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a b s t r a c t

Description Logics (DLs) are knowledge representation languages built on the basis of clas-
sical logic. DLs allow the creation of knowledge bases and provide ways to reason on the
contents of these bases. Fuzzy Description Logics (FDLs) are natural extensions of DLs for
dealing with vague concepts, commonly present in real applications. Hájek proposed to
deal with FDLs taking as basis t-norm based fuzzy logics with the aim of enriching the
expressive possibilities in FDLs and to capitalize on recent developments in the field of
Mathematical Fuzzy Logic. From this perspective we define a family of description lan-
guages, denoted by ALC!ðSÞ, which includes truth constants for representing truth degrees.
Having truth constants in the language allows us to define the axioms of the knowledge
bases as sentences of a predicate language in much the same way as in classical DLs. On
the other hand, taking advantage of the expressive power provided by these truth con-
stants, we define a graded notion of satisfiability, validity and subsumption of DL concepts
as the satisfiability, validity and subsumption of evaluated formulas. In the last section we
summarize some results concerning fuzzy logics associated with these new description
languages, we analyze aspects relative to general and canonical semantics, and we prove
some results relative to canonical standard completeness for some FDLs considered in
the paper.

! 2010 Elsevier Inc. All rights reserved.

1. Introduction: from Description Logic to Fuzzy Description Logic

Description Logics (DLs) are knowledge representation languages particularly suited to specifying ontologies, creating
knowledge bases and reasoning with them. DLs have been studied extensively over the last two decades. A full reference
manual of the field is [1]. The vocabulary of DLs consists of concepts, which denote sets of individuals, and roles, which denote
binary relations among individuals. From atomic concepts and roles and by means of constructors, DL systems allow us to
build complex descriptions of both concepts and roles. These complex descriptions are used to describe a domain through
a knowledge base (KB) containing the definitions of relevant domain concepts or some hierarchical relationships among
them (Terminological Box or TBox), and a specification of properties of the domain instances (Assertional Box or ABox).1

One of the main issues of DLs is the fact that the semantics is given in a Tarski-style presentation and the statements in both
the TBox and the ABox can be identified with formulas in first-order logic or an extension of it; therefore we can use reasoning to
obtain implicit knowledge from the explicit knowledge in the KB.

Nevertheless, the knowledge used in real applications is usually imperfect and has to address situations of uncertainty,
imprecision and vagueness. From a real world viewpoint, vague concepts like ‘‘patient with a high fever” and ‘‘person living
near Paris” have to be considered. A natural generalization to cope with vague concepts and relations consists in interpreting
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1 Sometimes, for very expressive DLs the knowledge base also has an RBox, containing specific knowledge about roles.
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concepts and roles as fuzzy sets and fuzzy relations respectively. Fuzzy sets and fuzzy logics were born to deal with the prob-
lem of approximate reasoning [2,3]. Their first developments were characterized by the applications that gave rise to various
semantic approaches to this problem. In recent times, formal logic systems have been developed for such semantics, and the
logics based on triangular norms (t-norms) have become a central paradigm in fuzzy logic. The development of that field is
intimately linked to the book Metamathematics of Fuzzy Logics [4], published in 1998, where Hájek shows the connection of
fuzzy logic systems with many-valued residuated lattices based on continuous t-norms. He proposes a Hilbert-style calculus
called Basic fuzzy Logic (BL) and conjectures that this logic is sound and complete with respect to the structures defined in
the unit real interval ½0;1% by continuous t-norms and their residua. The conjecture was proved in [5]. In [6] Esteva and Godo
introduced the logic MTL, a weakening of BL, which is proved in [7] to be the logic of left continuous t-norms and their re-
sidua. Since then, the field of t-norm based fuzzy logics has grown very quickly and it is the subject matter of intensive re-
search (see http://www.mathfuzzlog.org for an exhaustive list of works and researchers in this area).

As regards fuzzy interpretations for description logic languages, with the exception of a paper by Yen [8] published in
1991, it was at the end of the last decade (from 1998) when several proposals of Fuzzy Description Logics (FDLs) were intro-
duced (e.g., the ones by Tresp and Molitor [9] and by Straccia [10]). However, these early works on FDLs use a limited fuzzy
logic apparatus called either ‘‘minimalistic” by Hájek in [11] or Zadeh Logic in [12,13]. In this logic the connectives are inter-
preted as follows: the intersection and the union are interpreted asmin andmax respectively; the complementation as 1& x;
and the interpretation of the universal quantified expression uses the Kleene–Dienes implication maxð1& x; yÞ. This inter-
pretation is directly inspired by both the classical interpretation of the language ALC and Zadeh’s initial proposal giving
max;min and the operation 1& x as the respective interpretations of union, intersection and complementation of fuzzy sets.
It is worth observing that the Kleene–Dienes implication is not residuated. An important feature of the residuated implica-
tions is their good relationship with the order in the sense that x ! y ¼ 1 is an equivalent way of saying x 6 y. However, the
Kleene–Dienes implication behaves poorly with respect to the order, and it is difficult to interpret it as an implication in the
logical setting. For example, in Zadeh Logic the implication u! w is valid if and only if, for every interpretation, either the
interpretation of u has the value 0 or the interpretation of w is 1 (for a discussion of the counter-intuitive effects of the Kle-
ene–Dienes implication in FDLs see for instance [11,14]). We should also mention other lines of investigation in FDLs com-
posed of works where the term fuzzy is considered in the broad sense, according to the terminology of Zadeh. The languages
considered in these papers (see for instance [15,16]) can handle, for example, fuzzy modifiers and fuzzy quantifiers, which
are not considered in our approach.

In the paper Making Fuzzy Description Logic more general [11], published in 2005, Hájek proposes to deal with FDLs taking
as basis t-norm based fuzzy logics with the aim of enriching the expressive possibilities in FDLs (see also [17]). This change of
view gives a wide number of choices on which a DL can be based: for every particular problem we can consider the fuzzy
logic that seems best suited and thus benefit from the recent advances in the setting of Mathematical Fuzzy Logic where
the residuated (fuzzy) logics are widely studied. As an example, in [11] Hájek studies the FDLs associated with the descrip-
tion language ALC. Since then, several researchers on FDLs have developed approaches based on the spirit of Hájek’s paper
(see for instance [12,18–20], the survey [21], or [22] dealing with DL programs). Thus, in particular, these studies interpret
the constructor of intersection as a continuous t-norm, and the interpretation of the universal quantified expression 8R:C
uses the residuated implication function associated with the t-norm which parameterize the constructor of intersection.
So, the expressions of the description languages considered in these papers can be seen as instances of formulas built in
the language of t-norm based fuzzy predicate logics. Nevertheless, these approaches mainly deal with the expressiveness
of the languages and reasoning algorithms rather than with logical foundations.

The current paper explores the logical foundations of FDLs. Roughly speaking, each Fuzzy Description Logic can be seen as
a logical system related to a fragment of a particular first order t-norm based logic presented with a well defined Hilbert-
style calculus. This fact provides FDLs with powerful tools from ametamathematical point of view and allows them to exploit
methods and results fromMathematical Fuzzy Logic. So the present paper is a first step in the direction proposed by Hájek in
[11] concerning the analysis of the relationships between FDLs and t-norm based fuzzy logics. We deal with the (fuzzy)
description logics associated to the language ALC. A first requirement is to build a t-norm based fuzzy logic with the ade-
quate logical tools to define an ALC-like description language. To this end, we take the logic of a continuous t-norm and we
add, if necessary, an involutive negation in order to capture the complementation needed in an ALC-like description lan-
guage; then we also add truth constants in order to capture the graded formulas used in the knowledge bases.

More explicitly, for each continuous t-norm ! there is a finitely axiomatizable propositional logic, presented by means of a
Hilbert-style calculus and denoted by L!, which is complete in the sense that theorems are equal to tautologies of the stan-
dard algebra defined by the t-norm and its residuum. Taking as basis the logic L! we add:

(a) an involutive negation (if needed) by means of a finite set of axioms,
(b) a countable set of truth constants by means of an also countable set of axioms (the so-called book keeping axioms),

in order to define the logics denoted by L!(ðSÞ. In this framework we define the first order logics L!(ðSÞ8 corresponding to each
one of these propositional logics by adding the two ‘‘classical” quantifiers (universal and existential) and both a finite num-
ber of axioms dealing with the quantifiers and the generalization inference rule corresponding to the universal quantifier.

On the other hand, given a continuous t-norm and a countable subalgebra S of the standard algebra ½0;1%! expanded with
the standard involutive negation function 1& x, an ALC-like description logic denoted by ALC!ðSÞ is defined in association
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with the logic L!(ðSÞ8, in the following way: Firstly, we distinguish a subset of formulas of the language of L!(ðSÞ8 as instances
of ALC!ðSÞ-concepts. Then, the ALC!ðSÞ-logic is the logical calculus semantically defined in the usual way over the canonical
standard algebra restricted to the instances of ALC!ðSÞ-concepts. Note that this algebra is obtained by adding to the standard
algebra the elements of S as distinguished elements, in such a way that the truth constants are interpreted by their defining
values.

Notice that the semantically defined logics associated to our ALC-like description languages are related with certain frag-
ments of the logics L!(ðSÞ8 in much the same way as the semantical calculus associated with the classical ALC is related with
a fragment of the Hilbert-style axiomatization in which the classical First Order Logic (FOL) is presented. Nevertheless, the
situation in the classical and fuzzy framework is not always the same. In the classical case the semantical calculus (the ALC-
logic) coincides with the corresponding fragment because of the completeness theorem; however, it is well known that this
is not the case for all the logics in the family L!(ðSÞ8. On the one hand we have that, when L!(ðSÞ8 is canonical (standard) com-
plete, the semantically defined description logic ALC!ðSÞ coincides with the corresponding fragment of the Hilbert-style cal-
culus defining L!(ðSÞ8 (Fig. 1). Thus, in Section 6.3 we prove that the logic G(ðSÞ8 (i.e., the first order Gödel logic with truth
constants and an involutive negation) is strong canonical complete for finite theories, and the same can be proved for the
logics L!(ðSÞ8 when the t-norm is finite. It is also well known that both first order Łukasiewicz and Product logics are not
canonical complete (tautologies on the real unit interval in both logics are a set that strictly contains the set of theorems
of the corresponding First Order Logic). In such cases the ALC!ðSÞ-logic does not necessarily coincide with the fragment
of the first order fuzzy logic L!(ðSÞ8 and it has to be studied in a different way: for instance as Hájek did in [11] for the
ALC-logic relative to Łukasiewicz Logic (see Section 6.2).

With respect to the inclusion of truth constants in the description languages, (as Hájek proposed) our motivation is the
following: since the axioms of knowledge bases in FDLs include truth degrees, a natural choice seems to be the inclusion of
symbols (truth constants) for these degrees in both the description language and the t-norm based logic where that language
is interpreted. The topic of t-norm based fuzzy logics with truth constants in the language was firstly studied by Pavelka in
[23]. In recent years it has received a renewed impulse and it has been the focus of exhaustive analysis (see [4,24–26]). In
[27] Hájek assesses the computational complexity of propositional fuzzy logics with rational truth constants and analyzes
some consequences for fuzzy description logics concerning satisfiability and validity. In particular, he defines the fuzzy
description languages denoted by R-ALC! (! being a continuous t-norm) with a truth constant for each rational number,
and proves that the witnessed satisfiability of R-ALC!-concepts is decidable.

The present paper is organized as follows. In Section 2 we recall some notions and results concerning t-norm based fuzzy
logics necessary to define the family of description languages presented in Section 3. In Section 4 we describe the notions of
ABox and TBox for the considered family of languages and we give their semantics, illustrating the differences between the
crisp and the fuzzy cases with an example. Having truth constants in the language, we can handle graded general inclusion
axioms in addition to the graded assertional axioms as is usually done in FDLs. Section 5 deals with reasoning in both classic
ALC and its extension to finitely graded or fuzzy cases. Again, taking advantage of having truth constants, we can define
graded notions of validity, satisfiability and subsumption from a syntactic perspective. We complete the section with some
illustrative examples. In Section 6 we give some logical results about the logics L!(ðSÞ8 and their consequences for the
description logics ALC!ðSÞ. Section 7 is devoted to the conclusions and suggestions for future work.

