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Abstract. In this paper we propose an argumentation-based frame-
work for multiagent induction, where two agents learn separately
from individual training sets, and then engage in an argumentation
process in order to converge to a common hypothesis about the data.
The result is a multiagent induction strategy in which the agents min-
imize the set of cases that they have to exchange (using argumen-
tation) in order to converge to a shared hypothesis. The proposed
strategy works for any induction algorithm which expresses the hy-
pothesis as a collection of rules. We show that the strategy converges
to a hypothesis indistinguishable in training set accuracy from that
learned by a centralized strategy.

1 Introduction

Multiagent induction is the problem of learning a hypothesis (such
as a set of rules, or a decision true) from data when the data is dis-
tributed among different agents. Some real-life domains involve such
forms of distributed data, where data cannot be centralized for sev-
eral reasons. In this paper we will propose a framework in which
agents will use a limited form of argumentation in order to arrive to a
hypothesis of all the data while minimizing the communication, and
specially minimizing the amount of examples exchanged, and ensur-
ing that the hypothesis found is as good as if centralized induction
with all the data was used.

Previous work [5] has shown how argumentation can be used by
agents that use lazy learning or case-based reasoning (CBR) tech-
niques. In this paper we will introduce a framework where agents
that use inductive learning together with CBR to argue about learnt
hypotheses. In this framework, agents will generate hypotheses lo-
cally, and then argue about them until both agents agree. During the
argumentation process, agents might exchange a small number of ex-
amples. Formalizing agent communication as argumentation allows
us to abstract away from the induction algorithm used by the agents.
Thus, all the strategies presented in this paper can work with any
induction algorithm that learns sets of rules.

1.1 Agents, Examples, and Arguments

Let A1 and A2 be two agents who are completely autonomous and
have access only to their individual training sets T1, and T2. A train-
ing set Ti = {e1, ..., en} is a collection of examples. We will restrict
ourselves to classification tasks. Thus, an example e = 〈P, S〉 is a
pair containing a problem P and a solution S ∈ S.

Our framework is restricted to hypotheses H that can be repre-
sented as a set of rules: H = {r1, ..., rm}. A rule r = 〈D,S〉
is composed of a body r.D, and a solution, r.S. When a problem
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matches the body of a rule r.B, we say that the rule subsumes the
problem: r.D v P .

In order to use argumentation, two elements must be defined: the
argument language (that defines the set of arguments that can be gen-
erated), and a preference relation (that determines which arguments
are stronger than others). In our framework, the argument language
is composed of two kinds of arguments:

• A rule argumentα = 〈A, r〉, is an argument generated by an agent
A stating that the rule r is true.

• A counterexample argument β = 〈A, e, α〉, is an argument gen-
erated by an agent A stating that e is a counterexample of (an
example contradicting) argument α.

Including additional types of arguments, such as “rule counterargu-
ments” is part of our future work.

An agent sees two rule arguments α and β as conflicting if there
are examples in the training set of the agent, which are classified
differently by the two rule arguments. In our framework, we assume
that a counterexample cannot be defeated, but a rule argument α can
be defeated by counterexample argument β, if α subsumes β but β
has a different solution than α.

2 Argumentation-based Multiagent Induction
In this section we will present two strategies, AMAI (Argumentation-
based Multiagent Induction) and RAMAI (Reduced Argumentation-
based Multiagent Induction). Both strategies are based on the same
idea, and share the same high level structure.

1. A1 andA2 use induction locally with their respective training sets,
T1 and T2, and obtain initial hypotheses H1 and H2 respectively.

2. A1 and A2 argue about H1, obtaining a new H∗
1 derived from H1

that is consistent with both A1 and A2’s data.
3. A1 and A2 argue about H2, obtaining a new H∗

2 derived from H2

that is consistent with both A1 and A2’s data.
4. A1 and A2 obtain a final hypothesis H∗ = H∗

1 ∪H∗
2 . Remove all

the rules that are subsumed by any other rule.

Thus, both agents perform induction individually in step 1 and
then, in steps 2 and 3 (which are symmetric), the agents use argumen-
tation to refine the individually obtained hypotheses and make them
compatible with the data known to both agents. Finally, when both
hypotheses are compatible, a final global hypothesis H∗ is obtained
as the union of all the rules learned by both agents while removing
redundant rules. AMAI and RAMAI only differ in the way steps 2 and
3 are performed. Step 2 in AMAI works as follows

2.a Let H0
1 = H1, and t = 0.

2.b If there is any rule r ∈ Ht
1 that has not yet been accepted byA2,

then send the argument α = 〈A1, r〉 to A2. Otherwise (all the
rules in Ht

1 have been accepted) the protocol goes to step 2.e.



2.c A2 analyzes α.r and tries to find a counterexample that defeats
it. A2 sends the counterargument β = 〈A2, e, α〉 to A1 if a
counterexample e is found; otherwise r is accepted and the pro-
tocol goes back to step 2.b.

2.d When A1 receives a counterexample argument β, β.e is added
to the training set T1, and A1 updates its hypothesis obtaining
Ht+1

1 . The protocol goes back to step 2.b, and t = t+ 1.
2.e The protocol returns Ht

1.

