, led in the usual
probabilistic way.

In the fuzzy case [Bou et al., 2009], the relation weights
represent the strength of the relation, expressing that a world
is more or less accessible: they describe an imprecision on
the accessibility.

Since these fuzzy weighted relations correspond to α-cuts
of fuzzy relations, they satisfy a nesting property such that
∀α, β ∈ [0, 1], if α ≥ β then w1R

αw2 ⇒ w1R
βw2. This

in turn implies relations between modalities, expressed as a
decreasing graduality property:

∀α, β ∈ [0, 1] , if α ≥ β then � �αϕ→ �βϕ (5)

The fuzzy interpretation thus leads to a multi-modal logic
with dependent –or at least comparable– modalities.

In the possibilistic case [Fariñas del Cerro and Herzig,
1991], the relation weights represent the uncertainty on the

accessibility between worlds: they allow to express doubts
regarding the very existence of a link between worlds, where
the fuzzy model delivers information about its intensity. The
possibilistic approach leads to multiple independent modali-
ties.

2.3 Weighted Worlds
A second category of weighted modal logics considers that
weights apply to worlds and not to the relation. Consequently,
the weights have a global effect: they are set, regardless of the
reference world and its accessible successors. Conversely,
weighted relations exhibit a local effect, since weights are
specific to each pair of worlds.

[Boutilier, 1994] enriches classical Kripke frames with a
distribution of qualitative possibilities [Zadeh, 1978] overW ,
denoted π: worlds are considered as more or less possible. π
is used to define the accessibility relation as:

Rw = {w′ ∈W |π(w) ≤ π(w′)}
The � and ♦ semantics are then defined in the classical way,
cf Eq. (3) and (4), using this relation. As a consequence, a for-
mula �ϕ holds in w if and only if ϕ is satisfied in all worlds
that are at least as possible as w. Note that � and ♦ remain
unweighted: this integration of weights actually does not lead
to weighted modalities.

Also, the accessibility relation induced by π is necessarily
antisymmetric, transitive and reflexive, restricting the expres-
sivity of the ensuing modalities.

The distribution of possibilities π can also be generalised to
formulae, defining Π(ϕ) = max

w∈W
{π(w)|M, w � ϕ} [Dubois

et al., 2012]. This model allows to build a generalised possi-
bilistic logic, interpreted in an epistemic framework.

[Laverny and Lang, 2004] similarly enrich the classi-
cal Kripke model with weights on the worlds, where these
weights represent some semantic property of the world in-
dependantly of any formal paradigm: to each world is asso-
ciated a so-called exceptionality degree that represents how
different –or unrepresentative– the world is. An exceptional-
ity degree is then assigned to each formula by:

except(ϕ) = min
w∈W
{except(w) | M, w � ϕ}

The proposed definition for the induced weighted modality
does not preserve the classical definition of Eq. (3) but states:

M, w � �αϕ ⇔ except(¬ϕ) ≥ α
This definition means that the more exceptional a contradic-
tion, the higher the weight.

Two properties of this exceptionality based definition of
weighted modalities stand out: first, the validity of a modal
formula is global and does not depend on the reference world
where it is interpreted. Indeed,M, w � �αϕ ⇔ M � �αϕ.
Second, due to the inequality in their definition, a dependence
between modalities can be observed: the decreasing gradual-
ity property given in Eq. (5) also applies for this model.

2.4 Counting Approach
The counting approach [Fine, 1972; Fattorosi-Barnaba and
Cerrato, 1988; Caro, 1988; van der Hoek and Meyer, 1992]
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does not modify Kripke definitions of frames to integrate
weights, neither on worlds nor on the relation, but modifies
the modality definition, using a counting approach. Contrary
to all previously discussed approaches, the weights consid-
ered here are integers and are, as a consequence, denoted n.

The counting approach modifies the quantification con-
straints on accessible validating worlds in Eq. (3) and (4).
Indeed, the interpretation of ♦n is based on a hardening of
the existential quantifier of Eq. (4): it no longer requires that
at least one accessible world satisfies the formula but that at
least n do. Formally, the counting approach defines ♦n and,
by duality, �n, as, ∀n ∈ N:

M, w � ♦nϕ ⇔ |Rw(ϕ)| ≥ n (6)
M, w � �nϕ ⇔ |Rw(¬ϕ)| < n (7)

The �n modality is weighted by the number of invalidating
accessible worlds: n can be interpreted as a measure of con-
tradiction.

Whereas this definition relies on absolute counting, major-
ity logic [Pacuit and Salame, 2006] considers a specific case
of relative counting: it introduces a modal operator express-
ing that a formula is true in more than half of the accessible
worlds. It addresses the issue of its semantics in the case of
infinite sets of worlds W .

Contrary to the approaches described in the previous sub-
sections 2.1 and 2.2, which rely on a semantic definition,
the counting approach has also been axiomatised, in both
the absolute and relative cases [Caro, 1988; Pacuit and
Salame, 2006]: the models propose manipulation rules for
the weighted modalities.

3 Proposed Semantics
This section describes the semantics we propose for a
weighted modal logic. It relies on a relative counting ap-
proach: despite its limitation to finite sets of worlds W , the
normalisation constraint it imposes offers the benefits of rich
information that allow to establish weighted extensions of the
modal axioms, as discussed in Sections 4 and 5.

Syntactically, for p ∈ P denoting a set of propositional
variables and α ∈ [0, 1] a numerical coefficient, we consider
the set of all well-formed formulae according to the language

F := p | ¬F | F ∧ F | F ∨ F | F → F | �αF | ♦αF

3.1 Definition
The semantics we propose follows the same principle as
the relative counting approach described in Section 2.4, viz.
based on counting proportions of validating worlds to relax
the universal and harden the existential quantification con-
straints of Eq. (3) and (4).

It is defined when W is finite, in a frequentist interpre-
tation, as a normalised cardinality. This proportion has the
added benefit of making the modality weight independent of
frame connectivity: the evaluation of the truth value of a for-
mula �αϕ in a world w is not obfuscated by the number |Rw|
of accessible worlds w has.

Formally, the proposed weighted modality �α is defined
as, ∀α ∈ [0, 1]:M, w � �αϕ ⇔ |Rw(ϕ)|

|Rw|
≥ α if Rw 6= ∅

M, w � �αϕ otherwise
(8)

This definition thus relaxes the universal quantifier in Eq. (3),
only requiring that a proportion of the accessible worlds sat-
isfy the formula ϕ, instead of all of them.

By duality, the relation ♦α is defined as, ∀α ∈ [0, 1]M, w � ♦αϕ ⇔
|Rw(ϕ)|
|Rw|

> 1− α if Rw 6= ∅

M, w 2 ♦αϕ otherwise
(9)

The modality ♦α requires that at least a proportion 1 − α of
accessible worlds satisfy ϕ, instead of at least one accessi-
ble world: similar to the counting approach of Section 2.4,
it thus hardens the existential quantifier, requiring more than
just one accessible validating world. Note that, consequently,
the higher the α, the less demanding the condition. Also,
because ♦αϕ = ¬�α¬ϕ, the loose inequality in Eq. (8) be-
comes a strict one for ♦, in Eq. (9).

3.2 Properties
This section establishes and discusses some properties satis-
fied by the proposed weighted modal operators.

Boundary Cases
As stated in the following proposition, the boundary case
α = 1 corresponds to the classical modalities, whereas α = 0
is a tautology for � and a contradiction for ♦:

Proposition 1.

�1ϕ = �ϕ � �0ϕ
♦1ϕ = ♦ϕ � ¬♦0ϕ

The proofs of this proposition follow directly from the def-
initions given in Eq. (8) and (9) and are, thus, omitted.

As a consequence, the case α = 0 can be considered as
trivial and uninformative and it should, generally, be ignored.
However, in the case where it is the only value for which a
weighted formula holds, it expresses rich knowledge: con-
sidering �0 for instance, for w ∈W such that Rw 6= ∅ and
|Rw(ϕ)|/|Rw| = 0,M, w � �1¬ϕ.

Decreasing Graduality
Due to the transitivity of the inequality relation on which the
proposed semantics relies, the decreasing graduality property
is satisfied:

Proposition 2. The definition of �α given in Eq. (8) satisfies
the graduality property defined in Eq. (5).

The proof follows directly from the definitions given
in Eq. (8) and Eq. (5) and is, therefore, also omitted.

Proposition 2 implies that, up to a maximal degree, a for-
mula holds for all lower weights. Notice that this prop-
erty provides another justification for the uninformativeness
of the �0 modality underlined above. More generally, as
a result, the most informative weight for the �α modality
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is the maximal admissible value, since all others can be in-
ferred from it. This property will be crucial for establishing
weighted extensions of modal axioms, as discussed in Sec-
tion 4.

By duality, similar results hold for the ♦α modality, with an
increasing graduality property: for ♦α, the most informative
weight is the minimal admissible value.

Relations between �α and ♦α
Let us underline that the preserved duality constraint, accord-
ing to which �αϕ = ¬♦α¬ϕ, does not guarantee the equiv-
alence between �αand ♦1−α. Indeed, due to the fact that
the �α definition relies on a non-strict inequality whereas ♦α
relies on a strict one, it can be shown that one implication
holds but the other does not: (the case α = 0 is covered by
Proposition 1).
Proposition 3.

∀α ∈ (0, 1] � ♦αϕ→ �1−αϕ

2 �αϕ→ ♦1−αϕ

Proof. LetM = 〈〈W,R〉, s〉 be any model and w ∈ W . It
holds that

M, w � ♦αϕ ⇔ Rw 6= ∅ and |Rw(ϕ)|
|Rw| > 1− α

⇒ Rw 6= ∅ and |Rw(ϕ)|
|Rw| ≥ 1− α

⇒ M, w � �1−αϕ

The fact that the second implication �αϕ → ♦1−αϕ is
not a tautology can be proved using a counterexample, such
as the frame in Fig. 1: w � �2/3ϕ but w 2 ♦1/3ϕ, as
|Rw(ϕ)|/|Rw| = 1/3 does not satisfy a strict inequality. �

Another relation establishes an equivalence between the
classical ♦ and a weighted �α:
Proposition 4. For any model M = 〈〈W,R〉, s〉 and any
w ∈W ,

M, w � ♦1ϕ ⇔ Rw 6= ∅ and M, w � � 1
|Rw|

ϕ

Proof. LetM = 〈〈W,R〉, s〉 be any model and w ∈ W . It
holds that

M, w � ♦1ϕ ⇔ ∃w′ ∈ Rw,M, w′ � ϕ

⇔ Rw 6= ∅ and
|Rw(ϕ)|
|Rw|

≥ 1

|Rw|

�

4 Principles for Building Weighted Extensions
of Modal Axioms

Axioms in classical modal logic [Blackburn et al., 2001] can
be seen as defining rules for the combination of the modal
operators � and ♦, establishing relations between formulae
in which they occur once, repeatedly or in combination.

We propose to study their weighted transposition, defined
as the formulae obtained when replacing each modality of
a classical axiom with a weighted one, each with its own
weight. Thus, the classical axiom (4), written ` �ϕ→ ��ϕ,
leads to a weighted extension noted ` �αϕ→ �β�γϕ.

More precisely, we propose to examine how these weights
depend on each other, in a semantic approach based on the
interpretation of weighted modal logic presented in the pre-
vious section: the method we consider consists in identifying
weight dependence which holds either in any frame or un-
der specific frame conditions. Moreover, we study whether
the frames in which the obtained axioms hold satisfy specific
conditions. This section presents the principles used to set the
values for the introduced weights.

4.1 Inequality Constraints on Candidate Weights
When interpreted as elements of an inference system, in or-
der to allow rich inferences, axioms that take the form of im-
plications should have premises that are easy to satisfy and
informative conclusions.

This informal principle gives hints regarding relevant
weight values exploiting the axiom structure, more pre-
cisely the position of the considered modal operator �α, in
combination with the crucial decreasing graduality property:
when �α is in the conclusion of the implication, α should be
maximal. Indeed, all lower values can be inferred from it and
the most informative case is the highest value.

Conversely, if �α is in the premise of the implication, α
should be minimal: it indicates the lowest value that still al-
lows to infer the conclusion, using modus ponens. Indeed,
any proved formula of the form �βϕ with greater β induces
the required �αϕ, triggering the axiom inference.

By duality, for the ♦α operator that satisfies an increasing
graduality property, the converse definition of relevant values
applies: α should be minimal for ♦α in the conclusion and
maximal in the premise.

As a consequence, weighted extensions of classical modal
axioms can be qualified as enriched, relaxed or loosened vari-
ants of their non-weighted counterparts, depending on the po-
sition of the weighted modalities and the weight values.

Indeed, if the weighted axiom is established for �α with
a high value for α in the conclusion, the induced axiom can
be considered as enriched: it allows inference of informative
elements. Note that this configuration is interesting only if
there is a weighted modality in the premise: otherwise, the
classical axiom allows to conclude with the �1 modality, and
thus all �α by decreasing graduality.

When the weighted axiom contains �α in its premise, it
can be considered as a relaxation of the classical version: it
allows to infer a conclusion even if the strongest hypothesis
is not satisfied.

Finally, there can be more complex variations leading to a
weighted axiom that can only be considered as a loosening of
the classical version, as discussed in section 5.

4.2 Using Frame Conditions
A second tool to establish weight dependence for weighted
extensions of modal axioms is provided by the frame condi-
tions associated to classical modal axioms in correspondence
theory [Van Benthem, 1984]. Indeed, the semantic counter-
parts of modal axioms comes with specific classes of frames,
constrained by conditions on the accessibility relation which
is, for instance, required to be reflexive or symmetric. Table 1
lists the definition of the most frequent relation properties.
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serial ∀u,∃v, uRv
reflexive ∀u, uRu

symmetric ∀u, v, uRv ⇒ vRu
shift-reflexive ∀u, v, uRv ⇒ vRv

transitive ∀u, v, w (uRv ∧ vRw)⇒ uRw
euclidean ∀u, v, w (uRv ∧ uRw)⇒ vRw

dense ∀u, ∀v uRv ⇒ ∃w, (uRw ∧ wRv)

Table 1: Most common properties of a relation R defined on
W ×W , where u, v, w ∈ W .

Therefore, when interpreting the weighted extension of a
classical modal axiom from a semantic point of view, we only
consider frames satisfying the corresponding conditions, to
examine if specific relations are imposed on the weight val-
ues under these assumptions. This principle also guarantees
compatibility with the boundary case where all introduced
weights equal 1.

�α, which presents a more expressive interpretation
than �, is also less informative. Indeed, knowing that a pro-
portion of accessible worlds is a model for a given formula
does not give information on this formula’s evaluation in all
considered worlds: �α gives a global indication and leads
to uncertainty for any precisely specified world. As a con-
sequence, it is expected that establishing weighted extensions
of the axioms may require to impose more constraining frame
conditions. More precisely, it can be the case that the obtained
axiom does not exclude the case where the conclusion is of
the form �0. As discussed in Section 3.2, this is uninforma-
tive. The approach we propose thus consists in looking for
conditions that exclude such counter-example frames, hard-
ening the classic condition.

Finally, when a relevant weighted axiom has been estab-
lished, under possibly hardened frame conditions, we study
whether a converse proposition holds, i.e. whether the frames
in which the obtained weighted axiom holds necessarily sat-
isfy the considered condition. This can be considered as
opening the way to the definition of a weighted correspon-
dence theory.

5 Typology of Weighted Axioms
This section presents the obtained results, i.e. the weighted
extensions of the classical modal axioms when applying the
principles presented in the previous section. Regarding the
semantic interpretation, we consider the definition presented
in Section 3, whose constraints allow to establish weight de-
pendence.

The results, listed in Table 2, are organised in a 4-type ty-
pology, whose definition is given in the first subsection. The
following subsections then successively detail the 4 axiom
types.

5.1 Four Types of Weighted Axiom
Four types of axioms, whose content is described below have
been identified:

(I) Unweighted axioms
(II) Weighted axioms with classical correspondence
(III) Weighted axioms without correspondence
(IV) Weighted axioms with enriched correspondence

(Kα) �α(ϕ→ ψ)→ (�βϕ→ �max(0,α+β−1)ψ) (II)
(CDα) ♦αϕ→ �1−αϕ (IV)
(Dα) �αϕ→ ♦1−α+εϕ serial (II)
(Mα) �1ϕ→ ϕ reflexive (I)
(Bα) ϕ→ �1♦1ϕ symmetric (I)
(�Mα) �1(�1ϕ→ ϕ) shift-reflexive (I)
(4α) �αϕ→ �1�αϕ transitive & euclidean (III)
(5α) ♦αϕ→ �1♦α+εϕ transitive & euclidean (III)
(C4α) �α�1ϕ→ �αϕ dense & shift-reflexive (IV)
(C4α) �1�βϕ→ �βϕ dense & transitive (IV)
(C4α) �1�βϕ→ ♦1ϕ dense & transitive (IV)
(C4α) �α�βϕ→ �βϕ transitive & euclidean (IV)

Table 2: Obtained weighted axioms with associated (not nec-
essarily corresponding) frame conditions and type, as defined
in Section 5.1. α, β are real numbers in [0,1] and ε ∈ (0,α].

These types depend on the relation between the weighted
axioms and their classical counterparts and the frame condi-
tions the latter correspond to: type I groups axioms that can-
not be relaxed using the degrees of freedom offered by the
weights. Type II is composed of weighted axioms that pre-
serve the frame conditions of their usual versions. Types III
and IV contain the weighted axioms that require a modifi-
cation of the conditions imposed on the frame, respectively
when correspondence cannot be proved or when it can.

Note that a given classical axiom can have several weighted
extensions, depending on the considered frame conditions.

The following subsections detail each type in turn, each
only describes one example.

5.2 Type I: Unweighted Axioms
The first type groups axioms for which the only possible
weighting is the usual boundary case where the weights equal
1: they cannot be weakened and do not benefit from the
weighting relaxation.

This is, for instance, the case of axiom (M), whose general
weighted form is ` �αϕ → ϕ. By compatibility with the
classic case this formula must be true within any frame with
a reflexive relation. However, in the case where the maximal
admissible weight is α < 1, the reflexivity constraint cannot
guarantee the reference world is not the (or one of the) worlds
where ϕ does not hold. Other additional constraints (such as
transitivity, symmetry or euclideanity) would not give infor-
mation aboutw itself. It can be shown easily, by construction,
that:
Theorem 1. ∀α ∈ [0, 1), there exists a model M =
〈〈W,R〉, s〉 with reflexive R and w ∈ W such thatM, w �
�αϕ butM, w � ¬ϕ.

Proof. Let α ∈ [0, 1). Finding a counter-example is suffi-
cient to prove this theorem. Let F = 〈W,R〉 be a frame
containing n worlds, where n is such that (n− 1)/n ≥ α and
R is reflexive, let w ∈W be such that Rw = W . Let s be the
valuation such that

(i) x � ϕ for all x ∈W \ {w}
(ii) w � ¬ϕ

It holds that w � �αϕ but w 2 ϕ. �
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Similar considerations can be applied to the classical ax-
ioms (B) and (�M), whose weighted extensions equal their
classic counterparts, as presented in Table 2.

5.3 Type II: Weighted Axioms with Classic
Correspondence

Type II axioms offer a relaxed version of their classic counter-
parts and can be established under the same frame conditions.
Moreover, the classically associated relation constraint is pre-
served and sufficient to have relevant values. This example
applies to axiom (K), as stated by the following theorem:
Theorem 2 (Kα). ∀α, β ∈ [0, 1]

� �α(ϕ→ ψ)→ (�βϕ→ �γψ)

where γ = max(0, α+ β − 1)

Proof. Let F = 〈W,R〉 be a frame and w ∈ W . If Rw =
∅, w trivially satisfies all three modal formulae and thus the
implication. If |Rw| > 0, the proof consists in applying the
modus ponens in accessible worlds where both ϕ → ψ and
ϕ are satisfied: Rw(ϕ → ψ) ∩ Rw(ϕ) ⊆ Rw(ψ). Now by
definition of the cardinal of set intersection:

|Rw(ϕ→ ψ) ∩Rw(ϕ)| = |Rw(ϕ→ ψ)|+ |Rw(ϕ)|
−|Rw(ϕ→ ψ) ∪Rw(ϕ)|

As |Rw| ≥ |Rw(ϕ→ ψ) ∪Rw(ϕ)|, it holds that:

|Rw(ψ)| ≥ |Rw(ϕ→ ψ) ∩Rw(ϕ)|
≥ |Rw(ϕ→ ψ)|+ |Rw(ϕ)| − |Rw|

Thus: |Rw(ψ)|
|Rw| ≥ α+ β − 1. �

Similarly, as indicated in Table 2, a weighted extension of
axiom (D) is established for any serial frame, and recipro-
cally. It states that ` �αϕ→ ♦1−α+εϕ for all α ∈ [0, 1] and
ε ∈ (0, α]. The weighted variant (Dα) completes the prop-
erties stated in Prop. 3 that relates the two weighted modal
operators.

5.4 Type III: Weighted Axioms without
Correspondence

This section establishes axioms where the classical frame
conditions are not sufficient to establish weighted variants
and proposes the addition of relevant requirements.

It can be illustrated with axiom (4), written ` �ϕ→ ��ϕ
and classically associated with transitivity. A weighted vari-
ant is of the form ` �αϕ → �β�γϕ and the issue is to
determine the appropriate values for β and γ for a given α.

Now the sole condition that R is transitive does not allow
to establish such a result:
Theorem 3. ∀α ∈ [0, 1), there exists a model M = 〈F, s〉
with R transitive and w ∈ W such that M, w � �αϕ and
M, w � �1�1¬ϕ.

Proof. The proof consists in building such a modelM. For a
given α < 1, letm, q ∈ N∗ such that α ≤ m/(m+q). LetW
be a set of 1 + q + m worlds, w ∈ W , R the binary relation
between worlds and s the valuation defined such that

(i) Rw = W \ {w}

w

:

'

'

'
w*

Figure 1: Counter-example model proving Th. 3 for α = 2
3

u v w

Figure 2: Frame showing the converse of Th. 4 does not hold

(ii) |Rw(ϕ)| = m

(iii) |Rw(¬ϕ)| = q

(iv) ∀x ∈ Rw,, let Rx = {wn} for one wn ∈ Rw(¬ϕ)

By definition, R is transitive. Denoting F = 〈W,R〉 and
M = 〈F, s〉, it holds that M, w � �m/(m+q)ϕ, therefore,
using the graduality property,M, w � �αϕ.

Moreover, as ∀u ∈ Rw, M, u � �1¬ϕ, it holds that
M, w � �1�1¬ϕ: there is no β > 0 such that M, w �
�β�γϕ for γ > 0. �

Such a counter-example model is illustrated in Figure 1 for
α = 2/3, with m = 2 and q = 1.

Therefore, transitivity is not a sufficient condition to have
guarantees on the values of β and γ. It is thus necessary to
harden the frame conditions by adding another constraint, eu-
clideanity in Th. 4 below. Indeed, it can prevent the existence
of sinkhole worlds, the ones inRw(¬ϕ) in the previous proof.
Transitivity is kept to preserve the compatibility with the clas-
sic case obtained when the weights equal 1, leading to the
theorem:

Theorem 4 (4α). ∀F = 〈W,R〉,
R is transitive and euclidean

⇒ ∀α ∈ [0, 1], F � �αϕ→ �1�αϕ

Proof. The proof relies on the fact that, for a transitive and
euclidean relation, ∀w′ ∈ Rw, Rw′ = Rw. As a conse-
quence, for all valuations s and for all α ∈ [0, 1], ifw � �αϕ,
then all accessible worlds w′ ∈ Rw also satisfy w′ � �αϕ,
that is w � �1�αϕ

�

However, the converse does not hold: Fig. 2 shows a
counter-example with a frame F = 〈W,R〉, with W =
{u, v, w} such that F � �αϕ → �1�αϕ, for all α ∈ [0, 1],
for all valuations s and for all worlds w ∈ W , but R is not
euclidean.

The axiom established in Theorem 4 is powerful as the first
modality in its conclusion is weighted by the maximal pos-
sible degree and the second one precisely by the degree α
appearing in the premise of the implication. Therefore, a
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Figure 3: Counter-example model proving Th. 5 for α = 3
4

weighted axiom with greater degree cannot be considered,
meaning this axiom cannot be “improved”.

The same kind of result, shown in Table 2 but not detailed
here, can be proved for the weighed extension of the clas-
sic (5) axiom: it possesses the same structure as axiom (4)
with a single ♦α operator in its premise and the combination
of two modal operators in its conclusion.

5.5 Type IV: Weighted Axioms with Enriched
Correspondence

Weighted axioms of type IV are defined as extensions for
which additional frame conditions must be considered. The
difference with type III comes from the fact that, in their case,
correspondence can be proved.

We illustrate this category with the case of axiom (C4α):
its classic counterpart states ` ��ϕ→ �ϕ and is associated
to the density frame condition. The general weighted version
takes the form �α�βϕ→ �γϕ but, as stated in the following
theorem, density alone is not sufficient to guarantee such a
property: for any α and β value, a model can be built for
which γ = 0.

Theorem 5. ∀α ∈ [0, 1),∀β ∈ [0, 1], there is a modelM =
〈F, s〉 with R dense and w ∈ W such thatM, w � �α�βϕ
andM, w � �1¬ϕ

Proof. Again, the proof consists in building such a model
M = 〈F, s〉. For a given α ∈ [0, 1) and β ∈ [0, 1], let
n ∈ N be such that n ≥ α/(1− α). Let W be a set of n+ 2
worlds, w∗ and w′ two distinct worlds from W and R and s
such that

(i)M, w′ � ϕ

(ii) ∀w ∈W \ {w′},M, w � ¬ϕ
(iii) Rw∗ = W \ {w′}
(iv) ∀w ∈W \ {w∗}, Rw = {w′}

By construction, R is dense.
Then ∀w ∈ W \ {w∗}, M, w � �1ϕ, which implies by

decreasing graduality,M, w � �βϕ. Therefore

|Rw∗(�βϕ)| = n ⇒ |Rw∗(�βϕ)|
|Rw∗ |

=
n

n+ 1
≥ α

⇒ M, w∗ � �α�βϕ

ButM, w∗ � �1¬ϕ so @γ > 0 such thatM, w∗ � �γϕ.
�

Such a counter-example frame is illustrated on Fig. 3 for
α = 0.75.

