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In data privacy, record linkage can be used as an estimator of the disclosure risk of protected data. To
model the worst case scenario one normally attempts to link records from the original data to the pro-
tected data. In this paper we introduce a parametrization of record linkage in terms of a weighted mean
and its weights, and provide a supervised learning method to determine the optimum weights for the
linkage process. That is, the parameters yielding a maximal record linkage between the protected and ori-
ginal data. We compare our method to standard record linkage with data from several protection meth-
ods widely used in statistical disclosure control, and study the results taking into account the
performance in the linkage process, and its computational effort.
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1. Introduction

Record linkage was initially introduced for database integration
in Ref. [15] and further developed in Ref. [35] and with a formal
mathematical foundation given in Ref. [19]. It identifies records
from different databases (or data sources in general) that refer to
the same entity. It is nowadays a popular technique employed by
statistical agencies, research communities, and corporations, not
only to integrate different databases or data sets in general
[41,6], but also for data cleaning and quality [23,2,51] for example,
by detecting duplicate records between several data sets [18]. As
an indication of the relevance of linked data, both the UK and US
governments have launched respectively web portals to centralize
(and thus allow linking) different sources of governmental data.?

Record linkage has been applied on the estimation of the popu-
lation size at the US Bureau of the Census [49,50,26], in building
big social databases in Ref. [24], in epidemiology and medical stud-
ies in Refs. [27,36,20,28], in sociological sciences in Ref. [3], or in
counterterrorism in Ref. [21].

More recently, in the context of data privacy, record linkage has
emerged as an important technique to evaluate the disclosure risk
of protected data. By identifying the links between the protected
dataset and the original one, we can evaluate the re-identification
risk of the protected data.
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Given, for example, some statistical data X providing informa-
tion about individuals as records of V attributes, and a protected
version of the data X', we consider a possible intruder with some
prior knowledge of the original data, that is, some values of V.
The task of the intruder is to attempt to link the values of the pro-
tected data with the ones he knows. If the links can be established,
the attacker can re-identify individuals from the protected data,
and the protection is said to be broken.

To model the worst case scenario one normally attempts to link
records from the original data to the protected data. This gives an
estimation of the chances that an attacker will be able to re-
identify records in the protected data. The estimation is usually
used as a disclosure risk measure of the protection method applied
to protect the data. That is, the percentage of correctly linked
records between the protected dataset and the original dataset is
taken as a measure for the disclosure risk of the data. This
approach to measure the disclosure risk of protected data was
initially introduced in Ref. [40] and adopted in much of the subse-
quent literature such as Refs. [10,30,54,42,52]. Note also that
sampling is not taken into account in this approach, which means
assuming that the intruder knows the sampled individuals in the
data set. This is a common practice in the previously cited works.

There are several techniques and types of record linkage, mainly
depending on whether they use a distance function to match re-
cords, or they use some probabilistic estimation (cf. Ref. [1], some
recent techniques can also be found in Refs. [31,29]). We focus our
work in distance-based record linkage [39], where the link
between records is determined in terms of a distance function be-
tween them. Moreover, the distance function is a weighted aggre-
gation of the distance function between the single attribute values
of each record.
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In this paper we present a supervised learning approach to
determine the optimal parameters for the distance function be-
tween records. That is, the parameters yielding a maximal record
linkage between the protected and original data. We have evalu-
ated this novel linkage technique with a wide range of protection
methods normally used in statistical disclosure control. Unlike pre-
vious work that improved record linkage by tuning it to specific
protection methods [47,37,38], our proposal is focused toward
generic data protection. By determining the weight of the vari-
ables, we can also identify key-variables for record linkage, that
is those variables that entail more re-identification risk. Besides
improving standard distance-based record linkage, our experi-
ments have also shown other insightful results regarding the com-
putation cost in record linkage. This works also provides a
discussion on the appropriateness of a good parametrization of
the aggregated distance, and its impact in the record linkage
process.

1.1. Contributions and plan of the paper

The contributions presented in this paper depart from providing
and analyzing the optimal distance based record linkage between a
protected dataset X’ and a non-protected dataset Y, which share
some variables. The implications of our study in data privacy are
detailed.

e Improvement in the linkage as compared to standard dis-
tance-based record linkage.

o Identification of key-attributes for record linkage.

e Evaluation of the computational cost, and its implications.

An important issue of our contribution is that our record linkage
technique is considered for a generic use. Contrary to previous
work, which attempts to improve standard distance-based record
linkage [38,37], our proposal can be applied no matter the protec-
tion method used. Because of that, we have evaluated our proposal
with different protection methods, and provide a discussion on the
results.

We introduce record linkage and its use in data privacy in Sec-
tion 2. Our supervised approach for distance-based record linkage
is described in Section 3. Section 4 describes the evaluation of sev-
eral protection methods with our proposal, and a discussion on the
obtained results. Finally, Section 5 concludes the paper and details
future work lines.