2. Fuzzy logics: general and standard (canonical) semantics

In this section we introduce the logics that are the formal counterpart of the description languages which will be intro-
duced in Section 3. The propositional fragments of these logics are axiomatic extensions or conservative expansions of the
Basic fuzzy Logic BL [4]. Thus, first we introduce the logic BL, proved in [5] to be the logic of all continuous t-norms and their
residua, and we recall the general semantics for the logics which are axiomatic extensions or expansions of BL that interest us.
Then, after recalling the notions of t-norm and its residuum, we introduce the notion of divisible finite t-norm, which extends
the notion of continuous t-norm to the framework of finite chains. We then introduce the logics L! which are the logics of a
continuous t-norm ! (or a divisible finite t-norm !) and its residuum. Then, we define the logics L!( (by introducing an
involutive negation), the logics L!(ðSÞ (by introducing a set of truth constants S), and their first order extensions L!(ðSÞ8.

Fig. 1. When the first order logic L!(ðSÞ8 (syntactically defined by means of a Hilbert-style calculus) is standard canonical complete, the ALC!ðSÞ-logic
(semantically defined) coincides with the corresponding fragment of L!(ðSÞ8 in the same way as the logic associated with the classical ALC coincides with a
fragment of the Hilbert-style calculus defining FOL.
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We also discuss the general and the canonical semantics for these logics and we stress their interest for Fuzzy Description
Logics.

2.1. Propositional fuzzy logics: general semantics

The Basic fuzzy Logic (BL) (defined in [4]) has the following basic connectives: multiplicative conjunction (&), implication
(!), and falsity (!0). BL is defined by the following schemata (taking ! as the least binding connective):

(BL1) ðu ! wÞ ! ððw ! vÞ ! ðu! vÞÞ
(BL2) u&w ! u
(BL3) u&w ! w&u
(BL4) u&ðu! wÞ ! w&ðw ! uÞ
(BL5a) ðu ! ðw ! vÞÞ ! ðu&w ! vÞ
(BL5b) ðu&w ! vÞ ! ðu! ðw ! vÞÞ
(BL6) ððu! wÞ ! vÞ ! ðððw ! uÞ ! vÞ ! vÞ
(BL7) !0 ! u

The only deduction rule of BL is, as in Classical Propositional Logic, Modus Ponens. The notions of proof, provability, theo-
rem, consequence relation, theory, etc., are defined in the usual way. Further connectives are defined as follows:

u ^ w :¼ u&ðu ! wÞ; u$ w :¼ ðu ! wÞ&ðw ! uÞ;

u _ w :¼ ððu! wÞ ! wÞ ^ ððw ! uÞ ! uÞ;

qu :¼ u ! !0; !1 :¼ q!0

In [6] Esteva and Godo defined the logic MTL as a generalization of the logic BL. In fact BL is actually the extension of MTL
obtained by adding the divisibility axiom: u ^ w ! u&ðu! wÞ. MTL is proved to be the most general t-norm based fuzzy
logic (see [7]). Łukasiewicz, Product and Gödel Logics can be obtained as axiomatic extensions of BL with the following
schemata:

) qqu! u for Łukasiewicz Logic,
) u ^ qu! !0, and qqv! ððu&v! w&vÞ ! ðu! wÞÞ for Product Logic, and
) u! u&u for Gödel Logic.

Note that Classical Propositional Logic can be obtained as the axiomatic extension of BL adding the excluded middle axiom
qu _u. BL belongs to the class of the core fuzzy logics introduced and studied by Hájek and Cintula in [28,29]. Briefly stated,
propositional core fuzzy logics are expansions (extensions with, possibly, some extra connectives) of MTL whose additional
connectives satisfy a congruence condition with respect to the double implication, and satisfying – as MTL does – the Local
Deduction Theorem, that is, for every set of formulas C and formulas u;w,

C;u ‘ w iff there exists a natural number n such that C ‘ un ! w:

General results contained in this section are formulated for core fuzzy logics as a general framework. We now recall the no-
tion of BL-algebra and the notion of L-algebra for the case of a core fuzzy logic L expanding BL.

Definition 2.1. A BL-algebra is a divisible and prelinear commutative integral bounded residuated lattice, that is, an algebra
A ¼ hA;_A;^A; !A;!A; !0A; !1Ai with four binary operations and two distinguished elements, satisfying:

1. hA;_A;^A; !0A; !1Ai is a bounded lattice with minimum element !0A, and maximum element !1A.
2. hA;&A; !1Ai is a commutative monoid with unit !1A.
3. The operation &A is residuated and the operation !A is its residuum, i.e.,

for every a; b; c 2 A; a&Ab 6 c iff b 6 a!Ac;

where 6 is the order associated to the lattice reduct.
4. For every a; b 2 A; ða!AbÞ_Aðb!AaÞ ¼ !1A. (Prelinearity)
5. For every a; b 2 A; a&Aða!AbÞ ¼ a^Ab. (Divisibility)

A unary operation, the negation operator, is defined in this algebra A in the following way: qAx :¼ x!A!0A. 2

2 We will omit superscripts in the operations of the algebras when clear from the context.
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Let L be a core fuzzy logic obtained by expansion of BL, and let I be the set of connectives of L. Let
A ¼ hA;_A;^A;&A;!A; hiAii2I ; !0A; !1Ai be a structure such that hA;_A;^A;&;!A; !0A; !1Ai is a BL-algebra and such that, for every
connective i 2 I of arity k, iA is a k-ary operation defined on A. An evaluation of the propositional variables in A is a mapping e
assigning to each propositional variable p a truth value eðpÞ 2 A. The evaluation e is inductively extended to a mapping eA
from the set of formulas of the language of L into the algebra A in the following way:

eAðu&wÞ ¼ eAðuÞ&AeAðwÞ; eAðu ! wÞ ¼ eAðuÞ!AeAðwÞ; eAð!0Þ ¼ !0A;

and, for every i 2 I ; eAðiðu1 . . .ukÞÞ ¼ iAðeAðu1Þ; . . . ; eAðukÞÞ.
A formula u in the language of L is an A-tautology if for every evaluation e; eAðuÞ ¼ !1A.

Definition 2.2 (L-algebra). Let L be a core fuzzy logic obtained by expanding BL, and let I be the set of basic additional
connectives of L. An L-algebra is a structure A ¼ hA;_A;^A;&A;!A; hiAii2I ; !0A; !1Ai such that:

1. hA;_A;^A;&;!A; !0A; !1Ai is a BL-algebra.
2. Each additional axiom of L is an A-tautology.

If the lattice reduct of A is linearly ordered we say that A is an L-chain.

Let C be a set of formulas in the language of L and A be an L-algebra. We say that an evaluation e is an A-model of C if
eAðcÞ ¼ !1A for every c 2 C. We say that e is an A-model of a formula u if it is an A-model of the set fug. All the logics that
we will consider in the following sections are core fuzzy logics. Each logic L of this family enjoys strong completeness with
respect to the class of L-chains (see [30,31]).

Theorem 2.3 (Strong completeness theorem). Let L be a core fuzzy logic. Let C be a set of formulas (i.e., a theory) andu a formula.
The following conditions are equivalent:

1) C‘Lu
2) eAðuÞ ¼ !1A for each L-algebra A and each A-model e of C.
3) eAðuÞ ¼ !1A for each L-chain A and each A-model e of C.

This last theorem states that every core fuzzy logic L has strong completeness with respect the general semantics, i.e., with
respect to the full class of L-algebras. Moreover, due to the prelinearity condition, we have also completeness with respect to
L-chains since the class of L-chains generates all L-algebras. It is easy to see that if the language is countable (i.e., finite or
numerable), condition (3) in the theorem can be restricted to countable L-chains.

2.2. Triangular norm based fuzzy logics

A triangular norm (or t-norm) is a binary operation defined on the real interval ½0;1% satisfying the following properties:
associative, commutative, non decreasing in both arguments, and having 1 as unit element. A left continuous t-norm ! is
characterized by the existence of a unique operation !! satisfying, for all a; b; c 2 ½0;1%, the condition
a ! c 6 b () c 6 a!!b. This operation is called the residuum of the t-norm. Thus, in particular, all continuous t-norms have
a residuum. A negation on ½0;1% is a unary operation n : ½0;1% ! ½0;1% satisfying the following properties: nð0Þ ¼ 1;nð1Þ ¼ 0
and, for all a; b 2 ½0;1%; a 6 b ) nðbÞ 6 nðaÞ (antimonotonicity). We say that n is involutive if, for all a 2 ½0;1%;nðnðaÞÞ ¼ a.
We can also associate to each continuous t-norm ! a negation defined as follows: n!ðxÞ ¼ x!!0. Table 1 shows the main con-
tinuous t-norms (Minimum, Product and Łukasiewicz) with their residua and the corresponding associated negations. These
three t-norms are the basic ones since any continuous t-norm can be expressed as an ordinal sum of copies of these three t-
norms [32,33].

Definition 2.4. Let I be a countable (i.e., finite or enumerable) set of indexes, and let f½ai; bi% : i 2 Ig be a family of closed
subintervals of ½0;1% such that their interiors are pairwise disjoint. For every i 2 I, let !i be a t-norm defined on ½ai; bi%.3 The
ordinal sum of this family of t-norms is the operation on ½0;1% defined as follows:

Table 1
The three continuous t-norms, their residua and their associated negation.

! Minimum (Gödel) Product (of real numbers) Łukasiewicz

x ! y min ðx; yÞ x * y max ð0; xþ y& 1Þ
x!!y 1; if x 6 y

y; otherwise :
!

1; if x 6 y
y=x; otherwise :

!
min ð1;1& xþ yÞ

n! 1; if x ¼ 0
0; otherwise

!
: f1; if x ¼ 0

0; otherwise :
1& x

3 Given two real numbers a; b, with a < b, the name t-norm is also applied to operations defined in ½a; b% satisfying the same conditions of a t-norm, but in this
case b is the unit element of the operation and a the zero element.
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x ! y :¼
x!my; if x; y 2 ½am; bm%; for some m 2 I;
minfx; yg; otherwise:

!

It is straightforward to prove that the ordinal sum of a family of continuous t-norms is a continuous t-norm.

A triangular conorm (or t-conorm) is a binary operation defined on ½0;1% associative, commutative, non decreasing in both
arguments, and having 0 as unit element. We say that a t-norm ! and a t-conorm, are dualwith respect to a negation n if, for
every a; b 2 ½0;1%, the following conditions hold (De Morgan laws):

1. nða ! bÞ ¼ nðaÞ , nðbÞ,
2. nða, bÞ ¼ nðaÞ ! nðbÞ.

Given a t-norm ! and an involutive negation n, the operation defined by x, y :¼ nðnðxÞ ! nðyÞÞ is a t-conorm and ! and , are
dual with respect to n. Table 2 shows the dual t-conorms of the three basic continuous t-norms with respect to the so-called
standard involutive negation NðxÞ ¼ 1& x.

The concept of t-norm can be extended to finite chains in ½0;1% with 0 and 1 as first and last element respectively (see
[34,35]). We will call this kind of operation finite t-norm. These finite t-norms have to fulfill the same properties as t-norms,
but to generalize continuity it is necessary to determine what ‘‘continuity” means in the case of finite chains. In [34] the
authors propose the use of the property called smoothness, which can be easily proved to be equivalent to what is called divis-
ibility in the residuated setting. Given a finite t-norm ! on a finite chain, the divisibility is defined as follows:

For every a; b 2 C such that a > b; exists c 2 C satisfying b ¼ c ! a:

Obviously, every finite t-norm ! on a finite chain has a residuum. If we denote the residuum by!!, we can see that the divis-
ibility condition is equivalent to the satisfaction of the identity x ! ðx!!yÞ ¼minðx; yÞ.4 In [34] the authors prove that the
divisible finite t-norms over a chain of n elements are the finite t-norms called Łukasiewicz and Minimum, and their finite ordi-
nal sums. In fact, the structures defined by a divisible finite t-norm and its residuum are isomorphic to finite subalgebras of the
algebraic structures defined by continuous t-norms on ½0;1%. For instance, the structure defined by the Łukasiewicz (resp. Min-
imum) finite t-norm over a chain of n elements is isomorphic to the subchain of the unit real interval when restricting the
Łukasiewicz (resp. Minimum) t-norm to the set Cn ¼ f0; 1

n&1 ; . . . ;
n&2
n&1 ;1g.

Given a continuous t-norm !, it is easy to see that the structure

½0;1%! ¼ f½0;1%;max;min; !;!!; 0;1g

is a BL-chain. And given a divisible finite t-norm ! over a chain of n elements we also have that the structure

C!n ¼ fCn;max;min; !;!!;0;1g

is a BL-chain. Each one of these algebras is called the standard canonical chain relative to !. From now on and when no con-
fusion is possible we will refer to it simply as the canonical chain of !.