As a consequence, the only way to guarantee a strictly pos-
itive value of γ is to add assumptions on the relation proper-
ties. As listed in Table 2 four distinct sets of constraints can
be added to the accessibility relation, leading to four weighted
extensions of (C4α). They differ by the informativeness of
their conclusion and the correlated level of constraint their
premise imposes.

We give the proof for the strongest version of (C4α).
Note that the classical properties is preserved by euclidean-
ity which implies that density holds.

Theorem 6 (C4α). ∀F = 〈W,R〉,
R is transitive and euclidean

⇒ ∀α ∈ (0, 1],∀β ∈ [0, 1], F � �α�βϕ→ �βϕ

Proof. Let 〈W,R〉 be such that R is transitive and euclidean.
Let a world w ∈ W and α, β ∈ (0, 1] ( if β = 0 then �βϕ is
true, and thus the implication is).

If w 2 �α�βϕ, then w � �α�βϕ→ �βϕ.
If w � �α�βϕ, then a proportion α > 0 of worlds ac-

cessible from w satisfy �βϕ, let u be such a world. It holds
that:

|Ru(ϕ)|
|Ru|

≥ β

Now, as R is transitive and euclidean, it holds that ∀w′ ∈
Rw, Rw′ = Rw. In particular, Ru = Rw. We thus have :

|Rw(ϕ)|
|Rw|

≥ β

Therefore, w � �βϕ. �

The converse can be proved by contraposition: if the rela-
tion is not transitive and euclidean, then axiom (C4α) does
not hold. For this proof, we have to build a Kripke frame
whose relation is not transitive or not euclidean, and we need
to propose values for α and β, and a valuation such that the
axiom does not hold in one world of the frame.

The principle of this proof is illustrated by its first part:
we show that for any frame 〈W,R〉, if the relation R is not
transitive, then there exist α, β and a valuation such that ∃w ∈
W such that w 2 (C4α). Formally:

Theorem 7. ∀F = 〈W,R〉,
R is not transitive

⇒ ∃α, β ∈ [0, 1], ∃s, ∃w ∈W,
〈〈W,R〉, s〉, w 2 �α�βϕ→ �βϕ

Proof. Let W be a finite set of worlds and R a non-transitive
relation: there exists u, v, w ∈ W such that uRv ∧ vRw ∧
¬uRw. We set α = 1

|Ru| and β = 1
|Rv| . Let s be the valuation

such that

(i) w � ϕ

(ii) ∀x ∈W \ {w}, x 2 ϕ.

Figure 4 illustrates an example of a such model.
It holds that:

• u � �1¬ϕ because the only world satisfying ϕ cannot
be accessible from u: w 6∈ Ru. Therefore u 2 �βϕ

• v � �βϕ because w ∈ Rv and w � ϕ
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Figure 4: Kripke model where R is non-transitive

• u � �α�βϕ because v ∈ Ru and v � �βϕ

Therefore ∃α, β such that u � �α�βϕ but u 2 �βϕ,
which implies u 2 (C4α). �

Following the same principle, it can be shown that if the
relation is not euclidean then there exists a model which does
not satisfy (C4α).

Note that there exists other weighted versions of (C4),
listed in Table 2. Indeed, with frame conditions weaker
than transitivity and euclideanity, relevant values hold for the
weights.

6 Conclusion and Future Works
This paper studied rules for the combination of weighted
modal operators, through the extension of classical axioms.
In doing so, it offered a typology of weighted axioms with
respect to their relation to their classical counterparts and to
the frame conditions the latter correspond to. It discussed the
expressiveness increase allowed by the weighting of axioms
and how the hardened relation properties allow to balance the
induced lack of informations. Thus, some examples were pro-
posed to illustrate most of the issues of weighted axioms.

Amongst the frame conditions considered for establishing
the weighted modal axioms, only binary classical relation
properties were studied. It would be interesting to consider
relaxed versions, in the spirit of some α-symmetry, to exam-
ine what other extended versions of the axioms can be estab-
lished.

Future works also aim at specifying the proposed weighted
modal logic to the doxastic framework, so as to study a belief-
based adaptation. From a semantic point of view, the interpre-
tation of the weights as belief degrees will be studied; from
an axiomatic point of view, the weighted axioms of the modal
logic KD45 and their properties will be considered from the
set of established axioms.
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and A. Herzig. A modal analysis of possibility theory.
In Fundamentals of Artificial Intelligence Research, pages
11–18. Springer, 1991.

[Fattorosi-Barnaba and Cerrato, 1988] M. Fattorosi-Barnaba
and C. Cerrato. Graded modalities I. Studia Logica,
47:99–110, 1988.

[Fine, 1972] K. Fine. In so many possible worlds. Notre
Dame Journal of Formal Logic, 13(4):516–520, 1972.

[Laverny and Lang, 2004] N. Laverny and J. Lang. From
knowledge-based programs to graded belief-based pro-
grams. Part I: On-line reasoning (regular paper). In ECAI.
IOS Press, august 2004.

[Pacuit and Salame, 2006] E. Pacuit and S. Salame. Majority
logic: Axiomatization and completeness. Studia Logica,
2006.

[Shirazi and Amir, 2007] A. Shirazi and E. Amir. Probabilis-
tic modal logic. In AAAI, volume 7, pages 489–495, 2007.

[Van Benthem, 1984] J. Van Benthem. Correspondence the-
ory. Springer, 1984.

[van der Hoek and Meyer, 1992] W. van der Hoek and J.-J.
Meyer. Graded modalities in epistemic logic. Springer,
1992.

[Zadeh, 1965] L.A. Zadeh. Fuzzy sets. Information and
Control, 8:338–353, 1965.

[Zadeh, 1978] L.A. Zadeh. Fuzzy sets as the basis for a the-
ory of possibility. Fuzzy Sets and Systems, 1978.

IJCAI-15 Workshop on Weighted Logics for Artiticial Intelligence (WL4AI-2015)

47



Non-Markovian Logic-Probabilistic Modeling and Inference

Eduardo Menezes de Morais∗

University of São Paulo

São Paulo, Brazil

eduardo.morais@usp.br

Glauber De Bona†

University of São Paulo

São Paulo, Brazil

debona@ime.usp.br

Marcelo Finger‡

University of São Paulo

São Paulo, Brazil

mfinger@ime.usp.br

Abstract

This work focuses on the use of Probabilistic Logic
for modeling and reasoning about non-local depen-
dencies; it employs classical logic formulas anno-
tated with conditional and unconditional probabil-
ities and presents algorithms that perform prob-
abilistic inference in this setting. Non-local un-
bounded distance dependencies occur in several
computational linguistic tasks; in this work we fo-
cus on part-of-speech tagging.

We start by modeling Hidden Markov Models in
Probabilistic Logic and showing how to relax the
eminently local markovian hypotheses, introduc-
ing ways to capture unbounded dependencies. We
study how to perform logic-probabilistic inferences
over those models, discuss how inconsistencies can
arise and be detected in such cases, and how to per-
form inferences to the best approximations even in
those cases.

1 Introduction

Representing a generic probabilistic distribution over discrete
random variables takes exponential space over the number of
variables. To avoid this inefficiency, extra hypotheses are usu-
ally added to the model, normally in the form of markovian
assumptions: a binary relation is imposed on the variables
and each variables is assumed to be conditionally dependent
only on the variables directly related to it. Many success-
ful models have been built based on such hypotheses, such
as HMMs [Baum et al., 1970a], Bayesian Networks [Pearl,
1988] and Markov Logic Networks [Richardson and Domin-
gos, 2006].

Those models explore the locality of dependencies of the
represented phenomena; even if not all dependencies are
strictly local, there is a predominance of local ones. Even-
tually, however, the accuracy of these models reach a limit
when the phenomena described contain, even in a small mea-
sure, unbounded distance dependencies, which are system-
atically ignored by the model. In these cases it is expected

∗Supported by CNPq grant GD 154245/2014-3.
†Supported by CAPES grant.
‡Partially supported by CNPq grant PQ 306582/2014-7.

that a big effort is necessary to obtain a small accuracy im-
provement. This work is part of a research project that aims
to understand precisely how big this effort must be.

In contrast with markovian models, Probabilistic Logic
is totally free of independence presuppositions [Nilsson,
1986; Hansen and Jaumard, 2000]. The decision procedure
for propositional probabilistic logic is NP-complete [Geor-
gakopoulos et al., 1988] and it has recently been shown that
it displays a phase-transition behavior of the form easy-hard-
easy, with a considerable subset of instances in the “easy”
region [Finger and De Bona, 2011]; as a consequence, non-
trivial models based on Probabilistic Logic have been pro-
posed [Finger et al., 2013].

This work aims at the study of modeling non-markovian
phenomena using Probabilistic Logic and at developing rea-
soning mechanisms for it; this approach consists of classical
propositional formulas annotated with conditional and uncon-
ditional probabilities. Special attention is dedicated to the
inference problem in this setting and how to deal with poten-
tially inconsistent logic-probabilistic theories.

In particular, we model part-of-speech (PoS) tagging, a
well known problem which is predominantly local but which
is known to possess unbounded distance dependencies in
a smaller scale. Furthermore, there are well-known ap-
proaches based on Hidden Markov Models (HMM) for PoS
tagging [Charniak, 1993] which will serve as a starting point
for our study. It is important to note that at this point we do
not aim at beating existing markovian models, but simply to
study ways of modeling non-markovian phenomena involv-
ing unbounded distance dependencies. Future work will deal
on how to combine these kinds of modeling tools.

After reviewing the basic notions of PoS tagging and
HMMs in Section 2, we start by modeling HMMs in Prob-
abilistic Logic, obtaining in Section 3 a logic-probabilistic
theory whose size is exponential in the number of words
in the sentence. We then relax that initial model to get rid
of exponentially-sized independence hypotheses, introducing
ways of capturing unbounded dependencies in Section 4. We
discuss how to perform inference over a consistent logic prob-
abilistic non-markovian model, how inconsistencies can arise
and be detected in such cases, and how to perform inferences
to the best approximations even in those cases.
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2 Background

2.1 Part-of-speech tagging

PoS tagging associates each word in its context in a sentence
to a part-of-speech tag from a given finite tag set. Human
language has many levels of ambiguity, which occurs also in
PoS tagging.

For example, consider the input sentence “the horse raced
past the barn”. The word the tends to be mostly a determiner
(D) and horse and barn tend to be nouns (N). However, the
verb raced can be a past tense verb (VB-P), but also a past
participle form of a verb (VB-PP); likewise, past is either a
preposition (P) or an adjective (ADJ) or a noun (N). This kind
of ambiguity can usually be resolved by a simple inspection
on the adjacent tags, and the resulting PoS tagging of the sen-
tence, represented by pairs “word/Tag” is the following.

the/D horse/N raced/VB-P past/P the/D barn/N

in which the local context was used to disambiguate
raced/VB-P and past/P. Now consider the sentence obtained
by adding one word at the end, the horse raced past the barn
fell. This is still a grammatical sentence, but its sense has
changed and, more to the point, the verb raced changed from
past tense to a past participle form, as represented by the fol-
lowing partial tagging, highlighting the modified tags:

the horse raced/VB-PP past the barn fell/VB-P

The presence of the verb fell forces us to reinterpret raced as a
past participle form, which consists of an unbounded distance
dependency, as the number of words between raced and fell
can be arbitrary, as in the horse raced past the barn where we
used to spend our idle time fell. A model based solely on the
locality of dependencies will ignore that influence.

Probabilistic PoS models aim at producing the tagging that
is most likely for a given input sentence. HMMs are one of
the most used models for that task, but far from the only one;
see [Brill, 1995; Ratnaparkhi, 1998].

2.2 Hidden Markov Models

A Hidden Markov Model (HMM) is a stochastic process
whose states cannot be observed directly (the states are said to
be hidden). What is observed is a sequence of symbols pro-
duced by another stochastic process dependent only on the
current hidden state.

HMMs have been successfully used on language process-
ing tasks as early as the 1970s [Baker, 1975] with applica-
tions on many areas such as part-of-speech tagging, speech
recognition and information extraction [Jurafsky and Martin,
2000].

The theory of HMMs was developed in the late 1960s
[Baum et al., 1970b] based on the techniques of Andrei
Markov [Markov, 1913] modeling sequence of letters on
works of Russian literature.

A Markov Chain (a non-hidden Marvok Model) is a model
of a sequence of random variables T = (t1, . . . , tM ) where
the probability distribution of a variable ti depends only on
the value of ti−1 (it is said that the states “lack memory”) and
these probabilities do not vary in time. For example, consider
a Markov Chain with 2 possible states, sunny and rainy, and

consider that, given that it is sunny, there is a 0.2 probability
of the next day will be rainy and if it is rainy, the proba-
bility of being sunny the next day is 0.3. Given that today
is sunny, we can calculate the probability of the sequence
“sunny,rainy,sunny” for the next days simply multiplying
the transition probabilities, in this case, p(sunny|sunny) ×
p(rainy|sunny)× p(sunny|rainy) = 0.8× 0.2× 0.3 = 0.048.

In a Hidden Markov Model, the hidden states transition in
the same way as a Markov Chain. However, you cannot ob-
serve the states, and the observed symbols are random. In
the example above imagine that it is impossible to tell if it is
sunny or rainy, but you can observe if it is hot or cold. In
a sunny day, there is a 0.7 chance of observing hot. On a
rainy day this chance is only 0.4. In this scenario, an obser-
vation “hot,cold,hot” can be generated from different state se-
quences, even tough there is a most probable state sequence.

Definition

Given the state alphabet set S = {s1 . . . sN} and observation
alphabet set O = {o1 . . . oK}, consider a sequence of states
T and the observationW generated by these states.

T = (t1, . . . , tM ) tk ∈ S (1)

W = (w1, . . . , wM ) wk ∈ O (2)

In the following, i, j ∈ [1, N ]; k, ℓ ∈ [1,M ];h ∈ [1, K].
Assume that transition probabilities are stationary, i.e. do not
change in time:

P (tk = sj |tk−1 = si) = P (tℓ = sj |tℓ−1 = si) ∀k, ℓ (3)

Let A be the transition matrix, which stores the probability
that state sj follows state si in T .

A = [aij ], aij = P (tk = sj |tk−1 = si) (4)

Let B be the probability of state si producing observation oj :

B = [bih], bih = P (wk = oh|tk = si) (5)

Let q be the probability distribution of the first state:

q = [qi], qi = P (t1 = si) (6)

The formal definition of a (first-order) HMM over S and O is

H = (A,B, q) (7)

Two assumptions made by every HMM are the Markov
property and the Independence property.

The Markov property, also know as “lack of memory”,
states that the current state depends only on the previous state.

P (tk|tk−1) = P (tk|tk−1, . . . , t1) (8)

The Independence property states that each observation de-
pends only on the current state. For our purposes, this as-
sumption can be written as stating that each observation is
independent from any other states and previous observations.

P (wk|tk) = P (wk|tM , . . . , t1, wk−1, . . . , w1) (9)

IJCAI-15 Workshop on Weighted Logics for Artiticial Intelligence (WL4AI-2015)

49



Inferences on HMMs

There are several inference problems associated with HMMs.
Some of the most studied problems are:

• Calculate the probability of a sequence of observations
given a HMM (calculate P (W |H)).

• Discover the sequence of states that most likely
have produced a sequence of observations
(maxT P (W |H,T )).

• Learn the parameters of the model H = (A,B, q) to
best fit a set of examples.

For the purpose of this paper, we will focus only on the sec-
ond problem, finding the most likely explanation, also known
as decoding. This problem can be efficiently solved with the
Viterbi algorithm [Viterbi, 1967], which is a dynamic pro-
gramming algorithm that, in each step l, calculates

δℓ(i) = max
t1...tℓ−1

P (t1, . . . , tℓ−1, tℓ = si, w1, . . . , wℓ|H) (10)

= max
j
δℓ−1(j)ajibih, where wℓ = oh (11)

The variable δℓ(i) stands for the probability of the most prob-
able sequence of states for the partial observation sequence
(w1, . . . , wℓ) that ends in the state si. It can be efficiently
computed via (11) by considering all the δℓ−1 variables since
the probability of reaching any state at time ℓ depends only
on the state at time ℓ− 1.

The initialization of the algorithm is given by δ1(i) = qibih
for w1 = oh. It is necessary to save pointers for the previous
states to reconstruct the sequence of states after calculating
the largest δM .

Note that the Viterbi algorithm relies heavily on the
Markov and Independence properties.

Higher order HMMs

The Markov property can be relaxed so that a state depends on
two or more states, instead of just one. In this case, Equation
(8) becomes:

P (tk|tk−1, . . . , tk−n) = P (tk|tk−1, . . . , t1) (12)

This model is known as an n-order HMM. Higher order
HMMs can be expressed as a first-order HMM by consider-
ing compound states (composed of n states in the higher or-
der HMM) and modifying the transition matrix accordingly.
Therefore, all the properties and algorithms of a first-order
HMM also apply to an n-order HMM.

3 Modelling HMMs with Probabilistic Logic

A Hidden Markov Model encodes a single probability mea-
sure on a probability space over a universe set, which is com-
posed by sequences of tags and words in the part-of-speech
tagging context. By defining logical atomic propositions to
assert that a specific tag (or word) is assigned (observed) in
a position, such probability measure can be translated into a
logical domain, formed by the set of possible worlds (valua-
tions) induced by these atomic propositions. This probability
measure can be encoded with a finite number of probability
assignments on logical formulas; i.e., a logical-probabilistic
knowledge base. Maximum a posteriori probabilities can

then be obtained as conclusions derived from this knowledge
base, yielding the same results as the corresponding HMM. In
this section, we present the probabilistic logic framework we
employ and how it can encode a HMM; even though requiring
an exponential number of probabilities assigned to formulas.

3.1 Propositional Probabilistic Logic

Consider a set with n logical variables (atoms) P =
{x1, . . . , xn}. Let LP denote the set of propositional formu-
las defined on P as usual — inductively through conjunction,
disjunction and negation. A probabilistic knowledge base
is a finite set Γ = {P (ϕi|ψi) = pi|1 ≤ i ≤ m}, where
ϕi, ψi ∈ LP and pi ∈ [0, 1] ∩ Q , for 1 ≤ i ≤ m. Each
P (ϕi|ψi) = pi is called a (conditional) probability assign-
ment, for it is intended to restrict the value of the probability
of ϕi being true given that ψi is true.

Let V be the set containing the 2n possible propositional
valuations vj over the n logical variables, vj : P → {0, 1};
each such valuation is extended, as usual, to all formulas,
vj : LP → {0, 1}. A probability distribution over propo-
sitional valuations π : V → [0, 1] is a function that maps
every valuation to a value in the real interval [0, 1] such that
∑2n

i=1 π(vj) = 1. The probability of a formula ϕ according
to the distribution π is given by Pπ(ϕ) =

∑

{π(vj)|vj(ϕ) =
1}.

A probabilistic knowledge base Γ = {P (ϕi|ψi) = pi|1 ≤
i ≤ m} is said to be satisfied by a probability distribution
π : V → [0, 1] if Pπ(ϕi∧ψi) = piPπ(ψi), for all 1 ≤ i ≤ m.
1 The problem of deciding if there is such a π is called Prob-
abilistic Satisfiability (PSAT) and was introduced within the
AI community in its unconditional version by Nilsson [Nils-
son, 1986], who also investigated the problem of inferring
probability bounds to a given formula ϕ /∈ Γ. This inference
problem, also called OPSAT, can be defined as finding the
probability distribution π : V → [0, 1] satisfying Γ that max-
imizes/minimizes Pπ(ϕ), for some ϕ ∈ LP . PSAT is NP-
complete [Georgakopoulos et al., 1988], and OPSAT is NP-
hard, as it involves solving PSAT. Jaumard, Hansen and Poggi
de Aragão [Jaumard et al., 1991] studied the conditional ver-
sions of PSAT and OPSAT, showing how to solve them with
the Simplex algorithm and column generation methods. Even
maximizing (or minimizing) a ratio Pπ(ϕ ∧ ψ)/Pπ(ψ), cor-
responding to a conditional probability, can be done through
solving a single linear program [Hansen and Jaumard, 2000].

When a probabilistic knowledge base Γ is satisfiable, it im-
plicitly defines a set of probability measures on LP , each one
induced by a probability distribution π : V → [0, 1] that sat-
isfies Γ. Usually, this set yields probability intervals for for-
mulas ϕ /∈ Γ, but it may be the case that a unique π satisfies
Γ, defining precise probabilities for all formulas ϕ ∈ LP —
as it happens when a HMM is fully encoded.

3.2 Encoding an HMM

Consider a set S = {s1 . . . sN} of states representing part-of-
speech tags and a set of observablesO = {o1 . . . oK} that are

1Note that, when Pπ(ψi) > 0, this is the same as making the
conditional probability of ϕi being true given that ψi is true equal to
pi.
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words from a natural language. Let H = (A,B, q) be a first-
order HMM over theses sets, as defined in Section 2.2. Given
a sequence W = (w1, w2, . . . , wM ) of observed words, with
w1, . . . , wM ∈ O , the HMM encodes a posteriori probabil-
ities for each sequence of tags T = (t1, t2, . . . , tM ), with
t1, . . . , tM ∈ S .We want to codify tags and observed words
for a given position as logical propositions and assign proba-
bilities to them according to the HMM to form a probabilistic
knowledge base ΓH . The goal is that any probability distribu-
tion π satisfying ΓH entail the same a posteriori probabilities
for tag sequences given the observed words as the HMM.

Given a list of observed words W = (w1, . . . , wM ) =
(ow(1), . . . , ow(M)), we are not interested in the probability
of other words being generated. Thus, at each wi, we need
only one proposition about the actual observable: eitherwi =
ow(i) or wi 6= ow(i). Abusing the notation, we define the sets

of logical variables (atomic propositions) {w1, w2, . . . , wM}
and {ti,j |1 ≤ i ≤ M, 1 ≤ j ≤ N}, in which wi is true iff
wi = ow(i), and ti,j is true iff ti = sj . Our set of logical

variables P is defined as {ti,j |1 ≤ i ≤ T, 1 ≤ j ≤ N} ∪
{w1, w2, . . . , wM}, having NM +M atoms, yielding a set
V of 2NM+M valuations.

Note that variables ti,j and ti,k must be disjoint for every
pair j 6= k, in order to avoid assigning two different tags to
the same word occurrence. Additionally, ti,k must be true for
at least one k, for every word to be tagged. Such constraints
can be probabilistically coded into:

P (

m
∨

j=1

ti,j) = 1, 1 ≤ i ≤M ; (13)

P (ti,j ∧ ti,k) = 0, 1 ≤ i ≤M, 1 ≤ j, k ≤ N, j 6= k .(14)

For propositionwi, we equate the likelihood P (wi|ti,j) to the
probability of the HMM producing the wordwi = ow(i) from
the state (PoS-tag) tj .

P (wi|ti,j) = bj,w(i), 1 ≤ i ≤M, 1 ≤ j ≤ N . (15)

In other words, bj,w(i) ∈ [0, 1] is the probability of a given
word being wi = ow(i) given that the associated tag is tj .
From the HMM, we can encode probabilities of transitions
between states as the probability assignments:

P (ti,j |ti−1,k) = ak,j , 2 ≤ i ≤M, 1 ≤ j, k ≤ N . (16)

Similarly, from the probability of the HMM starting at each
state we obtain the following probability assignments:

P (t1,j) = qj , 1 ≤ j ≤ N . (17)

It remains to encode the independence conditions assumed
within a HMM. What we called Independence property in
Section 2.2 has to do with the likelihood of tags on observed
words, that is, given all the tags, the words are independents
from each other, and given a tag for a position, the word
at that position is independent from other tags. These as-
sumption implies P (w1 ∧ · · · ∧ wn|t1,h1

∧ · · · ∧ tn,hn
) =

∏M

i=1 P (wi|ti,hi
). Denoting a conjunct t1,h1

∧ t2,h2
∧ · · · ∧

tM,hM
, corresponding to a sequence ofM tags, by T , and the

conjunct w1 ∧ · · · ∧ wM by W , we have:

P (W |t1,h1
∧ · · · ∧ tM,hM

) =

M
∏

i=1

bhi,w(i), for any T .(18)

To fully encode a HMM, the restriction above should be
instantiated for every conjunct (¬)w1, . . . (¬)wM to codify
the probability of observing only some of the words in the
actual sequence W , given a sequence of states (tags). Nev-
ertheless, as we are interested only in the probabilities of ob-
serving the complete actual sequence of words, we keep only
the restrictions above. As a result, the knowledge base being
constructed might also be satisfied by probability measures
π different from that encoded into the HMM, but they shall
all yield the same a posteriori probabilities Pπ(W |T ) for any
tag sequence T . A final premise is the Markov property, the
condition that each tag depends only on the n previous ones,
where n is the order of the HMM. For simplicity, we are fix-
ing n = 1; that is, each tag is independent from the others
given the previous one:

P (ti,hi
|ti−1,hi−1

∧ · · · ∧ t1,h1
) = P (ti,hi

|ti−1,hi−1
), for any T . (19)

The restriction above claims a kind of “lack of memory” as
it states that ti,hi

is independent from all tj,hj
for j < i −

1, given ti−1,hi−1
. The premise within Equation (19) and

the probability assignments in Equations (16) and (17) are
together equivalent to the following probability assignments:

P (t1,h1
∧ · · · ∧ tM,hM

) = qh1

M
∏

i=2

ahi−1,hi
, for any T ,(20)

Consider the probabilistic knowledge base ΓH built as
the union of the probability assignments in (13), (14), (15),
(18) and (20). The probability distributions π satisfying ΓH

yield a point-valued for each Pπ(T |W ), and it corresponds
to the probability measure encoded by the (first-order) Hid-
den Markov Model H . To see this, note that each Pπ(T ) is
uniquely specified by (20), whilePπ(W |T ) is uniquely deter-
mined by (18). Consequently, each Pπ(W ∧ T ) is uniquely
determined, and so is Pπ(W ), by marginalizing, for (13) and
(14) forces the tag sequences to form a partition. Finally, for
any tagging T , Pπ(T |W ) has the same value for any π satis-
fying ΓH . Since we are not imposing any further constraints
than those from the HMM, at least the probability distribu-
tion corresponding to its probability measure might satisfy
ΓH , and the entailed Pπ(T |W ) has the same value as that
encoded in the HMM.