2. Record linkage in data privacy

In data privacy, record linkage can be used to re-identify indi-
viduals from a protected dataset. It serves as an evaluation of the
protection method used by modeling the possible attack to be per-
formed on the protected dataset.

A dataset X can be viewed as a matrix with n rows (records) and
V columns (attributes), where each row refers to a single individual.
The attributes in a dataset can be classified in two different catego-
ries, depending on their capability to identify unique individuals,
as follows:

o Identifiers: attributes that can be used to identify the indi-
vidual unambiguously. A typical example of identifier is
the passport number.

e Quasi-identifiers: attributes that are not able to identify a
single individual when they are used alone. However,
when combining several quasi-identifier attributes, they
can unequivocally identify an individual. Among the
quasi-identifier attributes, we distinguish between confi-

dential (X.) and non-confidential (X,.), depending on the
kind of information that they contain. An example of
non-confidential quasi-identifier attribute would be the
zip code, while a confidential quasi-identifier might be
the salary.

Before releasing the data, a protection method p is applied,
leading to a protected dataset X'. Indeed, we will assume the fol-
lowing typical scenario: (i) identifier attributes in X are either re-
moved or encrypted, therefore we will write X=X,|X. (ii)
confidential quasi-identifier attributes X, are not modified, and so
we have X, = X.; (iii) the protection method itself is applied to
non-confidential quasi-identifier attributes, in order to preserve
the privacy of the individuals whose confidential data is being re-
leased. Therefore, we have X, = p(Xxc). This scenario, which was
first used in Ref. [10] to compare several protection methods, has
also been adopted in other works like Ref. [42].

Once the protected dataset X' is released, everybody can see its
content X' = X;, || X.. We assume now that an intruder obtains from
another data source another non-protected dataset Y =yij||ync
which includes one identifier and some (maybe all) of the non-
confidential quasi-identifier attributes of some (maybe all) of the
individuals whose data is in X. The goal of such an intruder is to
find correct links between the protected dataset X' and the non-
protected dataset Y using the common attributes between X' and
Y (x;. and yyc). If the intruder is able to correctly link a record of
Y with its corresponding protected record in X', then he will know
that the matching (not modified) confidential information x.
belongs to the individual with identifier y;4, breaking therefore
the privacy of this individual. Therefore, the disclosure risk (i.e.
the level of privacy) of a protection method is directly related to
the difficulty of finding correct linkages between original and pro-
tected data.

Note that this will be the generic scenario. In order to provide a
measure of disclosure risk in the protected dataset, one normally
considers the same problem where Y = X. That is, the approach at-
tempts to link records between the original dataset and the pro-
tected one. The percentage of correct links, records that are
correctly linked between both datasets, is given as a global mea-
sure of the disclosure risk.

There are two main approaches for record linkage:

e Distance based record linkage (DBRL). This approach [39]
links each record a to the closest record in b. The closest
record is defined in terms of a distance function.

e Probabilistic record linkage (PRL). In this case, the matching
algorithm uses the linear sum assignment model to choose
which pairs of the original and protected records must be
matched. In order to compute this model, the EM (Expec-
tation-Maximization) algorithm [22,8,33] is normally
used. Informally, for each pair of records (a, b) where a is
an original record of the dataset Y and b is a protected
record of the dataset X', we define a coincidence vector
y(a, b)= (y1(a, b)...yn(a, b)), where y{a, b) is defined as 1
if Vi(a) = Vi(b) and as 0 if V{a) # Vi{(b). According to some
criterion defined over these coincidence vectors, pairs
are classified as linked pairs (LP) or non-linked pairs
(NP). This concrete method was introduced in Ref. [26],
although probabilistic record linkage was first presented
in Ref. [19].

Both approaches have been used extensively in the area of data
privacy to evaluate the disclosure risk of protected data.

The work in this paper is focused on distance-based record link-
age, which is further described in the next section.
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2.1. Distance-based record linkage

In distance-based record linkage, the determination of parame-
ters is not easy. Its main point is the definition of a distance. Nev-
ertheless, different distances can be defined, each obtaining
different results. Different distances have been considered and
tested in the literature. We review the most relevant ones below.

We will use V¥,..., V¥ and V{,..., V! to denote the set of vari-
ables of file X and Y, respectively. Using this notation, we express
the values of each variable of a record a in X as a = (V¥(a),...,
VX(a)) and of a record b in Y as b = (V{(b),...,VY(b)). V¥ corre-
sponds to the mean of the values of variable X.