The main idea is that A1 infers rules according to its individual
training set T1, and A2 evaluates them, trying to generate counterar-
guments to the rules that do not agree with its own individual train-
ing set T2. Step 3 in AMAI is the dual situation where A2’s rules are
attacked byA1’s counterexamples. Notice that only one counterex-
ample is exchanged at a time in AMAI. The second strategy, RAMAI,
improves over AMAI in trying to minimize the number of times the
hypothesis has to be updated while trying to keep a low number of
exchanged counterexamples. Step 2 in RAMAI works as follows:

2.a Let H0
1 = H1, and t = 0.

2.b Let Rt ⊆ Ht
1 be the set of rules in the hypothesis of A1 not

yet accepted by A2. If empty, then the protocol goes to step 2.e,
otherwise A1 sends theRt = {〈A1, r〉|r ∈ Rt} to A2.

2.c For each α ∈ Rt, A2 determines the set of examples Cα
in its training set that are defeating counterexamples of α.r:
Cα = {e ∈ T2|α.r.D v e.P ∧ α.r.S 6= e.S}. For each ar-
gument α ∈ Rt such that Cα = ∅, A2 accepts rule α.r. Let
It ⊆ Rt be the subset of arguments for which A2 could find
defeating counterexamples. A2 computes the minimum set of
counterexamples Bt such that ∀α ∈ It, Cα ∩ Bt 6= ∅. A2

sends the set of counterexample arguments Bt consisting of a
counterexample argument β = 〈A2, e, α〉 for each pair e,α such
that e ∈ Bt, α ∈ It, and β defeats α.

2.d WhenA1 receives a set of counterexample arguments Bt, it adds
their counterexamples to its training set T1, and updates its in-
ductive hypothesis, obtaining Ht+1

1 . The protocol goes back to
step 2.b, and t = t+ 1.

2.e The protocol returns Ht
1.

Step 3 in RAMAI is just the dual of Step 2. The idea behind RA-
MAI is that an example can be a defeating counterexample of more
than one rule at the same time. RAMAI computes the minimum set
of examples that defeat all the rules in It and sends them all at once.

3 Experimental Evaluation
We tested AMAI and RAMAI in four different data sets from the
Irvine machine learning repository: soybean, zoology, cars and de-
mospongiae. Moreover, we tested it using three different induction
algorithms: ID3 [7], CN2 [2] and INDIE (a relational inductive
learner [1]). We compared against four strategies: Individual (where
agents just do induction individually), Union (where agents do induc-
tion individually, and then they put together all the rules they learn
into one common hypothesis), DAGGER [3], and Centralized induc-
tion (one sole agent having all data). All the results presented are the
average of 10 fold cross validation runs.

We ran each combination of induction algorithm with multiagent
induction strategy (except the combination of INDIE-DAGGER, that
is not possible, since DAGGER assumes propositional data sets, and
INDIE requires them in relational form). The training set accuracy
results confirm is that the hypotheses learnt by AMAI and RAMAI
are indistinguishable in training set accuracy from those learnt by

using Centralized induction, achieving a 100% accuracy every time
where Centralized induction also does. When agents perform Indi-
vidual induction, having less data, accuracy diminishes; agents using
the Union strategy improve their accuracy with respect to an indi-
vidual strategy, but still it is not guaranteed to be as good as that
of Centralized accuracy. DAGGER shows good accuracy (although
not guaranteeing that of Centralized induction). Concerning test set
accuracy, we observe that, except in one case (demospongiae with
CN2) where DAGGER achieves higher accuracy, AMAI and RAMAI
achieve same or higher accuracy than any other strategy, including
the Centralized approach. The explanation is that when agents use
AMAI or RAMAI, two different hypothesis of the data are learnt
(one per agent), and then merged. Therefore, the resulting hypoth-
esis has rules derived from different training sets (thus having differ-
ent biases). This, alleviates overfitting, increasing classification accu-
racy in unseen problems. Finally, among all the multiagent induction
strategies, DAGGER is the one that requires exchanging the highest
percentage of examples, 68.56%, while AMAI and RAMAI exchange
only 19.04% and 21.52% respectively.

4 Conclusions and Future Work
In this paper we have presented AMAI and RAMAI, two different
multiagent induction strategies that can be used on top of any in-
duction algorithm capable of learning hypotheses represented using
sets of rules. AMAI and RAMAI ensure that the hypothesis learnt
will be undistinguishable in terms of training set accuracy from that
produced by a centralized approach. The main idea behind AMAI
and RAMAI is to let each agent perform induction individually, then
argue about the learnt hypotheses to remove inconsistencies, and fi-
nally merge both hypotheses.

AMAI and RAMAI use counterexamples as the only form of coun-
terargument. However, we have been investigating more complex ar-
gumentation protocols that let agents use rules also generalizations as
counterarguments[6]. The problem of that, is that the base learning
algorithms have to be modified to be able to take rules into account.
This is related to the research by Možina et al. [4] where they modify
the CN2 algorithm to take into account specific rules (arguments) in
addition to examples for learning purposes.
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