Definition 2.5 (Logic of a family of t-norms). A core fuzzy logic L is said to be the logic of a family of continuous t-norms T and
their residua (the logic of T, for short) if it is complete with respect to the class of canonical chains defined by the t-norms in T,
that is, the set of theorems of L coincides with the set of tautologies of all canonical chains defined by a t-norm in T.

Definition 2.6 (t-norm based logic). A core fuzzy logic L expanding BL is said to be a t-norm based logic when there exists a
family T of continuous t-norms such that L is the logic of T.

In an analogous way we can define the logic of a family T of finite t-norms. From now on, we will say that L is the logic of a
family T without indicating whether T is a family of either t-norms or finite t-norms.

2.3. The logic L* of a continuous t-norm

It is well known that BL is the logic of all continuous t-norms and their residua (see [5]). It is also known (see for instance
[4]) that Łukasiewicz (resp. Gödel and Product) Logic is the logic of Łukasiewicz (resp. Minimum and Product) t-norm and its
residuum. The main logics of a divisible finite t-norm over a chain of n elements are the logics Łn and Gn corresponding to the
finite t-norms of Łukasiewicz and Minimum.

Table 2
The dual t-conorms corresponding to the three main continuous t-norms.

, Maximum (Gödel) Sum Łukasiewicz

x, y max ðx; yÞ ðxþ yÞ & ðx * yÞ min ð1; xþ yÞ

4 Notice that this equality is the same as the one that expresses the condition of continuity when ! is a t-norm and !! is its residuum (see [4]).
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In [36] the logic of each continuous t-norm ! and its residuum, denoted by L!, is proved to be finitely axiomatizable as an
axiomatic extension of BL, and an algorithm to find a finite set of axioms characterizing each logic L! is given. Similar results
are also true when ! is a finite t-norm: the corresponding axiomatizations can be easily obtained from our current knowledge
of BL-algebras, mainly using the results in [37]. Moreover, using results in [26,36], it can be easily proved that these logics L!

(when ! is either a t-norm or a finite t-norm) satisfy the finite strong canonical completeness, that is, for every finite set of
formulas C and every formula u;C‘L!u if and only if every evaluation over the canonical chain of ! that is a model of C,
is also a model of u. In fact, in the case of a finite t-norm !, the logic L! enjoys the strong canonical completeness, i.e., the
completeness holds for any set C of premises, not only for finite ones.

2.4. Adding an involutive negation: the logics L!(

In order to define a description language having a complementation (as is done, for instance, in classicalALC), it would be
reasonable to have an involutive negation in the underlying logic. Therefore, when the negation qu :¼ u! !0 defined in L! is
not involutive, a new logic L!( obtained by expanding L! with an involutive negation should be considered. This negation
could be introduced, as is done in the context of intuitionistic logic (see [38]) or in the context of Gödel logic (cf. [39]), by
adding to L! a new unary connective ( satisfying the following axioms:

ð( 1Þ (( u! u
ð( 2Þ ( ðu _ wÞ $ ð( u^ ( wÞ
ð( 3Þ qu!( u

ð1Þ

From now on we denote by L!( both the logics L! such that the defined negation qu :¼ u! !0 is involutive and, when this
is not the case, the logics obtained from L! by expanding the language with the connective ( and by adding to its axiomat-
ization the axioms (1).

When ! is a continuous t-norm, the truth function of the involutive negation over the canonical chain is not unique (any
strictly decreasing bijection n : ½0;1% ! ½0;1% satisfy the axioms of (1)). We define the canonical L!(-chain as the chain obtained
by adding the negation function NðxÞ ¼ 1& x to the canonical L!-chain. Observe that, when ! is a finite t-norm, there is only
one obvious way to obtain the canonical L!(-chain because there is only one possible involutive negation function definable
over the canonical L!-chain.

Having an involutive negation in the logic enriches the representational power of the logical language in a non-trivial way
because:

(a) A multiplicative (or strong) disjunction uYw is definable as ( ð( u& ( wÞ, its truth function being the t-conorm
defined by x, y :¼ nðnðxÞ ! nðyÞÞ, where n is the involutive negation function defined in ½0;1% as truth function of (.
Thus in this logic we have two disjunctions: the multiplicative one Y defined above, and the additive one _ related
to the order.

(b) Using these disjunctions, two new connectives can be defined by ( uYw and ( u _ w, its truth functions being nðxÞ , y
and maxðnðxÞ; yÞ respectively. This second function is the so-called Kleene–Dienes implication, the one used in the
Zadeh Logic and in the first papers on FDLs.5

If the logic L!( is canonical complete the definability of the Kleene–Dienes implication in the logic L!( implies that the Za-
deh Logic can be seen as a sublogic of L!( for any t-norm !. This is the case when ! is the Minimum or Łukasiewicz t-norm. The
logics L!( such that the t-norm ! satisfies minðx!! 0; xÞ ¼ 0 (which is the case, for example, for Minimum and Product t-
norms) were studied in [39].

2.5. Adding truth constants: the logics L!(ðSÞ

Each one of the logics L!( is a many-valued logic because the truth values are in ½0;1% (or in Cn). Intermediate values
represent the different degrees of truth, i.e., the partial truth of a formula. These logics can also be seen as logics of
comparative truth in the following sense: a formula u ! w is a logical consequence of a theory C if the truth degree of u
is at most as high as the truth degree of w in any interpretation that is a !-model of the theory. 6 This is because the residuum
!! of a continuous t-norm ! satisfies the condition x!!y ¼ 1 if and only if x 6 y for all x; y 2 ½0;1%. Thus, for any finite set of
formulas C, we have C‘L!u! w if and only if

for each e; if e!ðcÞ ¼ 1 for every c 2 C; then e!ðu! wÞ ¼ 1;

5 Implication functions of this kind are called S-implications (Strong implications) in the literature on fuzzy sets and fuzzy logics (see for instance [40]) and
they are generalizations of the truth function for the classical implication qu _ w. In these frameworks, the implication functions given by the residuum of a
continuous (or left continuous) t-norm are examples of R-implications (Residuated implications) defined, given a t-norm !, as x!!y :¼ supfx 2 ½0;1% : x ! z 6 yg.

6 For the sake of simplicity, we will use the notations e! , instead of either e½0;1%! or eC!n ; and !-model instead of either ½0;1%!-model or C!n-model.
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but e!ðu ! wÞ ¼ 1 is equivalent to e!ðuÞ!!e!ðwÞ ¼ 1 which, by the property of the residuum mentioned above, is equivalent
to e!ðuÞ 6 e!ðwÞ.

The semantic deduction of formulas in many-valued logics (and in particular in FDLs) only takes into account the truth
(i.e., the degree 1) but not partial truth degrees. Current approaches use a truth-preserving consequence relation in the same
way as in the classical logic, i.e., true formulas are deduced from sets of true formulas. An elegant way to take advantage of
the many-valued approach is to introduce truth constants into the language, as is done by Pavelka in [23] and more recently
in [4,24–27]. The approach considered in the current paper is based on these ideas.

Given a logic L!, let S ¼ hS; !;!!;max;min;0;1i be a countable (i.e., finite or enumerable) subalgebra (i.e., a subset closed
under the operations) of the corresponding canonical chain. From L! and S, we define the logic L!ðSÞ as follows:

(i) the language of L!ðSÞ is the one of L! plus a truth constant r for each r 2 S n f0;1g,
(ii) the axioms and rules of L!ðSÞ are those of L! plus the so-called book-keeping axioms: for each r; s 2 S n f0;1g,

– !r&!s $ r ! s
– ð!r ! !sÞ $ r!!s.

When the negation associated to ! is not involutive, we can also define the logic L!(ðSÞ by combining the introduction of an
involutive negation with the addition of truth constants. In this case S has to be a countable subalgebra of the canonical L!(-
chain and we need to add, for every r 2 S n f0;1g, a book-keeping axiom for the involutive negation: ( !r $ 1& r.

Definition 2.7. We define the canonical L!(ðSÞ-chain as the chain obtained by adding a constant !r for every element r 2 S to
the canonical L!(-chain, and interpreting every !r by r.

Remark 2.8 (About completeness and canonical completeness). The logics L!; L!(; L
!ðSÞ and L!(ðSÞ all are core fuzzy logics.

Thus they satisfy the strong completeness theorem relative to the general semantics (Theorem 2.3) in the sense that
deductions in a logic L coincide with deductions with respect to evaluations in countable L-chains. But the semantics
used in FDLs is the so-called canonical semantics. This semantics is obtained when we restrict ourselves to evaluations
over the canonical L!(ðSÞ-chain. Therefore, we are really interested in canonical completeness: that is, when both the gen-
eral and the canonical semantics coincide at the level of either tautologies or deductions from a finite set of formulas.
Canonical completeness results for the propositional logics L!ðSÞ, when ! is a continuous t-norm, have been fully studied
in [26].

2.6. The predicate fuzzy logics L!(ðSÞ8

In this section we introduce predicate versions of the propositional fuzzy logics described in previous sections. The basic
notions and results are taken from [4,29,31]. Given a core fuzzy logic L in a propositional language L, a predicate language
(without functional symbols) consists of a countable set of predicate symbols P ¼ fP;Q ; . . .g, each one with arity k P 0,
and a countable set of object constants C ¼ fc; d; . . .g. The logical symbols are: a countable set of object variables fx; y; . . .g,
the connectives of the propositional language L, and the quantifiers 8 and 9. Terms are object constants and object variables.
An atomic formula is an expression of the form Pðt1; . . . ; tkÞ, where P is a predicate symbol of arity k, and t1; . . . ; tk are terms.
The set of predicate formulas is defined as in the propositional case adding the rule stating that if u is a formula, and x is a
variable, then ð8xÞu and ð9xÞu are formulas. The notions of free variable, open formula (i.e., with free variables) and closed
formula or sentence (i.e., without free variables) are defined in the usual way.

Given a logic L!(ðSÞ, the corresponding Predicate Fuzzy Logic, denoted by L!(ðSÞ8, is the expansion of L!(ðSÞ with the two
quantifiers 8 and 9. The axioms of L!(ðSÞ8 are the ones of L!(ðSÞ plus the following axioms on quantifiers (see [4]):

ð81Þ ð8xÞuðxÞ ! uðtÞ (t substitutable for x in uðxÞ),
ð91Þ uðtÞ ! ð9xÞuðxÞ (t substitutable for x in uðxÞ),
ð82Þ ð8xÞðu! wÞ ! ðu! ð8xÞwÞ (x not free in u),
ð92Þ ð8xÞðu ! wÞ ! ðð9xÞu ! wÞ (x not free in w),
ð83Þ ð8xÞðu _ wÞ ! ð8xÞu _ w (x not free in w).

Deduction rules of L!(ðSÞ8 are (as in Classical Logic) Modus Ponens and Generalization. The notions of proof, provability, theory,
etc., are defined in the usual way. Notice that the Classical Predicate Logic can be obtained as the axiomatic extension of any
logic L!(ðSÞ8 with the excluded middle axiom.

2.7. General and canonical semantics for L!(ðSÞ8

Given a logic L!(ðSÞ and an L!(ðSÞ-algebra A, an A-interpretation for the corresponding predicate language is a tuple

M ¼ hM; faM : a 2 Cg; fPM : P 2 Pgi
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where

) M is a non-empty set,
) for each object constant a 2 C; aM is an element of M,
) for each k-ary predicate symbol P 2 P; PM is an A-fuzzy k-ary relation defined on M, that is, a function PM : Mk ! A.

Given an A-interpretation M, a map v assigning an element vðxÞ 2 M to each variable x is called an evaluation of the vari-
ables in M (an M-evaluation). Given M and v, the value of a term t in M, denoted by ktkM;v , is defined as vðxÞ when t is a var-
iable x, and as aM when t is a constant a.