Within the HMM, one can use Viterbi algorithm to com-
pute the (point-valued) probability of the most probable se-
quence of tags T given the word listW = (w1, w2, . . . , wM ).
As we argued, this probability is the same as that obtained
through the inference of Pπ(T |W ) restricted to those π sat-
isfying the probabilistic knowledge base ΓH . That is, one
can solve a PSAT problem to obtain a π satisfying ΓH and
find which T has the maximum Pπ(T |W ) 2. Since PSAT is
NP-complete, and Viterbi algorithm runs in polynomial time,
there is no reason to choose the former rather than the lat-
ter method in this setting. Nevertheless, to achieve this ef-
ficiency, Viterbi algorithm relies on the very strong assump-
tion, coded in (20), that a given tag is unrelated to previous
tags but the left neighbor. With higher-order HMMs, one can

2Solving PSAT through linear programming returns only a poly-
nomial number of sequences T with positive probability.
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take into account an arbitrary number n of previous tags, but
the number of states in the model grows exponentially on n.

Note that ΓH has an exponential number of probability as-
signments in (18) and (20), so that relaxing the Markov condi-
tion is not enough to have a polynomial-size knowledge base.
In the next section, we discuss approaches to making the in-
ference from ΓH practicable when we give up the Markov
condition.

4 Non-Markovian Models

Our main goal is to devise a part-of-speech tagging algorithm
that does not rely on the Markov assumption, trying to cap-
ture dependencies between tags that are far from each other
in the same sentence. We have shown how a Hidden Markov
Model can be encoded into a probabilistic knowledge base,
as long as a posteriori probabilities are concerned. The non-
Markovian models built in this section are based on modi-
fications of the probabilistic knowledge base constructed in
the previous section, from which a posteriori probabilities
(of tags given observed words) can be inferred. Firstly, the
restrictions corresponding to the Markov property are aban-
doned and we propose further simplifications to keep the size
of the knowledge base polynomial. The base may then be-
come loosely constrained, yielding probability intervals for
each tag assignment, and we put forward a strategy to select
a single probability distribution. In a second moment, we in-
troduce ways to enlarge this knowledge base, supposing one
has access to a PoS-tagged corpus for training. Particularly,
it is shown how new constraints can be added to encode the
influence between tags assigned to words that are arbitrarily
far apart from each other. With these extra probability as-
signments, the probabilistic knowledge base can turn out to
be unsatisfiable, and an approach is proposed to perform in-
ference via inconsistency minimization.

4.1 Abandoning the Markov Property

Consider the probabilistic knowledge base ΓH from Section
3 formed by the union of the probability assignments in (13),
(14), (15), (18) and (20), which encodes a Hidden Markov
Model. Recall that the Markov property enables the prob-
ability assignments in (16) and (17) to substituted by those
in (20). Hence, to withdraw the Markov condition, we undo
such replacement; now we have a (non-Markovian) proba-
bilistic knowledge base Γ′

H composed by the probability as-
signments in (13), (14), (15), (16), (17) and (18).

Performing inference in a probabilistic knowledge base is
an NP-hard problem, since it involves solving PSAT. If we as-
sume the exponential time hypothesis, finding a single π sat-

isfying Γ has a worst-case time complexity of Ω(2|Γ|), where
|Γ| is the number of probability assignments in Γ. When a
sentence of M words is to be tagged, and there are N possi-
ble tags for each word in the sentence, Γ′

H has at least NM

probability assignments from (18). Consequently, deciding
the satisfiability of this knowledge base, in order to obtain a

probability distribution π, might require Ω(2N
M

) steps. To
avoid this, the probabilistic knowledge base cannot contain
all the probability assignments in (18).

Recall from Section 3 that (18) is a consequence of the

assumption P (W |T ) =
∏M

i=1 P (wi|ti,hi
); that is, the prob-

ability of observing all the M words given some sequence
of tags T is the product of the probability of observing each
word given its tag. For an arbitrary M , the number of tag
sequences T is exponential on M . Thus, an alternative is to
limit the applicability of this assumption to sequences of ℓ
words, for a fixed ℓ > 1, yielding:

P (wi ∧ · · · ∧ wi+ℓ−1|ti,hi
∧ · · · ∧ ti+ℓ−1,hi+ℓ−1

) =

=
i+ℓ−1
∏

j=i

P (wj |tj,hj
), for any T and 1 ≤ i ≤M − ℓ+ 1

=

i+ℓ−1
∏

j=i

bhj,w(j), for any T and 1 ≤ i ≤M − ℓ+ 1. (21)

For a fixed ℓ > 1, by replacing the probability assignments
(18) by (21) in Γ′

H , its size is becomes polynomial on N and

M , for (21) contains (M − ℓ+1)N ℓ assignments. We define
the probabilistic knowledge base Γℓ as the union of the prob-
ability assignments in (13), (14), (15), (16), (17) and (21).

As the probability measure encoded into a Hidden Markov
Model satisfies (21), there is at least one probability distri-
bution π satisfying Γℓ. Nevertheless, there may be probabil-
ity distributions π that satisfy Γℓ but not ΓH , yielding inter-
vals for a posteriori probabilities Pπ(T |W ) — i.e., the set of
π satisfying Γℓ does not uniquely determine Pπ(T |W ). To
choose the sequence of PoS-tags with maximum a posteri-
ori probability, we propose a method to select one probability
distribution π satisfying Γℓ.

Consider the set Π formed by all probability distributions
π : V → [0, 1] satisfying Γℓ. Each π ∈ Π can be seen
as a generative model, with point-valued probabilities for
each sequence of observed words3 and assigned tags. Given
that W is observed, we want the most probable generative
model π. Assuming a uniform a priori distribution over Π,
as the a priori probability of observing W is fixed (P (W ) =
∑

π∈Π

Pπ(W )P (π)), the maximum likelihood criterion can be

employed to select a subset of Π.

ΠW = {π ∈ Π|Pπ(W ) is maximum} . (22)

The set ΠW ⊆ Π is never empty, since Π 6= ∅, but ΠW

might not be a singleton. To compute a single π ∈ ΠW , it
suffices to solve the OPSAT problem of finding the π satis-
fying Γℓ that maximizes Pπ(W ). For practical reasons, we
solve only once the OPSAT problem, selecting the first found
π∗ ∈ ΠW , for this problem is NP-hard.

Given a generative model π∗ that maximizes Pπ(W ) and
satisfies Γℓ, it remains to find the tag sequence T with max-
imum a posteriori probability Pπ∗(T |W ). As Pπ∗(W ) is
fixed, it is the same as finding the T that maximizes Pπ∗(T ∧
W ). Even though there are exponentially many T — namely,
NM —, the linear programming approach to solving OPSAT
returns a π such that there is only a polynomial number of T

3Recall that, as we know the actual observed words, all words
that were not observed at a given position are joint in a single case.

IJCAI-15 Workshop on Weighted Logics for Artiticial Intelligence (WL4AI-2015)

52



with Pπ(T∧W ) > 0. OPSAT can be solved through the Sim-
plex method, which keeps a basis with |Γℓ|+ 1 columns cor-
responding to valuations v with π(v) > 0; for details, see for
instance [Hansen and Jaumard, 2000]. Thus, after computing
a probability distribution π∗, finding such T with maximum
Pπ∗(T ∧W ) takes no more than linear time.

Algorithm 1 summarizes this inference procedure, depart-
ing from an Hidden Markov Model. By solving a lin-
ear program, the function OPSAT (Γ, Pπ(ϕ)) returns a pair
(π∗, Pπ∗(ϕ)), where π∗ is a probability distribution satisfy-
ing the probabilistic knowledge base Γ that maximizes the
linear expression Pπ(ϕ) — the probability of a proposition ϕ
according to π.

Algorithm 1 Performing inference in a relaxed HMM

Input: A HMM H and a list of observed words
(w1, . . . , wm)
Output: A tag sequence T ∗ with maximum a posteriori
probability.

1: Γ′
H ← { probability assignments in (13), (14), (15), (16),

(17) and (18)}
2: Γℓ ← Γ′

H ∪ { probability assignments in (21)}
3: (π∗, PW )← OPSAT (Γℓ, Pπ(W ))
4: T ∗ ←argmaxT {Pπ∗(T ∧W )}
5: return T ∗

4.2 Adding Extra Constraints

Once we leave the Hidden Markov Model, additional prob-
ability assignments can be inserted into the probabilistic
knowledge base Γℓ as well. To add information that is not
encoded in the HMM, an alternative source of information is
needed; for instance, probability assignments can come from
relative frequencies in a tagged training corpus. Due to the
objective of capturing relations between tags assigned to ar-
bitrarily distant words, we intend to enlarge the knowledge
base Γℓ with probability assignments that quantify the influ-
ence of a tag at a given position on all tags at subsequent
positions. Formally, this intuition could be encoded into the
following assignments:

P (ti,hi
|tj,hj

) = rhi,hj ,i−j , 1 ≤ hi, hj ≤ N, 1 ≤ j < i ≤M . (23)

In the assignments above, the probabilities rhi,hj ,i−j ∈
[0, 1] depend on the distance i−j between the words. Another
way to encode the relation between tags assigned to words
that are arbitrarily far way is ignoring such distance:

P (ti,hi
|tj,hj

) = rhi,hj
, 1 ≤ hi, hj ≤ N, 1 ≤ j < i ≤M . (24)

Instead of using O(N2M2) probability assignments as
above, quantifying the influence of each tag at each position
on each tag at each subsequent position, we can alternatively
use the followingO(N2M) assignments, via a disjunction:

P (ti,hi
|
∨

j<i

tj,k) = r′hi,k
, 1 ≤ hi, k ≤ N, 2 ≤ i ≤M . (25)

It is important to point out that the assignments in (24) are
not equivalent to those in (25). When rhi,hj

= r′hi,hj
, the for-

mer assignments would imply the latter if tj,k and ti,k were

incompatible, but this is clearly not the case. Differently from
(24), the probability assignments in (25) does not assure that a
tag assignment be affected by each of the antecedent ones, but
only that a tag be influenced by the assignment of a tk ∈ T in
some earlier position.

When the probabilistic knowledge base Γℓ is augmented
by the insertion of probability assignments from (23), (24)
or (25), forming Γ+

ℓ , it may be the case that it becomes un-
satisfiable. Were it satisfiable, we could apply the same pro-
cedure: find the probability distribution π satisfying Γ+

ℓ that
maximizes Pπ(W ) and choose the tagging T with maximum

Pπ(T ∧W ); nonetheless, an inconsistent Γ+
ℓ calls for a dif-

ferent approach.
A natural idea when we come across an inconsistent

knowledge base is try to repair it in order to restore satisfia-
bility; that is, to consolidate the knowledge base. Potyka and
Thimm proposed a way to consolidate probabilistic knowl-
edge bases using inconsistency measures and entropy maxi-
mization to change the probabilities’ numeric values [Potyka
and Thimm, 2014]. We follow a similar approach but with-
out maximizing entropy. Actually, instead of consolidating
the knowledge base, we just want a probability distribution
π that in some sense is the closest to the satisfaction of all
probability assignments in the knowledge base.

Recall from Section 3 that a probability distributionπ satis-
fies a probability assignmentP (ϕi|ψi) = pi if Pπ(ϕi∧ψi) =
piPπ(ψi); or, equivalently, if Pπ(ϕi ∧ ψi) − piPπ(ψi) = 0.
When a π cannot satisfy all probability assignments within a
base Γ = {P (ϕi|ψi) = pi|1 ≤ i ≤ m}, we can try to mea-
sure to which extent π violates each probability assignments
by defining error variables: εi = Pπ(ϕi ∧ ψi) − piPπ(ψi).
Our method to handle inconsistent knowledge bases is to se-
lect a probability distribution π that minimizes these viola-
tions somehow.

Given a probabilistic knowledge base Γ = {P (ϕi|ψi) =
pi|1 ≤ i ≤ m} and a probability distribution π, we denote
by ε = 〈ε1, . . . , εm〉 the vector of violations, where εi =
Pπ(ϕi ∧ψi)− piPπ(ψi). We want to find a π that minimizes
some p-norm of the vector ε, defined as

‖ε‖p = p

√

√

√

√

m
∑

i=1

|εi|p ,

for some p ≥ 1. When p → ∞, the limit of the expression
above yields ‖ε‖∞ = maxi εi — the Chebyshev norm. Po-
tyka has shown how ‖ε‖p can be minimized by solving linear
programs when p = 1 or p = ∞ [Potyka, 2014]. That is,
minimizing ‖ε‖1 or ‖ε‖∞ is no harder than deciding PSAT.
Furthermore, ‖ε‖1 and ‖ε‖∞ can be given a meaningful inter-
pretation based on Dutch books [De Bona and Finger, 2015].

For a fixed probabilistic knowledge base Γ+
ℓ , formed by

the union of Γℓ with extra assignments from (23), (24) or
(25), we define the Πp as the set of all probability distribu-
tions that minimizes ‖ε‖p. If the knowledge base in hands is
satisfiable, Πp contains exactly those π that satisfies the base,
for the minimum of ‖ε‖p is zero, with εi = 0 for all i. Once
again, Πp may not be a singleton, yielding intervals for the a
posteriori probabilities Pπ(T |W ) we are interested in. Then,
we can maximize Pπ(W ), forming the set Πp

W containing
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the probability distributions that minimize the violations and
maximize Pπ(W ).

For practical reasons, we employ the first found π∗ ∈ Πp
W ,

for a fixed p = 1 or p = ∞, to obtain the tag sequence T
that maximizes Pπ∗(T |W ). This involves solving two lin-
ear programs: firstly, we minimize ‖ε‖p to compute its min-
imum E; in a second linear program, we add the linear re-
striction ‖ε‖p = E and maximize Pπ(W ). By solving the
second linear program, we have a π∗ ∈ Πp

W . The remaining
is straightforward: one searches among a linear number of tag
sequences T the one with maximum Pπ∗(T ∧W ).

Algorithm 2 structures the whole procedure above, also
calling the function OPSATε(., .). We assume that
OPSATε(Γ, ‖ε‖p) solves a linear program with restrictions
from Γ incremented with error variables εi = Pπ(ϕi ∧
ψi)− piPπ(ψi) for all i, minimizing the value of ‖ε‖p. Like
OPSAT (, ), OPSATε(, ) returns a pair with the probability
distribution and the minimized value.

Algorithm 2 Inconsistency-tolerant inference

Input: A HMMH , list of observed words (w1, . . . , wm) and
a set of extra constraints Ψ.
Output: A tag sequence T ∗ with maximum a posteriori
probability.

1: Γ′
H ← { probability assignments in (13), (14), (15), (16),

(17) and (18)}
2: Γℓ ← Γ′

H ∪ { probability assignments in (21)}
3: Γ+

ℓ ← Γℓ ∪Ψ //Ψ has the form of (23),(24) or (25)

4: (πε, E)← OPSATε(Γ
+
ℓ , ‖ε‖p)

5: Γ++
ℓ ← Γ+

ℓ ∪ {‖ε‖p = E}

6: (π∗, PW )← OPSATε(Γ
++
ℓ , Pπ(W ))

7: T ∗ ←argmaxT {Pπ∗(T ∧W )}
8: return T ∗

5 Conclusion

Non-local phenomena can be modeled by Probabilistic
Propositional Logic theories, which avoid the exponential ex-
plosion of a logical reconstruction of HMMs and allow for the
introduction of non-markovian constraints. The price to pay
for this extra flexibility is having to work with many candidate
distributions or even with inconsistent theories. Algorithms 1
and 2 allow us to perform logical-probabilistic inferences in
those cases.

Future work will deal with combining models that combine
the ability to deal with both local and non-local dependen-
cies, producing and implementing a method that deals with
unbounded dependencies without giving up the accuracy of
the majority of locally dependent cases.
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Abstract
The classical probabilistic entailment problem is to
determine upper and lower bounds on the probab-
ility of formulas, given a consistent set of prob-
abilistic assertions. We generalize this problem
by omitting the consistency assumption and, thus,
provide a general framework for probabilistic reas-
oning under inconsistency. To do so, we util-
ize inconsistency measures to determine probabil-
ity functions that are closest to satisfying the know-
ledge base. We illustrate our approach on several
examples and show that it has both nice formal and
computational properties.

1 Introduction
Many branches in artificial intelligence deal with reasoning
under uncertainty and inconsistency, e. g., default reasoning
[Reiter, 1980], paraconsistent logics [Béziau et al., 2007], be-
lief dynamics [Hansson, 2001], computational argumentation
[Bench-Capon and Dunne, 2007] and probabilistic reasoning
[Nilsson, 1986]. Inconsistencies arise easily in many applic-
ations, e. g., when several experts share their knowledge in
order to solve a problem [Konieczny and Perez, 2011].

We consider the scenario that our knowledge is both un-
certain and inconsistent. As a simple example, consider two
experts, the one arguing that the price of a stock will prob-
ably rise, the other arguing that the price will probably fall.
Even though uncertain, taken together both statements are in-
consistent. How can a rational agent incorporate both beliefs
simultaneously?

To represent uncertain knowledge, we use an extension
of classical probabilistic logic [Nilsson, 1986] and consider
probabilistic conditionals (ψ |φ)[d] that encode uncertain
rules ’if φ then ψ with probability d’ [Benferhat et al., 1999;
Kern-Isberner, 2001]. Inconsistencies occur in this frame-
work when multiple conditionals cannot be satisfied jointly
by a probability function. To deal with inconsistencies,
we generalize the probabilistic entailment problem [Jaumard
et al., 1991; Lukasiewicz, 1999] to inconsistent knowledge
bases by using inconsistency measures [Grant and Hunter,

This paper also appeared in the Proceedings of the 24th Inter-
national Joint Conference on Artificial Intelligence (IJCAI15)

2013b]. An inconsistency measure I is a function that maps
a knowledge base to a non-negative real number such that
larger values indicate larger inconsistency. For probabilistic
conditional logic, several inconsistency measures have been
proposed, see, e. g. [Thimm, 2013; Picado-Muiño, 2011].
We apply the family of minimal violation measures from
[Potyka, 2014] since they allow us to extend the classical no-
tion of models of a probabilistic knowledge base to inconsist-
ent ones. Intuitively, the generalized models are those prob-
ability functions that minimally violate the knowledge base
[Potyka and Thimm, 2014]. We incorporate integrity con-
straints and study a family of generalized entailment prob-
lems for probabilistic knowledge bases. More specifically,
the contributions of this work are as follows:

1. We introduce the computational problem of generalized
entailment with integrity constraints in probabilistic lo-
gics and thus provide an approach to reasoning with in-
consistent probabilistic knowledge (Section 3).

2. We analyse the behaviour of our approach by showing
that it satisfies several rationality postulates (Section 4),

3. We show how to solve the generalized entailment prob-
lem and that this is computationally not harder than solv-
ing the classical probabilistic entailment problem for
consistent knowledge bases (Section 5).

We explain the necessary basics in Section 2, discuss related
work in Section 6, and conclude in Section 7.

2 Preliminaries
We consider a propositional language L(At) built up over a
finite set of propositional variables At in the usual way. For
φ, ψ ∈ L(At) we abbreviate φ ∧ ψ by φψ and ¬φ by φ.

A possible world assigns a truth value to each a ∈ At.
Let Ω(At) denote the set of all possible worlds. ω ∈ Ω(At)
satisfies an atom a ∈ At, denoted by ω |= a, if and only if
ω(a) = true. |= is extended to complex formulas in L(At)
in the usual way. Formulas ψ, φ ∈ L(At) are equivalent,
denoted by φ ≡ ψ, if and only if ω |= φ whenever ω |= ψ for
every ω ∈ Ω(At) and vice versa.

We build up a probabilistic language (L(At) | L(At))pr

containing a probabilistic conditional (ψ |φ)[d] for all φ, ψ ∈
L(At) and d ∈ [0, 1]. Intuitively, (ψ |φ)[d] says that if φ is
true then ψ is also true with probability d (see below). If φ is
tautological, φ ≡ >, we abbreviate (ψ |φ)[d] by (ψ)[d].
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A knowledge base K is an ordered finite subset of
(L(At) | L(At))pr. We impose an ordering on the condition-
als in a knowledge base only for technical convenience. The
order can be arbitrary and has no further meaning other than
to enumerate the conditionals of a knowledge base in an un-
ambiguous way.

Semantics are given to probabilistic conditionals by prob-
ability functions over Ω(At), which are denoted by P(At).
The probability of a formula φ ∈ L(At) with respect to
P ∈ P(At) is defined by P (φ) =

∑
ω|=φ P (ω). As usual in

this context, P satisfies a probabilistic conditional (ψ |φ)[d],
denoted by P |=pr (ψ |φ)[d], if and only if P (ψφ) = dP (φ)
[Nilsson, 1986; Paris, 1994]. A probability function P sat-
isfies a knowledge base K (or is a model of K), denoted by
P |=pr K, if and only if P |=pr c for every c ∈ K. Let
Mod(K) ⊆ P(At) be the set of models of K. If Mod(K) = ∅
then K is called inconsistent.

Broadly speaking, there are two main approaches to reason
with probabilistic logics. First, we can consider the whole
set of models Mod(K) of K and use it to derive probability
intervals for given formulas [Nilsson, 1986; Jaumard et al.,
1991]. Second, we can search for a best model P ∗ ∈ Mod(K)
with respect to some common sense rationales and use P ∗
to compute the probabilities directly [Nilsson, 1986; Paris,
1994; Kern-Isberner, 2001]. However, if K is inconsistent,
there is no way to infer reasonable information with these
approaches because there exists no model at all.

Inconsistency measures help analyzing inconsistent know-
ledge bases by assigning nonnegative values to knowledge
bases that quantify the degree of inconsistency, see, e. g.,
[Knight, 2002; Hunter and Konieczny, 2010; Thimm, 2013].
The family of minimal violation measures is defined by meas-
uring the violation of the equations defined by the probabil-
istic satisfaction relation [Potyka, 2014]. To understand how,
note that the condition P (ψφ) = dP (φ) is a linear constraint
over P . With a slight abuse of notation, let us identify P
with a probability vector (P (ω1) . . . P (ωn)), n = |Ω(At)|;
and for a formula F , let the indicator function 1{F}(ω) map
to 1 iff ω |= F and to 0 otherwise. Then we can rewrite
P (ψφ) = dP (φ) in vector notation as acP = 0, where ac is
the transpose of the vector

(1{ψφ}(ωj) · (1− d)− 1{ψφ}(ωj) · d)1≤j≤n,

see also [Nilsson, 1986; Jaumard et al., 1991]. Now given a
knowledge base K, we associate K with the (m× n)-matrix

AK =

(
a1

. . .
am

)
.

The linear equation system AKx = 0 can be solved by a
probability vector P if and only if K is consistent, see also
[Nilsson, 1986; Jaumard et al., 1991]. The minimal violation
value IpΠ(K) ofKwith respect to the minimal violation meas-

ure IpΠ is the solution of the following optimization problem

min
x∈Rn

‖AKx‖p (1)

subject to
n∑
i=1

xi = 1

x ≥ 0,

where ‖.‖p denotes the p-norm defined by ‖x‖p =
p
√∑n

i=1 |xi|p for p ≥ 1. Well-known special cases are the
1-norm ‖x‖1 =

∑n
i=1 |xi|, the Euclidean norm ‖x‖2 =

2
√∑n

i=1 x
2
i and the limit for p → ∞, the maximum norm

‖x‖∞ = max{|xi| | 1 ≤ i ≤ n}.
Note that the constraints of (1) guarantee that each feasible

solution is a probability vector. By definiteness of norms, it
holds IpΠ(K) = 0 iff there is a P such that AKP = 0, i. e., iff
K is consistent. As K becomes ’more’ inconsistent, IpΠ(K)
increases continuously, see [Potyka, 2014] for the details and
further properties.

The probability functions minimizing (1) can be regarded
to be as close as possible to a model of K in the sense that
they minimally violate the corresponding equation system. In
fact, if K is consistent, they correspond to the models of K
and are therefore called generalized models of K [Potyka and
Thimm, 2014]. More formally, the set of generalized models
is defined as follows:

GModp(K) = {P ∈ P(At) | ‖AKP‖p = IpΠ(K)}.

In [Potyka and Thimm, 2014] generalized maximum entropy
reasoning is considered. That is, among all generalized mod-
els one selects the one maximizing entropy. The generalized
maximum entropy model can be used to repair the knowledge
base or to compute probabilities for arbitrary formulas. This
approach has some nice properties and can be computed by
convex programming techniques [Potyka and Thimm, 2014].

3 Generalized Entailment with Integrity
Constraints

We will now focus on generalizing the second major approach
to reason with consistent knowledge, namely reasoning with
all models. This problem is usually called the probabilistic
entailment problem [Jaumard et al., 1991].

Given a consistent knowledge base K and a query (ψ |φ),
φ, ψ ∈ L(At), the probabilistic entailment problem is to find
a tight probability interval [l, u] such that P (ψ |φ) ∈ [l, u]
for all P ∈ Mod(K) with P (φ) > 0 [Jaumard et al., 1991;
Lukasiewicz, 1999]. ’Tight’ means that the probability in-
terval cannot be further decreased without violating the con-
dition [Lukasiewicz, 1999]. This condition is important for
otherwise the interval [0, 1] always yields a feasible and
completely non-informative solution. We denote the clas-
sical probabilistic entailment relation by |=c, i. e., if [l, u] is
the corresponding tight probability interval, we write K |=c

(ψ |φ)[l, u]. If there is no P ∈ Mod(K) with P (φ) > 0, we
follow [Lukasiewicz, 1999] and let l = 1, u = 0.