Euclidean (DBRL1): The Euclidean distance is used for attribute-
standardized data. Accordingly, the distance between two
records a and b is defined by:

2 (V@ -VE Vi) -V
@b Z( aVh (V)

i

1

Euclidean (DBRL2): The Euclidean distance is used for distance-
standardized data. Formally, the distance is defined as follows:

2o (Vi - Vi),
d(a.b)? = Zi\W Vi \Y)
(@?) iz;(G(V?(—V?'))
Mahalanobis (DBRLM): The Mahalanobis distance is used and
applied to the original data with no standardization.

d(a,b)* = (a—b)'[Var(V*)+Var(V") = 2Cov(V* V") (a—b)

where Var(V¥) is the variance of attributes V¥, Var(VY¥) is the variance
of attributes V¥ and Cov(V*, V) is the covariance between attributes
V¥ and VY.
The computation of Cov(V¥, V¥) poses one difficulty: how records in
X are lined up with records in Y to compute the covariances. Two
approaches have been considered in the literature.
DBRLM-COV: In a worst case scenario, it would be possible to
know the correct links (a, b). Therefore, the covariance of
attributes might be computed with the correct alignment
between records.
DBRLM-COVO: It is not possible to know a priori which are
the correct matches between pairs of records. Therefore,
any pair of records (a, b) are feasible. If any pair of records
(a, b) are considered, the covariance is zero.
Kernel (KDBRL): A Kernel-distance is considered. That is, instead
of computing distances between records (a, b) in the original n
dimensional space, records are compared in a higher dimen-
sional space H. Thus, let @(x) be the mapping of x into the
higher space. Then, the distance between records a and b in H
is defined as follows:

d(a,b)* = | ®(a) - B(b)|* = (d(a) - @(b))’
= @(a)- P(a) —2®(a) - &(b) + ®(b) - (b)
= K(a,a) — 2K(a,b) + K(b,b)
where K is a kernel function (i.e. K(a, b) = ®@(a) - ®(b)).
Experiments have considered kernel functions of the form K(x, y) =
(1+x-y) for d> 1. Note that with d = 1, the kernel record-linkage
reduces to the distance-based record linkage with the Euclidean
distance.
Taking all this into account, the distance between a and b is defined
as:
d(a,b)* = K(a,a) — 2K(a,b) + K(b, b)

with a kernel function K.

Categorical data: distance-based record linkage for categorical
data is not very widespread in the literature. In Ref. [13], the fol-
lowing distances are considered.

For nominal variables distance between records a and b is con-
sidered as

d(a,b)Z:{O ifa=>b

1 ifa#b

If ordinal variables are considered, given the total order operator <y
over the range of the variables, and denoting the cardinality of the
range as D(V), then,

2 _|c: min(a,b) <y ¢ <y max(a,b)|
dlabr= D)

For a description and comparison of these distances as used for
distance-based record linkage see Refs. [42,13].

In this paper we consider the parametrization of distance based
record linkage using weights to express the importance of the vari-
ables in the linkage process. This will be achieved considering a
variation of the Euclidean distance using a weighted distance as
will be detailed in the next sections. Other distance functions could
also be used, like for instance, the Mahalanobis one which could be
appropriate in cases when there is an important correlation be-
tween variables.

3. Supervised learning for record linkage

In this paper we determine the best weights for achieving the
best possible performance in record linkage. To do so, we assume
that a particular parametrized distance is used and consider the
problem of finding the optimal weights for such parametrization.
In the following sections we introduce the parametric distance
based on the weighted mean for record linkage and describe a
supervised learning approach for the determination of such
weights.

3.1. A parametric distance for record linkage

It is well known that the multiplication of the Euclidean dis-
tance by a constant will not change the results of any record link-
age algorithm. Due to this, we can express the distance DBRL1
given in Section 2.1 as a weighted mean of the distances for the
attributes.

In a formal way, we redefine DBRL1 as follows:

1 (Vi@ -V@ V) - Vi)
d(a,b)” = Zn< a(V¥) B a(V)) )

i=1
Now, defining

Pap - (F@O-Vi@ vio)-Vie)
o a(V}) s(VY)

we can rewrite this expression as

d(a,b)* = AM(df(a,b). ..., da, b))

where AM is the arithmetic mean AM(c,...,Cn) = Y ;Ci/N.
In general, any aggregation operator C [46] might be used:

d(a,b)* = C(d3(a,b),...,d>(a,b))

From this definition, it is straightforward to consider a weighted
version of the DBRL1. Its definition is as follows:

Definition 1. Let p=(py, ..., p,) be a weighting vector (i.e. p; > 0
and Y ;p; = 1). Then, the weighted distance is defined as:
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dWM?(a,b) = WM, (df(a, b),..., dﬁ(a,b))

where WM = (cy,...,¢;) = >;p; - Ci.

The interest of this variation is that we do not need to assume
that all the attributes are equally important in the re-identification.
This would be the case if one of the attributes is a key-attribute, e.g.
an attribute where V¥ = V. In this case, the corresponding weight
would be assigned to one, and all the others to zero. Such an ap-
proach would lead to 100% of re-identifications.

Moreover, as we will see later, this definition permits us to ap-
ply a supervised learning approach to determine the parameters of
the method. In this way, we can tune the distance to have a better
performance.

