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Abstract. This paper is concerned with the issue of reputation and the
computation of group opinion. We argue that entities may receive both
objective and subjective opinions, and distinguishing between the two is
crucial for achieving more precise measures. Additionally, we argue that
the group opinion about an entity α is not only influenced by the opinions
that α receives (whether objective or subjective), but by the reputation
of other entities that α is related to. As such, we propose a method that
permits the propagation and aggregation of opinions in structural graphs,
allowing the inference of more precise reputation measures through the
description of both objective and subjective group opinion.
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1 Introduction

There is a common understanding that reputation represents group opinion. Ex-
isting work has mainly focused on the direct opinions an entity (whether a per-
son, a peer, an agent, or even an item) receives. This paper, however, introduces
the concept of inferred opinions, based on relations between entities. Consider
the example of having a poorly reputable football team that just started hiring
well known players. Naturally, one would say that such a move is reasonable
since it increases the team’s chances, or expectations, of winning games, and
hence, increase the team’s reputation. These indirect opinions are highlighted
when the entities are related. In other words, the reputation of different entities
may influence each other when these entities are related. For example, having
one entity being a part of another implies a propagation of opinions between
these two entities. Hence, to consider indirect influential opinions, one should
have a clear definition of the relations that link entities together, since opinions
may only propagate along such relations. For the time being, we focus on the
simple ‘part of’ relation. This results in the construction of a structural graph,
which we define in the following section.

In addition to the introduction of the notion of opinion propagation in struc-
tural graphs, we also introduce the distinction between objective and subjective
opinions. For example, the team being highly rated by some magazine should
not be as influential in comparison with the team’s actual performance, such as
losing major games. We categorise opinions accordingly:



– Objective opinions. These opinions may not be falsified.1 For example, if
one ping pong player wins against another, then this may be interpreted as
the former player stating that the latter is weaker, and vice versa.

– Subjective opinions. These are divided into two further subclasses.
• Direct subjective opinions. For example, a scientific paper may win an

award, or a scientific paper may receive good reviews from experts in the
field. These may be viewed as direct subjective opinions.

• Influential opinions of related entities. We say opinions may propagate
from a parent node in the structural graph to its children nodes, and
vice versa. For example, the final opinion about a scientific paper may
be influenced by the final opinion about the conference where it has
been accepted. Similarly, the opinion about a conference may also be
influenced by the opinions about the papers it accepted.

The rest of this paper is divided as follows. Section 2 provides the basic
definitions that the proposed algorithm is based on. The main model is then
introduced by Section 3, which illustrates how group opinion may be calculated
and how reputation is defined accordingly. The entire algorithm is summarised by
Section 4. Some preliminary results are presented by Section 5, before Section 6
closes with a brief conclusion.

2 Basic Definitions

In what follows, we provide a clear definition of the structural graph that is
needed for the propagation of opinions (Section 2.1), what direct individual
opinions are (Section 2.2), and what group opinion is (Section 2.3).

2.1 The Structural Graph

We define a graph whose nodes represent entities that may form or receive opin-
ions as follows:

Definition 1.
SG = 〈N,G,O,E,A, T,P,F〉

where

– N is the set of nodes, or entities,
– G is the set of agents, peers, people, or even entities that may form opinions

about α ∈ N (we note that G and N may or may not intersect, depending
on the different fields of application),

– O is the set of direct opinions, whose elements are defined shortly,
– E= {e1, ..., en} is the evaluation space for O, where terms ei account for

terms like ‘bad’, ‘good’, ‘very.good’, etc.,
1 Objective information is not usually referred to as ‘opinions’. However, to compute

reputation, which is generally defined as group opinion, we propose to interpret all
sources of information that could influence reputation as opinions.



– A is the set of attributes (e.g. {strength, quality, . . . }) that opinions address,
– T represents calendar time,
– P ⊆ N ×N specifies which nodes are part of the structure of which others,
– F : R×N×A×T → O is a relation that links a given agent, node, attribute,

and time to an opinion.