By replacing Mod(K), with the generalized models
GModp(K), the generalized entailment problem can be
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defined. The lower and upper bounds l and u can be obtained
by solving the two optimization problems

optP∈GModp(K) P (ψ |φ) (2)

subject to P (φ) > 0,

where opt stands for min and max, respectively. We want to
consider a slightly more general problem. In addition to our
knowledge base K, which might be inconsistent, we consider
a second knowledge base IC which is assumed to be consist-
ent. The conditionals in IC are called integrity constraints.
To begin with, we generalize some basic concepts.
Definition 1 (Minimal Violation Measures with Integrity
Constraints). The minimal violation value IpIC(K) of K with
respect to the minimal violation measure IpIC with integrity
constraints IC is the solution of the optimization problem

min
P∈Mod(IC)

‖AKP‖p (3)

Definition 2 (Generalized Models with Integrity Constraints).
The set of probability functions minimizing (3) is called the
set of generalized models of K with respect to the integrity
constraints IC and is denoted by GModpIC(K), that is,

GModpIC(K) = {P ∈ Mod(IC) | ‖AKP‖p = IpIC(K)}.

Proposition 1. Let IC be a set of integrity constraints.

1. If IC = ∅, then IpIC = IpΠ and GModpIC(K) =
GModp(K) for all knowledge bases K.

2. GModpIC(K) is always non-empty, compact and convex.

3. If K ∪ IC is consistent, GModpIC(K) = Mod(K ∪ IC).

Proof sketch. 1. follows immediately from the fact that
Mod(∅) = P(At) and the definitions. 2. and 3. follow
exactly like the corresponding properties of GModp(K) ob-
tained in [Potyka, 2014] and [Potyka and Thimm, 2014].

Now we can define the generalized entailment problem
with integrity constraints.
Definition 3 (Generalized entailment problem with integrity
constraints). Given a knowledge baseK, integrity constraints
IC and a query (ψ |φ), φ, ψ ∈ L(At), the generalized entail-
ment problem with integrity constraints is to solve

optP∈GModpIC(K) P (ψ |φ) (4)

subject to P (φ) > 0,

where opt stands for min and max respectively.
We denote the generalized entailment relation by |=p

IC ,
i. e., if l and u are the lower and upper bounds obtained from
(4), we write K |=p

IC (ψ |φ)[l, u]. As before, if there is no
P ∈ GModpIC(K) with P (φ) > 0, we let l = 1, u = 0.

Before looking at this problem in more detail, we consider
some examples to illustrate that generalized entailment can
yield reasonable results even if K is inconsistent. By reas-
onable we mean that the generalized entailment results can
be regarded as merging contradictory opinions. The way in
which the opinions are merged depends on the selected p-
norm. How should we choose p? Intuitively, p = 1 takes the

I1
IC I2

IC I∞IC
K1 [0, 1] [0.5, 0.5] [0.5, 0.5]
K2 [0.1, 0.8] [0.45, 0.45] [0.45, 0.45]
K3 [0.7, 0.7] [0.533, 0.533] [0.45, 0.45]
K4 [0.8, 0.8] [0.6, 0.6] [0.5, 0.5]
K5 [0.8, 0.8] [0.566, 0.566] [0.45, 0.45]

Table 1: Generalized entailment results (rounded to 3 digits)
for the probability of A (Example 1).

Query I1
IC I2

IC I∞IC
(P |N) [0.1, 0.9] [0.384, 0.615] [0.376, 0.624]
(P |Q) [0.1, 0.9] [0.517, 0.615] [0.520, 0.624]
(P |R) [0.1, 0.9] [0.384, 0.482] [0.376, 0.481]
(N) [1, 1] [1, 1] [1, 1]

Table 2: Generalized entailment results (rounded to 3 digits)
for Nixon diamond with IC = {(N)[1]} (Example 2).

violation of all opinions into account without regarding how
strong a single opinion is violated. On the other extreme,
p = ∞ takes only the maximal violation of a single opinion
into account and ignores the overall violation of all opinions.
p = 2 yields a good balance between both extremes.

Example 1. Suppose we have some experts with dif-
ferent opinions on the probability of some event A,
say, that the price of a stock rises. We consider
the knowledge bases K1 = 〈(A)[0], (A)[1]〉, K2 =
〈(A)[0.1], (A)[0.8]〉, K3 = 〈(A)[0.1], (A)[0.8], (A)[0.7]〉,
K4 = 〈(A)[0.1], (A)[0.8], (A)[0.9]〉, K5 =
〈(A)[0.1], (A)[0.8], (A)[0.8]〉, In K1 both experts are
completely convinced of their opinion. In K2 both experts
choose a more conservative formulation and in K3, K4 and
K5 we have a third expert who also thinks that A is rather
likely. We do not need any integrity constraints and set
IC = ∅. Table 1 shows generalized entailment results for the
query (A) and p = 1, 2,∞.

For p = 1, we get most conservative results. For two ex-
perts, the whole interval between both opinions is possible. If
we add a third expert, the results corresponds to the median
of the experts’ opinions. As p increases, larger violations are
penalized more heavily and we end up with point probabil-
ities somewhere between the experts’ opinions. Finally, for
p =∞, only the maximal violation counts and so there is no
difference betweenK2,K3 andK5 since the extreme opinions
are represented by probabilities 0.1 and 0.8 in each case.

Example 2. Let us consider the Nixon diamond. We believe
that quakers (Q) are usually pacifists (P ) while republicans
(R) are usually not. However, we know that Nixon (N ) was
both a quaker and a republican. We do not doubt the exist-
ence of Nixon and therefore consider the integrity constraint
IC = 〈(N)[1]〉. The remaining knowledge is represented
as follows: K = 〈(P |Q)[0.9], (P |R)[0.1], (QR |N)[1]〉.
Table 2 shows the generalized entailment results.

Again, p = 1 yields most conservative results. For p > 1,
we maintain the knowledge that quakers are probably paci-
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k I1
IC I2

IC I∞IC
1 [1, 1] [1, 1] [1, 1]
2 [0, 1] [0.5, 0.5] [0.5, 0.5]
4 [0, 1] [0.25, 0.25] [0.25, 0.25]
8 [0, 1] [0.125, 0.125] [0.125, 0.125]

Table 3: Probabilities that a particular player will win in the
lottery paradox with k players (Example 3).

fists and that republicans are probably not.
Example 3. We consider a variant of Kyburg’s Lottery Para-
dox [Kyburg, 1992] similar to [Knight, 2002]. There is a lot-
tery and exactly one player will win. However, for a partic-
ular player p, we do not believe that p will win. We model
the lottery paradox with k players by the knowledge base
Kk = 〈(p1)[0], . . . , (pk)[0]〉, where pk expresses that player
k will win. The fact that one player will win is represented
as an integrity constraint, i. e., ICk = 〈(

∨k
i=1 pi)[1]〉. As the

number of players goes to infinity, the degree of inconsistency
of the knowledge base goes to 0. If we perform generalized
entailment to compute the probability that a particular player
will win, the probability is equal for each player. Table 3
shows the results for different k.

Since the knowledge base does not favor any player, we
cannot conclude anything for p = 1. For p > 1, the probab-
ility that a player wins is uniformly distributed as one would
expect under the given premises.

4 Analysis
Our proposal of the generalized entailment relation |=p

IC aims
at extending the classical entailment relation |=c to inconsist-
ent knowledge bases. The examples at the end of the pre-
vious section suggest that generalized entailment results are
also intuitive in the case of inconsistency. In the spirit of
other non-classical reasoning approaches like, e. g., [Kraus
et al., 1990], we will now propose a set of rationality postu-
lates that each probabilistic entailment relation |=IC should
satisfy that extends probabilistic entailment to inconsistent
knowledge bases while maintaining integrity constraints IC.

Let ] denote disjoint union, i. e., A = A1 ] A2 means
A = A1 ∪ A2 and A1 ∩ A2 = ∅. We consider the following
postulates for a probabilistic entailment relation |=IC .

1. Consistency: If K ∪ IC is consistent, then it holds
(K ∪ IC) |=c (ψ |φ)[l, u] iff K |=IC (ψ |φ)[l, u].

2. Integrity: For all (ψ |φ)[d] ∈ IC, it holds that either
K |=IC (ψ |φ)[d, d] or K |=IC (φ)[0, 0].

3. Consistent Independence: Let At = At1 ] At2 and let
K = K1 ] K2 such that Ki is a knowledge base over
L(Ati), i = 1, 2. If Ki ∪ IC is consistent and (ψi |φi)
is a query over L(Ati), then Ki ∪ IC |=c (ψi |φi)[l, u]
holds in L(Ati) iff K |=IC (ψi |φi)[l, u] holds in L(At).

4. Independence: Let At = At1 ] At2 and let K =
K1 ] K2 such that Ki is a knowledge base over L(Ati),
i = 1, 2. If (ψi |φi) is a query over L(Ati), then
K |=IC (ψi |φi)[l, u] holds in L(At) if and only if
Ki |=IC (ψi |φi)[l, u] holds in L(Ati).

5. Continuity: If K is ’close’ to a consistent knowledge
base K0 such that (K0 ∪ IC) |=c (ψ |φ)[l0, u0], (K0 ∪
IC) 6|=c (φ)[0, 0] and K |=IC (ψ |φ)[l, u], then [l, u] is
’close’ to [l0, u0].

Consistency states that the extended entailment relation
should agree with probabilistic entailment if the given in-
formation is consistent. Integrity assures that all integrity
constraints are either obeyed or not applicable at all (then
K |=IC (ψ |φ)[1, 0]). Consistent Independence states that
consistency remains true for subsets of the language if there
is only consistent information about this subset. Independ-
ence states that knowledge about a subset of the language
should not influence entailment results about the remaining
language. In particular, this property can be exploited to de-
compose the extended entailment problem into two smaller
problems. Continuity says that if K0 is consistent and does
not classically entail P (φ) = 0, then minor changes in K0

shall not result in major changes in the entailed probability
P (ψ |φ) even if K0 becomes inconsistent. Since the defini-
tion of closeness is very subtle in this context, it will be dis-
cussed later on in more detail. We have the following rela-
tionships between our postulates.

Proposition 2.
1. Consistent Independence implies Consistency.

2. Consistency and Independence implies Consistent Inde-
pendence.

Proof. 1 follows immediately by letting At2 = K2 = ∅. To
prove 2, note that by Independence, generalized entailment
w.r.t. K over L(At) is equivalent to generalized entailment
w.r.t. K1 over L(At1). But since K1 is consistent, the claim
follows with Consistency applied to K1 over L(At1).

Note that there are some interesting relationships to other
properties. Consistent Independence implies Reflexivity
[Kraus et al., 1990], i. e., if (ψ |φ)[p] is a satisfiable con-
ditional and contains no atoms mentioned in K, then K ∪
{(ψ |φ)[p]} |=IC (ψ |φ)[p, p]. Independence implies Lan-
guage Invariance [Paris, 1994], i. e., just adding additional
atoms to the language does not change the entailment results.

Generalized entailment satisfies our first four desiderata.

Theorem 1. The generalized entailment relation |=p
IC satis-

fies Consistency, Integrity, Consistent Independence and In-
dependence.

Proof sketch. To prove consistency, note that Proposition 1,
3, implies that GModpIC(K) = Mod(K∪IC). But then (4) is
just the definition of the probabilistic entailment problem.

Integrity follows from GModpIC(K) ⊆ Mod(IC).
By consistency and Proposition 2, Consistent Independ-

ence follows from Independence.
To prove Independence, show that for each probability

function P over Ω(At) that satisfies K, there are corres-
ponding probability function Pi over Ω(Ati) that satisfy Ki,
i = 1, 2 and agree with P for all formulas from L(Ati) and
vice versa. To get from P to Pi just marginalize. To get from
P1 and P2 to P let P (ω) = P1(ω|At1) · P2(ω|At2). To meet
space restriction, we leave out the details of the proof.
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To prove continuity, we need a more precise notion of
closeness of knowledge bases. However, using a too strong
notion of closeness, continuity cannot be satisfied by any ex-
tended entailment relation that extends probabilistic entail-
ment in a reasonable way, because even probabilistic entail-
ment behaves discontinuously in some cases. Consider the
following non-trivial example from [Paris, 1994]1.
Example 4. Consider a disease d, a symptom s and a possible
complication c. Let K contain the conditionals (d | s)[0.75],
(d | s)[0.25], (cd | s)[0.15], (c | ds)[0.6], (c | ds)[0.8] and
(cd | s)[0.1]. K is consistent and, for instance,K |=c (s)[0, 1].
However, if we constructK′ fromK by replacing (cd | s)[0.1]
with (cd | s)[0.0999], we have K |=c (s)[0, 0]. Such discon-
tinuities are connected to each conditional in K, see [Paris,
1994], p. 90, for more details.

To exclude such discontinuities, Paris defined conver-
gence of knowledge bases as follows: (Ki) converges to
K iff (Mod(Ki)) converges to Mod(K) with respect to the
Blaschke metric. Roughly speaking, S1, S2 ⊆ Rn have
Blaschke distance d, ‖S1, S2‖B = d, iff for every x1 ∈ S1,
there is a x2 ∈ S2 such that ‖x1 − x2‖2 ≤ d and vice versa.
By replacing the models with the generalized models in this
notion of convergence, we obtain the following weak form of
continuity for generalized entailment.
Theorem 2 (Weak Continuity). Let (Ki) be a sequence
of knowledge bases such that (GModpIC(Ki)) converges to
GModpIC(K) with respect to the Blaschke metric. If K 6|=p

IC
(φ)[0, 0], K |=p

IC (ψ |φ)[l, u] and Ki |=p
IC (ψ |φ)[li, ui],

then li and ui converge to l and u, respectively.

Proof sketch. For ease of notation, let G = GModpIC(K) and
Gi = GModpIC(Ki). The claim follows from (A), where

(A) for all ε > 0 that are sufficiently small, there is a δ > 0
such that ‖G,Gi‖B < δ implies that for all P ∈ G (P ′ ∈ Gi)
with P (φ) > 0 (P ′(φ) > 0) there is a P ′ ∈ Gi (P ∈ G) such
that |P (ψ |φ)− P ′(ψ |φ)| < ε

We know from Real Analysis that ‖x‖1 ≤
√
n ‖x‖2 for all

x ∈ Rn. Note also that |P (F ) − P ′(F )| ≤ ‖P − P ′‖1 for
all F ∈ L(At). Therefore, ‖G,Gi‖B < ε/

√
n implies that

for all P ∈ G (P ′ ∈ Gi), there is a P ′ ∈ Gi (P ∈ G) with
|P (F )− P ′(F )| < ε. Since K 6|=p

IC (φ)[0, 0], there is a P ∈
G with P (φ) > 0. Hence, if δ < P (φ)

2
√
n

, there is a P ′ ∈ Gi
with P ′(φ) > P (φ)/2 > 0. Hence, if δ is sufficiently small,
both [l, u] and [li, ui] are non-trivial. Finally, check that for
0 < ε < 1 and δ < ε P (φ)

4
√
n

(δ < ε Pi(φ)
4
√
n

), (A) holds.

Note that if (K ∪ IC) is consistent, Consistency implies
that (K ∪ IC) 6|=p

IC (φ)[0, 0] and (K ∪ IC) |=c (ψ |φ)[l, u],
so that li and ui converge to the probabilistic entailment result
as demanded in Convergence.

5 Computational Aspects
We cannot expect to find highly efficient algorithms for the
generalized entailment problem, since even the probabil-
istic satisfiability problem is NP-hard [Georgakopoulos et al.,

1The example was originally proposed in P. Courtney, Doctoral
thesis, Manchester University, Manchester, U.K., 1992.

1988]. However, it is interesting to ask how much more diffi-
cult is the generalized entailment problem as compared to the
probabilistic entailment problem.

Our first goal is to show that the generalized entailment
problem can be solved by linear programming techniques. To
do so, we introduce a vector aF = (1{F}(ωj))1≤j≤n for each
formula F . Note that aFP = P (F ), see also [Nilsson, 1986;
Jaumard et al., 1991]. We will also need the following
lemma, which is a straightforward generalization of [Potyka
and Thimm, 2014], Lemma 1.

Lemma 1. Let K be a knowledge base, let IC be a set of in-
tegrity constraints and let 1 < p <∞. Let P ∈ GModpIC(K)
be a generalized model and let x = AKP . Then it holds
AKP

′ = x for all P ′ ∈ GModpIC(K) and we call x = xpK the
violation vector of K.

Theorem 3. The generalized entailment problem with integ-
rity constraints has a well-defined solution and (4) is equi-
valent to the following linear programs, where εp = IpIC(K),
Rn+ denotes the non-negative real vectors and opt stands for
min and max, respectively.

• For p = 1, (4) is equivalent to

opt(x,y,t)∈Rn+m+1
+

aψφ x (5)

subject to − y ≤ AK x ≤ y,
m∑
i=1

yi = t · ε1, AIC x = 0, a> x = t, aφ x = 1.

• For 1 < p <∞, (4) is equivalent to

opt(x,t)∈Rn+1
+

aψφ x (6)

subject to
AK x = t · εp, AIC x = 0, a> x = t, aφ x = 1.

• For p =∞, (4) is equivalent to

opt(x,t)∈Rn+1
+

aψφ x (7)

subject to − t · ε∞ ≤ AK x ≤ t · ε∞,
AIC x = 0, a> x = t, aφ x = 1.

In particular, the linear programs are feasible if and only if
there is a P ∈ GModpIC(K) with P (φ) > 0.

Proof sketch. To begin with, recall that GModpIC(K) 6= ∅ is
guaranteed. (4) can be rewritten as

optx∈Rn+
aψφ x

aφ x
(8)

subject to
‖AK x‖p = εp, AIC x = 0, a> x = 1, aφ x > 0,

To get rid of the non-linear constraint ‖AKx‖p = εp, we
can apply Lemma 1 for 1 < p <∞, to replace ‖AKx‖p = εp
with AKP ′ = xpK. For p = 1 and p = ∞, we can exploit
piecewise linearity to replace ‖AK x‖1 = ε1 with the con-
straints −y ≤ AK x ≤ y and

∑m
i=1 yi = ε1, where y ∈ Rm;

and to replace ‖AK x‖∞ = ε∞ with −ε∞ ≤ AK x ≤ ε∞.
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Problem n m Cost
PSAT |Ω| + |K| |K| nm2

I1
IC |Ω| + 3|K| 2|K| + |IC| nm2

I2
IC |Ω| |IC| n2 m

I∞
IC |Ω| + 2|K| 2|K| + |IC| nm2

Ip
IC |Ω| |IC| n3

PENT |Ω| |K| nm2

GENT p = 1 |Ω| + 3|K| 2|K| + |IC| nm2

GENT 1 < p < ∞ |Ω| |K| + |IC| nm2

GENT p = ∞ |Ω| + 2|K| 2|K| + |IC| nm2

Table 4: Number of optimization variables n, number of
constraints m (ignoring constants and non-negativity con-
straints) and rough performance estimates for testing sat-
isfiability (PSAT), computing minimal violations measures,
probabilistic entailment (PENT) and generalized entailment
(GENT) with standard algorithms.

To get rid of the non-linear objective, we can apply a result
from [Charnes and Cooper, 1962], which is also used to solve
the probabilistic entailment problem [Jaumard et al., 1991].
Basically, the feasible solutions are scaled such that aφ x = 1
holds. Then aψφ x

aφ x
equals aψφ x. This transformation does not

change the optimal objective as the scaling factor cancels out
in the fraction, see [Charnes and Cooper, 1962] for details.

Equivalence of the linear programs with (2) follows with
the arguments sketched above and guarantees that all linear
programs are feasible if and only if P (φ) > 0 for some
P ∈ GModpIC(K). If there is some P ∈ GModpIC(K) with
P (φ) > 0, existence of the solutions follows from the theory
of linear programming.

Now let us look at the cost of solving the generalized en-
tailment problem. Reasoning is usually a two-stage process.
First, we test satisfiability, then we perform a reasoning al-
gorithm. In our approach, the satisfiability phase is replaced
with an inconsistency measuring phase. To compute minimal
violation measures, we have to solve a linear program for
p ∈ {1,∞}, a quadratic program for p = 2 and a convex pro-
gram for other p, see [Potyka, 2014] for details. Probabilistic
satisfiability, probabilistic entailment and generalized entail-
ment can be computed by linear programs. Expected costs
when using standard algorithms are summarized in Table 4.
For linear programs, we consider estimates proposed in [Mat-
ousek and Gärtner, 2007] for the Simplex algorithm. For
quadratic and convex programs, we use estimates proposed
in [Boyd and Vandenberghe, 2004] for interior-point meth-
ods. The cost is estimated with respect to the number of op-
timization variables n and the number of constraints m. Note
that we have to introduce additional slack variables for linear
programs whenever inequalities are present.

In practice, |Ω| is the dominating factor because it depends
exponentially on the number of propositional variables |At|
in our language. In contrast, |K| usually grows at most poly-
nomially in |At|. In fact, whenever |K| > |Ω| the know-
ledge base is overdetermined in the sense that it either con-
tains redundant information (AK does not have full rank) or

it leaves no degrees of freedom (AKx has at most one solu-
tion). Taking this into account, we see that computing min-
imal violation measures for p = 1 and p =∞ is asymptotic-
ally not harder than testing satisfiability. Similarly, perform-
ing generalized entailment, when the inconsistency values are
known, is asymptotically not harder than performing probab-
ilistic entailment. In fact, for 1 < p < ∞, we get basically
the same cost because the violation constraints can be rep-
resented by linear equalities as explained in Lemma 1. To
deal with larger instances of the generalized entailment prob-
lem, we can exploit Independence and apply column gener-
ation techniques to reduce the exponential influence of |At|
on |Ω| [Hansen and Perron, 2008; Finger and De Bona, 2011;
Cozman and Ianni, 2013].

6 Related Work
An overview of inconsistency measures for classical logics
can be found in [Grant and Hunter, 2013b], an overview of
measures for probabilistic logics in [Thimm, 2013]. The idea
of generalized reasoning transfers primarily to approaches
that measure inconsistency by a notion of distance from in-
terpretations to actual models. An interesting family of such
measures for classical logics has been proposed in [Grant and
Hunter, 2013a]. The idea is to extend the models of single
formulas in the knowledge base until the intersection for all
formulas is non-empty. The resulting set can be understood
as a classical notion of a set of generalized models and it is
interesting to ask if reasonable generalized inference relations
for classical logics can be derived. Note also that minimal vi-
olation measures have recently been generalized to languages
allowing probability intervals [l, u], 0 ≤ l ≤ u ≤ 1 rather
than point probabilities [d] and some properties have been
strengthened in this framework [De Bona and Finger, 2014].

To deal with inconsistencies in classical logics, several ap-
proaches have been proposed. For instance, one can introduce
new connectives, consider consistent subsets of the know-
ledge base or apply belief merging approaches [Konieczny
et al., 2005; Béziau et al., 2007; Konieczny and Perez, 2011].
For probabilistic logics, several revision, fusion and merging
approaches have been considered, see, for instance, [Kern-
Isberner and Rödder, 2004; Weydert, 2011; Wilmers, 2015].

The idea of generalizing the notion of a probabilistic model
has also been employed in [Daniel, 2009]. There, reasoning
in inconsistent probabilistic knowledge is realized by a fuzzy
notion of a model and this is used to generalize reasoning
based on the principle of maximum entropy. However, the
general probabilistic entailment problem and computational
issues are not discussed in [Daniel, 2009].

7 Summary
We defined the generalized entailment problem with integ-
rity constraints and showed that it satisfies several desirable
properties. These properties seem to be reasonable desiderata
for each approach that extends probabilistic entailment to in-
consistent knowledge bases. Generalized entailment satisfies
only a weak form of continuity, but this seems to be true for
all reasonable extensions because of discontinuities that are
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inherent to the probabilistic entailment problem. Computa-
tionally, generalized entailment for p = 1,∞ is barely harder
than performing a probabilistic satisfiability test and probab-
ilistic entailment.

The approach proposed in this paper has been implemented
in Java and is available as open source2.
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Abstract
The aim of this paper is to study modal exten-
sions of many-valued logics to simultaneously cap-
ture many-valuedness (or fuzziness) and some no-
tions of belief, in particular someones related to
the possibilistic and probabilistic uncertainty mod-
els. To be more precise, we first study many-valued
counterpartsKD45(A) of the classical modal logic
KD45 (a well known logic of belief) based on
many-valued propositional systems A taking val-
ues on a residuated lattices A. In particular, we
introduce a complete axiomatization of KD45(A)
with respect to a semantics given by a fuzzy ex-
tension of neighborhood models. Second, we
introduce a probabilistic-like modal extension of
finiitely-valued Łukasiewicz logics, and show how
the extended neighborhood semantics is able to
properly cover the notion of state in MV-algebras,
a generalization of the notion of probability on
Boolean algebras.

1 Introduction
In approximate reasoning, sometimes one needs to simulta-
neously deal with both fuzziness of propositions and modal-
ities, for instance one may try to assign a degree of truth to
propositions like “John is possibly tall” or “John is necessar-
ily tall”, where “John is tall” is considered as a fuzzy propo-
sition. In this sense, extensions of fuzzy logic systems can
be considered as a suitable tool to model not only vagueness
but also other kinds of information features like certainty, be-
lief or similarity, which have a natural interpretation in terms
of modalities. Moreover, although notions of vagueness (at
propositional level) and uncertainty are not the same, there
are close links between them and in many occasions they need
to live together.

For example, as mentioned in [8], if all we know is that
“John is tall” (i.e. a vague knowledge about John’s height)
then, about the (Boolean) truth of the sentence “John’s height
is 1.80 m”, one can only say that it is more or less possible.
More formally, Dubois and Prade in [9] propose to under-
stand each fuzzy assertion of the sort of “X is tall” (where
tall is a fuzzy subset of a domain U and X is a variable tak-
ing values in U ) as a constraint on the unknown possibility

of the crisp assertions X = x, with x ∈ U , of the form
Π(X = x) ≤ µtall(x). This example makes it clear that
vague, incomplete information also produces a form of un-
certainty.

On the other hand, given a certain population, we may
wonder how likely is that a randomly selected person is tall
assuming known the probability distribution of heights in the
population. Here vagueness is not at the level of the available
information, like in the former example, but at the level of
description of the event itself we want to measure its uncer-
tainty, in whatever form we might consider suitable.