In order to emphasize that a formula a has its free variables in fx1; . . . ; xng, we will denote it by aðx1; . . . ; xnÞ. Let v be anM-
evaluation such that vðx1Þ ¼ b1; . . . ;vðxnÞ ¼ bn. The truth value in M over A of the formula uðx1; . . . ; xnÞ for the evaluation v,
denoted by kukAM;v or by kuðb1; . . . ; bnÞkAM, is a value in A defined inductively as follows:

PMðkt1kM;v ; . . . ; ktkkM;v Þ if u ¼ Pðt1; . . . ; tkÞ,

kakAM;v&
AkbkAM;v

if u ¼ a&b,

kakAM;v!AkbkAM;v
if u ¼ a ! b,

(AkakAM;v
if u ¼( a,

!rA if u ¼ !r,
!0A if u ¼ !0,
!1A if u ¼ !1,

inffkaða; b1; . . . ; bnÞkAM : a 2 Mg if u ¼ ð8xÞaðx; y1; . . . ; ynÞ,

supfkaða; b1; . . . ; bnÞkAM : a 2 Mg if u ¼ ð9xÞaðx; y1; . . . ; ynÞ.

If the infimum or supremum does not exist, we take its value as undefined. We say thatM is safe if kukAM;v is defined for each
formulau and eachM-evaluation v. A safe A-interpretationM is an A-model of a set of formulas C if for eachu 2 C, and each
M-evaluation v ; kukAM;v ¼ 1. If C ¼ fug, we say thatM is an A-model of u. A formulau is an A-tautology if every safe A-inter-
pretation is an A-model of u. If A is the canonical chain we say that u is a canonical tautology. Obviously, every safe A-inter-
pretation is an A-model of the empty set of formulas. Thus, from now on, we will sometimes use the name model instead of
safe interpretation.

A first general completeness result for these logics is their strong completeness with respect to chain-valuated models.

Theorem 2.9 (Strong completeness theorem). Let C be a set of formulas (i.e., a theory) and u a formula of the language of
L!(ðSÞ8. The following conditions are equivalent:

(1) C‘L!(ðSÞ8u.
(2) For each L!(ðSÞ-chain A, every A-model of C is an A-model of u.
(3) For each countable L!(ðSÞ-chain A, every A-model of C is also an A-model of u.

The above theorem is a result relative to general semantics, with respect to valuations over the general class of L-chains
and it was proved in [29]. The equivalence between ð2Þ and ð3Þ is not stated in the cited paper but it is obvious since the
language of our logics is countable. However, the semantic interesting for FDLs is the canonical semantics with respect to
models over the canonical chain. For the sake of simplicity, when the algebra of truth values A is the canonical L!(ðSÞ-chain
we will use the notations !-interpretation and !-model instead of A-interpretation A-model respectively. Given a !-interpre-
tation M, the truth value of a formula u in M for a valuation v will be denoted by kuk!M;v .

Definition 2.10 (Canonical completeness). We say that L!(ðSÞ8 enjoys the (finite) strong canonical completeness, if for every
(finite) theory C and each formula u, the following conditions are equivalent:

(1) C‘L!(ðSÞ8u.
(2) Every !-model of C is also a !-model of u.

We say that L!(ðSÞ8 enjoys canonical completeness if the above equivalence holds to the empty theory.

As we have already pointed out, general and canonical semantics do not always coincide. The problem of canonical com-
pleteness of the logics L!ðSÞ8 is addressed in [41,42] and that of the logics L!(ðSÞ8 is considered in Section 6.

The logics L!(ðSÞ8will be the basis of our proposal for the description languages presented in the next section. These logics
are truth preserving in the sense that true formulas are deduced from sets of true formulas. The novelty here is the intro-
duction of truth constants in the language allowing us to write sentences like !r ! u or u! !r which, when they are true,
means that the truth value of u is greater or equal or less or equal than r respectively. This is the main idea behind the
so-called evaluated formulas, i.e., formulas of type !r ! u or u ! !r where the formula u has no truth constants different from
0 or 1 (see for instance [26] and references therein). Evaluated formulas use truth constants as a way to compare the truth
value of a formula without constants with a value r. In turn this comparison allows us both to use and to reason with partial
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truth. In Section 4 evaluated formulas are used to define knowledge bases corresponding to the FDL languages defined in
Section 3.

3. The Description Logics ALC!ðSÞ

In the tradition of Description Logic literature, the language ALC (see [43]) is presented using: ðaÞ the symbols in
ft;u; q;?;>g which, from the first order logic point of view, can be understood as the propositional connectives in
f_;^; q; !0; !1g; and ðbÞ the symbols 9 and 8 used in the denotation of the constructors of concepts 9R:C and 8R:C (existential
and universal quantification respectively) which can also be read as a particular kind of quantified first order formulas (cf. [44]).

In what follows we will introduce, for each logic L!(ðSÞ8, the ALC-like corresponding description logic, denoted byALC!ðSÞ.
In the literature on t-norm based fuzzy logics, it is common to use the symbols & and Y for the multiplicative conjunction and
disjunction respectively, and to reserve the symbols ^ and _ for the additive conjunction and disjunction respectively (cf. [4]).
Accordingly, wewill use as primitive connectives the conjunction (denoted by&), the disjunction (denoted by Y), the implication
(denoted by!), the involutive negation (denoted by(), the falsity (!0), the truth (!1) and a truth constant !r for each r 2 S n f0;1g.

3.1. The languages ALC!ðSÞ

In abstract notation, the symbol A is used for atomic concepts, the symbol R is used for atomic roles, and the symbols C
and D are used for descriptions of concepts. After fixing a continuous t-norm or a divisible finite t-norm ! and a subalgebra S
of the canonical L!(-chain, the complex descriptions of concepts in ALC!ðSÞ are built using the constructors in
fY;&;!;(; !0; !1g [ f!r : r 2 S n f0;1gg, the quantifiers 8; 9, and the point . as an auxiliary symbol, in accordance with the fol-
lowing syntactic rules:

C;D , Aj (atomic concept)
!0j (empty concept)
!1j (universal concept)
!rj (constant concept)
( Cj (complementary concept)
CYDj (concept union)
C&Dj (concept intersection)
C ! Dj (concept implication)
8R:Cj (universal quantification)
9R:Cj (existential quantification)

Observe that by cutting this set of syntax rules the ones corresponding to the constants !r we obtain, up to notation, the
classical language ALC. Now, considering a predicate language (as introduced in Section 2.6) defined using the set of con-
nectives of L!(ðSÞ and only predicate symbols of arity k 6 2, we read

) each atomic concept A as a unary predicate symbol,
) each atomic role R as a binary predicate symbol,
) the constructors in f&;!;(; !0; !1g [ f!r : r 2 S n f0;1gg as the connectives of the language of L!(ðSÞ, and the constructor Y as

the strong disjunction defined by uYw :¼( ð( u& ( wÞ (see Section 2.4).

Next we define the notion of instance of both a concept and an atomic role, which allows us to read the formulas of
ALC!ðSÞ as predicate formulas.

Definition 3.1 (Instance of a concept). Given a term t and an ALC!ðSÞ-concept D, the instance DðtÞ of D is defined as follows:

AðtÞ if D is an atomic concept A,
( CðtÞ if D ¼( C,
C1ðtÞYC2ðtÞ if D ¼ C1YC2,
C1ðtÞ&C2ðtÞ if D ¼ C1&C2,
C1ðtÞ ! C2ðtÞ if D ¼ C1 ! C2,
ð8yÞðRðt; yÞ ! CðyÞÞ if D ¼ 8R:C,
ð9yÞðRðt; yÞ&CðyÞÞ if D ¼ 9R:C,
!0 if D ¼ !0,
!1 if D ¼ !1,
!r if D ¼ !r,

where y is a variable not occurring in CðtÞ.

Definition 3.2 (Instance of a role). Given two terms t1 and t2 and an atomic role R every atomic formula Rðt1; t2Þ is called an
instance of R.
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3.2. The logics ALC!ðSÞ

At this point one option could be to define the logic ALC!ðSÞ-logic as the fragment of the Hilbert style calculus defining
L!(ðSÞ8 corresponding to the instances of ALC!ðSÞ-concepts. As we explained above, this logic coincides with the logical cal-
culus semantically defined by interpretations in L!(ðSÞ-chains, that is, in the general semantics for the formulas of the lan-
guage of L!(ðSÞ8. Nevertheless, as we have pointed above, this approach and the one given by the canonical semantics do
not always coincide, and so, since our intended semantics is the canonical one, we will define the semantics for the instances
of ALC!ðSÞ-concepts using the interpretations over the canonical chain.

Let C be the set of object constants and let A and R be the sets of predicate symbols of arity 1 (concepts) and 2 (roles)
respectively. Let M be an interpretation for our predicate language, that is,

M ¼ hM; faM : a 2 Cg; fAM : A 2 Ag; fRM : R 2 Rgi

where
) M is a non-empty set,
) for each constant a 2 C; aM is an element of M,
) for each atomic concept A 2 A;AM is a function M ! ½0;1%, i.e., a fuzzy set on M,
) for each atomic role R 2 R;RM is a function M -M ! ½0;1%, i.e., a fuzzy binary relation on M.

Notice that if ! is a finite t-norm we need to replace the codomain of these functions by the carrier of the canonical chain,
i.e., by Cn. In this case we obtain an n-graded (resp. crisp if n ¼ 2) interpretation for the atomic concepts and roles.

Let DðtÞ be an instance of an ALC!ðSÞ-concept D. Given either a continuous t-norm or a divisible finite t-norm !, according
with the definitions given in Section 2.6, given an !-interpretation (i.e., an interpretation over the canonical L!(ðSÞ-chain) M,
the truth value kDðtÞk!M;v for an M-evaluation v is given by

AMðktkM;v Þ if D is an atomic concept A,

NðkCðtÞk!M;v Þ if D ¼( C,
kC1ðtÞk!M;v ! kC2ðtÞk!M;v if D ¼ C1&C2,
kC1ðtÞk!M;v!!kC2ðtÞk!M;v if D ¼ C1 ! C2,
kC1ðtÞk!M;v , kC2ðtÞk!M;v if D ¼ C1YC2,
inffkRðt;bÞ ! CðbÞk!M : b 2 Mg if D ¼ 8R:C,
supfkRðt; bÞ&CðbÞk!M : b 2 Mg if D ¼ 9R:C.
0 if D ¼ !0,
1 if D ¼ !1,
r if D ¼ !r,

where N is the standard involutive negation NðxÞ ¼ 1& x and , is the t-conorm defined by x, y :¼ NðNðxÞ ! NðyÞÞ.

Definition 3.3 (The description logics ALC!ðSÞ). Given a logic L!(ðSÞ let C [ fug be a finite set of instances of ALC!ðSÞ-
concepts. We define the ALC!ðSÞ-logic in the following way:

C.ALC!ðSÞu if and only if every !-model of C is also a !-model of u:

When S ¼ f0;1g, the canonical L!(ðSÞ-chain is equal to the canonical L!(-chain. In this case the logic is denoted by ALC! and
the consequence relation by .ALC! .

For every !-interpretation M, each ALC!ðSÞ-concept C determines a fuzzy set CM defined as follows:

for every a 2 M;CMðaÞ :¼ kCðaÞk!M
Thus, every interpretation and every continuous t-norm (or divisible finite t-norm) associate to complex descriptions the
following fuzzy (or n-graded) sets:

ð( CÞMðaÞ ¼ 1& CMðaÞ,
ðC&DÞMðaÞ ¼ CMðaÞ ! DMðaÞ
ðC ! DÞMðaÞ ¼ CMðaÞ!!DMðaÞ
ðCYDÞMðaÞ ¼ CMðaÞ , DMðaÞ
ð8R:CÞMðaÞ ¼ inffRMða; bÞ!!CMðbÞ : b 2 Mg
ð9R:CÞMðaÞ ¼ supfRMða;bÞ ! CMðbÞ : b 2 Mg
!0MðaÞ ¼ 0
!1MðaÞ ¼ 1
!rMðaÞ ¼ r
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Notice that these interpretations are generalizations of the classical case in the sense that taking ! as a finite t-norm and
n ¼ 2 we obtain the classical interpretation for the language ALC.

Remark 3.4. Observe that, by the definition of residuum, in the classical case, i.e., taking ! as the classical truth function for
the conjunction, denoted here by ^, we have:

ðC ! DÞMðaÞ ¼ supfb 2 f0;1g : CMðaÞ ^ b 6 DMðaÞg ð2Þ

Let us recall that in the classical case the truth function of the residuated implication coincides with the truth function of the
material implication that is given by maxð1& x; yÞ. Therefore, in the classical case the identity (2) is equivalent to

ðC ! DÞMðaÞ ¼maxð1& CMðaÞ;DMðaÞÞ ð3Þ

This interpretation of the connective of implication is the usual one in early work on FDLs (it corresponds to the Kleene–
Dienes implication function) and it is directly inspired in the classical interpretation of the ALC language, as is clearly seen
when comparing this interpretation with the classical one given by the expression (2). However it is worth noting that, in
general, the expressions (2) and (3) above are not equivalent for n-graded and fuzzy cases.