2.2 Individual Opinions

We define an opinion otα(β) ∈ O as follows:

Definition 2.
otα(β) = {e1 7→v1, ..., en 7→vn}

where,

– t ∈ T , α ∈ G, and β ∈ N ,
– {e1, ..., en} = E,
– vi ∈ [0, 1] represents the value assigned to each element ei ∈ E, with the

condition that
∑
vi

vi = 1.

In other words, otα(β) represents the opinion that an entity α may hold
about entity β at time t; and the opinion is specified as a discrete probability
distribution over the evaluation space E.2 We note that the opinion one holds
with respect to another may change with time, hence various instances of otα(β)
may exist for the same α and β but with distinct ts.

2.3 Group Opinion

This paper distinguishes between two different types of group opinion, based on
the categorisation of opinions presented by Section 1:

– Group opinion based on objective opinions: Dtα(ei)
– Group opinion based on subjective opinions: Ptα(ei)

2 We note that this paper only considers a discrete evaluation space E. In our pro-
posed algorithm, as the equations of this paper illustrate, the main operations that
are carried out over the probability distributions are the application of the addition
+, subtraction −, multiplication ×, and division / operators. These operators could
easily be applied to continuous distributions as well. However, Equation 2 requires
entropy measures. While some entropy measures (such as the minimum relative en-
tropy) are usually very hard to calculate, calculating the entropy of a distribution is
feasible for both discrete and continuous cases. Hence, we believe continuous prob-
ability distributions may be used, if necessary. Furthermore, discrete probability
distributions already provide more information than that provided by the ranges of
opinion values of existing methods.



The first is an aggregation of objective opinions only, while the second is an
aggregation of both objective and subjective opinions resulting in a final sub-
jective measure. Hence, like individual opinions, group opinion is defined as a
probability distribution that represents the probability that entity α is ei at time
t (or has the reputation of being ei at time t).

But why do we distinguish between these two different group opinions? Con-
sider reputation in the field of football. Teams may play against each other. The
results of these games may be viewed as having direct opinions being formed by
one team about the other. For example, Barcelona winning Real Madrid 6−2 may
be interpreted as Barcelona forming an opinion about Real Madrid being very
weak and Real Madrid forming an opinion about Barcelona being very strong.
This is one example of direct opinions in the field of football. Now consider that
Real Madrid is either ranked high by some magazine or starts recruiting highly
reputable players (at least higher than what they already have). In such a case,
we might agree that this should increase the overall expectation of the team’s
performance, which could be viewed as increasing group opinion. Nevertheless,
we believe such opinions are subjective, and their reliability cannot be matched
to that of the objective group opinion (such as having Barcelona winning every
single game for the last couple of years). Hence, we find differentiating between
objective and subjective group opinion to be crucial.

Furthermore, we say subjective group opinion should lose its value with time,
and move towards the objective one. For example, if Real Madrid kept on re-
cruiting highly reputable players but failed to actually win their games, then the
final reputation measure should always move towards the objective group opin-
ion, i.e. the results of their games. Hence, we say, although subjective measures
are important to describe the current group opinion, a purely objective mea-
sure is also needed. With time, and with the lack of new information, subjective
group opinions should move towards objective ones. This is the notion of decay:
everything loses its value with time. Similarly, objective group opinion would
also decay towards the flat probability distribution (the distribution describing
the state of complete ignorance), although at a presumably much slower rate.

The following section illustrates how these different measures may be calcu-
lated, highlights the links between them, and elaborates on the notion of decay.

3 The Proposed Model

This section focuses on the computation of group opinions, both objective (D)
and subjective (P), in Sections 3.1 and 3.2, respectively. Reputation is then
defined by Section 3.3.

3.1 The Default Opinion D

We say the default opinion of an entity α is the group’s opinion about α that is
based on objective opinions only. The group’s opinion is calculated by considering
all the objective opinions expressed in the past, taking into account the certainty
of each of these opinions.



Assessing an objective opinion. Assume that β at time t gives the following
opinion about α: otβ(α) = {e1/v1, . . . , en/vn}. We need to consider how much
value this opinion has, based on how reliable is β in giving opinions about α.