Although in this definition, the parametrized distance is applied
to continuous variables, its extension to any type of variable or
attribute where a distance function d(a, b) between them could
be defined is straightforward. As we will see, we focus our work
in continuous variables, but the procedure for assessing other
types of variables will be substantially the same.

3.2. Determining the optimal weights

For the sake of simplicity, we presume that each record of A,
(ay,...,ay), is the protected record of B, (by,..., by), where N is
the total number of records. That is, files are aligned. Then, if Vi(a;)
represents the value of the kth variable of the ith record, we will
consider the sets of values d(Vi(a;), Vi(b;)) for all pairs of records
a; and b;.

Then, record i is correctly linked using aggregation operator C
when the aggregation of the values d(Vi(a;), Vi(b;)) for all k is smal-
ler than the aggregation of the values d(Vi(a;), Vi(b;)) for all i # j.
That is,

Cd(Vi(@), Vi (b)), .., d(Va(ai), Va(bi)))
< C(d(Vr(a), Va(by), .-, d(Va(ai), Va(by))) (1)

for all i#j. Then, the optimal performance of record linkage is
achieved when this equation holds for all records i.

To formalize the optimization problem and permit that the
solution violates some equations we consider the equation in
blocks. We consider a block as the set of equations concerning
record i. That is, we define a block as the set of all the distances
between one record of the original data and all the records of the
protected data. Therefore, we have so many K as the number of
rows of our original file. Besides, we need a constant C that
multiplies K to avoid the inconsistencies and satisfy the constraint
(given by the inequality (1)).

The rationale of this approach is as follows. The variable K indi-
cates, for each block, if all the corresponding constraints are
accomplished (K=0) or not (K=1). Then, we want to minimize
the number of blocks non compliant with the constraints. Then,
in this way, we can find the best weights that minimize the num-
ber of violations, or in other words, we can find the weights that
maximize the number of re-identifications between the original
and protected data.

Note that if for a record i, inequality (1) is violated for a certain
record j. Then, it does not matter that other records j also violate
the same Equation for the same record i. This is so because record
i will not be re-identified.

Using these variables, K; and the constant C are defined as
follows:

C(d(V1(ai), V(b)) ..., d(Va(ai), Va(by))) — —C(d(V1(ai), V1 (bi)), ...,
d(Va(ay), Va(by))) + CK; > 0 2)

for all i #j.

The constant C is used to express the minimum distance we re-
quire between the correct link and the other incorrect links. The
larger it is, the more the correct links are distinguished from the
incorrect links.

Using the constraints of the form above, and taking into account
what has been explained before, the problem to minimize is as
follows.

N
Minimize  K; (3)
i=1
N N
Subject to: Y > dWM;
i=1 j=1

x (d(Vi(ai), Vi(by)), .- ..
= (d(Vi(a@), Vi(by),. ..,
+CK >0 @)

Ki € {0,1} (5)
Y p=1 6)
i=1

pi>0 (7)

where N is the number of records, n the number of variables, dWM?
is the parametrized distance defined in Section 3.1, and p=
(p1, - - -, Pn) is @ weighting vector used in this distance. This problem
is a linear optimization problem with linear constraints and the
(global) optimum solution can be found with an optimization
algorithm.

3.3. Implementation details

In order to minimize the number of non linked records and
determine the optimal weights of the problem defined above, we
use the simplex optimizer algorithm from the IBM ILOG CPLEX tool
[25] (version 12.1).

The problem is first expressed into the MPS (Mathematical Pro-
gramming System) format, and then, processed with the optimiza-
tion solver.

If N is the number of records, and n the number of variables of
the two data sets X and X'. We have N terms of K; in the objective
function, that is N variables for Eq. (3). The total number of con-
straints in the optimization problem is N?>+ N+ 1+ n. There are
N? constraints from Eq. (4), N for Eq. (5), 1 for Eq. (6), and n for
Eq. (7).

4. Results and evaluation

To evaluate our proposal, we have applied the record linkage
approach described in Section 3.2 to the data produced by several
protection methods.

We test the record linkage with the first 7 variables, and
400 randomly selected records from the 1080 records of Census
data (see Section 4.1). Each execution has been performed
10 times, and their means are given as a result. Given the random
selection of records in each execution, making 10 executions
allows us to take into account all the records.

The tests have been executed in three different machines. One
Intel Core 2 6400 at 2.13 GHz, and one Intel Core 2 Quad Q9400
at 2.66 GHz, both with 4 GB of memory and a GNU/Linux 2.6
64 bits. The third one is the Finis Terrae computer > composed of
142 HP Integrity rx7640 computing nodes with 16 Itanium Montvale

3 Centro de Supercomputacin de Galicia, http://www.cesga.es.


http://www.cesga.es

278

cores and 128 GB of memory each, one HP Integrity Superdome
node, with 128 Itanium Montvale cores and 1.024 GB of memory,
and 1 HP Integrity Superdome node, with 128 Itanium 2 cores and

Table 1
Attributes of the census dataset. All of them are real valued numeric attributes.