Therefore, it is natural to consider a combination of many-
valued logics and modal logics in order to be capable of deal-
ing with uncertainty and vagueness in the same representa-
tion language. The modal approach to formalize reasoning
under uncertainty (in a classical setting) is well-known in the
literature, see e.g. [15]. The idea here is that, in a many-
valued framework, intermediate truth values assigned to a
(pure) propositional formula ϕ (denoting a gradual property)
are interpreted as partial degrees of truth, while truth val-
ues assigned to a modal formula 2ϕ or 3ϕ are interpreted
as a degree of belief or uncertainty. However, the problem
we have to face is the search for a syntactical characteriza-
tion of many-valued modal logics that may work in most of
the cases. Unfortunately, the well known Kripke semantics
does not work out well because in many cases the K axiom
is not valid, and it is not known a general method to axioma-
tize many-valued modal logics given by those semantics. In-
deed, it turns out that the only minimal logics axiomatized
in the literature are the ones where the base many-valued
logic is the one corresponding to a finite Heyting algebra [10;
11], the standard (infinite) Gödel algebra [3] or a finite resid-
uated algebra [2] (in particular finite Łukasiewicz linearly or-
dered algebras).

In order to overcome this difficulty we propose an alterna-
tive semantics which is a generalization of the classical neigh-
borhood semantics, whose main ideas are recalled in Section
2. Hence, we understand many-valued modal logics as log-
ics defined by neighborhood frames (possibly with a many-
valued neighborhood function) where each world follows the
rules of a many-valued logic, this many-valued logic being
the same for every world. The reader will find the details of
this general approach in Section 2.

Actually the paper focuses on generalizing to this frame-
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work two well known kinds of belief logics, a graded version
of the classical KD45 modal logic, related to the possibilis-
tic uncertainty model [8], and a many-valued probabilistic-
like logic over a (finitely-valued) Lukasiewicz logic. It has to
be noted that similar fuzzy uncertainty logics have been pro-
posed (e.g. [7; 12]) but with a very restricted language. Here
we consider a full modal language. Sections 3 to 7 are de-
voted to the former many-valued modal systems, while Sec-
tion 8 is devoted to the probabilistic system. We end up with
some conclusions and future work.

This paper elaborates on a previous workshop paper by the
same authors [18].

2 General Framework
In this section, we provide the necessary definitions for in-
troducing in the next sections the many valued modal logics
KD45(A) whereA is a logical system complete with respect
to the many-valued semantics over an algebra of truth-values
A.1

All algebras considered in this paper will be residuated lat-
tices. An algebra A = 〈A,∧,∨,�,⇒, 1, 0〉 is a residuated
lattice if and only if the reduct 〈A,∧,∨, 1, 0〉 is a bounded
lattice with maximum 1 and minimum 0 (its order is denoted
by ≤), the reduct 〈A,�, 1〉 is a commutative monoid, and
the fusion operation � (sometimes also called the intensional
conjunction or strong conjunction) is residuated, with⇒ be-
ing its residual; that is, for all a, b, c ∈ A

a� b ≤ c←→ a ≤ b⇒ c

Other connectives are defined as usual: ¬a := a → ⊥, a ↔
b := (a → b) ∧ (b → a). In addition, we will require the
residuated lattices to be complete, that is, algebras where all
suprema and infima (even of infinite subsets of the domain)
exist. It is well known that complete residuated lattices satisfy
the law

a�
∨
i∈I

bi =
∨
i∈I

(a� bi)

for arbitrary sets of indices I .
We stress that these requirements are not very strong since

a lot of well-known classes of algebras in the algebraic logic
setting satisfy them, for instance, complete FL-algebras [17]
and complete BL-algebras [14]. Hence, in particular we can
consider that A is any of the three basic continuous t-norm al-
gebras: Łukasiewicz algebra [0,1]Ł, product algebra [0,1]Π
and Gödel algebra [0,1]G.

3 The fuzzy logic KD45(A)
The language of the logic KD45(A) is, by definition,
the propositional language generated by a set V ar =
{p0, p1, p2, . . .} of propositional variables together with a set
of connectives given by the algebraic signature of A2, i.e.
∧,∨,�,⇒, 1 and 0 (the latter also denoted > and ⊥ resp.),

1This means that a formula ϕ is derivable inA iff for every eval-
uation of formulas e on A, e(ϕ) = 1A, where 1A is the top element
of A.

2By abusing the notation, we shall use the same symbols for de-
noting both connectives in the language and in the algebra

and two new unary (modal) operators: the necessity operator
2 and the possibility operator 3. The set of formulas of the
resulting language will be denoted by Fm23(V ar) and we
will write Fm23 if the set V ar is understood. In the rest
of this paper, we will assume that an underlying algebra A
is fixed. The logic associated with that fixed algebra A will
be denoted by A. Throughout this paper, we assume that we
have an (complete) axiomatization of A.

We consider the formal system KD45(A) on the language
Fm23 which is obtained by adding to the axiomatization of
A the following axioms and rules:

Axioms
I : 2¬ϕ ≡ ¬3ϕ.
E∧2 : 2(ϕ ∧ ψ) ≡ (2ϕ ∧2ψ).
E∨3 : 3(ϕ ∨ ψ) ≡ (3ϕ ∨3ψ).
N : 2>.
D : 2ϕ→ 3ϕ.
42 : 2ϕ→ 22ϕ.
43 : 33ϕ→ 3ϕ.
52 : 32ϕ→ 2ϕ.
53 : 3ϕ→ 23ϕ.

Rules
RE2 : From ϕ↔ ψ infer 2ϕ↔ 2ψ
RE3 : From ϕ↔ ψ infer 3ϕ↔ 3ψ

Note that the monotonicity rules:

RM2 : From ϕ→ ψ infer 2ϕ→ 2ψ
RM3 : From ϕ→ ψ infer 3ϕ→ 3ψ

are derivable in KD45(A), as in the classical setting.3 Fur-
thermore, note that the well known axiom K is not included
in this system and the necessity rule can be infered from
RM2 by taking ϕ = >.

In addition, `KD45(A) will express theoremhood in these
logics. Proofs with assumptions will be allowed, with the re-
striction that RE2 and RE3 are to be applied to theorems
only. T `KD45(A) ϕ will express that there is such a proof
of ϕ with assumptions from the set T . For the sake of conve-
nience, we will also consider the fuzzy system KD45(A) as
the set of all its theorems, i.e. KD45(A) = {ψ | `KD45(A)

ψ}.

4 Many-valued neighborhood semantics
An A-valued Neighborhood frame is a triple F = 〈W,N,P 〉
whereW is a nonempty set (of worlds) and bothN and P are
A-valued binary functions F(W ) ×W 7→ A, where F(W )
is a subalgebra of the algebra AW of all the mappings f :
W 7→ A, with the point-wise extensions of the operations of
A. N and P are called neighborhood functions. Whenever
A is fixed, we will denote by Fr the class of all A-valued
Neighborhood frames.
Definition 1 An A-valued Neighborhood model is a four-
tuple N = 〈W,N,P, e〉 where 〈W,N,P 〉 is an A-valued
Neighborhood frame and e : V ar×W → A is a map, called
valuation, assigning to each variable in V ar and each world
in W an element of A. The map e can be uniquely extended
to a map ē : Fm23 ×W 7→ A in the following way:

3See e.g. [6, Th. 8.11, pag. 236].
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• ē is, in its first component, an algebraic homomorphism
for the connectives in the algebraic signature of A,

• ē(2ϕ,w) = N(µϕ, w),

• ē(3ϕ,w) = P (µϕ, w).

where ∀w′ ∈W , µϕ(w′) = ē(ϕ,w′).

The functions N and P determinem for each world w and
for formula ϕ, the degree of necessity and possibility of ϕ at
w, respectively. Note that we make no assumptions about the
nature of N (or P ).

Also, although the mappings e and ē are different, there
will be no confusion between them, and so sometimes we
will use the same notation e for both.

Following the Boolean modal case [6; 5], the notion of
satisfiability in a model is formalized as follows:

Definition 2 Let w be a world in a neighborhood model N
= 〈W,N,P, e〉 then:

(N , w) |= ϕ iff e(ϕ,w) = 1.

In particular, note that (N , w) |= ϕ → ψ iff e(ϕ,w) ≤
e(ψ,w), and (N , w) |= 2ϕ iff N(µϕ, w) = 1.

The notions of a formula being valid in a model and in a
class of models is as usual.

Definition 3 A formula ϕ is valid in a model N , written
N |= ϕ, iff for every world w inN it holds that (N , w) |= ϕ.
A formula ϕ is valid in a class of models C, written |=C ϕ, if
it is valid in every model N ∈ C.

Given an algebra A and a class of A-valued Neighbor-
hood models N, we introduce the modal many-valued logic
Log23(A,N) as the set of formulas ϕ ∈ Fm23 valid in N.

We stress that for the case that A is the two-element
Boolean algebra {0, 1}, all previous definitions correspond to
the standard terminology in the field of modal logic (cf. [6]).
As far as the authors are aware, this extension to the modal
many-valued setting was first proposed in [18].

Let us close this section with the following observation,
which states that validity in a class of neighborhood models
is preserved by a congruence rule:

Lemma 1 Let N be a class of A-valued neighborhood mod-
els. Then:

If |=N ϕ↔ ψ then |=N 2ϕ↔ 2ψ and |=N 3ϕ↔ 3ψ.

Proof: Suppose that N is a class of A-valued models such
that |=N ϕ ↔ ψ so that for any world w in any model N in
N, e(ϕ,w) = e(ψ,w) which means that µϕ = µψ . Hence, for
for any world w in any modelN in N, e(2ϕ,w) = e(2ψ,w)
and then |=N 2ϕ ↔ 2ψ. The proof of 3 case is analogous.
�

It is easy to verify that none of the axioms ofKD45(A) are
valid in the class of all neighborhood models. In the next sec-
tion, we introduce special kinds of frames which make valid
those axioms.

5 Special semantical considerations
One of the main slogans from the influential book on modal
logic [1] is to describe the modal language as a language for
talking about graphs, or relational structures. The key idea
is that some modal formulas can be shown to define interest-
ing properties of the accessibility relation in a Kripke frame.
Similarly, in the current setting, modal formulas can be un-
derstood as expressing properties of the neighborhood func-
tion. In [18], the authors have paid attention to special and
interesting classes of neighborhood frames which are defined
by formulae. In this sense, it is worth noticing that neighbor-
hood semantics are easier to adapt to axioms than relational
Kripke semantics, i.e., in general, given an axiom it is usually
possible to find the property on the neighborhood function
accounting for it.

As it has been earlier mentioned, we can obtain subclasses
of neighborhood frames 〈W,N,P 〉 by putting conditions
over the functions N and P . In [18], the authors study sev-
eral subclasses. In the current paper, we are only interested in
the following particular conditions for every w ∈ W , every
mappings f, g ∈ F(W ):

(e∧2). N(f ∧ g, w) = N(f, w) ∧N(g, w).

(e∨3). P (f ∨ g, w) = P (f, w) ∨ P (g, w).

(n). N(1, w) = 1 .

Here when we write f ∗g, with ∗ ∈ {∧,∨}, we mean function
resulting from the pointwise application of the � operation
of the algebra A, that is, for every w ∈ W , (f ∗ g)(w) =
f(w) ∗ g(w), and by 1 we denote the constant function of
value 1, i.e. 1(w) = 1 for every w ∈W .

Depending on whether the functions N and P in a A-
valued neighborhood frame satisfies conditions (e∧2), (e ∨3)
or (n), we say that the frame is N -∧-distributive, is P -∨-
distributive, or contains the unit, respectively.

Theorem 1 Given an algebra A, the schemas E∧2 , E∨3 and
N are valid in the subclasses of A-valued neighborhood
frames that are N -∧-distributive, P -∨-distributive, and that
contain the unit, respectively.

We are also interested in other subclasses of A-valued
neighborhood frames which make valid the rest of axioms of
KD45(A). Indeed, consider the following conditions on a
A-valued neighborhood model N = 〈W,N,P, e〉, for every
world w and formula ϕ in Fm23:

(d). N(µϕ, w) ≤ P (µϕ, w).
(iv2). N(µϕ, w) ≤ N(µ2ϕ, w).
(iv3). P (µ3ϕ, w) ≤ P (µϕ, w).
(v2). P (µ2ϕ, w) ≤ N(µϕ, w).
(v3). P (µϕ, w) ≤ N(µ3ϕ, w).

Depending on whether the functions N or P satisfy the con-
ditions (d) to (v3) above, we say that the model is deontic,
N -transitive, P -transitive, N -euclidean or P -euclidean, re-
spectively.

Theorem 2 The following statements hold:

1. D is valid in the subclass of A-valued neighborhood
models satisfying the condition (d).
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2. 42 is valid in the subclass of A-valued neighborhood
models satisfying the condition (iv2).

3. 43 is valid in the subclass of A-valued neighborhood
models satisfying the condition (iv3).

4. 52 is valid in the subclass of A-valued neighborhood
models satisfying the condition (v2).

5. 53 is valid in the subclass of A-valued neighborhood
models satisfying the condition (v3).

When a A-neighborhood model satisfies the properties
(e∧2), (e∨3), (n), D, 42, 43, 52 and 53, we say that it is a
A-valued belief model.

6 Completeness Results
In this section, we are going to prove weak completeness of
KD45(A) with respect to Neighborhood semantics when the
underlying logic A is strongly complete.4

Let X := {2θ,3θ : θ ∈ Fm23} be the set of for-
mulas in Fm23 beginning with a modal operator; then
Fm23(V ar) = Fm(V ar ∪ X). That is, any formula in
Fm23(V ar) may be seen as an A-formula built from the
set of extended propositional variables V ar ∪X . To achieve
our completeness goal, we assume that the formula ϕ is not
a theorem of KD45(A). Hence there is no proof of ϕ in
the underlying A from the set of theorems of KD45(A).
Them, by the strong completeness of A,5 there exists a val-
uation v ∈ AV ar∪X such that: v(KD45(A)) = 1 and
v(ϕ) < 1. Then, we define a canonical neighborhood model
N v in which we are going to prove that ϕ will not be valid.

Let ∼ be equivalence relationship in AV ar∪X ×AV ar∪X

defined as follows:

u ∼ w iff ∀ψ : u(2ψ) = w(2ψ) and u(3ψ) = w(3ψ)

The A-canonical model N v = (W v, Nv, P v, ev) is defined
as follows:

I W v = {u ∈ AV ar∪X |u ∼ v and u(KD45(A)) = 1}.
I The neighborhood functions are given for every µ ∈
F(W ) as follows:
a) If there exists ψ ∈ Fm23 such that µ = µψ , by:

Nv(µψ, u) = u(2ψ) ; P v(µψ, u) = u(3ψ)

b) Otherwise, by:

Nv(µ, u) = 0 ; P v(µ, u) = 1

I The valuation associated to the world u will be its re-
striction to the set V ar, u � V ar. That is, ev(p, u) =
u(p) for any p ∈ V ar.

4This means to be complete for deductions from an arbitrary set
of premises.This extra condition is required for technical reasons in
the completeness proof. Actually, this restricts a bit the applicabil-
ity of the results, since not all systems A complete for theorems
are strongly complete. For instance, Gödel, Nilpotent minimum
and finitely-valued Lukasiewicz logics are strongly complete, but
infinitely-valued Lukasiewicz or Product logics are not.

5Note here that we need A to be strongly complete since the set
of theorems of KD45(A) may not be finite.

Note that in this canonical model, the evaluation of any
modal formula from X is independent of the world.

For the sake of simplicity, we will write from now on v(ϕ)
for v(ϕ). It is clear that N v belongs to the class of A-valued
neighborhood models.

Lemma 2 (Truth Lemma) For any world u in the canonical
model N v and any formula ϕ,

ev(ϕ, u) = u(ϕ).

Proof: This is proved by induction in the complexity of
ϕ seen again as a formula of Fm23 = Fm23(V ar)
The atomic step and the inductive steps for the A connec-
tives being straightforward, it is enough to verify inductively
ev(2ϕ, u) = u(2ϕ). But it is obvious from both the second
point in the definition of A-canonical model and the defini-
tion of A-valued neighborhood model at Section 2. The same
happens for 3 case. �

Theorem 3 The logic KD45(A) is sound and weak com-
plete with respect to the class of belief neighborhood models.

Proof: The proof is standard and so it will only be sketched.
Soundness is straightforward. For weak completeness, the
proof is by contraposition. Suppose that 6`KD45(A) ϕ. Then,
by strong completeness of the underlying logic A, there is a
valuation v : V ar ∪X 7→ A such that v̄(ϕ) < 1. Hence, by
the truth lemma (Lemma 2), ϕ is not valid in the canonical
model, because (N v, v) 6|= ϕ. �

Note that last theorem shows, somewhat surprisingly, that
KD45(A) is complete with respect to the subclass of belief
neighborhood models in which neighborhood functions N
and P are independent of local world, or in other words, the
truth-value of every formula in X is the same in all worlds.
This feature is very important in order to provide a connection
to possibilistic models, as done in the next section.

7 Relation between A-valued belief models
and A-possibilistic models

Another well-known semantics for (many-valued) modal sys-
tems is the one based on possibilistic models. The notion of
A-possibilistic models is as follows.

Definition 4 A A-possibilistic model (A-model) is a struc-
ture M = 〈W,π, e〉 where:

I W is a non-empty set of objects that we call worlds of
M.

I π : W 7→ A is q mapping (called possibility distribu-
tion) such that supw∈W π(w) = 1.

I e : V ar×W 7→ A is an A-evaluation of propositional
variables for each world.

For each world w ∈ W , an evaluation e(·, w) : V ar 7→ A
is extended to any formula in Fm23 in the following way:
inductively defining:

• e is, in its first component, an algebraic homomorphism
for the connectives in the algebraic signature of A,

• e(2ϕ,w) := infw′∈W {π(w′)⇒ e(ϕ,w′)},
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• e(3ϕ,w) := supw′∈W {π(w′)� e(ϕ,w′)}.
The notions of a formula ϕ being true at a world x, valid in
a model M = 〈W,π, e〉, or universally valid, are the usual
ones:

• ϕ is true inM at w, written (M, w) |= ϕ, if e(ϕ,w) =
1.
• ϕ is valid inM, writtenM |= ϕ, if (M, w) |= ϕ at any

world w ofM.
• ϕ is N -valid, written |=N ϕ, if it is valid in all models
M into the class N .

We will write PA to denote the class of all A-possibilistic
models.

Lemma 3 The following schemas are valid in the class PA

for any residuated lattice A:

E∧2 : 2(ϕ ∧ ψ)↔ (2ϕ ∧2ψ).
E∨3 : 3(ϕ ∨ ψ)↔ (3ϕ ∨3ψ).
N : 2>.
P : 3>.

The reader will have noticed that the difference between a
A-valued belief model and a A-possibilistic model is due to
the functions N,P and π. It should be clear that with neigh-
borhood models, there is more freedom in which collection of
sets can be necessary at a particular state. On the other hand,
in possibilistic models this information is presented in a sim-
ple and elegant fashion. A natural question to ask is under
what circumstances a A-belief model and a A-possibilistic
model represent the same information or satisfy the same for-
mulas.

The next lemma shows the embedding of the class of A-
possibilistic models into a particular subclass of A-belief
models.

Lemma 4 For every A-possibilistic model M = 〈W,π, e〉
there is a pointwise equivalent A-valued belief model N =
〈W,Nπ, Pπ, e〉 in the sense that for any world w ∈ W and
any formula ϕ ∈ Fm23:

ēM(ϕ,w) = ēN (ϕ,w)

Proof: It is clear that we have only to define the neighbor-
hood functions in the following way:

Nπ(µϕ, ·) = inf
y∈W

[π(y)⇒ µϕ(y)]

Pπ(µϕ, ·) = sup
y∈W

[π(y)� µϕ(y)]

Note that these proposed definitions for Nπ and Pπ are inde-
pendent of local world w. �

This particular class of A-belief models should be defined
in a such way as it is suggested by the last proof.

Definition 5 A A-valued belief model N = 〈W,N,P, e〉 is
augmented if and only if there exists a function f ∈ AW such
that for any formula ϕ ∈ Fm23:

N(µϕ, ·) = inf
y∈W

[f(y)⇒ µϕ(y)]

P (µϕ, ·) = sup
y∈W

[f(y)� µϕ(y)]

A direct consequence of this definition is the following obser-
vation.

Proposition 1 The class of A-possibilistic models is isomor-
phic to the class of augmented A-belief models. Both classes
are isomorphic in the sense that for each model in one of them
there exists another model in the other class such that all for-
mulae are satisfied with the same degree in both models.

Proof: One direction is given by Lemma 4. For the converse
direction, we have only to define π(y) = f(y) where f is as
postulated in Definition 5. �

A much more interesting relationship between A-valued
belief models and A-possibilistic models is the following
one. Let N = 〈W,N,P, e〉 be a A-valued belief model.
Then we define its associated A-possibilistic model asMN
= 〈W,πNP , e〉 where πNP (w) is:

inf
ϕ∈Fm23

{min(N(µϕ, ·)⇒ µϕ(w), µϕ(w)⇒ P (µϕ, ·))}

In general, it is not any of the following cases: π = πNπPπ ,
N = NπNP and P = PπNP . However, there are some in-
teresting cases where the last definition agree with the one
used in the proof of Proposition 1. For instance, if A is a fi-
nite Ł-algebra then, by using the continuity of its residuum,
it is easy to prove it. Another interesting example is taking A
as the standard Gödel algebra [0, 1]G and π is optimal in the
sense of [3]. In fact, it has been generalized in [18] that result
in the following way.

Definition 6 Given a A-possibilistic modelM = 〈W,π, e〉,
define a new possibility distribution π+(y) as follows:

inf
ϕ∈Fm23

{min(e(2ϕ, y)⇒ e(ϕ, y), e(ϕ, y)⇒ e(3ϕ, y)}

CallM optimal whenever π+ = π.

The following two results have been adapted from [18].

Lemma 5 The modelM+ = 〈W,π+, e〉 is optimal. More-
over, if e+ is the extension of e in M+, then e+(ϕ, x) =
e(ϕ, x) for any ϕ ∈ Fm23 and any x ∈W .

Corollary 1 LetM = 〈W,π, e〉 and Nπ = 〈W,Nπ, Pπ, e〉
be a A-possibilistic model and its associated A-valued belief
model, respectively. Then for any ϕ ∈ Fm23:

|=M ϕ ⇐⇒ |=Nπ ϕ

Let N = 〈W,N,P, e〉 and MNP = 〈W,πNP , e〉 be an
augmented A-belief model and its associated A-possibilistic
model, respectively. Then for any ϕ ∈ Fm23:

|=N ϕ ⇐⇒ |=MNP ϕ

This proves that the class of augmented A-valued belief
models validates the same set of formulas than the class of A-
possibilistic models. It remains however as an open problem
to get an complete axiomatization of this class of models.
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8 The probabilistic fuzzy logic Prob(Łn)
MV-algebras are a class of residuated lattices that are the al-
gebraic counterpart of infinitely-valued Łukasiewicz logic Ł.
Namely they can be presented as residuated lattices satisfying
the prelinearity condition (a → b) ∨ (a → b) = 1, the divis-
ibility condition a� (a→ b) = a ∧ b, and with the negation
operation being involutive, ¬¬a = a. In this setting, a rele-
vant definable operation is the strong disjunction ⊕, defined
as a⊕ b = ¬a→ b.

The so-called standard MV-algebra [0, 1]MV is the residi-
uated lattice on the real unit interval [01] equipped with the
operations a � b = max(x + y − 1, 0) and a → b =
min(1, 1 − x + y). In this case, we also have ¬a = 1 − a
and a ⊕ b = max(x + y, 1). Actually, the whole class of
MV-algebras is generated (as variety) by this algebra on [0,
1]. In other words, this amounts to the fact that the logic Łis
complete with respect to the semantics given by the standasr
algebra [0, 1]MV .

Other relevant examples of (finite) MV-algebras are the
following ones. For every natural n ∈ N, let Sn =
{0, 1/n, . . . , (n−1)/n, 1} and equip Sn with the restrictions
to Sn of the above defined operations on [0, 1]MV . We will
denote by Sn the obtained MV-algebra, and this algebra is
the one corresponding to the so-called n-valued Łukasiewicz
logic Łn, in the sense of Łn being (strongly) complete w.r.t.
Sn. The reader is referred to [4] for basic facts about MV-
algebras and Łukasiewicz logics.

The notion of state on an MV-algebra generalizes the con-
cept of finitely additive probability on a Boolean algebra.
More specifically, by a state on an MV-algebra A (cf. [16])
we mean a map Π : A→ [0, 1], satisfying:

(S1) Π(1A) = 1,
(S2) For every a, b ∈ A such that a � b = 0A, Π(a ⊕ b) =

Π(a) + Π(b).
It can be easily shown that every state Π on A also satisfies
Π(¬x) = 1−Π(x), and hence in particular Π(0A) = 0.

In this section we introduce the (many-valued) modal sys-
tems Prob(Łn) on the language Fm2 to capture the no-
tion probabilistic-like belief on formulas of the n-valued
Lukasiewicz system Łn, based on the notion of states. The
axioms and rules of Prob(Łn) are those of Łn plus the fol-
lowing:

Axioms
I : 2¬ϕ ≡ ¬2ϕ
Ad : 2(ϕ⊕ ψ) ≡ 2ϕ⊕ (2ψ � ¬2(ϕ� ψ))
N : 2>
42 : 2ϕ ≡ 22ϕ
oo : 2(2ϕ⊕2ψ) ≡ 2ϕ⊕2ψ

Rules
RE2 : From ϕ↔ ψ infer 2ϕ↔ 2ψ

The idea of axiom (I) is to capture the self-duality property
of states (Π(¬a) = 1 − Π(a)) and axiom (Ad) aims at cap-
turing the finite additivity of states in this form: Π(a ⊕ b) =
Π(a) + Π(b)−Π(a� b).

As in the previous case of the KD45(A) logics, the mono-
tonicity rule:

RM2 : From ϕ→ ψ infer 2ϕ→ 2ψ

is also derivable in Prob(Łn). Indeed, if ϕ→ ψ is a theorem
of Prob(Łn), then ϕ ∨ ψ is equivalent to ψ, and thus, using
the RE2 rule, 2(ϕ ∨ ψ) is equivalent to 2ψ. Hence, using
Ad, Prob(A) proves 2ψ ≡ 2ϕ ⊕ (2ψ � ¬2(ϕ ∧ ψ)), and
then it is clear that Prob(Łn) proves 2ϕ→ 2ψ.