In this model, we will consider that the overall reliability of any opinion is
the reputation value of the entity expressing the opinion, which changes along
time. This reputation value R is defined later on by Section 3.3. However, in
this section, we use this reputation value (which we view as an indication of the
reliability of the opinion otβ(α)) to modify the opinion value. The basic idea is
that the more reliable an opinion is, the closer the final value is to the original
opinion, and the less reliable an opinion is, the closer the final value is to the
flat (uniform) distribution F (where F = 1

|E| ). Thus, we define the distribution
representing β’s final view about α at time t as follows:

Ot
β(α) = Rtβ × otβ(α) + (1−Rtβ)× F (1)

The certainty of an opinion. The group’s opinion is based on an aggregation
of individual opinions. However, the certainty of each of these individual opinions
is crucial. We say, the more uncertain an opinion is then the smaller its effect
on the final group opinion is. The maximum uncertainty is defined in terms of
the flat distribution F. Hence, we define this certainty measure as follows:

I(Ot
β(α)) = H(Ot

β(α))−H(F) (2)

where H(X) represents the entropy of a probability distribution X. In other
words, the certainty of an opinion is essentially the difference in entropy between
the opinion and the flat distribution.

Calculating D. Again, we note that an entity can give opinions on another
one at different moments in time. So let us define by Tβ(α) ⊆ T the set of time
points in which β has given opinions about α. The default group opinion Dtα
about α at time t is then calculated as follows:

Dtα =

∑
β∈G

∑
t′∈Tβ(α)

Ot′→t
β (α) · I(Ot′→t

β (α))

∑
β∈G

∑
t′∈Tβ(α)

I(Ot→t′
β (α))

(3)

where, Ot′→t
β represents the decayed value of Ot′

β , and is discussed shortly.
This equation essentially states that the default group opinion is an aggre-

gation of all Ot′→t
β (α) that represent the view of every entity β that has formed

an opinion of entity α at time t. However, different views are given different
weights, depending on the certainty I(Ot′→t

β (α)) of these views.

Initialising D. When an entity α is first introduced or created at time t, there
is no information what so ever about this entity yet. Hence, its initial probability



distribution is the flat distribution F that accounts for the maximum ignorance
(i.e. the maximum entropy): Dtα(ei) = F(ei) = 1

|E| . Along time, and as objective
direct opinions are formed, this probability gets updated following Equation 3.

Decaying D (and O). Like any other type of information, the default group
opinion is expected to lose its value with time. For example, assume that a given
player has played a lot of games and gained a high default opinion; however, for
a very long time, this player has never played again. What can one say about
the player’s default opinion at the present time? Naturally, its glorious history
does not necessarily mean that the player still has those old skills. Hence, we
say that with time, D loses its value (very) slowly by decaying towards the flat
probability distribution F according to the following equation:

Dt
′→t
α = Λ(F,Dt

′

α) (4)

where Λ is the decay function satisfying the property that limt→∞ Dtα = F. In
other words, Λ is a function that makes Dtα converge to F with time. One possible
definition for Λ could be: Dt′→t = (Dt − F)ν∆t + F, where ν ∈ [0, 1] is the decay
rate, and ∆t = 1 + (t− t′)/κ, where κ determines the pace of decay.

Single opinions are pieces of information and as such they also decay along
time. Ot′→t

β , which represents the decayed value of opinion Ot′

β at time t, is then
similarly defined:

Ot′→t
β = Λ(F,Ot′

β ) (5)

3.2 The Inferred Opinion P

While the default opinion Dtα represents the objective direct opinions of group
members, the inferred opinion Ptα represents the final subjective opinion which
is influenced by: objective direct opinions and subjective (both direct and prop-
agated) opinions.

Calculating P. How P is calculated differs with the different types of opinions
triggering this calculation. The different cases are presented below.