D. Abril et al./ Information Fusion 13 (2012) 274-284

384 GB of memory. From the Finis Terrae computer we used
16 cores.

Note that we focus our work in distance-based record linkage,
by comparing our proposal to the standard distance-based record
linkage. This allows us to test our proposal directly with very sim-
ilar approaches, which use the same techniques and strategies.

Vi AFNLWGT Final weight (2 implied decimal places) Furthermore, a comparison with probabilistic record linkage is
Va2 ACGI Adjusted gross income ) not considered for two reasons. As described in Section 4.1 we
Vs EMCONTRB Employer contribution for health insurance work with numerical data. For h data. distance-based r rd
Va ERNVAL Business or farm net earnings _0 X umerica E!a‘ Or suc a ‘:1" _S ance-base EC.O
Vs FEDTAX Federal income tax liability linkage is more appropriate than probabilistic-based record link-
Ve FICA Social security retirement payroll deduction age as shown in Ref. [43]. Moreover, in Ref. [13] it is concluded that
vz INTVAL Amount of interest income both distance-based and probabilistic record linkage provide very
Ve PEARNVAL Total person earnings similar results. Those results where based on experiments per-
Vo POTHVAL Total other persons income f d . h d . . d
Vio PTOTVAL Total person income ormed using t le same ata.set we use in our experiments (de-
Vi STATETAX State income tax liability scribed in Section 4.1). With this precedents we can expect
Via TAXINC Taxable income amount probabilistic record linkage to perform very closely to standard
Vis WSALVAL Amount: total wage & salary distance-based record linkage.
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Fig. 1. Comparing protected and non-protected values for variable V; using rank swapping for different values of p.
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4.1. Testing dataset

We have used the Census dataset from the European CASC pro-
ject [5], which contains 1080 records and 13 variables, and has
been extensively used in other works [12,32,11,53,9].

The dataset was extracted using the Data Extraction System of
the US Census Bureau [48]. The records correspond to the Current
Population Survey of the year 1995, and more precisely to the file-
group March Questionnaire Supplement — Person Data Files. All the
records with zero or missing values for at least one of the 13 attri-
butes were discarded giving up the final 1080 records. These attri-
butes, all numerical real valued, are described in Table 1.

This dataset has some interesting properties. Records where se-
lected so the number of repeated values was low. Furthermore the
13 variables were selected so values of each one span a wide range.

As previously mentioned, we selected the first 7 variables. Four
of them Vy, V,, V3, and V5 have no repeated values. Regarding this
issue we wanted to provide a generic record linkage process, so
approximately half of the variables had repeated values. Selecting
all 7 variables without repeated values, could provide better re-
sults, it the scenario will be less realistic, since repeated values
are normally expected in this kind of data.

4.2. Protection methods evaluated

The same original dataset (Census) is protected with the follow-
ing techniques: microaggregation, rank swapping, and additive
noise. These methods are described in more detail below.

e Microaggregation (Mic): it provides privacy by means of clus-
tering the data into small clusters and then replacing the
original data by the centroids of the corresponding clusters.
Privacy is achieved because all clusters have at least a pre-
defined number of elements, and therefore, there are at
least k records with the same value. Note that all the records
in the cluster replace a value by the value in the centroid of
the cluster. The constant k is a parameter of the method that
controls the level of privacy. The larger the k, the more pri-
vacy we have in the protected data.

Microaggregation was originally [7] defined for numerical
attributes, but later extended to other domains. For exam-
ple, to categorical data in Ref. [44] (see also Ref. [11]), and
in constrained domains in Ref. [45].

For the protection of the Census dataset we have used the
Euclidean distance to form the clusters, and the arithmetic
mean to compute the centroids. We have considered the fol-
lowing variants of microaggregation:

- Individual ranking (MiclR).

- Z-scores projection (MicZ).

- Principal components projection (MicPCP)

- Multivariate microaggregation:

e Two variables at a time (Mic2).

e Three variables at a time (Mic3).

o Four variables at a time (Mic4).

e Five variables at a time (Mic5).

e ix variables at a time (Mic6).

e All variables at a time (MicAll).

Values of k from 3 to 20 have been considered.

e Rank swapping: the values of a variable V; are ranked in
ascending order; then each ranked value of V; is swapped
with another ranked value randomly chosen within a
restricted range (e.g. the rank of two swapped values cannot
differ by more than p percent of the total number of
records). The method was first described for numerical vari-
ables in Ref. [34]. We consider values of p from 1 to 6.

e Additive noise: Gaussian noise is added to the original data
to get the masked data [4]. If the standard deviation of the
original variable is o, noise is generated using a N(0, po) dis-
tribution. We consider values of p from 1 to 16.