Furthermore, note that, unlike the general case of
KD45(A), the well-known axiom K is derivable in
Prob(Łn). Indeed, 2(ϕ → ψ) is equivalent 2(¬ϕ ⊕ ψ),
and by the additivity axioms (Ad) equivalent to 2(¬ϕ) ⊕
(2ψ � ¬2(¬ϕ � ψ)). Now it is clear that the latter formula
implies 2(¬ϕ) ⊕ 2ψ, and by axioms (I), this is equivalent
to ¬2ϕ⊕2ψ, that is, 2ϕ→ 2ψ.

An Łn-valued probabilistic neighborhood frame is a pair
F = 〈W,Π〉 where W is a nonempty set (of worlds) and
Π : G × W 7→ Łn, where F(W ) = (Łn)W = {f | f :
W 7→ Łn}, and G is sub-algebra (as MV-algebra) of F(W ),
and such that, for every w ∈ W , Π(·, w) a state, that is, it
satisfies:
• Π(1, w) = 1

• Π(f ⊕ g, w) = Π(f, w) + Π(g, w), if f � g = 0,
for all f, g ∈ G

An Łn-valued probabilistic neighborhood model is then a
triple N = 〈W,Π, e〉 where 〈W,Π〉 is an Łn-valued proba-
bilistic neighborhood frame and e : V ar ×W → Łn is an
valuation of variables for each world inW , such that e can be
uniquely extended to a valuation on formulas from Fm2 in
the following way:
• ē is an algebraic homomorphism, in its first component,

for the connectives in the algebraic signature of Łn,
• ē(2ϕ,w) = Π(µϕ, w)

where ∀w′ ∈ W , µϕ(w′) = ē(ϕ,w′). Therefore, in a prob-
abilistic neighborhood model N = 〈W,Π, e〉, Π(µϕ, w) is
defined for every formula ϕ ∈ Fm2.

In what follows, let X = {2θ : θ ∈ Fm2} be the set
of formulas in Fm2 beginning with a modal operator; then
Fm2(V ar) = Fm(V ar ∪X).

To prove completeness, let us assume that the formula ϕ is
not a theorem of Prob(Łn). Hence by strong completeness
of the Łn logic, there exists a valuation v ∈ ŁV ar∪Xn such
that: v(Prob(Łn)) = 1 and v(ϕ) < 1. Then, as in the case of
KD45(A), we define a canonical neighborhood model N v

in which, we are going to prove that, ϕ is not valid.
In this case, let∼ be the equivalence relation in ŁV ar∪Xn ×

ŁV ar∪Xn defined as follows:
u ∼ w iff ∀ψ : u(2ψ) = w(2ψ).

The Łn-canonical model N v = (W v,Πv, ev) is defined then
as follows:

I W v = {u ∈ ŁV ar∪Xn | u ∼ v and u(Prob(Łn)) = 1}.
I Let G be the MV-subalgebra of (Łn)W

v

of functions
µψ : W v → Łn defined for each ψ ∈ Fm2 by putting:
µψ(u) = u(ψ) for each u ∈ W v .6 Then the neighbor-
hood function Πv : G ×W v → Łn is defined as:

Πv(µψ, u) = u(2ψ).

6Notice that G is indeed closed by the ⊕ and ¬ operations, and
the functions µ2ψ are constant over W v .
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I The valuation associated to the world u will be u � V ar.
That is, ev(p, u) = u(p) for any p ∈ V ar.

It is clear that N v is indeed a Łn-valued probabilistic
neighborhood model since Πv is well defined (it is always
defined for any formula and world), and moreover Πv(·, u) is
a state on G for every u ∈W v . Indeed,

• Πv(1, u) = Πv(µ>, u) = u(2>) = 1

• Let ϕ,ψ such that µϕ � µϕ = 0, that is, µϕ�ψ = 0 over
W v . Then we have that u(2(ϕ�ψ)) = Πv(µϕ�ψ, u) =
Πv(0, u) = Πv(µ⊥, u) = u(2⊥) = 1− u(2>) = 0.
Finally, by Axiom (Ad), we have Πv(µϕ ⊕ µψ, u) =
Πv(µϕ⊕ψ, u) = u(2(ϕ ⊕ ψ)) = u(2ϕ) ⊕ (u(2ψ) �
1 − u(2(ϕ � ψ))) = u(2ϕ) + u(2ψ) = Πv(ϕ, u) +
Πv(ψ, u).

From here, it follows the Truth Lemma, which is proved by
induction on the complexity of the formulas.

Lemma 6 (Truth Lemma) For any world u in the canonical
model N v and any formula ϕ,

ev(ϕ, u) = u(ϕ).

Finally, based on the canonical model construction, we can
formulate a completeness result for Prob(Łn).

Theorem 4 The logic Prob(Łn) is sound and weak complete
with respect to the class of Łn-valued neighborhood proba-
bilistic models.

9 Conclusions and future work
In this paper we have explored the study of many-valued
modal logics in the context of (many-valued) neighborhood
semantics. We have introduced both a many-valued variant
of the classical modal logic KD45 and its relation to possi-
bilistic semantics, and a probabilistic-like logic over finitely-
valued Łukasiewicz logic. However, a lot of problems are left
open. The following are, in our opinion, some relevant open
questions concerning the framework discussed in this paper:

• A crucial assumption we have used when proving com-
pleteness of the logicsKD45(A) is the underlying logic
A is strongly complete. This rule out a number of the
most well-known fuzzy logics. Is it possible to relax
this assumption?

• To reason about numerical degrees of uncertainty, one
would need to introduce them as truth constants in the
modal language. Therefore, these seem natural exten-
sions to be considered and studied.

• Questions on the decidability and complexity have not
been considered so far, but need to be addressed in the
near future.

• Finally, concerning Prob(Łn), it deserves to be stud-
ied a possible relationship to the logic of Flaminio and
Montagna in [13] where they consider internal states in
the algebras rather than external ones.
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Abstract
In this work, we connect the outcomes of differ-
ent preference aggregation methods to the individ-
ual beliefs of participating voters. Our method
is an extension of [Sá and Alcântara, 2013],
where weighted predicates and satisfaction thresh-
olds were introduced to connect individual beliefs
and rational choice criteria. Here, we match deci-
sion criteria like maximizing utility and satisfaction
with collective preference profiles to model vot-
ing procedures from social choice theory, namely
majority and plurality (compulsory or with absten-
tion), approval voting, approval majority, dictator-
ship, and unanimity. The result is a system where
individual beliefs are the base both for individual
and for collective decisions.

1 Introduction
Autonomous agents are frequently required to make decisions
according to beliefs, goals (intentions), and preferences (de-
sires), however, preferences are rarely connected to the be-
liefs of an agent. Dietrich and List argue in [Dietrich and
List, 2013] that logical reasoning and the economic concept
of rationality are almost entirely disconnected in the litera-
ture: while logical accounts of reasoning rarely capture ra-
tional decisions in the economic sense, social choice is never
worried about the origin of agents’ preferences. But if prefer-
ences are disconnected from beliefs, how can an agent explain
her decisions? How could we cope with new information and
its effect on an agent’s preferences? Concerning those ques-
tions, [Sá and Alcântara, 2013] introduced utility thresholds
to model agent satisfaction. The threshold equips a prefer-
ence profile with a different perspective of preferences: inde-
pendently of how options are evaluated compared to others,
some options satisfy the agent while others don’t. This con-
cept is useful, for instance, to justify abstention in a vote. In
our work, we build on the concepts of weighted predicates
[Sá and Alcântara, 2013] and use satisfaction thresholds to
model belief-based preference aggregation.

In recent years, a number of logic-based approaches were
introduced to represent and reason about preferences [Lafage
and Lang, 2000; Lang, 2004; Osherson and Weinstein, 2013;
Boutilier, 1994; Ågotnes et al., 2011; Troquard et al., 2011].

However, most of these works focus on logical properties
of preferences and decision methods, but are rarely con-
cerned with their origins and revision. With rare excep-
tions, decisions promoted by existing logic approaches of
decision making are disconnected from the beliefs an agent
holds about available options. Further, logic-based reasoning
with preferences commonly focuses on individual decisions,
with exceptions such as [Lang, 2004; Ågotnes et al., 2011;
Troquard et al., 2011]. In this paper, we explore how collec-
tive decisions can be a product of individual agent beliefs.

The paper is organized as follows. In Section 2, we discuss
the language and semantics of knowledge bases. In Section
3, we introduce how preferences are encoded with weighted
predicates with a satisfaction threshold [Sá and Alcântara,
2013]. In Section 4, we briefly explain how the notion of sat-
isfaction is encoded in a knowledge base according to a pref-
erence profile. In Section 5, we present the different (individ-
ual) decision criteria we will use in the paper. Such criteria
are combined with a satisfaction threshold and a collective
preference profile to in Section 6, where we focus on belief-
based collective decisions. In that section, we show weighted
predicates properly integrates utility and beliefs for collective
decisions. Related work is discussed in Section 7.

2 Knowledge Bases
In this paper, we consider agents with knowledge bases (or
belief sets) as answer set programs [Gelfond and Lifschitz,
1991]. Such programs can present several models called an-
swer sets, to which we sometimes refer as possible or plau-
sible scenarios conceived by the knowledge base. The pos-
sible presence of multiple models is an interesting feature to
account for uncertainty and we will later show that they are
suitable to express uncertainty over preferences and arguing
about them. These notions of preferences can be generalized
to other kinds of logic languages with unary predicates.

An Extended Disjunctive Program (EDP) or Answer Set
Program [Gelfond and Lifschitz, 1991] is defined over a Her-
brand Base HB, the set of all ground atoms the program
might resort to. An EDP consists of a set of rules of the form

r : L1| . . . |Lk ← Lk+1, . . . , Lm, not Lm+1, . . . , not Ln

where n ≥ m ≥ k ≥ 0 and each Li is a literal, i.e., it is
either an atom (A), its negation (¬A), or a (possibly negated)
predicated formula. The symbol | denotes disjunction, the
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commas (,) denote conjunction, not denotes negation as fail-
ure (NAF) and notL is a NAF-literal ifL is a literal. We may
speak of literals to generalize literals and NAF-literals. In a
rule r as above, we refer to L1| . . . |Lk as the head of r and
write head(r) to denote the set {L1, . . . , Lk}. We refer to
the conjunction Lk+1, . . . , Lm, not Lm+1, . . . , not Ln

as the body of r, and body(r) denotes the set
{Lk+1, . . . , Lm, not Lm+1, . . . , not Ln}. The posi-
tive and negative literals in the body of r are, respec-
tively, the sets {Lk+1, . . . , Lm} and {Lm+1, . . . , Ln},
here denoted by body+(r) and body−(r). We indicate
the set of NAF-Literals {not Lm+1, . . . , not Ln} as
not body−(r). The structure of a common rule is then
written head(r) ← body+(r), not body−(r). A rule is an
integrity constraint if head(r) = ∅ (i.e., if k = 0) and it is a
fact if body(r) = ∅ (i.e., if n = k).

We say that a program, rule or literal without variables is
ground. A rule with variables is seen as a succinct manner
to represent all of its ground instances, which is computed
by applying every substitution θ = {x1/t1, . . . xn/tn} from
variables to terms in HB where x1, . . . , xn are all distinct
variables and all ti is a distinct term from xi.

The semantics of an EDP is given by the Answer Sets Se-
mantics [Gelfond and Lifschitz, 1991]. Take S ⊆ HB, the
ground reduct of a program P is the set PS of all ground
instances of rules r of P such that body−(r) ∩ S = ∅. An
answer set of a NAF-free EDP P is a minimal S ⊆ HB
such that (i) for every rule of P , if body+(r) ⊆ S, then
head(r) ∩ S 6= ∅; and (ii) S is consistent or S = HB. A
program may have one, zero or multiple answer sets. An an-
swer set S for KB is consistent if S does not simultaneously
contain A and ¬A, for no atom in the language; otherwise,
if S is inconsistent, we will have S = HB by explosion1.
The program itself is consistent if it has at least one consis-
tent answer set. Throughout the paper we will only consider
consistent programs. A goal is a conjunction of literals and
NAF-literals. We say thatKB credulously (resp. skeptically)
satisfies a goal G if some (resp. all) of its answer sets satisfy
G, in which case we write KB |=c G (resp. KB |=s G).

In the remaining of the paper, whenever we speak of
knowledge bases, we account for answer set programs. An-
swer set solvers commonly provide a number of aggregate
functions such as #sum, #max, #min, and #count, and opti-
mization clauses like #maximize and #minimize [Gebser et
al., 2010]. While aggregate functions filter results from a
list, optimization clauses compare and select optimized an-
swer sets. In this paper, in regard of the reader unfamiliar to
ASP, we will semantically define predicated formulas (func-
tions in ASP) to express blocks of code with such aggregates.

3 Preferences as Utility + Beliefs
In this section, we introduce preference profiles and the no-
tion of satisfaction threshold, similar to what was done in
[Sá and Alcântara, 2013]. However, while in their work two
thresholds (upper and lower) are considered to model neutral-
ity, we will concentrate on the particular case where the two

1The principle of explosion is a law of classical logic according
to which any statement can be proven from a contradiction.

thresholds coincide. This setup will be better suited for the
work we carry out in this paper. Indecision will be expressed
by multiple answer sets with conflicting conclusions.

Agent preferences are drawn on top of beliefs by attribut-
ing weights to unary predicates expressing relevant features.
Those weights result in an unary utility function used to com-
pare options in a decision. In this paper, we focus our atten-
tion on preference aggregation: decisions made by voting and
involving two or more decision makers (agents). The model
of preferences we will introduce is designed to facilitate rea-
soning with preferences, explaining decisions, and arguing on
available options. The model is general enough so agents can
effectively communicate their preferences and update them
in face of new information [Sá and Alcântara, 2013]. We as-
sume utility is personal in its nature: each agent has their own
value scales, so an utility of a hundred may have widely dif-
ferent meanings for different agents. Our model normalizes
utility in the language with reserved terms good and poor,
which express whether an option is satisfactory or not. The
threshold is used to model an utility requirement for satisfac-
tion and to qualify available options.
Definition 1 (preference profile2) Let Px be the set of unary
predicates P (x) used to express possible features3 of options
(e.g. if a dish harmonizes with red wine) in the language of
an agent. A preference profile is a pair Pr = 〈Ut, T 〉, where
Ut : Px → R is an utility function based on unary predicates,
and T is the satisfaction threshold.

For the sake of simplicity, all relevant characteristics are
modeled as unary predicates. Observe that more complex
qualities can be also related to unary predicates. When choos-
ing a meal and a drink, discerning what dish goes better with
red wine can be perceived as a quality of the dish, solo. On
the other hand, if the problem involves the choice of multi-
ple items in a meal, we can perceive the candidates as the
available combinations of options for each item. If we do so,
specific unary predicates can be used to describe the harmony
of dish and drink and other features. Further, as standard in
knowledge representation, attributes or features of objects are
modeled as unary predicates. We allow negative utilities to
highlight that some features are undesired.
Definition 2 (available options) In a decision, the set of op-
tions (or candidates) is denoted O = {o1, . . . , on}, n ≥ 2.

The available options are constant terms in the language.
We will use a special predicate O(x) along the paper to ex-
press a term represents an option in our program examples.

Given a program KB and a profile Pr = 〈Ut, T 〉, to rank
the available outcomes is straightforward. Given an answer
set S, each option c ∈ O has utility (in S)

US(c) =
∑

P∈Px,
P (c)∈S

Ut(P ).

2We consider preferences and uncertainty are commensurate
[Dubois Didier et al., 2003].

3Similar approaches of weighted logics for reasoning with pref-
erences commonly treat these formulas as goals. However, if a fea-
ture has negative weight, a rational agent should not try to satisfy it.
We use the word “features” instead of “goals” so we do not need to
differentiate positive and negative attributes.
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The utility attributed to c by US is the sum of all predicates
in Px satisfied by c in S.

Multiple answer sets may suggest uncertainty about the
features satisfied by each option. This is why the utility func-
tion takes an answer set for parameter. In a given answer set
S, oi will be perceived as a good option if UtS(oi) ≥ T and
as a poor option if UtS(oi) < T .

The concept of preference profile in Definition 1 induces,
for each answer set S of the agent theory, a total preorder4

<S= {(oi, oj) | UtS(oi) ≥ UtS(oj)}

over O. The proposition oi <S oj is usually read as “oi is
weakly preferred to oj [Fishburn, 1999] in S”. If the agent is
indifferent about two options oi, oj , i.e., if both oi <S oj and
oj <S oi hold, we write oi ∼S oj .

From now on, an agent is a pair AG = (KB,Pr) involv-
ing a program KB and a preference profile Pr.

Example 1 Suppose an agent whose knowledge base in-
cludes beliefs about Australia (a), Brazil (b), and Canada
(c), possible destinations (O(x)) of a future vacation trip.
Interesting features of a destination to the agent include the
presence of famous beaches (B(x)), the availability of cheap
flights (C(x)) and whether there is a spoken language in x
that is unknown to the agent (U(x)). A destination x will
present unknown languages if there is at least one language y
that is spoken there (S(y, x)) that is not amongst those known
to the agent (K(y)). The agent speaks two languages, namely
English (en) and German (ge). Finally the agent knows their
partner has a favorite destination (F (x)), but does not know
which one is their favorite.

We use the semi-colon to separate rules and a period to
mark the last one.

KB : O(a)← ; O(b)← ; O(c)← ;
B(a)← ; B(b)← ; ¬B(c)← ;
C(c)← ;
U(x)← O(x), S(y, x), notK(y) ;
K(en)← ; K(ge)← ;
S(en, a)← ; S(pt, b)← ;
S(en, c)← ; S(fr, c)← ;
F (a)← not F (b), not F (c);
F (b)← not F (c), not F (a);
F (c)← not F (a), not F (b).

The preference profile of the agent is

Pr = 〈{(B, 3), (U,−1), (C, 4), (F, 3)}, 5〉5.

The program has three answer sets S1 = S ∪ {F (a)},
S2 = S ∪ {F (b)} and S3 = S ∪ {F (c)}, where S = {B(a),
B(b), U(b), C(c)}6. Based on Pr, the agent attributes util-
ities US1(a) = 6, US1(b) = 2, and US1(c) = 4. Because
T is 5, only Australia is considered good in S1. Observe S2

4A total preorder (also called weak order) is a relation that is
transitive, reflexive and where any two elements are related.

5Observe the predicates O and K were not listed in the profile.
We did this because those predicates do not express relevant features
for the decisions, since O highlights terms as options and K is not
about available options, but about other terms in the language.

6We highlighted only the relevant predicates according to Pr.

and S3 suggest different utilities because different instance of
F (x) are satisfied in each of the answer sets. The utilities
and status of the three options according to each profile are
summarized in Table 1.

This preference profile models a situation where the pref-
erence of the agent’s partner is definitive of their own: each
answer set favors a different destination based on the partner’s
favorite.

US1 US2 US3

Australia 6 (good) 3 (poor) 3 (poor)
Brazil 2 (poor) 5 (good) 2 (poor)

Canada 4 (poor) 4 (poor) 7 (good)

Table 1: The options according to Pr in S1, S2, S3.

This preference model satisfies axioms proposed in [Di-
etrich and List, 2013] to govern the relationship between an
agent’s beliefs and their preferences. Roughly speaking, there
are two axioms. The first states that two options with the
exact same characteristics should be equally preferred. The
second axioms is about the case where new attributes become
relevant to the decision. When this happens, the preferences
over options not satisfying the new attributes should remain
unchanged. The result concerning our approach and the ax-
ioms was shown in [Sá and Alcântara, 2013]. As a conse-
quence, this approach adequately relates the formulas con-
cerning beliefs about options and preferences involving them.

4 Rules for the Evaluation of Options and
Beliefs About Preferences

In this section, we will show how to build a general theory
of preferences so agents are able to reason about the qual-
ity of available options. We use the utility function and the
qualitative thresholds of a preference profile (Sec. 3) to de-
vise a set of special rules that, when appended to the original
knowledge base (as a module), promotes conclusions about
the quality of available options. Therefore, rules encoding
preferences should not interfere with the models of the orig-
inal program: we tolerate adding conclusions on the quality
of options and nothing else. For that matter, we introduce the
predicate G(x) standing for “x is a good option”, while poor
options are expressed by negation (¬G(x)). We assumeG(x)
is reserved, so it is not in the original knowledge bases.

Given an agentAG = (KB,Prefs) and a preference pro-
file Pr = 〈Ut, T 〉, let U(x) be an ASP function that com-
putes the utility of x as in Section 3. The following rules are
used to compare the utility of an option and the utility thresh-
olds. We refer to them as a module program KBPr.

KBPr : G(x)← U(x) ≥ T ;
¬G(x)← U(x) < T .

Observe every option will be either good or poor in each
answer set. No options are both and all options are qualified
according to one of the above rules.

The rules about preferences describe what good and poor
options are, enriching the original knowledge base with new
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conclusions about the quality of available options. While em-
ploying rules as above, we have the integration of preferences
and beliefs in two ways. First, the beliefs promote the utility
of each option and, therefore, the preferences are based on
them. Second, the calculated utilities of each option are used
to complement the knowledge base with predicated formulas
regarding beliefs about them. Observe the composed program
has the same answer sets as the original with only extra con-
clusions about the quality of each option, so proposed set of
rules also allow different answer sets to have different con-
clusions on the quality of available outcomes. This models
uncertainty about the utility and quality of available options.

5 Individual and Collective Decision Criteria
In [Sá and Alcântara, 2013], it was shown that preferences as
weighted predicates satisfies bivariate monotonicity [Dubois
et al., 2008], a qualitative criterion, both when maximizing
utility or satisfaction. The results also hold if a knowledge
base has multiple answer sets, which is treated as decisions
under uncertainty. Their paper is focused on single agent de-
cisions, while we focus on group decisions by preference ag-
gregation. We will show the same criteria used for individual
decisions can be used for collective decisions. We will do so
by the conception of a collective preference profile with spe-
cific satisfaction thresholds and conditions for combinations
of individual criteria.

5.1 Available Decision Criteria
If a decision criterion is supposed to elect a single option, we
will assume tie-breaking rules are specified separately. We
will not show how tie-breaking rules are encoded in this work,
just describe the criteria. We will consider:

MU maximizes utility. MU returns a single option of maxi-
mum utility.

MS maximizes satisfaction. If there is at least one skepti-
cally approved option, MS returns all (skeptically) ap-
proved options. If there are no skeptically approved op-
tions, MS returns all options.

MS restricts options according to satisfaction. MS returns
all skeptically approved options.

MUS maximizes utility restricted to (skeptically) approved op-
tions. MUS returns a single option of maximum utility
amongst the approved ones.

If a program has multiple answer sets, maximizing utility
is achieved by employing maximin, i.e., by maximizing the
minimal utility/satisfaction an option has across answer sets.
This is also the reason why only skeptically approved options
are considered in MS and MS .

If we only consider satisfaction, all satisfactory options
will be perceived with the same desirability. Still, if the agent
has to elect a single option, maximizing utility is the natural
thing to do. The satisfaction threshold T can model a require-
ment for a vote or abstention: if no options are good, the agent
abstains. Criteria MS and MUS restrict choice to satisfactory
options, so they are based on T . On the other hand, MU and
MS select the best options, even if all options are poor.

5.2 Rules Encoding Decision Criteria
In each case, the agent can make decisions based on the qual-
ity of available options using an extra set of rules (a program
module) encoding the criteria. For simplicity, let MU (x),
MS(x), and MUS (x) respectively be predicates satisfied by
an x ∈ O if x satisfies the described criteria. An individual
decision is encoded by the rule

C(x)← M(x),

whereC(x) stands for “x is chosen”, whileM isMU ,MS ,
MS , or MUS , according to the employed criterion. We can
refer to decision rules as a program module KBD. An agent
in a decision situation will haveKB∪KBPr∪KBD, where
Pr and KBD relate to the decision at hand.

The above rules encode a choice for the best options in a
decision. The rules in KBD are standard and independent
from agent’s language. The conclusions drawn by the rules,
on the other hand, dependent entirely on the knowledge base.

Example 2 (Continuation of Example 1) If our agent uses
MU for the decision, it will choose to go to Canada, as its
minimal utility is 4 against 3 for Australia and 2 for Brazil. If
the agent uses MS or MUS , no decision will be made because
no options are skeptically good. This means all options are
equally satisfactory. The maximin criteria over satisfaction
will return all options are minimally poor.

6 Belief-Based Preference Aggregation
In this section, we show how the outcomes of different voting
procedures [Brams and Fishburn, 2002] can be drawn from
voter’s beliefs. A voting procedure describes a rule of ag-
gregation to combine individual preferences into collective
preferences. We will show how a collective theory including
all individual theories and individual preference profiles can
be used to model such procedures. We will model majority,
plurality, dictatorial, approval voting, and variations. We will
also show how consensus can be described by combining de-
cision criteria from Section 5 in the collective theory.

6.1 STEP 1: Combining Agent Theories
Let KBi, 1 ≤ i ≤ n be the knowledge of the i− th agent in
a set of n agents. Each KBi should be accompanied by rules
KBi

Pr encoding satisfaction based on a preference profile.
Because agent theories should not be really merged, rewrite
the entire knowledge base by adding a superscript i to each
predicate and other meaningful formulas. Assume only the
constant terms and the predicate O(x) have no superscripts,
so only them are common in the language. In that way, predi-
cates such as Gi(x), and Ci(x) are reserved and exclusive to
the corresponding i− th agent theory. Each theory KBi can
be perceived as a module of the group theory

KBGroup = KB1 ∪KB1
Pr ∪ ... ∪KBn ∪KBn

Pr.

Even though individual theories do not interfere in the con-
clusions of each others answer sets, the collective theory may
have more answer sets than each individual theory. If each
KBi has asets(i) answer sets, the collective theory will
have

∏
1≤i≤n

asets(i), where
∏

is the symbol for product.
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Each answer set denotes the payoffs of all agents based
on the combination of individual uncertainties. Observe our
decision criteria are based on skeptical conclusions, so multi-
ple answer sets of the same KBi have the same conclusions
C(i). If we were to consider only those conclusions for a
group knowledge base, the result would have a single answer
set. However, the connection to agent beliefs would be lost.
The multiplicity is not a problem if all agent knowledge bases
have a single answer set.