1. Subjective opinions. If an entity is influenced by subjective opinions
(whether direct or not), then its Ptα value is calculated accordingly:

Ptα = ζ Pt
′→t
α + (1− ζ) X (6)

where ζ is generally based on the reliability of α and X describes the new
subjective opinion. This equation implies that when α is highly reputable,
the effect of X is minimal, and vice versa. The exact values of ζ and X are
dependent on the type of the subjective opinion, which we outline below:
(a) Direct subjective opinions. In this case, we say ζ=(Rtα)R

t
β and X =otβ(α).

In other words, if an entity β forms an opinion about an entity α, then
X takes the value of β’s new opinion otβ(α). ζ would mainly be based



on the reliability of α, but is also influenced by the reliability of β since
different entities should have different strength in affecting α. We note
that R ∈ [0, 1], as illustrated by Section 3.3.
In some cases, however, β may be a foreign entity to the structural graph.
Examples of this case are when a paper wins a award, or a magazine
ranks football players. We assume that it is hard to know the reputation
of foreign sources and their effect on α. In such cases, the default value
is Rtβ = 1. Alternatively, the user may be free to assign a different
reliability measure to Rtβ ∈ [0, 1].

(b) Influential opinions of related entities. In this case, we say ζ= (Rtα)f(dα)

and X=Ptβ , where f(dα)=(Rβ+dα−1)/dα. In other words, if a neighbour-
ing node β (whether it was a parent or a child node) had its Ptβ value
modified, then this should affect α’s Ptα value. Again, the more reliable
α is, then the smaller the effect of β should be. Nevertheless, the effect
of β on α should also be influenced by the number of neighbouring nodes
that α has (defined as dα, or the degree of α). The larger this number,
the smaller the effect of one neighbouring node is, and vice versa. We
note that in this case, dα ∈ [1,∞]. And the function f(dα) = Rβ when
dα = 1, and limdα→∞ f(dα) = 1.

2. Objective opinions. Objective opinions should have a stronger effect than
subjective ones. In comparison with Equation 6, Ptα should now be calculated
by giving more weight to the new objective opinion, as illustrated below:

Ptα =
Rtα Pt′→tα +Rtβ otβ(α)

Rtα +Rtβ
(7)

Note that unlike Equation 6, even if α was fully reliable (Rtα = 1), the new
objective opinion of β is still accounted for by taking into consideration the
reliability of β with respect to that of α (and vice versa).

Initialising P. Similar to the default group opinion D, we say Ptα(ei) = F(ei),
where t is the time α is first introduced. Along time, this probability is updated
according to the section above, either as opinions about α are formed by others,
or as neighbouring entities have their Ps updated, influencing that of α.

Decaying P. The value of P is a subjective value, as it is influenced by subjective
opinions. For example, the reputation of a team changes as it changes its team
members, since opinions about new team members influence the opinion about
the team. However, such information is subjective, and what really matters at
the end is whether the team is actually capable of winning with this new group of
team members or not. For this reason, we believe that with time, the subjective
opinion P should decay at a reasonable rate towards a more stable and objective
opinion: the default opinion D. This is expressed by the following equation:

Pt
′→t
α = Λ(Dtα,Pt

′

α) (8)

where Λ is the decay function that has been introduced earlier by Equation 4.



3.3 Reputation and Reliability

As illustrated earlier, an essential point in evaluating the opinion of a given entity
is how reliable (Rtβ) it is. The idea behind the notion of reliability is very simple:
an entity that is considered very good in a certain field is usually considered to
be very good as well in assessing how others are in that field. This is based
on the ex cathedra argument. An example of a current practice following the
application of this argument is the selection of members of committees, advisory
boards, etc.

But how is reputation calculated? Given an evaluation space E, it is easy to
see what could be the ‘best’ opinion about someone: the ‘ideal’ distribution, or
the ‘target’, which is defined as T = {en 7→1}. Given a ‘target’ distribution T,
the reputation of an entity β may then be defined as the distance between the
current default opinion Dtβ and the ideal distribution T, as follows:

Rtβ = 1− emd(Dtβ ,T) (9)

where emd is the earth movers distance that calculates the distance (whose range
is [1, 0]) between two probability distributions [1]. 34 As time passes and opinions
are formed, the reputation measure evolves along with the default opinion. We
note that at any moment in time, the measure Rtβ can be used to rank the
different entities.