To show how the protection methods affect or distort the origi-
nal data, we provide three plots in Fig. 1 which compare the pro-
tected and original values of variable V; using the Rank
Swapping protection method. The original value is shown (axis x)
versus the protected value (axis y) for different values of the
parameter p.

4.3. Improvement of standard distance-based record linkage

In Tables 2-4 we show the average difference after 10 execu-
tions between the true positive rates (percentage of re-identified
records) of the weighted mean with optimal weights (dWM?) and
the standard record linkage (from now on denoted as DBRL, which
corresponds to DBRL1 from Section 2.1). We also provide the stan-
dard deviation (o) and the standard error (€), computed as
€ = 0/,/(10), where ¢ is the standard deviation of the 10 execu-
tions. The record linkage has been performed on a training set of
400 records, as described in Section 3.2, and then tested with the

Table 2

Re-identification percentages in the training set for the RankSwap protection method.
In each case re-identification with both the standard record linkage (DBRL) and our
proposal (dWM?) are shown, with the standard deviation (¢) and standard error (€),
for 10 execution. Here, p is the percent difference allowed in ranks.

RankSwap

p DBRL o(DBRL)  €(DBRL) dWM? a(dWM?)  e(dWM?)
1 99.65 0.00253  0.0008 100 0.00350 0.00111
2 98.525 0.00518 0.00164 99.725 0.00817 0.00258
3 96.975 0.00944 0.00298 98.85 0.00915 0.00289
4 94.65 0.00921 0.00291 97.15 0.00908 0.00287
5 92.85 0.01715 0.00542 95.325 0.01364 0.00431
6 88 0.01668  0.00527 90.825 0.01458 0.00461
Avg. 95.10833 0.01003 0.00317 96.97917  0.00969 0.00307

Table 3

Re-identification percentages in the training set for the Mic2 protection method. In
each case re-identification with both the standard record linkage (DBRL) and our
proposal (dWM?) are shown, with the standard deviation (¢) and standard error (¢),
for 10 execution. Here, k is the minim cluster size for the microaggregation.

Mic2

k DBRL o(DBRL)  €(DBRL)  dWM? a(dWM?)  e(dWM?)
3 99.975 0.00079  0.00025 100 0 0

4 99.65 0.00269  0.00085 99.9 0.00211  0.00067
5 99.3 0.00511  0.00162 100 0 0

6 99.275 0.00463  0.00147 99.7 0.00329  0.00104
7 99.35 0.00412  0.00130 99.825 0.00265  0.00084
8 98.15 0.00580 0.00183 99.7 0.00284  0.00090
9 98.425 0.00528 0.00167 99.525 0.00322  0.00102
10 98375 0.00377 0.00119  99.425 0.00206  0.00065
11 97.2 0.00633  0.002 98.725 0.00381  0.00121
12 96.9 0.00592 0.00187 98.525 0.00343  0.00108
13 96.775 0.00786  0.00249 98.375 0.00580  0.00184
14 96.525 0.00924  0.00292 98.1 0.00615  0.00194
15 95.875 0.00637 0.00202 97.975 0.00448  0.00142
16 95.85 0.00709  0.00224 98.15 0.00648  0.00205
17 945 0.01041 0.00329 96.75 0.00920  0.00291
18 93.475 0.00901  0.00285 96.175 0.00727  0.00230
19 92925 0.01444 0.00457 95.325 0.01155  0.00365
20 92425 0.01068 0.00338 94.95 0.00633  0.002
Avg. 96.94167 0.00664 0.00210 9839583 0.00474  0.00142
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Table 4

Re-identification percentages in the training set for the Noise protection method. In
each case re-identification with both the standard record linkage (DBRL) and our
proposal (dWM?) are shown, with the standard deviation (o) and standard error (€),
for 10 execution. Here p is the parameter of the additive noise (see Section 4.2).

Noise

p DBRL o(DBRL)  €(DBRL) dWM?  o(dWM?)  e(dWM?)
1 100 0 0 100 0 0

2 100 0 0 100 0 0

4 100 0 0 100 0 0

6 99.875 0.00177  0.00056 100 0 0

8 99.45 0.00369  0.00117  99.9 0.00129 0.00041
10 98.05 0.00633  0.002 99.1 0.00428 0.00135
12 95.6 0.00637  0.00201  97.05 0.00387 0.00123
14 93.85 0.00899  0.00284  95.45 0.00550 0.00174
16 90.025 0.01102  0.00349 923 0.00654 0.00207
Avg. 9742778  0.00424 0.00134  98.2 0.00239 0.00076

same 400 records. We show the results for the protection methods
rank swapping (RankSwap) in Table 2, microaggregation (Mic2) in
Table 3, and additive noise (Noise) in Table 4 as an example. The
average for each protection method is also given as avg.