4. Representing knowledge bases in ALC and in ALC!ðSÞ

In this section we will explain how to represent knowledge bases in our languages ALC!ðSÞ. We describe the notions of
ABox and TBox for the considered family of languages and we give their semantics, illustrating the differences between the
crisp and the fuzzy cases with an example. In particular, since we are interested in reasoning on partial truth of formulas, we
will restrict ourselves to using evaluated formulas for representing the knowledge contained in knowledge bases. With truth
constants in the language, we can handle graded general inclusion axioms in addition to graded assertional axioms, as is usu-
ally done in FDLs.

4.1. Knowledge bases for ALC

Description Logics can be used to build knowledge representation systems since they allow the creation of knowledge
bases (KBs) and provide ways to reason on the contents of these bases. A KB is a pair K ¼ hT ;Ai, where the first component
is a TBox and the second one is an ABox. From a general point of view, the TBox introduces complex concepts and models the
hierarchy of domain concepts by introducing the vocabulary of an application domain. The ABox models a concrete descrip-
tion of the domain.

For the classical interpretation of ALC, a TBox is a finite set of concept inclusion axioms. A concept inclusion axiom is a
sentence of the form ð8xÞðCðxÞ ! DðxÞÞ (abbreviatedly C v D). We use C / D as an abbreviation for the two axioms C v D
and D v C. An ABox is a finite set of assertion axioms. An assertion axiom is a sentence either CðaÞ or Rða; bÞ. In the tradition
of DLs, it is usual to denote these two kinds of sentence by a : C and ða; bÞ : R respectively.

According to the semantics for first order classical logic, it is said that an interpretationM satisfies an axiom a of a knowl-
edge base K, written M . a, if and only if it satisfies the corresponding sentence. That is,

M . C v D iff inffmaxð1& CMðxÞ;DMðxÞÞ : x 2 Mg ¼ 1
M . CðaÞ iff CMðaMÞ ¼ 1
M . Rða; bÞ iff RMðaM;bMÞ ¼ 1

4.2. An example: the Robots data set

We will illustrate the notions introduced above using an application domain that is a free adaptation of the Monks data
set from the Machine Learning Repository of Irvine’s University (http://archive.ics.uci.edu/ml/). Our data set is composed of
nine robots, each one with either the same or a different shape of head and body (i.e., they are homogeneous or not homo-
geneous respectively), they can or cannot wear a tie, they can or cannot smile (i.e., they are happy or not happy respectively),
and they hold an object. Objects such as swords or axes are considered unfriendly and the other ones (i.e., flags, balloons and
flowers) are considered friendly. Taking all these characteristics into account, robots can be classified as friendly or unfriendly.
The domain of interpretation is the set

MR ¼ fri : 1 6 i 6 9g [ foi : 1 6 i 6 9g;

where the ri are the robots in Fig. 2 and each oi is the object that the robot ri holds (e.g., the robot r4 holds the object o4 that is
a flower). Atomic concepts of the language are the following: Robot, Happy, Object, FriendlyObject, Homogeneous, Balloon, Flag,
Flower, Sword, Ax andWearsTie. There are two atomic roles:hasObject and hasnoObject. Notice that this latter role is introduced
to avoid the use of negation of atomic roles, which is not allowed in ALC. A TBox for the example of the robots is the
following:
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TBox for the Little Robots

Friendly / Robot & ð9hasObject:FriendlyObjectÞ & ðHappyYHomogeneousÞ
Unfriendly / Robot& ( Friendly
FriendlyObject v Object
UnfriendlyObject / Object & ( FriendlyObject
Robot & Object v !0
!1 v RobotYObject
Homogeneous v Robot
Happy v Robot
WearsTie v Robot
Flower v FriendlyObject
Balloon v FriendlyObject
Flag v FriendlyObject
Sword v UnfriendlyObject
Ax v UnfriendlyObject

Notice that this TBox includes definitions for classifying a robot as either friendly or unfriendly. A robot is considered
friendly when it holds a friendly object and when it is either happy or homogeneous. An unfriendly robot is defined using
the negation of the definition of friendly robot. Following this definition, robots r1; r2; r6 and r9 are friendly whereas the
remaining ones are unfriendly (since at least one of the conditions of the conjunctive expression defining friendly robots
is not satisfied).

The ABox contains the assertions describing the robots in Fig. 2:

ABox for the Little Robots

For each i;1 6 i 6 9;RobotðriÞ; hasObjectðri; oiÞ
For each j – i;1 6 i; j 6 9; hasnoObjectðri; ojÞ
Homogeneousðr1Þ;Balloonðo1Þ;Happyðr1Þ;WearsTieðr1Þ
Homogeneousðr2Þ;Flagðo2Þ;Happyðr2Þ;WearsTieðr2Þ
( Homogeneousðr3Þ; Swordðo3Þ;Happyðr3Þ;WearsTieðr3Þ
( Homogeneousðr4Þ; Flowerðo4Þ;( Happyðr4Þ;(WearsTieðr4Þ
( Homogeneousðr5Þ; Swordðo5Þ;( Happyðr5Þ;(WearsTieðr5Þ
( Homogeneousðr6Þ; Flagðo6Þ;Happyðr6Þ;(WearsTieðr6Þ
Homogeneousðr7Þ;Axðo7Þ;Happyðr7Þ;WearsTieðr7Þ
( Homogeneousðr8Þ;Axðo8Þ;Happyðr8Þ;WearsTieðr8Þ
Homogeneousðr9Þ;Balloonðo9Þ;Happyðr9Þ;(WearsTieðr9Þ

Fig. 2. The nine little robots of our data set.
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The two first definitions mean that there are nine robots and each one of them holds one and only one object. Other def-
initions describe each particular robot. For instance robot r1 is homogeneous, it holds a balloon, it is happy and it wears a tie.
Observe in Fig. 2 that robots r1; r4 and r8 have different shapes of mouth. Here we considered that both r1 and r8 are happy
whereas r4 is not happy (since it is clearly not smiling). We will see later that by interpreting the concepts as either n-graded
or fuzzy sets these three shapes of mouth can be clearly distinguished.

The knowledge contained in both the TBox and the ABox can be used, for instance, to assess whether or not robots are
friendly. According to the definition of Friendly contained in the TBox, and taking into account the semantic interpretation
to &;Y and to the existential quantification, we have that for every object x, Friendly(x) is the minimum of the following three
items:

(a) RobotðxÞ,
(b) supfminðhasObjectðx; yÞ;FriendlyObjectðyÞÞ : y 2 MRg and,
(c) maxðHappyðxÞ;HomogeneousðxÞÞ.

Notice that, concerning item (b), when x is a robot, say ri, the only value of y for which hasObject ðx; yÞ takes as value 1 is the
object oi held by ri.

Now, let us consider the friendliness of some robots in our example. For instance,

) Is r1 friendly? For x ¼ r1, items (a), (b), and (c) above take value 1. In particular, item (b) takes value 1 because the
object o1 held by r1 is a balloon, i.e., a FriendlyObject according to the TBox. Consequently, r1 is friendly.

) Is r4 friendly? For x ¼ r4, item (c) is 0, therefore Friendly(r4)=0, i.e. r4 is not friendly. Consequently, according to the def-
inition of Unfriendly we have that, for this robot, Unfriendly ðr4Þ=1.

) Is r8 friendly? For x ¼ r8, item (b) takes value 0 because the object o8 held by r8 is an ax, i.e., it is not a FriendlyObject
according to the TBox, therefore Friendly(r8)=0. Consequently, Unfriendly ðr8Þ=1.

4.3. Knowledge bases for ALC!ðSÞ

In this section we define the notions concerning knowledge bases for ALC!ðSÞ. As before, a KB has two components: TBox
and ABox. In the TBox we use the graded notion of inclusion between fuzzy sets defined as follows: degreeðC#DÞ ¼
infxðCðxÞ!!DðxÞÞ. Of course this degree is 1 if and only if CðxÞ 6 DðxÞ for all x; and when the supports 7 of the two fuzzy sets
are disjoint, then it is 0. Notice that having the truth constants in the language allows us to associate expressions like, for in-
stance, ‘‘degree (C#DÞ 6 r” with first order formulas such as ð8xÞðCðxÞ ! DðxÞÞ ! !r.

Given a logic L!(ðSÞ8, let r 2 S. An evaluated formula of this logic is a formula of one of the types

!r ! u; u! !r; !r $ u;

where u does not contain any occurrence of truth constants different than !0 or !1. Notice that the last axiom above is, in fact,
the conjunction of the other two. When u is a sentence, we use the name evaluated sentence for the above formulas.

Let C;D be ALC!ðSÞ-concepts without occurrences of any truth constant different than !0 or !1; R be an atomic role; and a; b
be constant objects. Let r 2 S.

A fuzzy concept inclusion axiom is an evaluated sentence of one of the forms:

) !r ! ð8xÞðCðxÞ ! DðxÞÞ
) ð8xÞðCðxÞ ! DðxÞÞ ! !r
) !r $ ð8xÞðCðxÞ ! DðxÞÞ

A fuzzy concept assertion axiom is an evaluated sentence of one of the forms:

) !r ! CðaÞ
) CðaÞ ! !r
) !r $ CðaÞ

A fuzzy role assertion axiom is an evaluated sentence of the form:

) !r ! Rða; bÞ

A TBox for ALC!ðSÞ is a finite set of fuzzy concept inclusion axioms. An ABox for ALC!ðSÞ is a finite set of fuzzy concept asser-
tion axioms and fuzzy role assertion axioms.

Remark 4.1 (About KB axioms). Notice that fuzzy concept inclusion axioms are in general not instances ofALC!ðSÞ-concepts;
fuzzy concept assertion axioms always are, and fuzzy role assertion axioms never are. Observe also that in the ABox we do
not allow sentences of the form Rða; bÞ ! !r. This choice is made in order to define the fuzzy KB associated to the language
ALC!ðSÞ as a generalization of the KB associated to the classic ALC. Allowing sentences such as Rða; bÞ ! !r implies the
possibility of allowing negation of atomic roles in the ABox, which is not allowed in classic ALC. Thus, for instance, if L!( is

7 The support of a fuzzy set is the set of elements whose membership degree is greater than 0.
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Lukasiewicz Logic, Rða; bÞ ! !0 is equivalent to ( Rða; bÞ. But the negation is allowed for concepts (formulas of type CðaÞ ! !0)
as in the classical case.

All the axioms in the KB are evaluated sentences in the language of the logic L!(ðSÞ8. Thus from this syntactic notion of KB
both the TBox and the ABox can be seen as theories of the logic L!(ðSÞ8.

The left part of Table 3 shows sentences for the axioms of the KBs for ALC. The right part of the same table shows the
notations we propose for the corresponding evaluated sentences of ALC!ðSÞ. Notice that the graded notation of these eval-
uated formulas is similar to the notation used in some papers on FDLs (see for instance [19]); however, in our framework
these expressions correspond to sentences of our first order fuzzy logics. Therefore, the fact that an interpretation M satisfies
an axiom of a knowledge base is equivalent to saying that M satisfies the corresponding first order sentence. Thus, for in-
stance, M . hC v D;<!ri is equivalent to M . !r ! ð8xÞðCðxÞ ! DðxÞÞ which, in turn, is equivalent to
inffCMðxÞ!!DMðxÞ : x 2 Mg P r.

4.4. A fuzzy KB for the Robots domain

The use of the graded notation allows us to define the knowledge base of a domain in a more refined way than in the crisp
case. For instance, the following TBox is a graded refinement of those given in Section 4.2:

Graded TBox for the Little Robots

Friendly / Robot & ð9hasObject:FriendlyObjectÞ& ðHappyYHomogeneousÞ
hRobot & Object v !0;0 !1i
h!1 v RobotYObject;0 !1i
hHomogeneous v Robot;0 !1i
hHappy v Robot;0 !1i
hWearsTie v Robot;0 !1i
hFriendlyObject v Object;0 !1i
hFlower v FriendlyObject;0 !1i
hBalloon v FriendlyObject;0 0:75i
hFlag v FriendlyObject;0 0:50i
hSword v FriendlyObject;0 0:25i
hAx v FriendlyObject;0 !0i

Notice that we use the expression C / D as an abbreviation for the conjunction of the axioms hC v D;0 !1i and
hD v C;0 !1i. The definition of the concept Friendly is the same as the one given in the example of the classical case. Notice
that we do no longer need to define the concept Unfriendly because it can be seen as equivalent to saying that a robot belongs
to the concept Friendly with degree 0. With regard to the definition of friendly and unfriendly objects the situation is the same.
Nowwe only need to associate a friendliness degree to each object. For instance, we consider that an ax is less friendly (i.e., its
associated truth degree is 0) than a sword (with associated truth degree 0.25). Similarly, we consider that the flower is the
object with the highest degree of friendliness.