4 The Algorithm

The proposed model of Section 3 illustrates how opinions may be inferred through
the propagation (Equation 6) and aggregation (Equations 3, 6, and 7) of indi-
vidual opinions in structural graphs. Algorithm 1 summarises this model.

We note that this algorithm runs locally for a given node α ∈ N . The algo-
rithm is invoked every time α receives a direct opinion otβ(α), or its neighbouring
node β updates its P value. We assume α saves all its computed O values (the
value of the direct opinions it has received, following Equation 1) as well as its
latest P and D values. The algorithm then proceeds by following the equations
of the previous section in a straight forward manner.

5 Results

As illustrated by Figure 1, real life applications fall into different categories,
based on whether they make use of objective opinions, subjective opinions, or
both; or whether they make use of structural graphs or not. For example, Chess
or Ping Pong are games with individual players, and the scores of the matches
may be interpreted as objective opinions. The Diplomacy game is an example
3 One important aspect to apply emd is to determine what the distance between the

terms in E is. That is the matrix D = {dij}i,j∈[1,n]. The distance is certainly domain
dependent, and can possibly be learned.

4 Naturally, other distance measurements may also be used.



Algorithm 1 Updating node α’s reputation R and inferred opinions D and P
Require: N to represent the nodes of the structural graph
Require: G = {α, β, . . . } a group of agents that may form opinions about nodes
Require: E = {e1, . . . , en} an evaluation space
Require: t ∈ T to represent calendar time
Require: otβ(α) to represent the direct opinion that β ∈ G holds about α ∈ N
Require: Tβ(α) ⊆ T to represent the set of time points in which β has given opinions

about α
Require: Xt to represent the value of the probability distribution X at time t
Require: Xt

′→t to represent the decayed probability distribution Xt
′

at time t, fol-
lowing Equations 4, 5 and 8

Require: get opinion(otβ(α)) to represent α’s receipt of the direct opinion otβ(α)
Require: get neighbour update(Ptβ) to represent α’s receipt of the neighbouring node
β’s updated P value

Require: obj(otβ(α)) to represent that the direct opinion otβ(α) is an objective one
Require: Rtβ to represent β’s known reputation at time t
Require: I(O) to represent the certainty of the opinion O, following Equation 2
Require: dα to represent the degree of the node α
Require: f(dα,Rβ) = (Rβ + dα − 1)/dα which we simply refer to as f(dα) when β is

obvious
Require: emd : 2P(E) × 2P(E) → [0, 1] which calculates the earth-mover distance be-

tween two probability distributions
F(ei) = 1

n
, ∀ ei ∈ E

T = {en7→1}
when get opinion(otβ(α)) do

if obj(otβ(α)) then
Ot
β(α) = Rtβ × otβ(α) + (1−Rtβ)× F

Dtα =

X
β∈G

X
t′∈Tβ(α)

Ot′→t
β (α) · I(Ot′→t

β (α))X
β∈G

X
t′∈Tβ(α)

I(Ot→t′
β (α))

Rtα = 1− emd(Dtα,T)

Ptα =
RtαPt

′→t
α +Rtβo

t
β(α)

Rtα+Rt
β

else
if β ∈ N then

γ = Rtβ
else

γ = 1
end if
Rtα = 1− emd(Dt

′→t
α ,T)

Ptα = (Rtα)γ · Pt
′→t
α + (1− (Rtα)γ) · otβ(α)

end if
end when
when get neighbour update(Ptβ) do

Rtα = 1− emd(Dt
′→t
α ,T)

Ptα = (Rtα)f(dα) · Pt
′→t
α + (1− (Rtα)f(dα)) · Ptβ

end when
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Fig. 1. Categorised applications

of individual players whose reputation is
based on the subjective opinions of other team
members. In Football, however, one may view
a team as being composed of players and
sometimes one player may play in different
teams (based on the league), giving rise to
the notion of a structural graph. Additionally,
opinions about team players may sometime be
subjective, such as being ranked by some mag-
azine. Scientific publications may be viewed as
an example that uses structural graphs (con-
ference proceedings are composed of papers,
papers are composed of sections, etc.), and
opinions on scientific publications by other re-
searchers in the field are subjective.