6.2 STEP 2: The Collective Preference Profile
When we add decision criteria rules to individual decisions,
each KBi will have some conclusions Ci(x), x ∈ O. Be-
cause Ci(x) encodes agent x is a best choice for agent i, the
collective profile CP is based on those literals. Just like be-
fore, CP has a satisfaction threshold T Group, and it will be
important for collective decisions.

We can specify preference profiles for the collective theory
to implement social choice:

Example 3 (Egalitarian Vote) The preference profile

EGA = 〈{(C1, 1), (C2, 1), ..., (Cn, 1)}, T Group〉
indicates every agent has the same weight in the decision.

If T Group = 1, at least one agent must choose an option for
it to be collectively considered good. If T Group = bn2 c + 1,
a majority of the voters must choose the option before it can
be collectively considered good.

Different weights can be used to model other distributions
of importance in a vote.

Example 4 (Dictatorship) The preference profile

DIC = 〈{(C1, 0), (C2, 0), ..., (Ck, 1), ..., (Cn, 0)}, 1〉
indicates the collective preference is the same as KBk.

The above example presents a profile where only one agent
(KBk) can influence the decision, while the preferences of
other agents are of no concern to the collective preferences.

Just like before, the collective utility UGroup can be com-
puted for each answer set of KBGroup. Further the rules en-
coding a collective preference profile CP in the collective
theory can be perceived as a program module:

KBGroup
CP : GGroup(x)← UGroup(x) ≥ T Group;

¬GGroup(x)← UGroup(x) < T Group.

This module will only make a difference if individual deci-
sion criteria are in the collective theory, which is not the case
in our construction yet. In the next section, we will spec-
ify individual and collective decision criteria to complete the
collective decision theory.

6.3 STEP 3: Combining Decision Criteria
To complete our belief-based collective decision theory, we
are only missing decision criteria. Observe that, like we
did with individual preference profiles, based on UGroup and
KBGroup

CP , we can specify rules

CGroup(x)← MGroup(x),

where MGroup ∈ {MU ,MS ,MS ,MUS } is the collective
decision criterion to be employed.

In what follows, we will show how different group deci-
sion methods can be modeled in a way the results are con-
nected with the individual agent beliefs. We already showed
in Example 4 how a dictatorship would be implemented. This
notion is independent on the voting method, it simply means
a single agent rules the decision. We will focus on different
methods, which we will first describe, then show what collec-
tive preference profile, individual decision criteria and what
collective decision criterion should be combined to correctly
model said method.

Majority Voting
The majority rule states an option can only be elected if cho-
sen by more than half the voters. This voting rule is com-
monly used for decisions with only two options, but can be
employed in any other settings. In this system, each voter is
entitled a single vote, so all agents have the same weight in
the decision. Therefore, the profile

MAJ = 〈{(C1, 1), (C2, 1), ..., (Cn, 1)}, bn
2
c+ 1〉,

which suggests an option is good only if approved by more
than half the voters should be used. Because each agent has a
single vote, the individual criterion can be either MU or MUS .
If the individual criterion is MU , the vote is compulsory; if
MUS is used instead, a voter will abstain if no options are sat-
isfactory. The collective criterion will be MS : an option can
only be elected if in accordance to the collective satisfaction
threshold, which is bn2 c + 1 in MAJ . Observe only one op-
tion can have more than half the votes if each agent votes only
once. For that reason, the result is the same if the collective
decision criterion is MUS .

Plurality Voting
In plurality voting, each agent is entitled a single vote and the
winner is the most voted option. This rule is commonly mis-
taken for majority rule, but they are different. While majority
only elects and option with more than 50% of the votes, plu-
rality elects the most voted option regardless of proportion.
Plurality voting is probably the most common voting rule and
is sometimes called simple majority. If there are only two
agents and voting is compulsory, plurality will be equivalent
to majority. Otherwise, they can yield different results.

For plurality voting, we will use the profile

PLU = 〈{(C1, 1), (C2, 1), ..., (Cn, 1)}, 1〉,
which suggests an option is good with any positive number

of votes. The threshold implements the notion that an option
with no votes cannot be elected, so if all agents abstain, no
decision would be made. If we employ PLU as collective
profile, MU or MUS as individual decision criterion and MUS
as collective criterion, the result is plurality voting. Like with
majority, the difference in using MU or MUS implements, re-
spectively, if the voting is compulsory or agents can abstain.
Observe any option receiving a vote is qualified.
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Approval Voting
In Approval Voting [Brams and Fishburn, 1978], a voter gives
one vote to each option they approve. The concept of ap-
proval inspired our notion of satisfaction, however much sim-
pler. In approval voting, options are classified by each agent
by a partition of O, where all options in each set are equally
preferred. If the partition has only two sets, the preferences
are dichotomous, while they will be trichotomous or multi-
chotomous if there are (respectively) three or more subsets.
Based on the preference distribution, a voter can devise a
number of different voting strategies, which are beyond the
scope of this paper. Here, we consider the case where all
agents have dichotomous preferences and all of their votes
are sincere [Brams and Fishburn, 1978]. In this situation, the
agents have a single admissible strategy, namely voting for all
the most preferred options. This strategy is exactly the one
agents use if the individual criterion is MS , independently of
their individual satisfaction thresholds.

To implement approval voting, we will use the same profile
as plurality, PLU , but combined with MS for individual cri-
terion and MUS for collective criterion. The only difference to
plurality, therefore, is on the individual votes. Like with plu-
rality, an option can be elected by the group with any positive
number of votes.

Observe different related rules can be encoded by chang-
ing the threshold. For instance, consider the rule of approval
majority: each agent is entitled a vote to each option they
approve, but a winner needs the approval of a majority of
agents. This can be implemented by changing the threshold
in PLU to bn2 c+ 1. This is the same as using MAJ instead,
so approval majority is encoded by profile MAJ , individual
criterion MS , and collective criterion MUS .

Unanimity (or Consensual) Decisions
In decisions by unanimity, all agents need to agree to elect the
same option. Consensus is usually sought in decisions by de-
liberation and a vote is called iteratively to check if the group
reached consensus. To encode unanimity is straightforward
and similar to majority voting. The collective profile will be

UNA = 〈{(C1, 1), (C2, 1), ..., (Cn, 1)}, n〉,
where n, remember, is the number of voters. Therefore, ac-
cording to UNA, an option is only good if all agents vote
for it. The collective decision criterion will be, necessarily,
MS , restricting the decision to collectively satisfactory op-
tions. If the agents use MS or MS , they can approve mul-
tiple options. As we discussed in other procedures based on
approval, agents should employ MS on the individual deci-
sions. Consensus will be harder to achieve if each agent has
a single vote, i.e., if they use MU or MUS .

6.4 Discussion
In the previous sections, we showed how the voting rules of
(i) majority, (ii) plurality, (iii) approval, (iv) approval ma-
jority, (v) dictatorship, (vi) unanimity with single vote, and
(vii) unanimity on approval can be encoded using of weighted
predicates with a satisfaction threshold. Most rules are based
on the egalitarian profile showed in Example 3. We summa-
rize the way those rules are encoded in Table 2 for compari-

son. Only dictatorship is left out because the weights of the
voters are distributed differently.

Method T Group Individual Collective
plurality 1 MU / MUS MUS
majority bn2 c+ 1 MU / MUS MS
unanimity (single) n MU / MUS MS
approval 1 MS MUS
approval majority bn2 c+ 1 MS MUS
approval unanimity n MS MS

Table 2: Different voting procedures are encoded by a thresh-
old combined with individual and collective decision criteria.

Observe the only thing differentiating MAJ , PLU , and
UNA is the satisfaction threshold employed. Therefore, col-
umn T Group can be perceived as an indication of the collec-
tive preference profile. In each case, the resulting decisions
emerge from the individual beliefs of the agents involved. For
that matter, if agents can change their opinions at some point,
new information available can impact the collective decision
by changing some of the votes in a ballot.

The following example is an adaptation from [Lafage and
Lang, 2000]. While the options in their work are possible
words with different valuations on a set of formulas, we rep-
resent options with constant terms in the language. This way,
each agent can have different beliefs about available options,
which are expressed with unary predicates as we discussed
in Section 3. While in [Lafage and Lang, 2000] the collec-
tive choice is achieved by computation over possible worlds,
agents in our approach can reason about available options.
Finally, in our work, every step of a collective decision is
achieved by reasoning (inference) in a collective theory.

Example 5 Suppose three agents are trying to decide a com-
mon destination for a future trip together (T (x)). They want
to go together and will decide their destination by voting.
Suppose they share the same knowledge (so KB1 = KB2 =
KB3) about all options: by the time of their vacation, it will
be summer (S(x)) in Australia (a) and Brazil (b), but it will
be winter (W (x)) in Canada (c). By definition, a place can-
not be both in summer and winter. The place they want to
visit in Australia is in the mountains (M(x)). They also know
a place cannot be hot (H(x)) if in the winter or in the moun-
tains. They consider a beach in Brazil, so the second option
is not in the mountains and it will be hot. Finally, the place
in Canada is in the mountains. Their knowledge bases are
encoded:

KB1,2,3 : O(a)← ; O(b)← O(c)← ;
S(a)← ; M(a)← ; ¬H(a)← ;
S(b)← ; ¬M(b)← ; H(b)← ;
W (c)← ; M(c)← ; ¬H(c)← ;
¬H(x)←W (x); ¬H(x)←M(x);
WM(x)←W (x),M(x);
← S(x),W (x);

Further, the following rules encode they can only go to one
destination. The set of rules is similar to the one in Exam-
ple 2, where a single agent was uncertain of a partner’s fa-
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vorite option. In this example, each agent is (at first) uncer-
tain about where they would go together.

T (a)← O(a), not T (b), not T (c);
T (b)← O(b), not T (c), not T (a);
T (c)← O(c), not T (a), not T (b).

Assume the agents have preference profiles:
• Pr1 = 〈{(T, 60), (S, 20), (H, 20)}, T 1〉
• Pr2 = 〈{(T, 50), (M, 25), (WM, 25)}, T 2〉
• Pr3 = 〈{(T, 80), (M,−10), (S, 10)}, T 3〉
We will experiment with different satisfaction thresholds

in a moment. In the above, because it would be summer in
Brazil (S(b)) and hot (H(b)), if the agents can travel together
(T (b)), AG1 attributes Ut1(b) = 100. If the agents choose
a different destination, Brazil would be less attractive with
Ut1(b) = 40. Table 3 presents all utility values attributed by
each AGi to each oj ∈ O if they choose destination ok.

(AGi, oj)\T (ok) T (a) T (b) T (c)

(AG1, a) 80 20 20
(AG1, b) 40 100 40
(AG1, c) 0 0 60
(AG2, a) 75 25 25
(AG2, b) 0 50 0
(AG2, c) 50 50 100
(AG3, a) 80 0 0
(AG3, b) 10 90 10
(AG3, c) -10 -10 70

Table 3: The different payoffs AGi receives if they go to oj
after the group decides going to ok. The best individual pay-
offs based on each collective decision T (ok) are highlighted.

Consider the following decision settings:

1. (MU ,MS) Let the agents use majority voting to decide
usingMU for their individual decisions. Remember ma-
jority uses MS for aggregation (Table 2). Each agent
uses maximin to vote and the individual thresholds will
not matter. The minimal utility of each option will be
their favorite destinations if they do not go together. In
that case, AG1 votes for b, AG2 votes for c, AG3 votes
for b. The group decides for Brazil with 2 votes.

2. (MS ,MS) Suppose they will only travel together to a
place all of them approve. The method they will use,
therefore, will be unanimity approval (Table 2). Further,
suppose traveling together is not all that matters to the
agents: they want a destination satisfying at least some
desires of each friend. To model this state of mind, the
satisfaction thresholds will be T 1 = 80, T 2 = 75, and
T 3 = 90. In that case, AG1 votes for a, b, AG2 votes
for a, c, AG3 votes for only for b. There is no option
satisfying all agents. Someone will need to relax their
constraints or there will be no joint vacation.

3. (MS ,MS) (Cont.) Now suppose the group really wants
to travel together, so all that matter is traveling together.

In this case, the satisfaction thresholds will be T 1 = 60,
T 2 = 50, and T 3 = 80. AG1 votes for a, b, c, AG2

votes for a, b, c, AG3 votes for only for a, b. Options a, b
are unanimously approved and the group should break
this tie somehow. A possibility is to revise the knowl-
edge bases by deleting O(a), expressing the option is
no longer available. A different decision method can be
employed next, now about a and b. If the preferences
profile can be revised in the process, the agents can use
the same preference aggregation method as before.

4. (MS ,MUS ) Suppose they will only travel together to
a place most of them approve. The method they will
use this time will be majority approval (Table 2). Let
T 1 = 60, T 2 = 50, and T 3 = 80, so AG1 votes
for a, b, c, AG2 votes for a, b, c, AG3 votes for only for
a, b. All options a, b, c are approved by the majority, so
they maximize utility in the collective preference profile
(MAJ). Options a and b are in a tie, each approved by
three agents.

7 Related Work
With several features similar to our work, [Lafage and Lang,
2000] described an approach to group decisions based on
weighted logics. In their work, Lafage and Lang attribute
weights to different formulas quantifying their importance
in the decision, the same way we do with unary predicates.
Other formulas have no weights and indicate constraints per-
ceived as common knowledge. The group decision is mod-
eled by means of a pair 〈∗1, ∗2〉 of aggregate functions, where
each ∗i is chosen between sum and max. The first function ∗1
is used for individual preferences, while ∗2 is used as a collec-
tive criterion to aggregate the individual choices. This is also
a feature similar to our work, where a pair (respectively indi-
vidual and collective) of criteria are combined to render col-
lective decisions. Somethings, however, are different. First,
we make use of a threshold to model individual and collective
satisfaction requirements. This allowed us to model approval
voting and other models with a requirement such as majority.
Further, Lafage and Lang model available options as possible
models of a collective theory, each satisfying some formulas
the agents attributed weights. In our view, the knowledge is
naturally distributed in multiagent settings; some agents my
be uninformed or disagree about what features available op-
tions satisfy. Therefore, available options are represented in
our system by constant terms in the language and the formu-
las they satisfy are modeled using predicates. Of course, a
group of agents can share their knowledge prior to a decision,
building a shared theory about what formulas each option sat-
isfies. However, this is not required. Finally, while [Lafage
and Lang, 2000] is not concerned with modeling voting rules,
we use our aggregation functions to model well known voting
procedures from social choice theory. The problem of voting
rules based on logic-based preferences is observed in [Lang,
2004], where different perspectives of preference representa-
tion are observed and combined to model voting rules. Like
we do, a number of functions are defined to maximize prefer-
ences and elect the best candidates. However, while different
notions of preferences are considered, a satisfaction require-
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ment (threshold) is not explicit. A logic for reasoning about
reason-based preferences is also presented in [Osherson and
Weinstein, 2013]; however, the authors focus on the individ-
ual, not considering collective theory.

Closely related to our motivation, [Dietrich and List, 2013]
observe that logical reasoning and the economic concept of
rationality are almost entirely disconnected in the literature.
In their work, Dietrich and List propose preference orderings
based on alternative logical contexts as being different psy-
chological states of the agent. We connect logic and collec-
tive utility-based decisions in this paper by adding utilities
(weights) to predicates, so the best outcomes satisfy the most
interesting combinations of predicates amongst available can-
didates. Dietrich and List are not concerned with reasoning
about preferences in [Dietrich and List, 2013], but restrict
their analysis to how beliefs can influence decisions. They
also mention social choice as a classic example of discon-
nectedness, which is the focus of our work. In this paper,
while using weighted predicates with satisfaction thresholds,
we successfully connect individual reasons for choice to the
outcome of collective decisions; the collective decisions are
all based on the individual beliefs of the voters.

8 Conclusions and Future Work
In this paper, we extend the work of [Sá and Alcântara, 2013]
where they prove weighted predicates successfully connects
individual beliefs and rational choice criteria. In advance of
their work, we connect individual beliefs to collective de-
cision procedures from social choice theory, namely major-
ity and plurality (compulsory or with abstention), approval
voting, approval majority, dictatorship, and unanimity. We
achieved this result by showing how weights on predicates
and a satisfaction threshold can be combined to model prefer-
ence aggregation criteria. The notion of satisfaction threshold
is not common in the literature, but is intuitive and interesting
to model concepts like abstention and approval. The result is
a system where individual beliefs are the source, the base, for
individual and collective decisions.

We defend that rationality has important connections to
agent beliefs; they are the reasons behind preferences. For
instance, if a rational agent is questioned about a particular
decision, instead of quantifying utility, the agent is expected
to explain it with an argument. In the near future, we will
explore group decisions by deliberation using weighted pred-
icates and satisfaction thresholds. It is common in dialogue
formalisms to consider antagonistic roles of proponent and
opponent, one defending a conclusion and the other attack-
ing. The satisfaction threshold can be used to define what
roles each agent assumes towards different available options.
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Abstract

We present MEL++ (M denotes Markov logic
networks) an extension of the log-linear descrip-
tion logics EL++-LL with concrete domains, nom-
inals, and instances. We use Markov logic net-
works (MLNs) in order to find the most proba-
ble, classified and coherent EL++ ontology from
anMEL++ knowledge base. In particular, we de-
velop a novel way to deal with concrete domains
by extending MLN’s cutting plane inference (CPI)
algorithm.

1 Introduction
In description logics (DLs) a concrete domain is a construct
that can be used to define new classes by specifying restric-
tions on attributes that have literal values (as opposed to re-
lationships to other concepts). Practical applications of DLs
usually require concrete properties with values from a fixed
domain, such as strings or integers, supporting built-in pred-
icates. For DLs that are extended with concrete domains,
there exist partial functions mapping objects of the abstract
domain to values of the concrete domain, and can be used
for building complex concepts. Concrete domains can be
used to construct complex concepts as for instance, the axiom
Teenager ≡ Personu∃age.(≥, 13)u∃age.(≤, 19) defines
a teenager as a person whose age is at least 13 and at most 19.
In DLs, concrete domains are also known as datatypes. Sev-
eral probabilistic extensions of DLs opt to exclude datatypes
while, in fact, it is an essential feature as several knowledge
extraction tools produce weighted rules or axioms that con-
tain concrete data values. Reasoning over these data either
to infer new knowledge or to verify correctness is indispens-
able. Additionally, recent advances in information extraction
have paved the way for the automatic construction and growth
of large, semantic knowledge bases from different sources.
However, the very nature of these extraction techniques en-
tails that the resulting knowledge bases may contain a signif-
icant amount of incorrect, incomplete, or even inconsistent
(i.e., uncertain) knowledge, which makes efficient reasoning
and query answering over this kind of uncertain data a chal-
lenge. To address these issues, there exist ongoing studies on
probabilistic knowledge bases.

The study of extending DLs to handle uncertainty and
vagueness has gained momentum recently. There have
been several proposals to add probabilities to various DLs
[Lukasiewicz, 2008]. Probabilistic DLs can be classified in
several dimensions. One possible classification is on the rea-
soning mechanism used: Markov logic networks (MLNs),
Bayesian networks, and probabilistic reasoning. There exist
some studies that employ MLNs to extend various DLs. The
study in [Lukasiewicz et al., 2012] extends EL++ with prob-
abilistic uncertainty based on the annotation of axioms using
MLNs. The main focus of this work is ranking queries in
descending order of probability of atomic inferences which
is different from the objective of this paper. Another study
in [Niepert et al., 2011], presents a probabilistic extension
of the DL EL++ without nominals and concrete domains in
MLN in order to find the most probable coherent ontology.
In doing so, they have developed a reasoner for probabilis-
tic OWL-EL called ELOG [Noessner and Niepert, 2011]. In
this study, we extend this work in order to deal with con-
crete domains in addition to nominals and instances. In
databases, MLNs have been used to create a probabilistic dat-
alog called Datalog+/−. It is an extension of datalog that al-
lows to express ontological axioms by using rule-based con-
straints [Gottlob et al., 2013]. The probabilistic extension
of Datalog+/− uses MLNs as the underlying probabilistic
semantics. The focus of this work is on scalable threshold
query answering which is different from that of this work.

Other literatures extend DLs with Bayesian networks.
Some notable works include: an extension of EL with
Bayesian networks called BEL is presented in [Ceylan and
Penaloza, 2014]. They study the complexity of reasoning un-
der BEL to show that reasoning is intractable. However, their
work does not discuss probabilities in the ABox and concrete
domains are excluded. On the other hand, in [d’Amato et al.,
2008], they added uncertainty to DL-Lite based on Bayesian
networks. Additionally, they have shown that satisfiability
test and query answering in probabilistic DL-Lite can be re-
duced to satisfiability test and query answering in the DL-
Lite family. Further, it is proved that satisfiability checking
and union of conjunctive query answering can be done in
LogSpace in the data complexity.

Numerous literatures studied probabilistic reasoning for
different probabilistic DLs. For instance, [Jung and Lutz,
2012] proposes a framework for querying probabilistic in-
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stance data in the presence of an OWL 2 QL ontology and
provides the data complexity of computing answer probabil-
ities in this framework. In [Gutiérrez-Basulto et al., 2011],
they established the complexity of subsumption for a proba-
bilistic variant of the DL EL. They apply probabilities only
to concepts. The complexity of concept subsumption in these
settings is ExpTime-hard. Probabilistic extensions of ex-
pressive description logics SHIF(D) and SHOIN (D) are
studied in [Lukasiewicz, 2008]. Probabilistic knowledge can
be expressed both in the TBox and ABox. These logics are
based on probabilistic lexicographic entailment from prob-
abilistic default reasoning [Lukasiewicz, 2002] as underly-
ing probabilistic reasoning formalism. Further, Probabilistic
ALC is introduced in [Heinsohn, 1994]. It allows uncertainty
to be expressed in the TBox but does not allow probabilities
in conceptual and relational assertions. It is based on proba-
bilistic reasoning in probabilistic logics. For further informa-
tion, we refer the reader to [Heinsohn, 1994] and the refer-
ences therein. Lastly, the pioneering work of Jaeger [Jaeger,
1994] proposes a probabilistic extension of ALC, which al-
lows for terminological probabilistic knowledge about con-
cepts and roles and about concept instances, respectively, but
does not support assertional probabilistic knowledge about
role instances (although a possible extension in this direc-
tion is mentioned). The uncertainty reasoning formalism in
[Jaeger, 1994] is essentially based on probabilistic reason-
ing in probabilistic logics, as the one in [Heinsohn, 1994],
but coupled with cross-entropy minimization to combine ter-
minological probabilistic knowledge with assertional proba-
bilistic knowledge.

As discussed above, most of the studies that involve ex-
tending description logics to deal with uncertainty by using
either Bayesian or Markov logic networks often excluded
concrete domains. This is partly due to either the lack of
supporting features or the difficulty in dealing with them. In
this paper, we study a novel way of dealing with uncertainty
involving concrete domains. In addition, we provide an ex-
tension to EL++-LL with nominals, instances, and concrete
domains.

2 Preliminaries
In this section, we present a brief summary of: EL++,
Markov logic networks, integer linear programs, and EL++-
LL. For a detailed discussion on these subjects, we refer the
reader to [Baader et al., 2005; Richardson and Domingos,
2006; Schrijver, 1998; Niepert et al., 2011] and the references
therein.

2.1 EL++

EL++ is the description logic underlying the OWL 2 profile
OWL-EL.

Syntax
Given a set of concept names NC, role names NR, individu-
als NI, and feature names NF, EL++ concepts and roles are
formed according to the following syntax:

C ::= > | ⊥ | A | C uD | ∃R.C | {a} | ∃F.r

A concept in EL++ is either a top, bottom concept, an atomic
concept or a complex concept (formed by conjunction and ex-
istential restriction). Given a datatype restriction r = (o, v)
and x ∈ D, we say that x satisfies r and write r(x) iff
(x, v) ∈ o, where o ∈ {<,≤, >,≥,=}, o is interpreted as the
standard relation on real numbers, and D ⊆ R is a concrete
domain [Despoina et al., 2011]. In this work, we consider
only numerical concrete domains (also known as datatypes).
Additionally, in order to ensure that reasoning remains poly-
nomial, concrete domains must satisfy a condition called p-
admissibility. This restriction guarantees that satisfiability of
concrete domains can be solved in polynomial time, and that
concept disjunction cannot be expressed using concrete con-
cepts [Baader et al., 2005]. As an example consider ≤ and
≥ predicates for integers, this allows to express A v B t C
by fromulating the axioms A v ∃R.(≤, 5), ∃R.(≤, 2) v B
and ∃R.(≥, 2) v C. Thus, allowing both ≤ and ≥ has the
same effect as extending EL++ with disjunction, which is
well known to cause intractability [Despoina et al., 2011]. In
[Despoina et al., 2011], it has been shown that these restric-
tions can be significantly relaxed without loosing tractability.
This work can take advantage of these relaxations to support
more features. An EL++ TBox contains a set of GCI (Gen-
eral Concept Inclusion) axioms, i.e., C v D, as well as role
inclusion axioms, i.e., R1 ◦ · · · ◦Rk v R.

Semantics
The semantics of EL++ concepts and roles is given by an
interpretation function I = (∆I , .I) which consists of a non-
empty (abstract) domain ∆I and a mapping .I that assigns to
each atomic concept A ∈ NC a subset of ∆I , to each abstract
role R ∈ NR a subset of ∆I ×∆I , to each concrete relation
F ∈ NF a subset of ∆I × D, and to each individual a ∈ NI

an element of ∆I . The mapping ·I is extended to all concepts
and roles as follows:

(>)I = ∆I

(⊥)I = ∅
({a})I = {aI}

(C uD)I = CI ∩DI

(∃R.C) = {x ∈ ∆I | ∃y ∈ ∆I :

(x, y) ∈ RI ∧ y ∈ CI}
(∃F.r)I = {x ∈ ∆I | ∃v ∈ D : (x, v) ∈ F I

∧ r(v)}
(C v D)I = CI ⊆ DI

(R1 ◦ · · · ◦Rk v R)I = RI1 ◦ · · · ◦RIk ⊆ RI

Knowledge about specific objects can be expressed using
concept and role assertions of the form C(a) and R(a, b). The
axioms and assertions are contained in the TBox and ABox,
respectively, which together form a knowledge base (KB). An
EL++ knowledge base (or ontology)O = (T ,A) consists of
a set T of general concept inclusion axioms (TBox) and role
inclusion axioms, and possibly a set A of assertional axioms
(ABox). A concept name C in an ontologyO, is unsatisfiable
iff, for each interpretation I ofO, CI = ∅. An ontologyO is
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incoherent iff there exists an unsatisfiable concept name C in
O, i.e., C |= ⊥ [Flouris et al., 2006].