With regard to the ABox, as in the classical case, it contains the definitions of the robots shown in Fig. 2. The difference is
that now each concept instance is associated to a truth degree. The following ABox is a graded refinement of the one given in
Section 4.2:

Table 3
The left part shows the usual KB axioms in ALC and the right part shows the corresponding axioms using evaluated formulas and the graded notation we
propose for them.

ALC axioms ALC!ðSÞ axioms notation

ð8xÞðCðxÞ ! DðxÞÞ !r ! ð8xÞðCðxÞ ! DðxÞÞ hC v D;<!ri
(denoted by C v D) ð8xÞðCðxÞ ! DðxÞÞ ! !r hC v D;^!ri

!r $ ð8xÞðCðxÞ ! DðxÞÞ hC v D;0 !ri
CðaÞ !r ! CðaÞ hCðaÞ;<!ri

CðaÞ ! !r hCðaÞ;^!ri
!r $ CðaÞ hCðaÞ;0 !ri

Rða; bÞ !r ! Rða; bÞ hRða; bÞ;<!ri
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Graded ABox for the Little Robots

For each i;1 6 i 6 9; hRobotðriÞ;0 !1i; hhasObjectðri; oiÞ;<!1i
For each i– j;1 6 j 6 9; hRobotðriÞ;0 !1i; hhasnoObjectðri; ojÞ;<!1i
hHomogeneousðr1Þ;0 !1i; hBalloonðo1Þ;0 !1i; hHappyðr1Þ;0 !1i; hWearsTieðr2Þ;0 !1i
hHomogeneousðr2Þ;0 !1i; hFlagðo2Þ;0 !1i; hHappyðr2Þ;0 !1i; hWearsTieðr2Þ;0 !1i
hHomogeneousðr3Þ;0 0:75i; hSwordðo3Þ;0 !1i; hHappyðr3Þ;0 !1i; hWearsTieðr3Þ;0 !1i
hHomogeneousðr4Þ;0 0:50i; hFlowerðo4Þ;0 !1i; hHappyðr4Þ;0 !0i; hWearsTieðr4Þ;0 !0i
hHomogeneousðr5Þ;0 0:50i; hSwordðo5Þ;0 !1i; hHappyðr5Þ;0 !0i; hWearsTieðr5Þ;0 !0i
hHomogeneousðr6Þ;0 0:75i; hFlagðo6Þ;0 !1i; hHappyðr6Þ;0 0:50i; hWearsTieðr6Þ;0 !0i
hHomogeneousðr7Þ;0 !1i; hAxðo7Þ;0 !1i; hHappyðr7Þ;0 0:50i; hWearsTieðr7Þ;0 !1i
hHomogeneousðr8Þ;0 0:75i; hAxðo8Þ;0 !1i; hHappyðr8Þ;0 0:50i; hWearsTieðr8Þ;0 !1i
hHomogeneousðr9Þ;0 !1i; hBalloonðo9Þ;0 !1i; hHappyðr9Þ;0 0:50i; hWearsTieðr9Þ;0 !1i

The definitions of the robots are the same as those given in the classical case. However, now we can provide more
information about the different aspects of a robot. For instance, in the classical case, robots were only homogeneous or
not homogeneous, whereas now, using truth constants, we can assess different degrees of homogeneity according to
the shape of both the head and the body. Notice that robots r1; r2; r7 and r9, considered homogeneous in the classical case,
now have truth degree 1. We subjectively assess the truth degree of the other robots considering that a combination of
round shapes of head and body (for instance, a circle and an octagon) give a more homogeneous aspect to the robot than
combining round and square shapes. Thus, robots r6 and r8 are considered more homogeneous than robot r4. Similarly, the
shapes of the robots’ mouths give them different degree of happiness (i.e., robot r1 is assessed as more happy than robots
r8 and r4).

Let us illustrate how to use the knowledge contained in both the T Box and the A Box to assess the degree of friendliness of
the robots. The definition of Friendly contained in the T Box is the following:

Friendly / Robot&ð9hasObject:FriendlyObjectÞ&ðHappyYHomogeneousÞ

Given a continuous t-norm ! and its dual continuous t-conorm ,, according to the semantic interpretation of &;Y and the
existential quantification, we have that, for every x 2 MR,

FriendlyðxÞ ¼ RobotðxÞ ! supfhasObjectðx; yÞ ! FriendlyObjectðyÞ : y 2 MRg ! ðHappyðxÞ , HomogeneousðxÞÞ

If x is a robot, according to the ABox;RobotðxÞ ¼ 1 and hasObjectðx; yÞ ¼ 1, where y is the object held by x. Therefore we have

FriendlyðxÞ ¼ FriendlyObjectðyÞ ! ðHappyðxÞ , HomogeneousðxÞÞ

The friendliness degree of a particular robot xwill depend on the particular t-normwe choose. Table 4 shows the friendliness
degrees of the robots in Fig. 2 with the usual t-norms (i.e., Minimum, Product and Łukasiewicz) and their dual t-conorms
with respect to the standard involutive negation.

For instance, the reader can compare the friendliness degree of robots r4; r8 and r9 with those obtained in the classical
case. In particular r4 and r8 were unfriendly. Notice that now, in the fuzzy case, r8 is also unfriendly because it holds an
ax (i.e., Friendly(r8) takes value 0). However, robot r4 has friendliness degree 0:50: although it does not smile, it holds a flower
(considered as the most friendly object) and it has some homogeneity degree. Similarly, robot r9, considered friendly in the
classical case (Friendlyðr9Þ ¼ 1Þ now has a lower friendliness degree (i.e., 0:75) because it does not smile (Happyðr9Þ ¼ 0:50Þ.

Table 4
Friendliness degree of the robots introduced in Section 4.4 using the Minimum, Product and Łukasiewicz t-norms and their dual t-conorms.

Robot Expression Min/Max Prod/Sum !Ł=,Ł

r1 0:75 ! ð1, 1Þ 0.75 0.75 0.75
r2 0:50 ! ð1, 1Þ 0.50 0.50 0.50
r3 0:25 ! ð1, 0:75Þ 0.25 0.25 0.25
r4 1 ! ð0, 0:50Þ 0.50 0.50 0.50
r5 0:25 ! ð0, 0:50Þ 0.25 0.125 0
r6 0:50 ! ð0:50, 0:75Þ 0.50 0.4375 0.50
r7 0 ! ð0:50, 1Þ 0 0 0
r8 0 ! ð0:50, 0:75Þ 0 0 0
r9 0:75 ! ð0:50, 1Þ 0.75 0.75 0.75
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Particularly interesting are the results of robots r5 and r6. In these cases the friendliness degree depends on the t-norm
and t-conorm chosen; the friendliness degree of r5 goes from 0 using the Łukasiewicz t-norm to 0.25 using the Minimum t-
norm. Depending on the domain, the user can analyze which of the possible t-norms is the most appropriate.

5. Reasoning in DL and in FDL

Common tasks when performing reasoning on concepts in classical description logics are the following:

) to check the satisfiability of a concept C. This task is equivalent to the problem of consistency of an assertion CðaÞ, where a is
an object constant.

) to check the validity of a concept C.
) to determine whether or not a concept description is more general than another one, i.e., the subsumption of concepts.

Reasoning in Fuzzy Description Logics involves the same kind of tasks but their results depend on the continuous t-norm
! chosen. Let us introduce the notions corresponding to these tasks formally.

) C is !-satisfiable iff there exists a !-model M of the formula CðxÞ, i.e., a !-interpretation M and an evaluation v such that
vðxÞ ¼ a and kCðaÞk!M ¼ 1.8

) C is !-valid iff kð8xÞCðxÞk!M ¼ 1 for every interpretation M, i.e., all the interpretations are !-models of the formula ð8xÞCðxÞ.
) C is !-subsumed by D iff the concept C ! D is !-valid.

Notice that these definitions are also valid for the crisp and graded cases: in the crisp case ! is min, in the graded case ! is a
divisible finite t-norm, and in the fuzzy case ! is a continuous t-norm. The notions of !-satisfiability, !-subsumption and !-
validity defined above are associated with the truth value 1. For instance, the concept A& ( A is not satisfiable because there
is no interpretation M such that kðA& ( AÞðaÞk!M ¼ 1.

One of the advantages of introducing truth constants in the language is the possibility of defining the graded versions of
the notions of !-satisfiability, !-subsumption and !-validity without modifying the semantics. In addition, these notions also
allow the reasoning on knowledge bases (i.e., on a set of evaluated formulas). Let us now introduce these graded notions.

Given a concept C, a continuous t-norm !, a subalgebra S of the corresponding canonical algebra, and a truth value r 2 S,

) C is !-satisfiable to a degree greater or equal than r iff the concept !r ! C is !-satisfiable.
) C is !-valid to a degree greater or equal than r iff !r ! C is !-valid.
) C is !-subsumed by D to a degree greater or equal than r iff !r ! ðC ! DÞ is !-valid.

On the other hand, we can analogously define the notions for low thresholds. For instance, a concept C is !-satisfiable to a
degree lower or equal than r iff C ! !r is !-satisfiable. Moreover, it is also possible to define the notions of satisfiability, validity,
and subsumption to a degree belonging to an interval of truth values r; s 2 S, being r 6 s. For instance, a concept C is !-sat-
isfiable to a degree in the closed interval ½r; s% if and only if ð!r ! CÞ&ðC ! !sÞ is !-satisfiable. In particular, when r ¼ swe will say
that C is satisfiable to a degree equal to r.

Let us consider the concept A& ( A. This concept is not !-satisfiable since kðA& ( AÞðaÞk!M – 1 for any ! and any interpre-
tation M. However A& ( A can be !-satisfiable in some degree. For instance, in the robots example, we can assess that
Friendlyðr3Þ ! ð1& Friendlyðr3ÞÞ ¼ 0:25 taking ! as the Minimum t-norm. This means that for the robots model the concept
ðA& ( AÞ $ 0:25 is !-satisfiable when ! is the Minimum t-norm.

We can also define the notions of !-satisfiability, !-validity and !-subsumption (and their corresponding versions with
degrees) with respect to a knowledge base K in the following way. A concept C is !-satisfiable with respect to K if there ex-
ists some !-model of the axioms of K. With regard to entailment, we say that a fuzzy assertion a is !-entailed by a knowledge
base K if every !-model of K is also a !-model of a. Let us illustrate all these notions with some examples from our robots
dataset.

Example 5.1 (Satisfiability of concepts). Let us analyze the satisfiability of the concept

C ¼ Homogeneous&9hasObject:FriendlyObject&WearsTie

with respect to the KBs defined in the examples of Sections 4.2 and 4.4.

) C is satisfied with respect to the KB of the robots in the crisp case (Section 4.2). In accordance with the crisp TBox, the goal
is to search for a robot that is holding a friendly object, is homogeneous and is wearing a tie. The reader can easily see in
the crisp ABox that robots r1 and r2 are instances of this concept. Therefore C is satisfiable with respect to this KB.

) It is easy to see that the concept C is not !-satisfied in degree 1 with respect to the KB of the robots in the fuzzy case (Sec-
tion 4.4). However, taking as ! any of the three main continuous t-norms, is C !-satisfied in some degree (different than 0)?
The answer will be affirmative if we can find (at least) a robot x such that the expression

8 The common definition used in FDL for satisfiability is CðaÞ > 0. We do not use this definition because it does not allow us to define the graded notion of
satisfiability as we do later.
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HomogeneousðxÞ ! sup
y2MR

fhasObjectðx; yÞ ! FriendlyObjectðyÞg !WearsTieðxÞ

takes a value r – 0. For the robot r1, C is !-satisfied in degree 0.75 because it is homogeneous in degree 1, it holds a
balloon that – as the TBox states – is a friendly object with degree 0.75, and it wears a tie (i.e.,WearsTieðr1Þ ¼ 1). Thus,
because 1 is the unity element of any t-norm, r1 has friendliness degree 0.75 independently of the t-norm considered.