As it can be appreciated, our proposed method achieves an
improvement with respect to the standard distance record linkage.
The improvement is however relatively small (about 5%). This
leads us to conclude that it is relatively meaningful to use equal
weights for estimating the disclosure risk in the scenarios dis-
cussed here, especially if we take into account the computation
cost (see Section 4.5). A maximum error of 5% of risk can be taken
into account by the office before releasing the protected data.

We have also seen that the improvement obtained with our
method is related to the percentage of the re-identification. In

general for lower or high re-identification percentages the improve-
ment is very low, while for medium percentages, the re-identi
fication percentage increases. Fig. 2 shows the difference on the
re-identification percentage between our record linkage (using
dWM?) and the standard one (DBRL) in accordance with the number
of non-identified links. Note that Fig. 2 gives the difference for all
computed cases. That is each protection method with each param-
eter computed 10 times. The main idea of this figure is to show
the general behavior of all protection methods. In order to see more
clear results, in Fig. 3 we show only two protection methods, MicAll
and Mic3.

The fact that the percentages of improvement of our method
depends on the number of re-identified links, has to be taken
into account with the computation time analysis presented in
Section 4.5.

4.4. Identification of key-attributes

Our method to find the optimal weights in the record linkage,
provides at the same time information regarding the relevance of
each variable or attribute for the linkage. That is, the attribute with
the highest weight value is the one that provides more useful infor-
mation for the linkage.

This means that we can establish a direct correspondence
between the weights associated to each attribute with its disclo-
sure risk, providing thus a disclosure risk estimation for each indi-
vidual attribute. For example, an attribute with a high weight has a
greater disclosure risk. Statistical agencies can then apply specific
protection methods to concrete attributes if their individual disclo-
sure risk is greater than expected in relation to the other attributes
of the data set.
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Table 5
Weights identifying key-attributes for a file protected with additive noise, where each
variable is protected with different values for the parameter p.

Table 6
Re-identification percentages using single variables for a file protected with additive
noise, with different values of p for each variable.

Variable Vi Vs Vs V4 Vs Ve Vs Variable Vi V, Vs V4 Vs Ve Vs
p 1 2 3 4 5 6 7 p 1 2 3 4 5 6 7
Weight 0.97970 0.01484  0.00500 0.0 0.0 0.00046 0.0 Re-identification ~ 29.5%  14.75% 10.5% 6.75% 7% 4.25% 4%

As an example, we consider the case of the original Census
data set protected with additive noise. Unlike previous tests, in this
case we use different protection parameter for each attribute:
attribute V; with p = 1, V, with p = 2, V3 with p = 3, and so on. Table
5 shows for each attribute, the weights obtained with our method,
and the parameter p of the additive noise used to protect the
attribute.

As expected, V; is the attribute with a clear higher weight
since it is the variable with lower perturbation, and thus, the
one that provides better information for the record linkage.
Moreover we can attempt to perform the re-identification with
single variables. That is, we test the distance-based record link-
age using only one variable each time. The results shown in
Table 6, show that the re-identification percentages of each
variable separately closely relate to the weights previously
obtained. It is also interesting to note that single-variable record
linkage obtains very poor re-identification results as compared
to the record linkage with all 7 variables, which gives a 100%
of correct matches.

This approach to identify key records can be compared to
the Special Uniques Identification problem [17,16], which identi-
fies records with a high risk of re-identification in a microdata file.
In our case, we do not identify the risky records, but the risky
variables.

4.5. Considerations on the computation cost

Our experiments also show an interesting behavior regarding the
computation cost of the optimal parameter for the distance dWM?.
Fig. 4 shows the time taken to find the solution of 10 executions
for each protection method considered. That is, we show the time
taken to find the optimal weights (time is given in a logarithmic
scale) for all the protection methods, with respect to the number
of unlinked records. Note that there are 10 execution for each case.
This figure shows the general behavior found in all protection meth-
ods. To have a more detailed view, in Fig. 5 we show the average
time of 10 executions for the protection methods MicAll and Mic3.

We can observe that the computation cost depends on the per-
centage of re-identifications (as determined by the objective func-
tion in the x axis). With low and high percentages of re-
identifications the cost is very low, even negligible as the percent-
ages reach 0% or 100%. At the same time with medium number of
the re-identifications there is a high computational cost, which
reaches more than one week for some cases.

Combining these results with the ones described before (cf. Sec-
tion 4.3) about the improvement of record linkage, we have that a
significant improvement of record linkage occurs precisely for the
data files where the computational cost is high (1 week or more of
computational cost).
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As we have seen in the general case, determining optimal
weights for the distance-based record linkage does not provides

a substantial improvement in the re-identification percentage.
There are some cases, where the fact that some attributes
are more weighted can have an important impact in the re-
identification, these can be seen with non-uniformly protected
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Table 7
Re-identification percentage of non-uniformly microaggregated files in the training
set.

Table 9
Re-identification percentage of non-uniformly microaggregated files for a training set
of 400 and testing set of 500 records.