We choose the Chess example for experimentation, because there exists an
official ranking and predicting algorithm for Chess (ELO [2]) that we can com-
pare to ours. Hence, for a given dataset that specifies the real outcome of games,
we run the ELO algorithm and our proposed one to compute the reputation
of players and predict the outcome of future games accordingly. We then com-
pare the predicted outcome of each of the algorithms to the real one. Initially,
we ran several experiments over real Chess data. However, we noticed that the
performance of both the ELO mechanism and ours was similar. For instance,
in one experiment, our algorithm performed 2.3% better than ELO. Looking at
the results, it seemed that players in the same tournament are more or less of
the same experience, and hence, reputation. For this reason, the final results of
games were a little bit random, and hence, the performance of both ELO and
this paper’s proposed algorithm was similar.

We then moved on to simulated data. We created two players, A and B,
that played against each other over a number of years. A was initially a ‘bad’
player and it lost around 80% of its games during the years 1992-1998. How-
ever, after 1998, A stopped playing for a while, and it resumed playing in 2004.
Its performance dramatically improved over the years 2004-2010. In general,
our proposed algorithm performed better than ELO by 3.5%. We note that the
results are still preliminary, as they simulate two players who play around 30
matches each. Figure 2 plots the distance between the real results and the pre-
dicted results of both ELO and our algorithm. The distance is measured using
the earth mover’s distance function, emd; hence, the maximum distance possible
is 1, and the minimum is 0. However, as illustrated by Figure 2, the main dif-
ference is highlighted in the year 2004, when the ELO algorithm performs very
poorly compared to ours, since our algorithm’s decay function allows a better
prediction when behaviour changes with time.

As such, we conclude that our proposed algorithm is essentially useful in
applications where the quality being assessed (behaviour of humans, performance
of agents, quality of papers, etc.) could actually change with time.
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6 Conclusion

This paper has proposed a model that allows agents to infer objective and sub-
jective group opinion through the propagation and aggregation of opinions in
structural graphs. It provides a clear distinction between objective and subjective
opinions and their effect on group opinion. Additionally, the paper introduces
the concept of opinion propagation between related entities.

In comparison with existing research, the research carried out by [3–5] studies
the dynamics of opinion formation by focusing on the effect of social relations
on how peoples’ opinions may influence each other in a social network. The
influence that one reviewer agent may have on another’s subjective opinion is
an interesting issue. Aggregation mechanisms, such as those presented by [6],
may help in defining the appropriate aggregation method based on whether
subjective opinions are dependent on each other or not. Repage [7], ReGreT [8],
and SUNNY [9] provide mechanisms for computing the confidence in a reviewer
based on the social relations. In this paper, we follow the ex cathedra argument
which states that an agent’s reputation could be used as an indication of its
reliability in assessing others in its field. This fits perfectly in our equations
that are concerned with objective opinions (Equations 1 and 7). However, again,
when aggregating subjective opinions, social network analysis may be useful in
contributing to the reliability of those opinions.

Concerning the propagation of opinions, we note that numerous research has
addressed similar issues, such as [10–13]. PageRank [12] and Hits [13] calculate
the relevance of web pages by analysing their position in the network and how
they links to each other. Similarly, SARA [10] and CiteRank [11] present algo-
rithms on how reputation may propagate based on who is citing whom. Their
reputation propagates along citation links. This paper, on the other hand, fo-
cuses on the propagation of reputation along the structural links by focusing on
the composition of entities and using the part of relation as an indication to the
flow of opinions from one entity to another. Research work on ontology-based
recommender systems, such as [14, 15], makes use of the clustering or classifi-
cation of information and uses machine learning and data mining techniques



for ranking and recommending entities. One may draw similarities between the
taxonomies used by such systems and that of the structural graph of this doc-
ument; although the propagation mechanism of this paper is unique in both its
algorithm and semantics.
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