Notice that the introduction of the notion of !-satisfiability to a degree allows us to handle the notion of partial satisfi-
ability of a concept. The example illustrates the situation where a concept is not !-satisfiable with respect to the KB, meaning
that it is not satisfied (in degree 1) with respect to the KB. However, using degrees, when we assess that a concept is !-sat-
isfiable to a degree r, this can be interpreted as saying that it is partially satisfied with respect to the KB.

Example 5.2 (!-Subsumption of concepts). Let us analyze the degree r of the subsumption

Homogeneous v Happy

with respect to the KB of Section 4.4.
By definition, the subsumption above holds to a degree equal to r if and only if the following sentence is !-valid w.r.t. the

KB.

!r $ ð8xÞðHomogeneousðxÞ ! HappyðxÞÞ

According with the semantics, this means that in every model M satisfying the KB the truth value of the sentence above is 1.
That is,

r ¼ inf
x2M

fHomogeneousðxÞ!!HappyðxÞg

Table 5 shows the values of Homogeneous, Happy, and the value of the residuum for each one of the robots of the ABox. Notice
that for robots r1; r2; r3; r7 and r9 the value of the residuum does not depend on the t-norm considered. However, for the other
robots the value of the residuum depends on the t-norm. For instance for robots r4 and r5, the residuum 0:50!!0 is 0 when
using the Minimum and Product t-norm, and it is 0.50 using the Łukasiewicz t-norm. Similarly, for robots r6 and r8 the resid-
uum 0:75!!0:50 is 0.50, 2/3 and 0.75 using respectively the Minimum, Product and Łukasiewicz t-norms. Consequently,

) Minimum t-norm : r ¼ infxf1;0;0:50g ¼ 0
) Product t-norm: infxf1;0;2=3g ¼ 0
) Łukasiewicz t-norm : infxf1;0:50;0:75g ¼ 0:50

Thus using the Minimum and the Product t-norms the concept Homogeneous is subsumed w.r.t. the KB by the concept
Happy in degree 0. Using the Łukasiewicz t-norm Homogeneous is subsumed w.r.t. the KB by Happy to a degree 0.50.

Example 5.3 (!-Entailment). The ABox from Section 4.4 !-entails the assertion hFriendlyðr6Þ;<0:50i with respect to the TBox
using either Łukasiewicz or Minimum t-norms. However, using the Product t-norm the above !-entailment does not hold.
Indeed, according to the definition of Friendly, we have to calculate

RobotðxÞ ! sup
y2MR

fhasObjectðx; yÞ ! FriendlyObjectðyÞg ! ðHappy, HomogeneousÞðxÞ

As Table 4 shows, the friendliness of r6 is 0.50 using both the Łukasiewicz and Minimum t-norms, whereas it is 0.4375 using
the Product t-norm. This means that the proposed assertion is !-entailed when using either the Łukasiewicz or the Minimum
t-norm.

Example 5.4 (!-Entailment). Let us analyze the values of r for which the assertion

a ¼ hHomogeneous v Happy;<!ri

Table 5
Calculation of the truth value of the sentence (8x) (Homogeneous(x) !Happy(x)) where the range of x are the robots of Fig. 2.

Robot Homogeneous Happy !!

r1 1 1 1
r2 1 1 1
r3 0.75 1 1
r4 0.50 0 0.50 !! 0
r5 0.50 0.50 0.50 !! 0
r6 0.75 0.50 0.75 !! 0.50
r7 1 0.50 1 !! 0.50
r8 0.75 0.50 0.75 !! 0.50
r9 1 0.50 1 !! 0.50
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can be !-entailed from the ABox of Section 4.4 taking as ! one of the three main continuous t-norms. By definition, the asser-
tion a is the sentence

!r ! ð8xÞðHomogeneousðxÞ ! HappyðxÞÞ

According to the semantics, we have that the truth value of this sentence is

r!! inf
x2MR

fHomogeneousðxÞ!!HappyðxÞg

The reader can easily calculate that, for instance, taking the Minimum t-norm, the expression HomogeneousðxÞ!!HappyðxÞ for
the different robots takes as values 0, 0.50 or 1. Thus, infx2MRfHomogeneousðxÞ!!HappyðxÞg ¼ 0. Similarly, the reader can see
that using the Product t-norm the infimum is 0, whereas taking the Łukasiewicz t-norm the infimum is 0.50. Therefore, we
have that the assertion a takes the following values:

) Minimum and Product: r!!0
) Łukasiewicz: r!!0:50

Thus: When using either Minimum or Product t-norms, the assertion a cannot be !-entailed from the ABox when r > 0,
since r!!0 ¼ 0. When using the Łukasiewicz t-norm, we have that r!!0:50 ¼ 1 if and only if r 6 0:50; therefore in this case
the assertion a is !-entailed from the ABox.

Example 5.5 (!-Entailment). Given, two values s1 and s2, let us suppose that we want to analyze whether or not the assertion
a ¼ hHappyðaÞ;< !s1i is !-entailed from the ABox plus the assertion b ¼ hHomogeneousðaÞ;< !s2i. In fact, what we want to deter-
mine if all robots that are homogeneous to a degree equal or higher than s1 are also happy to a degree equal or higher than s2.

) Let us suppose that s1 ¼ 0:75 and s2 ¼ 0:50. The robots that are homogeneous to a degree equal or higher than 0.75 are
r1; r2; r3; r6; r7; r8; r9 and all of them are also happy to a degree equal or higher than 0.50. Thus, the assertion a is !-entailed
from ABox [ fbg.

) Let us suppose that s1 ¼ 0:75 and s2 ¼ 0:75. The robots that are homogeneous to a degree equal or higher than 0.75 are
r1; r2; r3; r6; r7; r8; r9 and only r1; r2; r3 are happy to a degree equal or higher than 0.75. Thus, the assertion a is not !-entailed
from ABox [ fbg.

The examples above show that the three main continuous t-norms have different behavior. In particular, Example 5.4
shows that depending on the chosen t-norm an assertion can or cannot be !-entailed from the KB. The main conclusion from
this is that when facing a problem it is important to analyze the behavior of the t-norms on it, and then to choose the most
appropriate one.

6. Logical results related to the languages ALC!ðSÞ

In this section, we summarize the main logical results concerning canonical completeness for the logics L!(ðSÞ8. We con-
sider the cases when ! is a divisible finite t-norm (Section 6.1); when ! is the Łukasiewicz t-norm (Section 6.2); and when ! is
the Minimum t- norm (Section 6.3). Finally, we end with some remarks about the Zadeh Logic and the corresponding FDL. In
what follows we use the notion of witnessed interpretation. Let us recall its definition (cf. [11]).

Definition 6.1 (Witnessed interpretation). Let ! be either a divisible finite t-norm or a continuous t-norm, and let M be an !-
interpretation.

) A closed formula (a sentence) ð8xÞuðxÞ is witnessed in M if kð8xÞuðxÞk!M ¼ kuðxÞk!M for some a 2 M, i.e., when the infimum
of values of M-instances of uðxÞ is in fact a minimum.

) More generally, an open formula ð8xÞuðx; y1; . . . ; ynÞ is witnessed in M if for any choice b1; . . . ; bn 2 M of values of y1; . . . ; yn,
and for some a 2 M; kð8xÞuðx; b1; . . . ; bnÞk!M ¼ kuða; b1; . . . ; bnÞk!M.

) The notion of witnessed existential quantified formulas is analogously defined with the obvious changes, i.e., using supre-
mum (resp. maximum) instead of infimum (resp. minimum).

) A !-interpretation M is witnessed if all quantified formulas are witnessed in M.

We say that a first order fuzzy logic satisfies the Witnessed Model Property with respect to a continuous t-norm (or divis-
ible finite t-norm) ! if it is complete with respect to all the witnessed !-interpretations.

6.1. The case of the logic of a divisible finite t-norm over a finite chain

It is known that anydivisiblefinite t-norm !over a chainofn elements is either the Łukasiewiczfinite t-norm(denotedas Łn),
or the Minimum (denoted as Gn) or any finite ordinal sum of copies of them. The propositional logics L!(ðSÞ corresponding to
these chains are defined as the logics whose theorems coincide with the tautologies over the canonical L!(ðSÞ-chain. Their cor-
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responding first order logics L!(ðSÞ8 are finitely axiomatizable and enjoy the strong canonical completeness, i.e., for any set of
formulas C, with ! being the divisible finite t-norm defining the logic,

C‘L!(ðSÞ8u if and only if every ! -model of C is also a ! -model of u:

The proof of this completeness is easy since the logic L!(ðSÞ8 is complete with respect to L!(ðSÞ-chains and, mainly using re-
sults from [37], it is not difficult to see that any L!(ðSÞ-chain is embeddable into the canonical chain. This completeness result
could also be obtained as a particular case of a more general result in [45]. There it is proved that, for any given finite algebra
defined by truth value functions, a finite and complete system of natural deduction for the corresponding first order many-
valued logic is given. Moreover, an automated method to build a finite and complete Gentzen System for these logics, called
MUtlog, is given in [46].

Thus, for each divisible finite t-norm !, each description logic ALC!ðSÞ, which is semantically defined by interpretations in
models valuated over the canonical L!(ðSÞ-chain, coincides with the corresponding fragment of the Hilbert-style calculus for
L!(ðSÞ8. An interesting problem that remains open is to find Hilbert-style calculi and/or Gentzen systems for these fragments.
Moreover, since the chain Cn is finite, all first order models are witnessed because the infimum (respectively the supremum)
becomes the minimum (respectively the maximum) and, therefore, the logic is obviously complete with respect to witnessed
models. Thus, by an easy adaptation of the results in [11, Section 4] we have that the satisfiability (resp. validity) problem for
ABoxes (when dealing with empty TBoxes) for the logic ALC!ðSÞ is decidable and enjoys the Finite Model Property. Notice
also that the algorithms for satisfiability given in [19,20] for FDL languages over infinite-valued Łukasiewicz and Gödel logics
(the later with an added involutive negation), are adaptable to the finite-valued case.

Finally, it is worth saying that the restriction to finite chains is not a hard one since in most applications of FDLs it is usual
to have only a finite number of truth values.

6.2. The case of Łukasiewicz infinite-valued logic

It is well known that Łukasiewicz predicate logic is not axiomatizable in the usual sense: there is no recursive system of
axioms and deduction rules for which the set of theorems coincides with the set of [0,1]-tautologies (see [4]). Thus, we have
that Ł" is complete with respect to the general semantics although it is not standard canonical complete. 9 Hájek in [11] ana-
lyzes theALC-like description logic over Łukasiewicz directly; he proves that the satisfiability and validity problems are decid-
able for ABoxes 10 and proves also that they are equivalent, respectively, to satisfiability and validity on finite models (i.e., the
ALCŁ-logic considered by Hájek has the Finite Model Property). The generalization of these results to acyclic TBoxes or the
expansion with truth constants (as Hájek did for rational truth constants in [27]) is not difficult, and therefore we can obtain
the same results. A satisfiability algorithm for the fuzzy description logic of Łukasiewicz is given in [47].

Logical results about witnessed models and about decidability for the satisfiability problem in the description logic
ALCŁðSÞ are closely related to the fact that all truth functions associated to Łukasiewicz connectives over ½0;1% are continu-
ous. Thus these results do not seem be generalizable to the logics ALC!ðSÞ when ! is different from the Łukasiewicz t-norm.
On the other hand, it is important to stress that, even staying in the Łukasiewicz setting, the Finite Model Property fails when
allowing general concept inclusions, as is shown in [48].

6.3. The case of infinite-valued Gödel logic

In [41] canonical completeness of the logic GðSÞ8 is proved. Nevertheless in the same paper authors prove that this logic
does not have the finite strong canonical completeness, although this kind of completeness holds when we restrict ourselves
to evaluated formulas of the form !r ! u. 11

However, having an involutive negation, we can prove the finite strong canonical completeness for G(ðSÞ8 without the
restriction to evaluated formulas.