DBRL dwMm? DBRL dWM?
Mic553-2.8.5 42.025 90 Mic553-2.8.5 39.38 86.94
Mic553-8.2.5 25.75 82.6 Mic553-8.2.5 23.66 78.48
Mic553-5.3.5 30.75 82.375 Mic553-5.3.5 28.84 77.6
Mic2236-8.3.10.5 82.725 97.5 Mic2236-8.3.10.5 80.82 96.46

files. That is, files where some attributes have a higher protection
degree than others. This means that some attributes have less
perturbation and thus are more useful for re-identification than
others.

To illustrate this issue, we have tested our proposal with the
same Census dataset microaggregated with different values of k
for different groups of attributes in the same file. Similarly to the
case described in Section 4.4, we have considered the following
files with the given groups of attributes or variables and the given
values of k for each one:

e Mic553-2.8.5: 3 groups of 5, 5, and 3 attributes, with respec-
tive values for k of 2, 8, and 5.

e Mic553-8.2.5: 3 groups of 5, 5, and 3 attributes, with respec-
tive values for k of 8, 2, and 5.

e Mic553-5.3.5: 3 groups of 5, 5, and 3 attributes, with respec-
tive values for k of 5, 3, and 5.

e Mic2236-8.3.10.5: 4 groups of 2, 2, 3, and 6 attributes, with
respective values for k of 8, 3, 10, and 5.

Table 7 shows the re-identification percentage in the training
set (400 records randomly selected, giving the average of 10 execu-
tions) for the weighted mean with optimal weights (dWM?) and
the standard record linkage (DBRL). The table shows that the
improvement achieved by the dWM? is very important, in some
cases more than 50%.

The resulting optimal weight for each attribute clearly reflects
the protection applied to each attribute. Table 8 shows the optimal
weights for the 7 variables considered in the record linkages pro-
cess (as described in Section 4.3). In general the weight assigned
to each attribute increases when the k corresponding to the attri-
bute is lower. For a lower k we have more weight (clearly illus-
trated for attribute V7).

We have also considered another scenario, where we use
400 records for training and 500 different record for testing. Table
9 shows the re-identification percentages in this case. As ex-
pected, the dWM? provides a better performance than the stan-
dard record linkage, DBRL. Note also that re-identification
percentages are lower if compared to the results using only the
training set (see Table 7). Although the difference is not as big
as one could expect, this supports the use of the training set as

measure of disclosure risk, since it evaluates the worst case. That
is, an upper bound or maximum of the disclosure risk using dis-
tance-base record linkage.

5. Conclusions

In this paper we have presented and studied the parametriza-
tion of distance based record linkage, in the context of data privacy.
This is done by extending the Euclidean distance used in standard
record linkage with a weighted mean. We have provided a super-
vised learning approach to determine the optimum weights for
such distance, which express the importance of each variable in
the linkage process. We have extensively tested our approach with
several data sets.

In data privacy and statistical disclosure control, record linkage
is used as a disclosure risk estimation of the protected data. This
estimation is based on the links between records of the original
data and the protected data, that the record linkage method can
find. We have tested our approach with some of the most common
protection techniques in statistical disclosure control: microaggre-
gation, rank swapping, and additive noise.

Our results show an improvement in the linkage as compared to
standard distance based record linkage. Nevertheless, in the gen-
eral case, the improvement is small, which leads us to conclude
that it is relatively meaningful to use equal weights for estimating
the disclosure risk in the scenarios discussed here. The low incre-
ment in the proportion of correct links can be assumed by the sta-
tistical offices as a small increment on the risk of protected data
computed using equal weights. There is a concrete case where
the increment is very important, though. This is when the attri-
butes of the protected file have different protection degrees. That
is, some attributes are more protected (and thus more distorted)
than others.

We also show that the computational cost needed to determine
the optimal weights, in the general case, depends on the re-identi-
fied links (success or failure in the re-identification). For low or
high re-identification percentages the cost is negligible, while for
medium percentages of re-identification the cost is very high.
These results on the computational cost has implications on the
analysis of risk, because as shown, a high cost is needed for a small
improvement on the performance of an attack.

Table 8

Optimal weights for the non-uniformly microaggregated files.
Attr Vi V, V3 Va Vs Ve V7
k 2 2 2 2 2 8 8
Mic553-2.8.5 0.84562 0.04475 0.00178 0.00742 0.04884 0.00216 0.04943
k 8 8 8 8 8 2 2
Mic553-8.2.5 0.46971 0.01258 0.00055 0.00033 0.01876 0.01382 0.48425
k 5 5 5 5 5 3 3
Mic553-5.3.5 0.68323 0.01825 0.00123 0.00080 0.02919 0.00424 0.26305
k 8 8 3 3 10 10 10

Mic2236-8.3.10.5 0.39155 0.01172 0.05456

0.39945 0.08340 0.00052 0.05880
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