To simplify the transformation probabilistic EL++ KB into
FOL, we first obtain the normal form of the KB in such a way
that satisfiability is preserved [Baader et al., 2005; Krötzsch,
2011]. An EL++ KB is in normal form its axioms are in the
following form:

C(a) R(a, b) A v ⊥
> v C A v {c} {a} v {c}
A v C A uB v C ∃R.A v C

A v ∃R.B R1 v R2 R1 ◦R2 v R

A v ∃F.r ∃F.r v A

where A,B,C ∈ NC, R,R1, R2 ∈ NR, F ∈ NF, r is a
datatype restriction, and a, b, c ∈ NI.

It is possible to provide a probabilistic extension of EL++

using MLNs. An EL++ KB can be seen as a set of hard con-
straints on the set of possible interpretations: if an interpreta-
tion violates even one axiom or assertion, it has zero proba-
bility. The basic idea in MLNs is to soften these constraints,
i.e., when an interpretation violates one axiom or assertion
in the KB it is less probable, but not impossible. The fewer
axioms an interpretation violates, the more probable it be-
comes. Each axiom and assertion has an associated weight
that reflects how strong a constraint is: the higher the weight,
the greater the difference in log probability between an inter-
pretation that satisfies the axiom and one that does not, other
things being equal [Richardson and Domingos, 2006].

2.2 Markov Logic Networks
Markov Logic Networks (MLNs) combine Markov networks
and first-order logic (FOL) by attaching weights to first-
order formulas and viewing these as templates for features
of Markov networks [Richardson and Domingos, 2006]. An
MNL L is a set of pairs (Fi, wi) where Fi is a formula in
FOL and wi is a real number representing a weight. To-
gether with a finite set of constants C, it defines a Markov
Network ML,C , where ML,C contains one node for each pos-
sible grounding of each predicate appearing in L. The value
of the node is 1 if the ground predicate is true, and 0 oth-
erwise. The probability distribution over possible worlds x
specified by the ground Markov network ML,C is given by:

P (X = x) =
1

Z
exp
( F∑
i=1

wini(x)
)

where F is the number of formulas in the MLN and ni(x) is
the number of true groundings of Fi in x. The groundings of
a formula are formed simply by replacing its variables with
constants in all possible ways. The Herbrand Universe H
for an MLN L is the set of all terms that can be constructed
from the constants in L. The Herbrand Base HB is often
defined as the set of all ground predicates (atoms) that can be
constructed using the predicates in L and the terms in H . In
this paper we focus on MLNs whose formulas are function-
free clauses.

In order to compute a maximum a-posteriori state of an
MLN, we formulate the problem as an integer linear program
(ILP) using the cutting plane inference algorithm.

Integer Linear Program (ILP)
An integer linear program (ILP) is a linear program where
each unknown variable is required to have integer values
[Schrijver, 1998]. A Linear Programming (LP) is an opti-
mization problem of the form:

min cTx

subject to A1x ≤ b1
A2x = b2

where cTx is a cost or objective function, A1x ≤ b1 and
A2x = b2 are constraints, and x denotes a vector of vari-
ables. In addition, c ∈ Rn, bi ∈ Rmi , Ai ∈ Rn×mi , i = 1, 2
are given and x ∈ Zn is an n-vector to be determined. In other
words, we try to find the minimum of a linear function over
a feasible set defined by a finite number of linear constraints.
It can be shown that a problem with linear equalities or linear
inequalities (for instance ≤) can always be put in the above
form, implying that this formulation is more general than it
might look. An ILP problem is obtained from an LP prob-
lem by requiring that all entries of the solution vector x are
integers. LP problems are “easy” to solve (they are in the
complexity class P), whereas ILP problems are, in general,
difficult (they are NP-hard) [Schrijver, 1998].

Example 1 Consider the following ILP

min − x− 2y

subject to x + y + z1 = 3

x + z2 = 2

y + z3 = 2

x, y, zi ≥ 0

The optimal value of the ILP is when (x, y, z1, z2, z3) =
(1, 1, 1, 1, 1) with value −3.

2.3 Cutting Plane Inference (CPI)
Maximum a posteriori (MAP) inference in MLNs involves
finding the most likely state of a set of query (output) vari-
ables given the state of a set of evidence (input) variables,
and is NP-hard [Roth, 1996]. The standard inference meth-
ods for MLNs all require the formulae to be grounded. As
a consequence, the MAP problem can be expressed as an in-
teger programming problem. A MAP query corresponds to
an optimization problem with linear constraints and a linear
objective function. Hence, it can be formulated and solved
as an instance of an integer linear program (ILP). [Riedel,
2012] introduced cutting plane inference as a meta algorithm
that transforms an MLN into ILP. The basic idea of CPI is
to add all constraints to the ILP that violate the current in-
termediate solution. This process is repeated until no (addi-
tional) violated ground clauses exist. An ILP solver resolves
the conflicts by computing an optimal truth assignment for
an MLN. Hence, the solution of the final ILP corresponds to
the MAP state. It is necessary to execute several iterations
as the intermediate solution changes after each iteration and
more violated clauses might be detected. At the beginning
of each CPI iteration it is necessary to determine the violated
ground clauses G that are specified by the MLN and are in
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conflict with the intermediate solution. A binary ILP variable
x` ∈ {0, 1} gets assigned to each grounded predicate occur-
ring in a violated clause g ∈ G. The value of the the variable
x` is 1 if the respective literal ` is true and 0 when it is false.
These variables are used to generate ILP constraints that are
added to the ILP for each violated ground clause. For each
clause g ∈ G, we define L+(g) as the set of ground atoms
that occur unnegated in g and L−(g) as the set of ground
atoms that occur negated in g. The transformation scheme
depends on the weight wg ∈ R of the violated clause g. It is
also necessary to create a binary variable zg for every g with
wg 6= ∞ that is used in the objective of the ILP. For every
ground clause g with wg > 0, the following constraint has to
be added to the ILP.∑

`∈L+(g)

x` +
∑

`∈L−(g)

(1− x`) ≥ zg

A ground atom ` that is set to false (true if it appears negated)
by evidence will not be included in the ILP as it cannot fulfil
the respective constraint. For every g with weight wg < 0,
we add the following constraint to the ILP:∑

`∈L+(g)

x` +
∑

`∈L−(g)

(1− x`) ≤ (|L+(g)|+ |L−(g)|)zg

The variable zg expresses if a ground formula g is true con-
sidering the optimal solution of the ILP. However, for every g
with weight wg = ∞ this variable can be replaced with 1 as
the respective formula cannot be violated in any solution:∑

`∈L+(g)

x` +
∑

`∈L−(g)

(1− x`) ≥ 1

Finally, the objective of the ILP sums up the weights of the
(satisfied) ground formulas:

max
∑
g∈G

wgzg

The MAP state corresponds to the solution of the ILP in the
last CPI iteration. It can be directly obtained from the so-
lution as the assignment of the variables x` can be directly
mapped to the optimal truth values for the ground predicates,
i.e., xi = true if the corresponding ILP variable is 1 and
xi = false otherwise. The MAP state of an EL++-LL
TBox can be computed by a reduction into CPI.

2.4 EL++-LL
EL++-LL (Log-linear EL++) is a probabilistic extension of
EL++ without nominals and concrete domains [Niepert et al.,
2011]. Each EL++-LL TBox axiom is either deterministic
(i.e., axioms that are known to be true) or uncertain (i.e., ax-
ioms that have a degree of confidence). The uncertain axioms
have associated weight. Formally, a EL++-LL TBox is given
by T = (T D, T U ), where T D and T U , is a set of pairs of
〈S,wS〉where S is an axiom and wS is its real-valued weight,
denote deterministic and uncertain axioms respectively.

The semantics of an EL++-LL TBox is given by a joint
probability distribution over a coherent EL++ TBox. Given

TBoxes T = (T D, T U ) and T ′ over the same vocabulary,
the probability of T ′ is given by:

P (T ′) =


1

Z
exp

( ∑
{∀(S,wS)∈T U :T ′|=S}

wS

)
if T ′ |= T D ∧ T ′ 6|= ⊥

0 otherwise

In order to generate the most probable, coherent and clas-
sified TBox using MLN, EL++ completion rules and EL++-
LL TBox axioms are translated into FOL formulae.

In the following, we show how to extend EL++-LL with
nominals, instances, and concrete domains.

3 Extending EL++-LL with Nominals,
Instances and Concrete Domains

In [Niepert et al., 2011], the authors claim that their ap-
proach is extensible to the Horn fragments of DLs (look
[Krötzsch, 2011] for instance). To take advantage of this
claim, we extend EL++-LL with probabilistic knowledge ex-
pressed through nominals, individuals, and concrete domains.
The syntax of this extension (that we call MEL++) is the
same as that of EL++-LL, basically, it is the syntax of EL++

with weights attached to each uncertain axiom and assertion.
An MEL++ KB has two components: deterministic KBD

and uncertain KBU knowledge bases. In order to provide se-
mantics, we assume that KBD is coherent. The semantics of
coherentMEL++ KBs is given by a probability distribution
as defined below.

Definition 1 Given an MEL++ knowledge base KB =
(KBD,KBU ) over a vocabulary of NC, NR, NF, and NI,
the semantics of a coherent KBi = (KBD

i ,KBU
i ) over the

same vocabulary is given by a probability distribution:

P (KB′) =


1

Z
exp

( ∑
{∀(oj ,wj)∈KBU :KBi|=oj}

wj

)
if KBi |= KBD ∧KBi 6|= ⊥

0 otherwise

Example 2 Consider anMEL++ KB = (KBD,KBU ):

KBD = { Toddler uAdult v ⊥},
KBU = {〈Toddler v ∃age.(≤, 3), 0.8〉,

〈∃age.(≤, 3) v Person, 0.7〉,
〈Toddler v Adult, 0.1〉, 〈age(john, 2), 0.7〉}

The probabilities of the axioms and assertions can be com-
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puted as follows:

P
(
{Toddler v ∃age.(≤, 3)}

)
=

1

Z
exp(0.8)

P
(
{Toddler v Adult}

)
= 0

P

(
{Toddler v ∃age.(≤, 3), age(john, 2),

∃age.(≤, 3) v Person}
)

=
1

Z
exp(2.2)

P
(
{}
)

=
1

Z
exp(0)

P
(
{Toddler uAdult v ⊥}

)
= 1

Z = exp(0.8) + exp(2.2) + exp(0.7) + exp(0)

In order to derive the most probable, classified and coher-
ent EL++ ontology from anMEL++ KB, we transform the
KB, TBox completions rules [Baader et al., 2005], concrete
domains, and ABox completion rules [Krötzsch, 2011] into
FOL formulae.

3.1 Nominals
(Un)certain axioms that contain nominals can be translated
into FOL in MNL by using Definition 2. Inference in MNL
can be done by converting the completion rule CR6 [Baader
et al., 2005] into FOL and enforcing that each nominal
ai ∈ NI is distinct. Alternatively, unique name assumption
for individuals names can be enforced by using the axiom
{a} u {b} v ⊥ for all relevant individual names a and b. In
addition, the transformation of TBox completion rules into
FOL in MNL is given in Table 1.

By using nominals, instance knowledge can be added to an
ABox.

3.2 ABox
Since the description logic EL++ is equipped with nominals.
ABox knowledge can be converted into TBox axioms. Thus,
with nominals, ABox becomes syntactic sugar:

C(a)⇔ {a} v C, R(a, b)⇔ {a} v ∃R.{b}
Instance checking in turn is directly reducible to subsumption
checking in the presence of nominals. There exist two ways to
represent uncertain ABox assertions, i.e., C(a) and R(a, b),
in MLN:

i. transform ABox assertions into TBox axioms using
nominals as follows:

〈C(a), w1〉 ⇔ 〈{a} v C,w1〉
〈R(a, b), w2〉 ⇔ 〈{a} v ∃R.{b}, w2〉

iii. introduce two new predicates for each instance type as:
〈C(a), w1〉 7→ 〈inst(a,C), w1〉
〈R(a, b), w2〉 7→ 〈rinst(a,R, b), w2〉

This approach requires transforming ABox completion
rules into FOL, so as to generate classified ontologies.

In this paper, we consider the second approach (ii)1. Next,
we show how concrete domains are translated into the MLN
framework.

1We leave a comparison of the two approaches as a future work.

3.3 Concrete Domains
Reasoning over uncertain concrete domains can be done by
transforming the datatype predicates in the axioms and asser-
tions into mixed integer programming as shown in [Straccia,
2012]. However, in this work, we introduce an efficient ap-
proach that transforms the predicates into a test function that
evaluates to true or false based on the grounding generated
by an extension of the CPI algorithm. Inference involving
axioms that contain concrete domains can be done according
to the deduction rules given below:

A v B B v ∃F.(o, v)

A v ∃F.(o, v)

A v ∃F.(o1, v1) ∃F.(o2, v2) v B

A v B
eval(o1, v1, o2, v2)

∃F.(o, v1) v A F (a, v2)

A(a)
eval(o, v1,=, v2)

A(a) A v ∃F.(=, v)

F (a, v)

where eval(. . .) checks if all possible values of the first
operator-value pair (o1, v1) are covered by the possible val-
ues of the second operator-value pair (o2, v2), when so, it
evaluates to true otherwise false. The function eval(. . .) is
defined based on a datatypeD, i.e., N or Z or R, and algebraic
operators. Some of the algebraic comparisons, computed via
eval(. . .), that are useful to determine inference are listed be-
low:

eval(≤, v1, <, v2) := v1 < v2

eval(≤, v1,≤, v2) := v1 ≤ v2
eval(=, v1, <, v2) := v1 < v2
eval(=, v1,≤, v2) := v1 ≤ v2

eval(=, v1,=, v2) := v1 = v2
eval(=, v1,≥, v2) := v1 ≥ v2
eval(=, v1, >, v2) := v1 > v2

eval(≥, v1,≥, v2) := v1 ≥ v2
eval(≥, v1, >, v2) := v1 > v2
eval(>, v1, >, v2) := v1 ≥ v2

This function is computed on-demand after each CPI itera-
tion as discussed in the next section. The translation of the
deduction rules into FOL is given in Table 1 and Table 2.
Example 3 Consider an MEL++ KB = {〈2Y earOld v
∃age.(=, 2), 0.7〉, 〈∃age.(≤, 3) v Toddler, 0.8〉} that con-
tains axioms expressed using concrete domains. From the
KB, the axiom 2Y earOld v Toddler can be inferred since
eval(o1, v1, o2, v2) is true, i.e., eval(=, 2,≤, 3) := 2 ≤ 3.

So far we have discussed how axioms and assertions can be
translated into FOL. Next, we show how the most probable
KB is derived using MAP inference.

4 Computing a Most Probable KB
To derive the most probable classified and coherent ontol-
ogy from a weighted EL++ KB, we proceed by transforming
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F1 ∀c : sub(c, c)

F2 ∀c : sub(c,>)

F3 ∀c, c′, d : sub(c, c′) ∧ sub(c′, d)⇒ sub(c, d)

F4 ∀c, c1, c2, d : sub(c, c1) ∧ sub(c, c2) ∧ int(c1, c2, d)⇒ sub(c, d)

F5 ∀c, c′, r, d : sub(c, c′) ∧ rsup(c′, r, d)⇒ rsup(c, r, d)

F6 ∀c, r, d, d′, e : rsup(c, r, d) ∧ sub(d, d′) ∧ rsub(d′, r, e)⇒ sub(c, e)

F7 ∀c, r, d, s : rsup(c, r, d) ∧ psub(r, s)⇒ rsup(c, s, d)

F8 ∀c, r1, r2, r3, d, e : rsup(c, r1, d) ∧ rsup(d, r2, e) ∧ pcomp(r1, r2, r3)⇒ rsup(c, r3, e)

F9 ∀c : ¬sub(c,⊥)

F10 ∀c, d, a, r : subNom(c, a) ∧ subNom(d, a) ∧ rsup(c, r, d)→ sub(c, d)

F11 ∀c, d, a, r, b : subNom(c, a) ∧ subNom(d, a) ∧ rsupNom(b, r, d)→ sub(c, d)

F12 ∀c, d, f, o, v : sub(c, d) ∧ rsupEx(d, f, o, v)⇒ rsupEx(c, f, o, v)

F13 ∀c, d, f, o, v : rsupEx(c, f, o1, v1) ∧ rsubEx(f, o2, v2, d) ∧ eval(o1, v1, o2, v2)⇒ sub(c, d)

Table 1: TBox completion rules.

F14 ∀x,A,B : inst(x,A) ∧ sub(A,B)⇒ inst(x,B)

F15 ∀x,A1, A2, B : inst(x,A1) ∧ inst(x,A2) ∧ int(A1, A2, B)⇒ inst(x,B)

F16 ∀x, y,R,A,B : rinst(x,R, y) ∧ inst(y,A) ∧ rsub(A,R,B)⇒ inst(x,B)

F17 ∀x, y,R : rinst(x,R, y) ∧ inst(y,⊥)⇒ inst(x,⊥)

F18 ∀x, y,R, S : rinst(x,R, y) ∧ psub(R,S)⇒ rinst(x,R, y)

F19 ∀x, y, z, R1, R2, R3 : rinst(x,R1, y) ∧ rinst(y,R2, z) ∧ pcomp(R1, R2, R3)⇒ rinst(x,R3, z)

F20 ∀x, a,B : ninst(x, a) ∧ inst(x,B)⇒ inst(a,B)

F21 ∀x, a,B : ninst(x, a) ∧ inst(a,B)⇒ inst(x,B)

F22 ∀x, a, z, R : ninst(x, a) ∧ rinst(z,R, x)⇒ rinst(z,R, a)

F23 ∀x,A,B : sub(>, A) ∧ inst(x,B)⇒ inst(x,A)

F24 ∀x, x′, R,A,B : inst(x, a) ∧ rsup(A,R,B)⇒ rinst(x,R, x′)

F25 ∀x, x′, R,A,B : inst(x, a) ∧ rsup(A,R,B)⇒ inst(x′, B)

F26 ∀f, op, v, C : rsupEx(f, op, v, C) ∧ rinst(a, f, v′) ∧ eval(v, op, v′)⇒ inst(a,A)

F27 ∀a,A, f, v : inst(a,A) ∧ rsubEx(A, f,=, v)⇒ rinst(a, f, v)

F28 ∀a,A1, A2, f, v : inst(a,A1) ∧ inst(a,A2) ∧ intEx(A1, A2, f, op, v)⇒ rinst(a, f, v)

Table 2: ABox completion rules.

TBox and ABox completion rules, schema axioms, and asser-
tions into function-free FOL formulae. The formulae corre-
sponding to the translation of completion rules into FOL are
shown in Table 1 and Table 2. The formulae from F1 through
F9 are taken from [Niepert et al., 2011]. Additionally, a bijec-
tive mapping function is provided in Definition 2 to transform
axioms and assertions into formulae. Of particular interest for
us is proposing a novel way to deal with concrete domains
under MLN by modifying the Cutting Plane Inference (CPI)
algorithm.

In EL++, it is possible to build incoherent TBox axioms
due to the presence of the bottom concept ⊥, for instance,
consider the axiom {a} v ⊥, this cannot be satisfied by any

interpretation. To filter out such incoherencies in models gen-
erated by MLN, we include the formula ∀c : ¬sub(c,⊥) (for-
mula F9 in Table 1) to the translation of the completion rules
into FOL. This technique has already been used in [Niepert et
al., 2011].
Definition 2 [MappingMEL++ KB into Ground FOL pred-
icates] The function ϕ translates a normalized MEL++

knowledge base KB into FOL formulae in MLN as follows:

C(a) 7→ inst(a,C)

R(a, b) 7→ rinst(a,R, b)

A v ⊥ 7→ sub(A,⊥)

> v C 7→ sub(>, C)

IJCAI-15 Workshop on Weighted Logics for Artiticial Intelligence (WL4AI-2015)

85



A v {c} 7→ subNom(A, {c})
{a} v {c} 7→ sub({a}, {c})

A v C 7→ sub(A,C)

A uB v C 7→ int(A,B,C)

∃R.A v C 7→ rsub(A,R,C)

A v ∃R.B 7→ rsup(A,R,B)

A v ∃F.(o, v) 7→ rsupEx(A,F, o, v)

∃F.(o, v) v A 7→ rsubEx(F, o, v, A)

R1 v R2 7→ psub(R1, R2)

R1 ◦R2 v R 7→ pcom(R1, R2, R)

int({ai}, {aj},⊥) where ai, aj ∈ NI and i 6= j

where a, b, c ∈ NI, A,B,C ∈ NC, R,R1, R2 ∈ NR, F ∈
NF, o ∈ {<,≤, >,≥,=}, and v ∈ R (set of real numbers).

Lemma 1 The translation of an EL++ KB into FOL and vice
versa can be done in polynomial time in the size of the knowl-
edge base [Lukasiewicz et al., 2012].

From the above Lemma, we see that the translation of
MEL++ KB completion rules, axioms, and assertions into
FOL in MLN does not affect the complexity of inference in
MLN. Besides, as typed variables and constants greatly re-
duce size of ground Markov nets. We introduce types to all
of the predicates shown in Tables 1 and Table 2.

Theorem 1 Given anMEL++ ontology KB = (T ,A) and
KB′ ⊆ KB, a Herbrand interpretation H is a model of KB′,
i.e.,H |= KB′ if and only if there exist a mapping function ϕ
such that ϕ(H) |= KB′.

So far we have introduced a mapping function ϕ for KB
assertions and axioms and completion rules as formulae (F1–
F28). The next step requires using MAP inference of MLN to
obtain the most probable ontology of a givenMEL++ KB.

4.1 Maximum A-Posteriori Inference (MAP)
In order to deal with MEL++ datatypes, we introduced a
predicate called eval(. . .) in the translation of EL++ comple-
tion rules into FOL, depicted in Table 1 and Table 2. The truth
value of eval(. . .) is computed by evaluating the logical ex-
pressions corresponding to datatypes in anMEL++ KB. For
instance, consider the eval(. . .) predicate in Example 3. In
the following, we show how the expression (=, 2) ⊆ (≤, 3),
operator-value pair coverage, i.e., is evaluated by extending
the CPI algorithm. Thus, we propose an extension of CPI by
incorporating algebraic expressions. In particular, our exten-
sion addresses a limitation of MLN with respect to concrete
domains. In general, all (numerical) values are represented as
constants in MLN. The only semantics that are related to con-
stants might be the type to which they belong. This enables
more efficient grounding and leads to smaller MLNs. How-
ever, this does hardly cover the characteristics of numerical
values. Therefore, we exploit the iterative character of CPI in
order to evaluate numerical (in)equalities. The extension can
be considered as additional features that are only used on-
demand. It is formula-specific as it affects the ground values
and the truth value of specific constraints. Hence, it can be

implemented as an extension of the detection of the violated
constraints.

The algorithm identifies at the beginning of each CPI it-
eration for each formula all violated groundings considering
the current intermediate solution. Each of the violated ground
clauses has to be translated and added to the ILP. Therefore,
an ILP variable is generated for each ground predicate as
well as additional ILP constraints. Datatype ground predi-
cates eval(. . .) appear during this process as any other predi-
cates. However, we exploit there semantics to decide whether
eval(. . .) predicates evaluate to true or false. Depending on
the result of the evaluation of the attached boolean expres-
sion of the respective predicate, we decide whether it is nec-
essary to add the violated ground clause to the ILP. For in-
stance, if the datatype predicate is positive (negative) and it
appears without negation (or negation) in the formula, we do
not add the ground clause to the ILP as it is not violated in
the current iteration. Otherwise, we need to add the clause
to the ILP but leave out the datatype ground predicates as
they can not fulfil the violated clause, i.e., the respective lit-
eral is false due to evidence. Hence, we do not introduce ILP
variables for datatype predicates as they will not be added to
the ILP. Instead, we compute the truth value of the datatype
predicates on-the-fly and only on-demand. Hence, the pro-
posed approach improves the efficiency of processing numer-
ical predicates in a Markov logic solver without sacrificing
the performance. We implemented this algorithm as an ex-
tension to the MLN inference engine ROCKIT2 [Noessner et
al., 2013]. We leave out testing this implementation with dif-
ferent ontologies as a future work.

Theorem 2 Given the following:

• an MEL++ knowledge base KB = (KBD,KBU )
formed from a vocabulary containing a finite set of in-
dividuals NI, concepts NC, features NF, and roles NR,
• HB as a Herbrand base of the formulae F in Table 1

and Table 2 over the same vocabulary,

• G1 as a set of ground formulae constructed from KBD,
and
• G2 as a set of ground formulae constructed from KBU ,

the most probable coherent and classified ontology is ob-
tained with:

ϕ−1(Î) = arg max
HB⊇I|=G1∪F

( ∑
(oj ,wj)∈G2:I|=oj

wj

)
From Theorem 2 and the results in [Roth, 1996], finding

the most probable, classified and coherent MEL++ KB is
in NP. The hardness of this complexity bound can be ob-
tained by reducing partial weighted MaxSAT problem into
an MEL++ MAP query. Consequently, the MAP problem
forMEL++ is NP-hard.

5 Conclusion
In this work, we have extended EL++-LL intoMEL++ with
nominals, concrete domains and instances. In particular, we

2https://code.google.com/p/rockit/
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proposed an extension to the CPI algorithm in order to deal
with reasoning under uncertain concrete domains. We have
implemented the proposed approach and planned to carry out
experiments in the future. We will also investigate to extend
the proposed approach to other datatypes such as Date, Time,
and so on.
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