Theorem 6.2. The logic G(ðSÞ8 has the Finite Strong Canonical Completeness, i.e., for every finite set of formulas C and every
formula u, the following conditions are equivalent:

(1) C‘G(ðSÞ8 u
(2) Every min-model of C is also a min-model of u,

where min-model means an interpretation M valuated over the canonical G(ðSÞ-chain, that is, the algebra

10 Hájek gives an algorithm that transforms a satisfiability problem in the considered ALC-like description logic to a satisfiability problem in the infinite-
valued Łukasiewicz propositional logic.
11 Technically speaking, the problem is due to the fact that in a GðSÞ-chain L, each element x 2 L defines two filters: the intervals ðx;1% and ½x;1%; and it is
known (see [26]) that the truth constants can be interpreted according to them, i.e., for any filter F the mapping

f ð!rÞ :¼
1; if r 2 S \ F
r; otherwise:

!

is an interpretation of the truth constants over the real unit interval satisfying the book-keeping axioms. However, having an involutive negation, the sit-
uation changes. Any G(ðSÞ-chain is simple, i.e., it has no congruence filters different from f1g and the full chain.
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h½0;1%;max;min;!min;N; hrir2Snf0;1g;0;1gi;

N being the standard involutive negation function NðxÞ :¼ 1& x.

Proof. Soundness is obvious. For the converse direction we will argue by contraposition, i.e., we have to prove that if C0u,
then there is a safe min-interpretationM and an evaluation v such that, for all c 2 C; kckmin

M;v ¼ 1 and kukmin
M;v < 1. By complete-

ness with respect to the general semantics (Theorem 2.9), C0u implies that there exist a countable G(ðSÞ-chain C, a safe C-
interpretation

M0 ¼ hM0; faM
0
: a 2 Cg; fPM0

: P 2 Pgi;

and an evaluation v 0, such that, for all c 2 C; kckCM0 ;v 0 ¼ 1 and kukCM0 ;v 0 < 1. Let X be the finite set of elements r 2 S appearing in
C [ fug and let S0 be the finite subalgebra of S generated by X. Let ri; i ¼ 1;2; . . . ;m, be the elements of S0 ordered so that
ri < riþ1 for all i. Then we define a mapping f : C ! ½0;1% in the following way:

f ðxÞ :¼
fþðxÞ; if x is positive;
Nðfþð(CxÞÞ; otherwise;

!

where fþ is a mapping from positive elements of C (i.e, those satisfying that (Cx 6 x) into the positive elements of ½0;1%, in
such a way that fþ is an order-embedding preserving all the existing infima and suprema and satisfying fþð!riCÞ ¼ ri, for all
positive ri 2 S0. It is easy to see that such a mapping always exists since the elements !riC divide the set of positive elements of
C in a finite number of intervals. Then the mapping fþ restricted to each of these intervals has to be an order-embedding,
preserving the existing infima and suprema, into the corresponding interval of positive elements of the canonical chain. Fi-
nally, as the intervals of C are countable and the ones of ½0;1% continuous, such a mapping always exists.

Finally taking M ¼ hM; faM : a 2 Cg; fPM : P 2 Pgi such that M ¼ M0; aM ¼ f 1 aM0
and PM ¼ f 1 PM0

, it is obvious that M is a
safe structure over the canonical G(ðSÞ-chain. Moreover, taking v ¼ v 0, for all u; kukmin

M;v ¼ f ðkukCM0 ;v 0 Þ. Then, for all
c 2 C; kckmin

M;v ¼ 1 and kukmin
M;v < 1. Thus the proof is finished. h

Therefore, the ALCminðSÞ-logic coincides with the corresponding fragment of the Hilbert-style calculus for G(ðSÞ8. Until
now, no Hilbert-style axiomatization or Gentzen system is known for that fragment. The decidability of the ALCminðSÞ-logic
is also an open problem.

Thus, since the logic G(ðSÞ8 is canonical complete, a deduction such as

C‘ALCminðSÞhu;2 !ri

can be equivalently expressed as the first order Gödel deduction

C0‘G(ðSÞ8 u ! r;

where C is a finite set of graded description formulas and C0 is the set of the corresponding evaluated formulas.
In the next proposition we prove that in G(ðSÞ8 there are formulas whose validity is equivalent to the fact that the truth

value of a formula u is strictly greater or strictly less than a certain truth value r 2 S. These formulas correspond to the ones
in some papers of FDLs which are denoted by formal expressions as hu < rior hu > ri. We will call them strictly graded for-
mulas and, in accordance with the graded notation used in this paper, we will denote them by hu;3 !ri and hu;4 !ri
respectively.

Proposition 6.3. For every safe interpretation M over the canonical G(ðSÞ-chain, the following conditions are equivalent:

(a) kukmin
M;v < r,

(b) kqq ( ð!r ! uÞkmin
M;v ¼ 1.

Proof. The proof is based on the following equivalences: kukmin
M;v < r if and only if

kukmin
M;vjr

if and only if

k!r ! ukmin
M;v – 1

if and only if

k ( ð!r ! uÞkmin
M;v – 0

if and only if

kqq ( ð!r ! uÞkmin
M;v ¼ 1:

The basic idea is the fact that in G (and thus in G 8 and in any expansion) a formula has a value different from 0 (i.e eðuÞ – 0)
if and only if its double negation is 1 (i.e., eðqquÞ ¼ 1). Notice that this property holds in every logic of a continuous t-norm
whose associated negation n is the Gödel negation function which satisfies that x – 0 implies nðnðxÞÞ ¼ 1. h

652 À. Garcı́a-Cerdaña et al. / International Journal of Approximate Reasoning 51 (2010) 632–655



Analogously we have the following.

Proposition 6.4. For every safe interpretation M over the canonical G(ðSÞ-chain, the following conditions are equivalent:
(a) kukmin

M;v > r,
(b) kqq ( ðu! !rÞkmin

M;v ¼ 1.

Thus, by the finite strong canonical completeness (Theorem 6.2) and the previous propositions, we have that

(1) The validity of an evaluated formula such as hu;4 !ri, with the intended meaning that the truth value of u is strictly
greater than r, is equivalent to the derivability of the formula qq ( ðu! !rÞ in G(ðSÞ8.

(2) A deduction such as C.ALCminðSÞhu;4 !ri is equivalent to the derivation C0‘G(ðSÞ8qq ( ðu! !rÞ, where C is a finite set of
graded description formulas and C0 is the set of the corresponding formulas obtained by the transformation given in
Propositions 6.3 and 6.4.

In Section 5 we have introduced the graded notions of !-satisfiability, !-validity and !-subsumption (greater or equal to
some degree) as logical properties of formulas in the underlying logic. In the last proposition we have seen that the validity of
the graded expressions using 3 and 4 can also be expressed in terms of derivability of logical formulas. Now we turn our
attention to the relation between satisfiability and subsumption.

Proposition 6.5. Let C and D concepts of the language ALCminðSÞ. The concept C is min-subsumed by D to a degree strictly less
than r, i.e., hC v D;3 ri is min-valid, if and only if the formula qq ( ð!r ! ðCðxÞ ! DðxÞÞÞ is min-satisfiable to a degree 1.

Proof. To say that hC v D;3 ri is min-valid is equivalent to saying that C is not min-subsumed by D to a degree greater or
equal than r, that is,

k!r ! ð8xÞðCðxÞ ! DðxÞÞkmin
M < 1:

and this is equivalent to the existence of both a min-interpretation M and an element a 2 M such that

kðCðaÞ ! DðaÞÞkmin
M < r:

Then, the following chain of equivalences holds: kðCðaÞ ! DðaÞÞkmin
M < r if and only if

k!r ! ðCðaÞ ! DðaÞÞkmin
M < 1

if and only if

k ( ð!r ! ðCðaÞ ! DðaÞÞÞkmin
M > 0

if and only if

kqq ( ð!r ! ðCðaÞ ! DðaÞÞÞkmin
M ¼ 1:

Thus the proposition is proved. h

Notice that the formulas used in the last propositions are close to being evaluated formulas, but in fact are not. Thus the
language of evaluated formulas is not enough when we want to cope with strictly graded notions in the description
ALCminðSÞ-logic.

6.4. Remark about zadeh logic

The first FDL systems were associated to Zadeh’s initial proposal for fuzzy sets operations. In fact, the logic underlying this
proposal, Zadeh Logic, is the logic associated to the calculus over ½0;1% defined by the functions min;max;NðxÞ ¼ 1& x, and
x ! y ¼maxð1& x; yÞ (the Kleene–Dienes implication function) in the usual way. A consideration of this logic is beyond the
scope of our paper because it is not a residuated many-valued logic. However, the propositional fragment of Zadeh Logic
without truth constants was studied in [49] as the implication-free fragment of G( (the logic of min;max and 1& x, where
the Kleene–Dienes implication is definable). The results obtained in that paper could be easily adapted when adding truth
constants. On the other hand, the first order logic associated to Zadeh Logic can be seen as a sublogic of L!(ðSÞ8 for any t -norm
! (see Section 2.4). We could take the simplest case, that is when ! is the Minimum t -norm (which in addition has the
advantage of being finite strong canonical complete), and study the ALC description language over Zadeh Logic as the
corresponding fragment of G(ðSÞ8. Therefore the FDLs studied in earlier papers are a fragment of the previously defined
ALCminðSÞ -logic obtained by restricting the connectives to the ones with truth functions min;max and 1& x.

7. Conclusions and future work

This paper is a first step in the direction proposed by Hájek. Our approach is based on the idea that the field of t-norm
based fuzzy logics is an appropriate logical framework for FDLs which allows us to exploit of the recent developments of
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mathematical fuzzy logics. We have explained the necessity of introducing both truth constants and an involutive negation
(when necessary) in theALC-like description language. Consequently, we present a new family of languages, denoted by
ALC!ðSÞ, and we give a general setting to relate each one of these languages with a fragment of a first order t-norm based
(fuzzy) logic, in much the same way as the language ALC is studied as a fragment of classical first order logic. Having truth
constants in the language, we can deal with graded assertional axioms, as is commonly done in FDLs, and we can also handle
graded terminological axioms. Another advantage provided by the truth constants is that they allow us to introduce graded
notions of satisfiability, validity and subsumption in terms of non-graded notions of these reasoning tasks by using evaluated
formulas.

In general, classical DL languages have a consolidated logical background as fragments of classical first order logic. In this
framework, logical studies refer to the relationships between the description logic under consideration (depending on the
expressiveness of the DL language) and the corresponding fragment of first order logic and its computational complexity.
However, a first and basic difference between the fuzzy and the classical case is the fact that, in general, first order residuated
many-valued logics are not canonical complete. Therefore the ALC-like Fuzzy Description Logic may not coincide with the
related fragment of the corresponding first order logic. We have seen that canonical completeness of L!(ðSÞ8 is satisfied when
! is either a divisible finite t-norm or the Minimum t-norm. Thus, in these cases it is possible to define a priori the ALC-like
description logic as the corresponding fragment of the Hilbert-style calculus for L!(ðSÞ8. Notice that the problem of finding
axiomatizations for these fragments remains open (we know an axiomatization of the first order logic but not an axiomat-
ization of the fragment that interests us). On the other hand, when the logic is not canonical complete, we can try to study
theALC-like description logic directly as, for example, Hájek did for the Łukasiewicz case (see Section 6.2).

Several research lines could be followed in future work. For instance, we are interested in analyzing the relevant frag-
ments of first order fuzzy logics in connection with less expressive languages than ALC such as the families of languages
FL and AL. We also intend to analyze the decidability for the considered fuzzy (or graded) description logics ALC!ðSÞ. An-
other interesting topic is to study the relationship between more expressive languages than ALC!ðSÞ and different fragments
of t-norm based predicate fuzzy logics.

An other interesting line of future research is the translation of the description logic ALC!ðSÞ into modal logics in much
the same way as in classical DLs. As in the classical framework, modal operators in FDLs can be defined from roles in the
setting of t-norm based fuzzy logics. Nevertheless, in contrast to the classical case, there are not many results on modal logics
over t-norm-based logics (see [50] for recent advances in the topic). Interesting studies in this direction are [51], which gives
an axiomatization of modal operators h and } separately over Gödel Logic; [52], which gives axiomatizations of h over the
logic of any finite residuated lattice; and [53], which extends the work done in [51], by providing proof systems for the Gödel
Modal Logic with h, the broader aim being to start a general investigation into the proof theory of modal fuzzy logics. We
will try to relate the topics covered in these studies with the approach proposed in this paper.

A very interesting topic that we have not covered here concerns to the satisfiability and subsumption algorithms and their
computational complexity. There is a large amount of literature on this topic. Nevertheless their relation with the metamath-
ematical framework of Fuzzy Logics has not been analyzed in depth. We think that the research on FDLs can obtain fruitful
results from the collaboration of researchers working on reasoning algorithms with those working on logical foundations.
The current paper is written in the belief that logic can help the research in this direction.
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